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Abstract. Different kinds of networks, such as transportation, communication, 

computer, and supply networks, are susceptible to similar kinds of inefficiencies. 

These arise when congestion externalities make each user’s cost depend on the other 

users’ choices of routes. If each user chooses the least expensive (e.g., fastest) route 

from the users’ common point of origin to the common destination, the result may be 

inefficient in the sense that there is an alternative assignment of routes to users that 

reduces the costs of all users. However, this may happen only for certain kinds of 

network topologies. This paper gives several alternative characterizations of networks 

in which inefficiencies may occur. In particular, a necessary and sufficient condition 

for inefficiency is that one of several specific, simple networks is embedded in the 

network. 

Keywords: Congestion, network topology, Braess’s paradox, transportation networks, 

Wardrop equilibrium.  
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1. INTRODUCTION 

In transportation and other kinds of networks, congestion externalities are a potential 

source of inefficiency. A remarkable example of this, known as Braess’s paradox (see, 

e.g., Nagurney, 1999), is shown in Figure 1. Cars arrive at a constant rate at vertex o 

of the depicted network and leave it at vertex d. The network consists of three fast 

roads (e1, e4, and e5) and two slow detours (e2 and e3). The travel time on each road is 

an increasing function of the flow through it, or the average number of vehicles 

passing a fixed point in the road per unit of time. (This is a reasonable assumption if 

the density of vehicles on the road is relatively low, so that the flow is well below the 

road’s capacity. See Sheffi, 1985, Chapter 13, and Figure 1.8.) However, regardless of 

the flow, the travel time on the route consisting of the three fast roads is shorter than 

on any of the alternative routes. Therefore, at equilibrium, all vehicles use that route. 

The travel time on the network is then 21 minutes. Suppose, however, that the 

transverse road, e5, is closed, or its condition declines so that the travel time on it 

becomes similar to the travel time on each of the two detours. The new cost curve is 

higher than the old one: the travel time corresponding to every flow through e5 is 

longer than before. As a result of the change in costs, the old equilibrium is replaced 

by a new one, in which the transverse road is not used: half the vehicles go through 

the left route (e1 and e3), and half through the right route (e2 and e4). Paradoxically, the 

new travel time is shorter than before, 20 minutes. The reason for this is that the 

motorists’ choice of routes is only guided by concern for their own good; it does not 

take others’ welfare into consideration. This selfish attitude results in an overuse of 

the fast roads, and consequently an inefficient equilibrium. 

   Braess’s paradox is not limited to transportation networks only. There is by now a 

moderately large literature showing that this or similar paradoxes may also occur in 

such diverse networks as computer and telecommunication networks, electric circuits, 

and mechanical systems. Remarkably, much of this literature (e.g., Frank, 1981; 

Cohen and Horowitz, 1991; Cohen and Jeffries, 1997) is concerned with the same 

network shown in Figure 1, the Wheatstone network. As it turns out, there is a good 

reason for this. This paper shows that it is essentially the only kind of network in 

which Braess’s paradox can occur. More precisely, a necessary and sufficient 

condition for the existence of some cost function for which the paradox occurs is that 
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the network has an embedded Wheatstone network. In networks without this property, 

so-called series-parallel networks, Braess’s paradox cannot occur. Several alternative 

characterizations of series-parallel networks are given below. 

e1 e2 

o 

e4 e3 

d 
• 

e5 
• • 

• 

 

Figure 1. Braess’s paradox. The travel time on each edge is an increasing function of 

the fraction x of the total flow from o to d passing through the edge. The travel times, 

in minutes, are 1 + 6x for e1 and e4, and 15 + 2x for e2 and e3. If the travel time on e5 is 

also given by 1 + 6x, then, at equilibrium, the entire flow from o to d passes through 

that edge. The total travel time from o to d is then 21 minutes. If, however, the travel 

time on e5 is longer, and given by 15 + 2x, then there is no flow through that edge. 

The equilibrium travel time is then shorter, 20 minutes. 

   The emphasis in this paper is on network topologies for which some cost functions 

giving rise to inefficiencies exist. Other papers, in contrast, put the emphasis on the 

cost functions themselves. For example, Steinberg and Zangwill (1983) and Dafermos 

and Nagurney (1984) derive formulas yielding, under certain conditions, the change in 

users’ costs induced by the creation of additional routes. These formulas can, in 
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principle, be used to determine whether a form of the Braess’s paradox occurs in the 

network. They are, however, rather complicated. Calvert and Keady (1993) consider 

the total power loss in a network in which the potential drop across the two endpoints 

of each edge is an increasing function of the quantity obtained by dividing the edge 

flow by some edge-specific conductivity factor. They show that if the functional 

relation between this quantity and the potential drop is given by a power function, 

which is the same for all edges, then, when one or more of the conductivity factors is 

increased, with the total flow through the network kept constant, the total power loss 

either decreases or remains the same. Conversely, if the functions are not all equal to 

some power function, and there are at least six edges, it is possible to arrange the 

edges so that if one of the conductivity factors is increased, the total power loss also 

increases. Thus, a version of Braess’s paradox occurs in the network. Calvert and 

Keady (1993) also give a topological result (Theorem 11), which says that, in a series-

parallel network, this phenomenon cannot occur. In such a network, the total power 

loss can only decrease or remain the same when any of the conductivity factors 

increases. 

   Braess’s paradox is not the only kind of inefficiency caused by congestion 

externalities. Consider, for example, the series-parallel network in Figure 2(a), which 

represents the alternatives faced by weekend visitors to a certain seaside town, where 

the only attractions are the two nearby beaches. The two edges joining o and v 

represent the alternatives of going to the North Beach (e1) or the South Beach (e2) on 

Saturday. The two edges joining v and d represent the same two alternatives on 

Sunday. The South Beach is more remote, and so the cost of getting there is 2 units 

greater than for the North Beach. On the other hand, it is a longer beach, and therefore 

does not get crowded as fast. However, the additional pleasure of spending the day on 

an uncrowded beach never exceeds the difference in travel costs. Therefore, at 

equilibrium all the visitors go to the North Beach, both on Saturday and on Sunday. 

The crowding there then reduces each person’s pleasure by 4 units. However, if 

people were taking turns in going to the South Beach, half of them going there on 

Saturday and the other half on Sunday, then the cost for all individuals would be 

lower, 3.5. Thus, this assignment represents a Pareto improvement over the 

equilibrium. The difference between this example and the one above is that, in the 

case of the Braess’s paradox, Pareto improvement results from increasing the costs of 
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certain facilities (e.g., increasing the travel time on the transverse road in Figure 1), 

thereby creating a new equilibrium that is better for everyone. In contrast, in the 

present example it is not possible to make everybody better off simply by increasing 

the costs (e.g., charging congestion-dependent entry fees to beaches). Since the 

networks in Figure 2 are series-parallel, Braess’s paradox cannot occur, and therefore 

any Pareto improvement must involve non-equilibrium behavior.  
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• 

e1 e2 

o 

v 

 

     (a)            (b) 

Figure 2. Another kind of inefficiency caused by congestion externalities. The cost of 

each edge in network (a) is an increasing function of the fraction x of the total flow 

from o to d passing through the edge. For e1 and e3, the cost is given by 2x. For e2 and 

e4, it is 2 + x. At equilibrium, only e1 and e3 are used, and the equilibrium cost is 4. 

However, this outcome is inefficient. Splitting the flow, so that half of it goes through 

e1 and e4 and half through e2 and e3, would reduce the cost to 3.5. A similar 

phenomenon occurs in network (b). Indeed, since all the routes from o to d pass 

through the middle edge e5, the cost of this edge is immaterial. 
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   The main result of this paper is that the three graphs in Figures 1 and 2 essentially 

represent the only kinds of network topologies in which inefficient equilibria are 

possible. For example, inefficiencies never arise in a network like that in Figure 3. 

