Analyzing Games with Ambiguous Player Types Using the MINthenMAX Decision Model
Abstract. In many common interactive scenarios, participants lack information about other
participants, and specifically about the preferences of other participants. In this work,
we model an extreme case of incomplete information, which we term games with type
ambiguity, where a participant lacks even information enabling him to form a belief
on the preferences of others. Under type ambiguity, one cannot analyze the scenario
using the commonly used Bayesian framework, and therefore one needs to model the
participants using a different decision model.
To this end, we present the MINthenMAX decision model under ambiguity. This
model is a refinement of Wald’s MiniMax principle, which we show to be too coarse for
games with type ambiguity. We characterize MINthenMAX as the finest refinement of
the MiniMax principle that satisfies three properties we claim are necessary for games
with type ambiguity. This prior-less approach we present here also follows the common
practice in computer science of worst-case analysis.
Finally, we define and analyze the corresponding equilibrium concept, when all
players follow MINthenMAX. We demonstrate this equilibrium by applying it to two
common economic scenarios: coordination games and bilateral trade. We show that
in both scenarios, an equilibrium in pure strategies always exists, and we analyze the
equilibria.
Last Updated Date : 04/04/2017