The crucial difference between this and the other networks mentioned above is that 

routes in this network are independent in the sense that each route contains at least 

one edge that is not part of any other route. The first paper to show a connection 

between the independence of the routes in a network (or, rather, a property equivalent 

to it) and the efficiency of the equilibria is Holzman and Law-Yone (1997). This 

paper considers, in fact, a larger class of strategy spaces, of which routes in networks 

constitute a sub-class. An explicit treatment of transportation networks can be found 

in Law-Yone (1995). For networks, the main result of Holzman and Law-Yone (1997) 

can be stated as follows: If the network has independent routes, then for every cost 

function all equilibria are weakly Pareto efficient and, moreover, are strong in the 

sense that no group of users can make all its members better off by changing their 

choices of routes. Conversely, if routes are not independent, then there is a cost 

function for which none of the equilibria is even weakly Pareto efficient. The main 

difference between Holzman and Law-Yone (1997) and the present paper is that these 

authors consider games with a finite number of players, each of whom has a non-

negligible effect on the others. The present paper, in contrast, assumes there is a 

continuum of users. This may be viewed as a mathematical idealization of a very large 

population of individuals, each with a nearly negligible effect on the others. There are 

several substantial differences between these two cases. One of them is that, in the 

latter but not in the former case, the connection between the independence of the 

routes and the efficiency of the equilibria also holds for heterogeneous populations, in 

which not all users have the same cost function.  

   Users may differ in the innate quality they assign to the various alternatives, or in 

the degree by which they are affected by congestion. For example, some motorists 

may be concerned primarily with the travel time, and others with the distance 

traveled. In small populations, heterogeneity is a potential source of inefficiency. This 

can be demonstrated by the simple two-user, two-facility example in which each user 

has a different favorite facility, but would rather not use it than share it with the other 

user (see Milchtaich, 1996). In this example, there are two (pure-strategy) Nash 

equilibria, one of which is worse for both users. In contrast, if there is a continuum of 

users, then one Nash equilibrium may strictly Pareto dominate another only if one of 
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the networks in Figures 1 and 2 is embedded in the network. In a network that does 

not have this property, i.e., one with independent routes, all Nash equilibria are 

efficient—for heterogeneous as well as homogeneous populations.  

   An intermediate model between that of a finite population of users and that of a 

continuum of users is the one in which flow is continuous but the population of users 

is finite (see, for example, Orda et al., 1993). Each user controls a fixed portion of the 

flow and distributes it so as to minimize the user’s total cost. While the results of the 

present paper are not directly applicable, it is likely that connections similar to those 

established here between network topology and the efficiency of the equilibria also 

hold for this model. Yet another line of investigation concerns the social optimality of 

the equilibria, i.e., whether, at equilibrium, the total cost is minimized—a condition 

more demanding than Pareto efficiency. This may not be answered by only 

considering the network topology; it is also necessary to know the functional form of 

the cost functions. For networks that consist of several edges connected in parallel, 

conditions for social optimality of the equilibria are established in Milchtaich (2001). 
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Figure 3. A network with independent routes. 
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2. GRAPH THEORETIC PRELIMINARIES 

2.1. Basic terminology 

An undirected multigraph consists of a finite set V of vertices together with a finite set 

E of edges. Each edge e is associated with an unordered pair {u, v} of distinct 

vertices, which the edge is said to join. These are called the end vertices of e. Thus, 

loops are not allowed, but more than one edge can join two vertices. An edge e and a 

vertex v are said to be incident with each other if v is an end vertex of e. A walk of 

length n (n ≥ 0) is an alternating sequence s of vertices and edges v0, e1, v1, …, vn−1, 

en, vn, beginning and ending with vertices, in which each edge is incident with the two 

vertices immediately preceding and following it. The vertices v0 and vn are called the 

initial and terminal vertices of s, respectively. The walk vn, en, vn−1, …, v1, e1, v0, 

which includes the same vertices and edges as s but passes them in reverse order, is 

denoted −s. If t is a walk of the form vn, en+1, vn+1, …, vm−1, em, vm, the initial vertex of 

which is the same as the terminal vertex of s, then v0, e1, …, en, vn, en+1, …, em, vm is 

also a walk, denoted s + t. A section of s is any walk of the form vn1, en1+1, vn1+1, …, 

vn2−1, en2, vn2, with 0 ≤ n1 ≤ n2 ≤ n. If all the vertices (and, hence, all the edges) in a 

walk s are distinct, then each section of s is uniquely identified by its initial vertex u 

and terminal vertex v, and may therefore be denoted by suv. If the section is of length 

zero, i.e., has no edges, then u and v coincide. If it is of length one, i.e., has a single 

edge, than u and v are the end vertices of that edge. In this case, the section may be 

viewed as an indication of the direction in which s passes through the edge.  

 

2.2. Two-terminal networks 

A two-terminal network (network, for short) is an undirected multigraph together with 

a distinguished ordered pair of distinct vertices, o (for “origin”) and d (for 

“destination”), such that each vertex and each edge belong to at least one walk in 

which the initial vertex is o, the terminal vertex is d, and all the vertices are distinct. 

Any walk with these properties will be called a route. The set of all routes in a 

network is denoted R.  
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   Two networks G and G' will be said to be isomorphic if there is a one-to-one 

correspondence between their vertices and between their edges such that (i) the 

incidence relation is preserved and (ii) the origin and destination in G are paired with 

the origin and destination in G', respectively. A network G is embedded in a network 

G' if G' is isomorphic to a network obtained from G by carrying out any number of 

times one or more of the following operations (see Figure 4):  

1. Subdividing an edge; i.e., replacing it with two edges with a single common end 

vertex.  

2. Adding an edge that joins two existing vertices. 

3. “Extending” the origin or the destination; i.e., adding an edge joining o or d and 

another, new vertex, which becomes the new origin or destination, respectively. 

o 

d 

• 

• • 

• 

• • • 

• • • 

• 

• • 

o o 

d d 

d 

• 

• 

o 

 

         (1)            (2)           (3) 

Figure 4. The upper network is embedded in each of the three lower ones. These are 

obtained from it by carrying out in sequence the following operations: (1) subdividing 

an edge, (2) adding an edge that joins two existing vertices, and (3) extending the 

destination. 
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   Two networks G' and G" with the same origin–destination pair, but no other 

common vertices or edges, may be connected in parallel. The set of vertices in the 

resulting network G is the union of the sets of vertices in G' and G", and similarly for 

the set of edges. The origin and destination in G are the same as in G' and G". Two 

networks G' and G" with a single common vertex (and, hence, without common 

edges), which is the destination in G' and the origin in G", may be connected in series. 

The set of vertices in the resulting network G is the union of the sets of vertices in G' 

and G", and similarly for the set of edges. The origin in G coincides with the origin in 

G', and the destination is the destination in G". 

   A network is said to be series-parallel if no two routes pass through any edge in 

opposite directions. The two networks in Figure 2 are series-parallel. The Wheatstone 

network in Figure 1 is not series-parallel, since there are two routes passing through e5 

in opposite directions. In fact, as the following proposition shows, the Wheatstone 

network is part of any series-parallel network. This result is very similar to one of 

Duffin (1965, Theorem 1).  

Proposition 1. A network G is series-parallel if and only if the network in Figure 1 is 

not embedded in it. 

   As noted by Riordan and Shannon (1942), series-parallel networks can also be 

defined recursively: A network is series-parallel if and only if it can be constructed 

from single edges by carrying out any number of times the operations of connecting 

networks in series or in parallel. Hence the term “series-parallel.” The following 

proposition establishes this.  

Proposition 2. A network G is series-parallel if and only if  

(i) it has a single edge only; or 

(ii) it is the result of connecting two series-parallel networks in parallel; or 

(iii) it is the result of connecting two series-parallel networks in series. 

   One corollary of Proposition 2 is that every series-parallel network is planar and, 

moreover, remains so when a new edge, joining o and d, is added to it. Equivalently, 

every series-parallel network can be embedded in the plane in such a way that o and d 

lie on the exterior face, or boundary. Using Proposition 2, this result can easily be 
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proved by induction on the number of edges. A practical way of verifying that a given 

network is series-parallel is suggested by the third condition in the following 

proposition. 

Proposition 3. For every network G, the following three conditions are equivalent: 

(i) G is series-parallel. 

(ii) For every pair of distinct vertices u and v, if u precedes v in some route r 

containing both vertices, then u precedes v in all such routes.  

(iii) The vertices can be indexed in such a way that, along each route, they have 

increasing indices.  

   A network with independent routes is one in which every route contains at least one 

edge that does not belong to any other route. An example of a network with 

independent routes is shown in Figure 3. As shown below, such a network is 

necessarily series-parallel. The converse, however, is false. For example, the two 

networks in Figure 2 are series-parallel but the routes in them are not independent. In 

fact, it follows from the next proposition that these are essentially the only such 

networks.  

Proposition 4. A network G is a network with independent routes if and only if none 

of the networks in Figures 1 and 2 is embedded in it. 

   The result that every network with independent routes is series-parallel follows as 

an immediate corollary from Propositions 1 and 4. It can also be deduced from the 

following recursive characterization of such networks, due to Law-Yone (1995). This 

characterization differs from the one for series-parallel networks (Proposition 2) only 

in condition (iii), which is stronger than the corresponding condition there.  

Proposition 5. A network G is a network with independent routes if and only if  

(i) it has a single edge only; or 

(ii) it is the result of connecting in parallel two networks with independent routes; 

or 

(iii) it is the result of connecting in series a network with independent routes and a 

network with a single edge. 
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   In every network, each route r has a unique set of edges, and may therefore be 

identified with a unique binary vector, coordinate e of which is 1 if edge e belongs to 

r and 0 otherwise. This vector can be viewed as an element of the vector space Z|E|
2 , 

where |E| is the number of edges in the network and Z2 is the field of the integers 

modulo 2. A set of routes will be said to be independent if the corresponding set of 

vectors is linearly independent in Z|E|
2 . Equivalently, a set of routes is independent if it 

is not possible to write one of the corresponding vectors as the (component-wise) sum 

modulo 2 of some of the others. As the following proposition shows, a network with 

independent routes is characterized by the property that the set of all routes is 

independent.1 Hence the term. An equivalent property is that the set of all routes does 

not contain a “bad configuration” (Holzman and Law-Yone, 1997). A bad 

configuration is a triplet of routes such that the first route contains some edge e1 that 

does not belong to the second route, the second route contains some edge e2 that does 

not belong to the first route, and the third route contains both e1 and e2. Another 

property that characterizes networks with independent routes is that pairs of routes 

never merge only in their middle; in other words, any common section must extend 

either to o or to d.  

Proposition 6. For every network G, the following four conditions are equivalent: 

(i) The set R of all routes in G is independent. 

(ii) A triplet of routes constituting a bad configuration does not exist. 

(iii) For every pair of distinct routes r and s and every vertex v common to both 

routes, either the section rov (which consists of v and all the vertices and edges 

preceding it in r) is equal to sov, or rvd is equal to svd. 

(iv) G is a network with independent routes. 

 

                                                 
1 Note that independence is defined with respect to Z2, not (the real field) R. For example, the network 

in Figure 1 is not a network with independent routes, despite the fact that the vectors representing its 

four routes are linearly independent in R|E|. This is because, in Z
|E|
2 , each of these four vectors is equal 

to the sum of the others. 
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3. FLOWS AND COSTS 

A flow in a network is a specification of a nonnegative route flow fr for each route r. 

It can be written in a form of a flow vector f, coordinate r of which is fr. Given the 

flow vector, the flow fs through any walk s is defined as the total flow in all the routes 

of which s is a section: 

(1)    fs    = ∑
r∈R

s is a section of r

   fr. 

If s is a walk of length zero, consisting of a single vertex, then fs represents the total 

flow in all the routes passing through that vertex. In particular, the flow through the 

origin,  

    fo  =  ∑
r∈R

 fr, 

represents the total origin–destination flow. It is equal, of course, to fd, the flow 

through the destination. If s is a walk of length one, consisting of a single edge and its 

two end vertices, then fs represents the total flow through that edge in a the direction 

indicated by s; it will be referred to as an edge flow. Note that each edge is associated 

with a pair of edge flows, one in each direction. However, in a series-parallel network, 

in which all routes pass through an edge in the same direction, only one of these can 

ever be positive. In a network with independent routes, the edge flows uniquely 

determine the flow vector.  

   It should be emphasized that, in this paper, flow is always assumed to originate in a 

single vertex, o, and terminate in a single vertex, d. Multiple origin–destination pairs 

are not allowed. This restriction can be partially circumvented by connecting all 

sources to a single, artificial vertex, from which all flow is assumed to originate, and 

similarly for the sinks. However, such a construction substantially alters the network 

topology. 

   A cost function is a vector-valued function c specifying the cost cs(f) of each walk s 

as a function of the flow vector f.2 This cost is assumed to satisfy the following 

                                                 
2 Note that all walks are assigned costs, not just routes. The costs are not assumed to be nonnegative. 

However, they may be thought of as such. Indeed, the assumption that costs cannot be negative is 

implicit in the definition of equilibrium (in the next section), which only considers routes, i.e., walks 

from the origin to the destination that do not pass through any vertex more than once.  
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montonicity condition: For every pair of flow vectors f ̂  and f ̃ , if f ̂ t ≥ f ̃ t and f ̂ −t ≥ f ̃ −t 

for all sections t of s, then cs(f ̂ ) ≥ cs(f ̃ ).3 This implies, in particular, that the cost of a 

walk only depends on the flow through each of its sections and the flows in the 

opposite directions. In general, the cost may remain constant even if these flows 

increase. A cost function c will be said to be increasing if it satisfies the following 

condition: For every route r and every pair of flow vectors f ̂  and f ̃ , if f ̂ s ≥ f ̃ s and f ̂ −s ≥ 

f ̃ −s for all sections s of r, and there is at least one section s of length one for which f ̂ s 

> f ̃ s, then cs(f ̂ ) > cs(f ̃ ). A cost function c will be said to be additively separable if, for 

every route r, every pair of distinct vertices u and v in r, and every flow vector f, if u 

precedes v in r then crov
(f) = crou

(f) + cruv
(f). Additive separability implies that the cost 

of each route is the sum of the costs of its individual edges. Note that the cost of an 

edge generally depends on the direction in which it is passed through. However, in 

each direction, the cost is only a function of the flows through the edge in that 

direction and the opposite direction and (possibly) the flows through the end vertices. 

In a series-parallel network, where all routes pass through an edge in the same 

direction, the cost of passing through it in the opposite direction, as well as the effect 

on the cost of the flow in the opposite direction, are immaterial.  

   In models of transportation networks, the assumption that the cost function is 

additively separable is customary. Moreover, it is often assumed that there is only one 

direction in which each edge can be passed through (e.g., Sheffi, 1985; Bell and Iida, 

1997). Thus, a two-way highway is described by a pair of edges. Correspondingly, the 

description of a transportation network typically involves two kinds of data: a directed 

graph, which describes both the physical network and the directions in which 

individual edges may be traveled on; and a system of associated edge cost functions, 

which give the travel time on each edge as a function of the edge flow. However, the 

model presented in Beckmann et al. (1956) differs in that it assumes all roads to be 

                                                 
3 This condition is rather weak: Since it involves a potentially long list of assumptions, the set of flow 

vector pairs to which it applies is relatively small. Stronger, and perhaps more intuitive, monotonicity 

conditions could be used instead. For example, it could be required that the cost of a walk can decrease 

only if one or more of the relevant edge flows decrease. However, a weaker definition makes for 

stronger results, and it is therefore preferable from a methodological point of view. The same remark 

applies to the two definitions that follow. 
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two-way. Moreover, the cost of traveling on a road in both directions is assumed 

equal, and is only a function of the sum of the flows in all routes passing through the 

road in either direction. The model presented in the present paper subsumes both these 

models. In the additively separable case, each edge is associated with a pair of cost 

functions—one in each direction. The first transportation model described above 

corresponds to a case in which the cost of passing through an edge in a particular 

direction is prohibitively high. The second model corresponds to a case in which the 

two costs are equal, and only depend on the sum of the edge flows in both directions.  

   Dropping the additive separability assumption gains the model some generality. For 

example, turning restrictions can be incorporated simply by assigning very high (or 

infinite) costs to certain routes. The same applies to the possibility that route costs are 

affected by the flow through one or more of their vertices. Such flows may, for 

example, represent a crude measure of congestion at four-way stop junctions. 

However, neither the possibility of non-separable costs nor that of junction costs is 

essential for any of the results below.   

 

4. EQUILIBRIUM 

A flow vector f* is said to be an equilibrium if the entire flow from o to d passes 

through least cost routes. Mathematically, the equilibrium condition is:  

(2) For every route r with fr* > 0, 

   cr(f*) = 
 

min
s∈R

 cs(f*). 

In this case, the above minimum, denoted c*, is the equilibrium cost. In the 

transportation literature, a flow vector satisfying (2) is known as a Wardrop, or user, 

equilibrium. This condition expresses the principle, formulated by Wardrop and 

others (see references in Nagurney, 1999, p. 151), that, at equilibrium, the travel time 

on all used routes is equal, and less than or equal to the travel time that would be 

experienced by of a single vehicle on any unused route (Sheffi, 1985).   

   The equilibrium condition (2) can also be given a variational inequality formulation, 

as follows (see Nagurney, 1999, Theorem 4.5):  
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For every flow vector f with the same total origin–destination flow as f*,  

   ∑
r∈R

 cr(f*) (fr* − fr) ≤ 0. 

Standard results (e.g., Nagurney, 1999, Theorem 1.4) then imply that, if the cost 

function is continuous, then for every δ ≥ 0 there exists an equilibrium with a total 

origin–destination flow of δ. In general, there can be more than one such equilibrium. 

However, as the following proposition shows, if the network is series-parallel and the 

cost function is additively separable, then the total origin–destination flow uniquely 

determines the equilibrium cost. Moreover, in such a setting, increasing the edge costs 

or the total origin–destination flow cannot result in a decreasing equilibrium cost. 

Proposition 7. Let ĉ and c̃ be two additively separable cost functions for the same 

series-parallel network, such that ĉr(f) ≥ c̃r(f) for all routes r and flow vectors f.  

If f ̂  and f ̃  are equilibria with respect to ĉ and c̃, respectively, and the total origin–

destination flows satisfy f ̂ o ≥ f ̃ o, then the respective equilibrium costs ĉ and c̃ satisfy  

ĉ ≥ c̃. Consequently, if the cost functions and the total origin–destination flows are the 

same, then the equilibrium costs are also the same.  

   The result that, in a series-parallel network with an additively separable cost 

function, the equilibrium cost cannot decrease when edge costs increase, holds in the 

case of elastic as well as inelastic demand. In the latter case, in any equilibrium the 

total origin–destination flow must equal the fixed demand δ. Therefore, this result 

follows directly from Proposition 7. In the former case, the demand is determined as a 

nonincreasing function of the cost (Sheffi, 1985, p. 135; Bell and Iida, 1997, p. 102). 

That is, the total origin–destination flow may vary, but is lower in one equilibrium 

than in another only if the first equilibrium cost is higher than the second. In 

particular, for ĉ and c̃ as in Proposition 7 and for any pair of corresponding equilibria 

f ̂  and f ̃ , if f ̂ o < f ̃ o then ĉ ≥ c̃. On the other hand, by Proposition 7, f ̂ o ≥ f ̃ o also implies 

ĉ ≥ c̃. Therefore, the last inequality holds unconditionally. This proves that, in the case 

of elastic as well as inelastic demand, a unique equilibrium cost corresponds to any 

additively separable cost function, and this cost either increases or remains the same 

when edge costs are increased.  
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   The case of elastic demand is, in fact, not that much different from the case of fixed, 

inelastic demand. This can be shown by making the option of “staying at home” 

explicit. This option, which carries a fixed cost, is optimal if and only its cost is less 

than that of any route in the network. Therefore, the option of “staying at home” can 

be represented by a single edge, joining o and d, with a flow-independent cost. By 

Propositions 2 and 5, adding such an edge to a series-parallel network or one with 

independent routes does not affect the respective property. Also, if the cost function in 

the original network is additively separable, then the same is true for the enlarged one. 

These considerations show that, for certain purposes at least, demand may be assumed 

inelastic. Correspondingly, it suffices to restrict attention to flow vectors with a total 

origin–destination flow equal to the fixed demand. 

 

5. EFFICIENCY OF EQUILIBRIA 

Braess’s paradox represents an extreme form of inefficiency. It occurs in a network G 

if there are two additively separable cost functions ĉ and c̃ such that ĉr(f) ≥ c̃r(f) for all 

routes r and flow vectors f, but for every equilibrium f ̂  with respect to ĉ with a total 

origin–destination flow of unity4 and every equilibrium f ̃  with respect to c̃ with a 

similar total origin–destination flow, the respective equilibrium costs ĉ and c̃ satisfy  

ĉ < c̃. Thus, Braess’s paradox occurs when higher cost curves potentially correspond 

to a lower equilibrium cost. As the following theorem shows, this is the case for every 

network that is not series-parallel. Conversely, for a network that is series-parallel, a 

pair of cost functions as above never exists. This result immediately implies 

Theorem 11 of Calvert and Keady (1993) (for the case of two-terminal networks), 

which is described in the Introduction. 

Theorem 1. For every network G, the following conditions are equivalent: 

(i) Braess’s paradox occurs in G.  

(ii) G is not series-parallel.  

                                                 
4 The total origin–destination flow can always be normalized to 1. Therefore, restricting attention to 

equilibria satisfying this condition involves no loss of generality.  
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   Even though series-parallel networks never exhibit Braess’s paradox, they do not 

always have efficient equilibria. This is demonstrated by the example in Figure 2, in 

which the equilibrium flow can be rearranged in such a way that the costs of all routes 

actually used become less than the equilibrium cost. As the next theorem shows, the 

reason this kind of inefficiency occurs in the networks in Figure 2 is that routes in 

these networks are not independent.  

   An equilibrium f*, with equilibrium cost c*, will be said to be weakly Pareto 

efficient if there is no flow vector f, with the same total origin–destination flow as f*, 

such that cr(f) < c* for all routes r with fr > 0. It is Pareto efficient if there is no flow 

vector f, with the same total origin–destination flow as f*, such that cr(f) ≤ c* for all 

routes r with fr > 0 and there is at least one such route r for which the inequality is 

strict.  

Theorem 2. For every network G, the following conditions are equivalent: 

(i) For every cost function, all equilibria are weakly Pareto efficient.  

(ii) For every increasing cost function, all equilibria are Pareto efficient.  

(iii) G is a network with independent routes. 

 

6. HETEROGENEITY 

The model presented in Section 3 can be generalized by dropping the (implicit) 

assumption that all users of the same route incur the same costs. This requires 

modifying the definition of equilibrium as well. If route costs differ across users, the 

equilibrium condition becomes: Each route is only used by those for whom it is a least 

cost route. A more formal definition follows. Let the population of users be the unit 

interval [0, 1]. For each user i, let ci be i’s cost function. This specifies the cost cs
i(f) 

of each walk s for user i as a function of the flow vector f, and is assumed to satisfy 

the condition that, for every walk s and every pair of flow vectors f ̂  and f ̃ , if f ̂ t ≥ f ̃ t 

and f ̂ −t ≥ f ̃ −t for all sections t of s, then cs
i(f ̂ ) ≥ cs

i(f ̃ ). A strategy profile σ is an 

assignment of a route σ(i) to each user i, such that, for every route r, the set of all 

users i with σ(i) = r is Lebesgue measurable; the measure of this set is the route 

flow fr. Thus, each strategy profile σ gives rise to a particular flow vector, with a total 



19 

origin–destination flow of unity. This flow vector will be denoted by f(σ). A strategy 

profile σ is a Nash equilibrium if, for every user i, 

(3)    ci
σ(i)(f(σ)) = 

 
min
s∈R

 cs
i(f(σ)).  

In this case, the right-hand side of (3) gives user i’s equilibrium cost. In the special 

case in which all users have the same cost function, this definition essentially reduces 

to (2).  

   The case of user-dependent cost functions differs from that of a single, common cost 

function in a number of ways. For example, the result that, for series-parallel 

networks and additively separable cost functions, equilibrium costs are unique 

(Proposition 7), is no longer true if heterogeneity is allowed. This is shown by the 

following example.  

Example 1. Three types of users travel from o to d in the series-parallel network 

shown in Figure 5. Type I users are those with 0 ≤ i < 1/8, type II are those with 1/8 ≤ 

i < 1/4, and type III are those with 1/4 ≤ i ≤ 1. The cost functions are additively 

separable: for each type of user, the cost of each route is the sum of the costs of its 

edges. The cost of edge ej for user i depends on i’s type and on the fraction x of users 

using edge ej, as detailed in the following table: 

 e1 e2 e3 e4 e5 

Type I x   5x x 

Type II  5x x  x 

Type III  x  0.5 + x x 

 

(where blank cells indicate prohibitively high costs). There is one Nash equilibrium in 

which all type I users take the route going through e1 and e4, all type II users take the 

route going though e2 and e3, and all type III users use e5. In this Nash equilibrium, 

everyone’s cost is 3/4. However, there is another Nash equilibrium, in which all users 

incur a higher cost, 5/6. In this Nash equilibrium, type III users with 5/6 ≤ i ≤ 1 take 

the route going though e2 and e4, and all the other users use e5. Any convex 
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combination of these two equilibria (in terms of the proportion of users of each type 

using each route) is also a Nash equilibrium, with an intermediate equilibrium cost. 

Thus, there is a continuum of Nash equilibria. These equilibria can be Pareto ranked 

in the sense that, in each equilibrium, everyone’s cost is higher, or everyone’s cost is 

lower, than in each of the other equilibria. Indeed, the costs in each equilibrium are 

the same for all users. These costs are minimal at the first Nash equilibrium described 

above. Moreover, it can be shown that this Nash equilibrium is Pareto efficient, in the 

obvious sense (see below).  

e1 e2 

o 

e4 e3 

d 

• 

e5 • 

• 

 

Figure 5. Population heterogeneity and inefficiency of equilibria. For details see text. 

   The second Nash equilibrium in Example 1 is not even weakly Pareto efficient. As 

in the homogeneous case (Theorem 2), this lack of efficiency may be attributed to the 

fact that routes in the network are not independent. As Theorem 3 below shows, in a 

network with independent routes Nash equilibria are always weakly Pareto efficient. 

And if the cost functions of all users are increasing, then all Nash equilibria satisfy a 

condition stronger than Pareto efficiency, which will be referred to as hyper-

efficiency.  
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   A strategy profile σ is weakly Pareto efficient if there is no strategy profile τ such 

that ci
τ(i)(f(τ)) < ci

σ(i)(f(σ)) for all users i. It is Pareto efficient if, for every strategy 

profile τ,  

 either ci
τ(i)(f(τ)) = ci

σ(i)(f(σ)) for all users i, 

 or ci
τ(i)(f(τ)) > ci

σ(i)(f(σ)) for some i. 

A strategy profile σ will be said to be hyper-efficient if, for every strategy profile τ,  

(H) either ci
τ(i)(f(τ)) = ci

σ(i)(f(σ)) for all users i, 

       or ci
τ(i)(f(τ)) > ci

σ(i)(f(σ)) for some i with τ(i) ≠ σ(i). 

In words, any effective change of route choices is harmful to some of those who 

change their routes. Clearly, any hyper-efficient strategy profile σ is a Nash 

equilibrium. Indeed, it is a strong equilibrium, and even a strictly strong equilibrium.5 

This means that deviations are never profitable, not just for individuals but also for 

groups of users: Any deviation that makes someone in the group better off must leave 

someone else worse off. In a network with independent routes, and when all cost 

functions are increasing, the converse is also true. That is, under these conditions any 

Nash equilibrium is hyper-efficient and, hence, Pareto efficient and a strictly strong 

equilibrium. 

Theorem 3. For every network G, the following conditions are equivalent: 

(i) For every assignment of cost functions to users, all Nash equilibria are weakly 

Pareto efficient.  

(ii) For every assignment of increasing cost functions to users, all Nash equilibria 

are hyper-efficient.  

(iii) G is a network with independent routes. 

   While independence of the routes implies that all equilibria are efficient, even this 

condition does not guarantee uniqueness of the equilibrium costs if the population is 

heterogeneous. The following example shows this. 

                                                 
5 A strategy profile σ is a strictly strong equilibrium (Voorneveld at al., 1999) if, for every strategy 

profile τ, ci
τ(i)(f(τ)) ≥ ci

σ(i)(f(σ)) for all users i, or ci
τ(i)(f(τ)) > ci

σ(i)(f(σ)) for some i with τ(i) ≠ σ(i). 
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Example 2. Three types of users travel from o to d in the network shown in Figure 3. 

Type I users are those with 0 ≤ i < 4/13, type II are those with 4/13 ≤ i < 8/13, and 

type III are those with 8/13 ≤ i ≤ 1. The cost functions are additively separable: for 

each type of user, the cost of each route is the sum of the costs of its edges. The cost 

of edge ej for user i depends on i’s type and on the fraction x of users using edge ej, as 

detailed in the following table: 

 e1 e2 e3 e4 e5 

Type I 3.1 + x   8x x 

Type II  8x 2.1 + x  x 

Type III  0.5 + x  x x 

 

(where blank cells indicate prohibitively high costs). There is one Nash equilibrium in 

which all type I users take the route going through e4 and e5, all type II users take the 

route going through e3 and e5, and all type III users use e2. There is another Nash 

equilibrium, in which all type I users use e1, all type II users use e2, and all type III 

users take the route going through e4 and e5. For type I users, the second equilibrium 

cost is higher than the first. For type II and type III users, the first is higher than the 

second. 

   A yet unresolved problem is the determination of necessary and sufficient 

topological conditions guaranteeing that, for any assignment of increasing, additively 

separable cost functions to users, each user’s equilibrium cost is unique. A sufficient 

condition for this is that the network consists of several edges connected in parallel 

(Milchtaich, 2000; Konishi, 2001), or is the result of connecting several such 

networks in series. However, this condition is not necessary. For sufficient conditions 

on the cost functions, which guarantee uniqueness of the equilibrium edge flows and, 

hence, the equilibrium costs, see, for example, Altman and Kameda (2001). The 

conditions are essentially these: Each edge can be passed through in one direction 

only; and its cost is equal to some increasing function of the edge flow, which is the 

same for all users, plus a user-specific constant, which does not depend on the flow. 
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APPENDIX 

The Appendix contains the proofs of the various propositions and theorems in this 

paper.  

Proof of Proposition 1. The three claims given below together prove the proposition 

and, in addition, establish the following result. 

Lemma 1. A network is series-parallel if and only if it satisfies the following 

condition: 

For every pair of distinct vertices u and v, if u precedes v in some route r 

containing both vertices, then u precedes v in all such routes. 

Consequently, for every two routes r and s in a series-parallel network and every 

vertex v common to both routes, the walk rov + svd is a route (i.e., it does not pass 

through any vertex more than once). 

CLAIM 1. Every network that satisfies the condition in Lemma 1 is series-parallel. 

This is obvious. Indeed, for a network to be series-parallel it only has to satisfy the 

condition for all pairs of vertices u and v that are joined by some edge. 

CLAIM 2. The network in Figure 1 is embedded in every network that does not 

satisfy the above condition. 

Suppose there are two routes r and s in a network G, and two vertices u and v 

common to both routes, such that u precedes v in r but follows it in s. Suppose also 

that u and v are chosen in such a way that the length of ruv is maximal. Then, any 

vertex u' common to r and s that precedes u in r must precede v in s, and any vertex v' 

common to both routes that follows v in r must follow u in s (see Figure 6). Let  u' be 

chosen as the last vertex before u in r that also belongs to s (possibly, u' = o), and v' as 

the first vertex after v in r that also belongs to s (possibly, v' = d). All the edges in ru'u, 

and all the vertices in this section of r with the exception of the initial and terminal 

ones, do not belong to s, and the same is true for rvv'. This implies that the network in 

Figure 1 is embedded in the network that consists of all the vertices and edges in s, 

ru'u, and rvv'. Hence, the same is true for G. 
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Figure 6. 

CLAIM 3. The network in Figure 1 is not embedded in any series-parallel network.  

This is clear: Any network with an embedded non-series-parallel network is itself not 

series-parallel. n 

Proof of Proposition 2. Clearly, all networks with a single edge, as well as those that 

are the result of connecting two series-parallel networks in series or in parallel, are 

themselves series-parallel. Therefore, it only has to be shown that every series-parallel 

network G with more than one edge satisfies (ii) or (iii). 

CLAIM 1. In the set of all routes in G, the relation “route r and route s have a vertex 

in common, other than o and d, or the two routes are identical,” is an equivalence 

relation. 
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This relation is obviously reflexive and symmetric. It remains to be shown that it is 

transitive. That is, if r, s, and t are three routes such that there is some vertex u ≠ o, d 

common to r and s and some vertex v ≠ o, d common to s and t, then there is also 

some vertex, other than o and d, common to r and t. Suppose not. Without loss of 

generality, it may be assumed that u precedes v in s, and there is no other vertex in the 

section suv that belongs either to r or to t (see Figure 7). This assumption implies that 

the network in Figure 1 is embedded in the network that consists of all the vertices 

and edges in r, t, and suv. However, by Proposition 1, this contradicts the assumption 

that G is series-parallel. This contradiction proves Claim 1. 
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Figure 7. 

   Two cases are possible: Either there are two or more equivalence classes with 

respect to the equivalence relation in Claim 1; or this relation holds between any pair 

of routes in G. In the former case, pick up one of the equivalence classes, and consider 

the network G' that consists of all the vertices and edges that belong to at least one 

route in this equivalence class, as well as the network G" that consists of all the 
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vertices and edges that belong to at least one route not in the class. Each vertex v, 

other than o and d, belongs to one, and only one, of these two networks. (Otherwise, v 

would belong to two routes in two different equivalence classes, which is impossible 

by definition of the equivalence relation.) Therefore, each edge also belongs to one, 

and only one, of them. This implies that G is the result of connecting G' and G" in 

parallel. Clearly, since G is series-parallel, the same is true for G' and G". Hence, G 

satisfies (ii). 

   In the rest of this proof, it will be assumed that the equivalence relation in Claim 1 

holds between any pair of routes in G. It will be shown that there is some vertex, other 

than o and d, which is common to all routes. Note that the above assumption implies 

that each route in G has at least two edges. Indeed, since a route with a single edge is 

not equivalent to any other route, it must be the only route in G. The route’s unique 

edge is then the only edge in G, a contradiction to the assumption that G has more 

than one edge. 

   Fix a route r and, for every route s, denote by vs the first vertex in s, other than o, 

that also belongs to r. Since, by assumption, the equivalence relation holds between r 

and s, vs ≠ d. Let t be a route such that, for all routes s, vs is either equal to vt or 

precedes it in r.  

CLAIM 2. The vertex vt belongs to all routes. 

Suppose the contrary, that vt does not belong to some route s. Let u be the last vertex 

before vt in r that also belongs to s. By the way t was chosen, u ≠ o. By Lemma 1, the 

first vertex after u in s that also belongs to r follows vt in r. This implies that tovt and 

sud do not have a vertex in common. For if a common vertex v did exist, then the route 

tov + svd would have the property that the vertex vtov + svd (i.e., the first vertex after o in 

which the route intersects r) follows vt in r, which is a contradiction to the way t was 

chosen (see Figure 8). The fact that tovt and sud do not have a common vertex implies 

that the walk tovt + (−r)vtu + sud is a route (i.e., it does not pass through any vertex more 

than once). However, this contradicts the assumption that G is series-parallel. This 

contradiction proves Claim 2. 

   It follows from Claim 2 that G is the result of connecting two series-parallel 

networks in series: the network G' that consists of vt (as destination) and all the 

vertices and edges that precede it in some route in G; and the network G" that consists 
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of vt (as the origin) and all the vertices and edges that follow it in some route in G. By 

Lemma 1, vt is the only vertex common to both networks. Since G' and G" are clearly 

series-parallel, G satisfies (iii). n 

u 

o 

d 
• 

v 

• 

• 

r 
s 

t 

• 

• 

• vt 

vs 

 

Figure 8. 

Proof of Proposition 3. Since, clearly, (iii) implies (ii) and (ii) implies (i), it suffices to 

show that every series-parallel network G satisfies (iii). This will be proved by 

induction on the number of edges in G. If there is only one edge, (iii) holds trivially. 

Suppose, then, that G has more than one edge and that (iii) holds for any series-

parallel network with a smaller number of edges than G. By Proposition 2, G is the 

result of connecting two series-parallel networks in series or in parallel. By the 

induction hypothesis, each of these two networks satisfies (iii). It will now be shown 

that this implies that G itself also satisfies (iii).  

   Condition (iii) is equivalent to the following:  

There is a one-to-one function ϕ from the set of vertices to the integers such that, 

for every pair of vertices u and v, if u precedes v in some route r then ϕ(u) < ϕ(v).  
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When two networks G' and G" that satisfy (iii) are connected in series or in parallel, a 

function ϕ' as above exists for G', and another one ϕ" exists for G". It is, moreover, 

not difficult to see that these functions can be chosen in such a way that, for every 

vertex u in G' and every vertex v in G", ϕ'(u) = ϕ"(v) if and only if u = v. The unique 

common extension ϕ of ϕ' and ϕ" to the union of the two sets of vertices then satisfies 

the above condition for the network that is the result of connecting G' and G" in series 

or in parallel. Hence, that network also satisfies (iii). n 

   The proof of Proposition 4 uses the following lemma. 

Lemma 2. For a series-parallel network G, the following three conditions are 

equivalent: 

(i) One of the networks in Figure 2 is embedded in G. 

(ii) There is a triplet of routes in G that constitutes a “bad configuration.” (This 

term is defined in the paragraph that follows Proposition 5.) 

(iii) There is a pair of routes r and s, and a vertex v common to both routes, such 

that rov ≠ sov and rvd ≠ svd. 

Proof. (i) ⇒ (ii). This is clear, since a bad configuration exists in both networks in 

Figure 2. 

(ii) ⇒ (iii). Suppose there is a bad configuration: a route t and two edges e1 and e2 in 

this route, with e1 preceding e2, such that e2, but not e1, also belongs to another route 

s, and e1, but not e2, also belongs to a third route r. Note that, since the network is 

series-parallel, r and s pass through e1 and e2, respectively, in the same directions as t. 

Let u be the first vertex in s that also belongs to t and, in that route, follows e1 but 

precedes e2. Let v be the last vertex in r that also belongs to t and, in that route, 

follows e1 but precedes e2 (see Figure 9). If sou and rvd have a common vertex v', then 

(iii) holds: rov' ≠ sov' since e1 belongs to rov' but not to sov', and rv'd ≠ sv'd since e2 

belongs to sv'd but not to rv'd. Suppose, then, that sou and rvd do not have a vertex in 

common. This implies that u is either equal to v or precedes it in r. For if u followed v 

in r, then the walk sou + (−t)uv + rvd would be a route (i.e., it would not pass through 

any vertex more than once), which is a contradiction to the assumption that the 

network is series-parallel. Consider the two routes t and sou + tuv + rvd. The inequality 
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tov ≠ sou + tuv holds, since e1 belongs to the walk on the right but not to the one on the 

left; and tvd ≠ rvd holds, since e2 belongs to the walk on the right but not to the one on 

the left. Therefore, (iii) holds, with t and sou + tuv + rvd replacing r and s, respectively.  
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Figure 9. 

(iii) ⇒ (i). Let r, s, and v be as in (iii). Let e1 be the last edge in r that precedes v and 

does not belong to s, and v1 the end vertex of e1 which follows this edge in r. Let e2 be 

the first edge in r that follows v and does not belong to s, and u2 the end vertex of e2 

which precedes this edge in r (see Figure 10). Let u1 be the last vertex before v1 in s 

that also belongs to r, and v2 the first vertex after u2 in s that also belongs to r. 

Consider the network that consists of all the vertices and edges in r, su1v1, and su2v2. 



30 

Since only the initial and terminal vertices of each of the last two sections of s are in r, 

one of the networks in Figure 2 is embedded in this network. If v1 = u2, then it is the 

network in Figure 2(a); and if v1 ≠ u2, then it is the one in Figure 2(b). n  
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Figure 10. 

Proof of Proposition 4. None of the networks in Figures 1 and 2 is a network with 

independent routes. Therefore, the same is true for every network G in which one of 

these networks is embedded. Conversely, if none of these networks is embedded in G, 

then, by Proposition 1, G is series-parallel and, by Lemma 2, a triplet of routes 

constituting a bad configuration does not exist. This implies that G is a network with 

independent routes. For, otherwise, there would be a route r, every edge of which also 

belongs to some other route. Clearly, no route s ≠ r can have all of r’s edges. Let s be 
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a route with a maximal number of such edges. Let e1 be an edge in r that is not in s, 

and t ≠ r a route containing e1. Because of the way s was chosen, there is at least one 

edge e2 common to r and s that is not in t. However, this implies that r, s, and t 

constitute a bad configuration, which is a contradiction. n 

Proof of Proposition 5. One direction is obvious: If a network satisfies (i), (ii), or (iii), 

then it is a network with independent routes. To prove the converse, assume that G is 

a network with independent routes. Since this is not the case for any of the networks 

in Figures 1 and 2, none of these networks is embedded in G. By Proposition 1, this 

implies that G is series-parallel. Also, by Lemma 2: (1) for every pair of routes r and s 

and every vertex v common to both routes, rov = sov or rvd = svd, and (2) a triplet of 

routes constituting a bad configuration does not exist in G. This implies the following 

two claims. 

CLAIM 1. If two routes in G have a vertex in common, other than o and d, then their 

first edge is the same or their last edge is the same. 

CLAIM 2. In the set of all routes in G, the relation “route r and route s have an edge 

in common” is an equivalence relation. 

Claim 2 follows from the fact that, if route r shares an edge e1 with route s, and s 

shares an edge e2 with a third route t, then at least one of the edges e1 and e2 must be 

common to r and t, otherwise these three routes would constitute a bad configuration. 

   Two cases are possible: Either there are two or more equivalence classes with 

respect to the equivalence relation in Claim 2; or this relation holds between any pair 

of routes in G. In the former case, pick up one of the equivalence classes, and consider 

the network G' that consists of all the vertices and edges that belong to at least one 

route in this equivalence class, as well as the network G" that consists of all the 

vertices and edges that belong to at least one route not in the class. It follows from 

Claim 1 and the definition of the equivalence relation that each vertex, other than o 

and d, belongs to one, and only one, of these two networks. Therefore, each edge also 

belongs to one, and only one, of them. This implies that G is the result of connecting 

G' and G" in parallel. Since G is a network with independent routes, the same is 

clearly true for G' and G". Hence, G satisfies (ii). 

   In the rest of this proof, it will be assumed that the equivalence relation holds 

between any pair of routes in G; i.e., any two routes have an edge in common. 
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CLAIM 3. All the routes in G have the same first edge, or they all have the same last 

edge.  

To prove this claim, suppose there are two routes r and s that do not have the same 

last edge. Since, by assumption, they have some edge in common, it follows from 

Claim 1 that the first edge in r coincides with the first edge in s. Call this edge e. By a 

similar argument, every route t that does not have e as its first edge must have the 

same last edge as r. Similarly, it must have the same last edge as s. However, r and s 

do not have the same last edge. This contradiction proves that all routes must have e 

as their first edge, thus completing the proof of Claim 3. 

   It follows from Claim 3 that there is some edge e, with o or d as one of its end 

vertices, which belongs to all routes. This implies that e is the only edge incident with 

o or d, respectively. Therefore, either G has a single edge, or it is the result of 

connecting in series the network that consists of e and its two end vertices and the 

network that consists of all the other vertices and edges in G plus the end vertex of e 

which is not o or d. Clearly, the latter is a network with independent routes. Hence, G 

satisfies (i) or (iii). n 

Proof of Proposition 6. For each of the networks in Figures 1 and 2, none of the four 

conditions holds. Therefore, it follows from Proposition 4 that (i), (ii), and (iii) do not 

hold for any network G which is not a network with independent routes. Conversely, 

if G is a network with independent routes, then (i) clearly holds. And since G is 

series-parallel and none of the networks in Figure 2 is embedded in it, (ii) and (iii) 

hold by Lemma 2.   n 

   The following two lemmas are used in the proof of Proposition 7. 

Lemma 3. Let G be a series-parallel network, and f ̂  and f ̃  two flow vectors. If the 

total origin–destination flows satisfy f ̂ o > 0 and f ̂ o ≥ f ̃ o, then there is a route r such 

that, for all sections s of r of length zero or one (i.e., those containing only one vertex 

or only one edge), f ̂ s > 0 and f ̂ s ≥ f ̃ s. If f ̂ o > f ̃ o, then a similar result holds with the last 

pair of inequalities replaced by f ̂ s > f ̃ s.  

Proof. The proof of the lemma proceeds by induction on the number of edges. For a 

network with a single edge, the result is trivial. Consider, then, a series-parallel 
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network G with two or more edges, such that the result holds for any two flow vectors 

in any series-parallel network with a smaller number of edges than G (this is the 

induction hypothesis). By Proposition 3, G is the result of connecting two series-

parallel networks, G' and G", in series or in parallel. Consider, first, the case in which 

G' and G" are connected in series, so that the destination in G', v, coincides with the 

origin in G". The set R' of all routes in G' is then equal to {rov | r ∈ R }. Every flow 

vector f in G induces a flow vector f' in G', which is defined by the equations f'r' = fr' 

(r' ∈ R'). The flow f's through any walk s in G' is given by an equation similar to (1), 

namely,  

(4)    f's    = ∑
r'∈R'

s is a section of r'

   f'r'. 

It is, however, not difficult to see that, for every such s, f's = fs. In particular, if the 

flow vectors f ̂  and f ̃  satisfy the pair of inequalities f ̂ o > 0 and f ̂ o ≥ f ̃ o, or the 

inequality f ̂ o > f ̃ o, then similar inequalities or inequality hold for the flow vectors f ̂ ' 

and f ̃ ' they induce in G'. It then follows from the induction hypothesis that there is a 

route r' in G' such that, for all sections s of r' of length zero or one, f ̂ s > 0 and f ̂ s ≥ f ̃ s, 

or f ̂ s > f ̃ s,  respectively. By similar considerations, there is a route r" in G" such that 

similar inequalities or inequality hold for all sections s of r" of length zero or one. 

Therefore, the same is true for the route r = s' + s" in G. This completes the proof for 

the case in which G is the result of connecting the two series-parallel networks in 

series. 

   Suppose, now, that G is the result of connecting G' and G" in parallel, so that o and 

d are also the origin and destination, respectively, in G' and G". The set R of all 

routes in G is then the disjoint union of the set R' of all routes in G' and the set R" of 

all routes in G". Every flow vector f in G induces a flow vector f' in G', which is 

defined as in the previous paragraph, and a flow vector f" in G", which is defined in a 

similar manner. For every walk s in G', the flow f's through s is given by (4). If s is not 

one of the zero-length walks o and d, then f's = fs.  However, unlike in the case 

previously considered, f'o and f'd (which are both equal to ∑ r'∈R' fr') are generally less 

than fo and fd, and the same is true for f"o and f"d. In fact, fo = f'o + f"o. It follows from 
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this equality that if f ̂  and f ̃  are two flow vectors satisfying f ̂ o > 0 and f ̂ o ≥ f ̃ o, then f ̂ 'o 

> 0 and f ̂ 'o ≥ f ̃ 'o, or f ̂ "o > 0 and f ̂ "o ≥ f ̃ "o. Then, by the induction hypothesis, there is 

some route r, either in G' or in G" (and, hence, in G), such that, for all sections s of r 

of length zero or one, f ̂ s > 0 and f ̂ s ≥ f ̃ s. Similarly, if f ̂ o > f ̃ o, then there is a route r in 

G' or in G" such that, for all sections s of r of length zero or one, f ̂ s > f ̃ s. n 

Lemma 4. Let G be a series-parallel network, c an additively separable cost function, 

and f* a corresponding equilibrium. For every vertex v, there is a number F(v) such 

that, for all routes r passing through v, if every edge in r belongs to some least cost 

route s, then crov
(f*) = F(v). In particular, for every route r that is itself a least cost 

route, crov
(f*) = F(v) for every vertex v in r. Consequently, F(d) is the equilibrium 

cost. 

Proof. Let r be a route in which every edge e belongs to some least cost route s. For 

every vertex v in r, the following two claims hold. 

CLAIM 1. For every least cost route s passing through v, csov
(f*) ≤ crov

(f*).  

Otherwise, cs(f*) would be greater than crov
(f*) + csvd

(f*), which is the cost of the route 

rov + svd, a contradiction to the assumption that s is a least cost route.  

CLAIM 2. For every least cost route s passing through v, csov
(f*) ≥ crov

(f*).  

This will be proved by induction on the length of r
ov

. The induction hypothesis is that, 

for every vertex u that precedes v in r, Claim 2 holds with u replacing v. Suppose, by 

contradiction, that there is some least cost route t passing through v such that ctov
(f*) < 

crov
(f*). Clearly, this is possible only if v ≠ o. Let e be the edge immediately preceding 

v in r, and u its other end vertex. Let s be a least cost route passing through e. By the 

induction hypothesis, csou
(f*) ≥ crou

(f*). Since suv = ruv, and hence csuv
(f*) = cruv

(f*), 

additive separability implies csov
(f*) ≥ crov

(f*), and hence csov
(f*) > ctov

(f*). However, 

Claim 1, when applied to t instead of r, gives csov
(f*) ≤ ctov

(f*), which is a 

contradiction. This contradiction proves Claim 2. 

   For every vertex v that belongs to some least cost route s, set F(v) = csov
(f*). The 

value of F(v) does not depend on the particular choice of s. Indeed, by Claims 1 and 2, 
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if r is any route passing through v in which every edge e belongs to some least cost 

route, crov
(f*) = csov

(f*). For all vertices v that do not belong to any least cost route, set 

F(v) = 0. n 

Proof of Proposition 7. Let f ̂  and f ̃  be equilibria with respect to ĉ and c̃, respectively, 

such that the total origin–destination flows satisfy f ̂ o ≥ f ̃ o. Since, by assumption, ĉr(f) 

≥ c̃r(f) for all routes r and flow vectors f, if f ̂  is equal to f ̃  then the respective 

equilibrium costs ĉ and c̃ satisfy ĉ ≥ c̃. Suppose, then, that the two flow vectors are 

distinct (and, hence, f ̂ o > 0). By Lemma 3, there is some route r such that, for all 

sections s of r of length zero or one, f ̂ s > 0 and f ̂ s ≥ f ̃ s. The first inequality implies 

that every edge e in r belongs to some route t with f ̂ t > 0. Therefore, by the 

equilibrium condition (2) and Lemma 4, ĉr(f ̂ ) = ĉ. The second inequality, together 

with the assumption that the cost functions are additively separable, implies that ĉr(f ̂ ) 

≥ ĉr(f ̃ ). Since ĉr(f ̃ ) ≥ c̃r(f ̃ ) and, by definition, c̃r(f ̃ ) ≥ c̃, this proves that ĉ ≥ c̃. The 

second assertion of the proposition immediately follows from the first. n 

Proof of Theorem 1. The implication (i) ⇒ (ii) is given by Proposition 7. To prove the 

reverse implication, recall that, by Proposition 1, if a network is not series-parallel, 

then the network in Figure 1 is embedded in it. As shown, in that particular network 

Braess’s paradox does occur. The same is true for any network in which it is 

embedded. This can easily be seen by considering the following rules for assigning 

costs to the new edges created by the three operations defining embedding: For each 

of the two edges created when an existing edge is subdivided, the cost is one half that 

of the original edge; for an edge joining two existing vertices, the cost is infinite (or, 

at least, very high); and for the edge created when the origin or the destination are 

“extended,” the cost is an arbitrary increasing function of the edge flow. n 

   The following lemma is used in the proof of Theorem 2. 

Lemma 5. A series-parallel network is a network with independent routes if and only 

if, for every pair of distinct flow vectors f ̂  and f ̃  with equal total origin–destination 

flows, there is a route r such that f ̂ s ≥ f ̃ s for all sections s of r, and f ̂ r > f ̃ r.  

Proof. For either of the a series-parallel networks in Figure 2, consider the following 

two flow vectors f ̂  and f ̃ . For the route r1 passing through the edges e1 and e3, f ̂ r1 = 0 
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and f ̃ r1 = 2; for the route r2 passing through e2 and e4, f ̂ r2 = 0 and f ̃ r2 = 0; for the route 

r3 passing through e1 and e4, f ̂ r3 = 1 and f ̃ r3 = 0; and for the route r4 passing through e2 

and e3, f ̂ r4 = 1 and f ̃ r4 = 0. The only routes r such that f ̂ r > f ̃ r are r3 and r4. However, 

r3 includes e1, and r4 includes e3, and for these two edges, the edge flow in f ̂  is less 

than in f ̃ . In view of Propositions 1 and 4, this example proves that for any series-

parallel network in which routes are not independent there is a pair of distinct flow 

vectors f ̂  and f ̃  for which a route r as above does not exist. 

   The converse, that for every network G with independent routes, a route r as above 

exists for every pair of distinct flow vectors with equal total origin–destination flows, 

will be proved by induction on the number of edges. The induction hypothesis is that 

this is true for any network with independent routes and a smaller number of edges 

than G. Let f ̂  and f ̃  be two distinct flow vectors in G with equal total origin–

destination flows. Since the flow vectors themselves are distinct, G must have at least 

two edges. Therefore, it follows from Proposition 5 that G is the result of connecting 

two series-parallel networks, G' and G", in series or in parallel. In the former case, 

one of these, say G", has only one edge, e. Then, by similar arguments to those used 

in the proof of Lemma 3, the induction hypothesis implies that there is some route r' 

in G' such that f ̂ s ≥ f ̃ s for all sections s of r', and f ̂ r' ≥ f ̃ r'. The route r in G obtained by 

appending e and d to r'  has the same property. This is because every section s of r is 

(1) a section of r', or (2) the zero-length walk consisting of d alone, or (3) the result of 

appending e and d to some section t of r'—in which case the flows through t and s are 

always equal. This completes the proof for the case in which G is the result of 

connecting G' and G" in series. If G is the result of connecting the two networks in 

parallel, then, again by similar arguments to those used in the proof of Lemma 3, it 

follows from the induction hypothesis that there is a route r in G' or in G" such that f ̂ s 

≥ f ̃ s for all sections s of r, and f ̂ r ≥ f ̃ r. Since r is also a route in G, this completes the 

proof.  n 

Proof of Theorem 2. Suppose that G is a network with independent routes. Let c be a 

cost function, f* a corresponding equilibrium with positive total origin–destination 

flow, and c* the equilibrium cost. If f is another flow vector, with the same total 

origin–destination flow as f*, then, by Lemma 5, there is some route r such that  
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fs ≥ f*s for all sections s of r, and fr > f*r. Since routes in G are independent, there is 

some section s of r of length one such that fs = fr > f*r = f*s. It follows that cr(f) ≥ 

cr(f*), and if c is increasing, then cr(f) > cr(f*). Since fr > 0, and, by definition, cr(f*) ≥ 

c*, this proves that f* is weakly Pareto efficient, and, moreover, is Pareto efficient if c 

is increasing.  

   Suppose now that routes in G are not independent. By Proposition 4, one of the 

networks in Figures 1 and 2 is embedded in G. As shown, for each of these three 

networks there is an increasing, additively separable cost function and a 

corresponding equilibrium that is not even weakly Pareto efficient. The same is true 

for every network in which one of these networks is embedded; the proof of this is 

based on the same arguments used in the proof of Theorem 1. n 

Proof of Theorem 3. Suppose that G is a network with independent routes. For a given 

assignment of cost functions to users, let σ be an equilibrium, and τ another strategy 

profile. If f(τ) = f(σ), then it follows from the equilibrium condition (3) that ci
τ(i)(f(τ)) 

≥ ci
σ(i)(f(σ)) for all users i, and equality holds if τ(i) = σ(i). Hence, condition (H) 

holds. Suppose, now, that f(τ) ≠ f(σ). By Lemma 5, there is some route r such that 

fs(τ) ≥ fs(σ) for all sections s of r, with strict inequality for r itself and, because of the 

independence of the routes, for some section s of r of length one. For all users i, 

cr
i(f(τ)) ≥ cr

i(f(σ)) ≥ min s∈R cs
i(f(σ)) = ci

σ(i)(f(σ)), and if i’s cost function is increasing, 

then the first inequality is strict. Since fr(τ) > 0, the set of all users i with τ(i) = r has 

positive measure. This proves that the equilibrium σ is weakly Pareto efficient. 

Moreover, since fr(τ) > fr(σ), the set of all users i such that τ(i) = r but σ(i) ≠ r also has 

positive measure. As shown above, for each such i, if i’s cost function is increasing, 

then ci
τ(i)(f(τ)) > ci

σ(i)(f(σ)). This proves that if all users have increasing cost functions, 

then (H) holds, and hence the equilibrium σ is hyper-efficient. 

   Suppose now that routes in G are not independent. There are increasing, additively 

separable cost functions for G and a corresponding Nash equilibrium that is not even 

weakly Pareto efficient. The proof of this is the same as the one given for 

Theorem 2.   n 
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