Many Types of Human Capital and Many Roles in U.S. Growth: Evidence from County-Level Educational Attainment Data*

Andrew T. Young**
Department of Economics
Emory University
Atlanta, GA 30322-2240
Atyoung@emory.edu
Daniel Levy
Department of Economics
Bar-Ilan University
Ramat-Gan 52900, Israel
and
Department of Economics
Emory University
Atlanta, GA 30322
Levyda@mail.biu.ac.il

Matthew J. Higgins
Department of Economics
Emory University
Atlanta, GA 30322
Matthew_Higgins@bus.emory.edu

JEL Codes: O40, O11, O18, R11, I20, J24
Keywords: Human Capital Stock, Educational Attainment, Growth, County-Level Data

March 10, 2004

Prepared for Presentation at the CESifo/Harvard University-PEPG Conference on "Schooling and Human Capital Formation in the Global Economy:

Revisiting the Equity-Efficiency Quandary"
September 3-4, 2004, Munich, Germany

[^0]
Many Types of Human Capital and Many Roles in U.S. Growth: Evidence from County-Level Educational Attainment Data

Abstract

We utilize county-level data to explore the roles of different types of human capital accumulation in U.S. growth determination. The data includes over 3,000 cross-sectional observations and 39 demographic control variables. The large number of observations provides enough degrees of freedom to obtain estimates for the U.S. as a whole and for 32 states in and of themselves. This data contains measures of educational attainment for four distinct categories: (a) 9 tol1 years, (b) high school diploma, (c) some college and (d) bachelor degree or more. These variables represent human capital stocks for each and every county. This is a departure from much of the economic growth literature which has (at least in part) relied on extrapolation of stocks from flows, e.g. school enrollment data. We use a consistent two stage least squares estimation procedure. We find that (i) the percentage of a county's population with less than a high-school education is negatively correlated with economic growth, (ii) the percentage obtaining a high school diploma is positively correlated with growth, and (iii) the percentage obtaining some college education has no clear relationship with economic growth but (iv) the percentage that obtains a bachelor degree or more is positively correlated with growth. Further, we find that (v) there is significant qualitative heterogeneity in estimated coefficients across states for the 9 to 11 years and high school diploma categories but (vi) no qualitative heterogeneity for the college level categories. The most consistent conclusion across samples is that the percent of a county's population obtaining a bachelor degree or higher level of college education has a positive relationship with economic growth. Oddly enough, despite findings (ii), (iv) and (vi) above, we find that the percentage of a county's population employed in educational services is negatively correlated with economic growth.

1. Introduction

Does human capital accumulation contribute to the economic growth and in what way(s)? This has been a fundamental query for policy-makers, educators and scholars.

One perspective from which to view this query is a macroeconomic one, and the view from this perspective is not straightforward. Human capital accumulation may allow a populace to better obtain and use the technologies already existing world-wide (raising an economy's balanced growth path), or instead it may allow a populace to better produce new, previously-nonexistent technologies (raising an economy's balanced growth rate). The perspective is further clouded by data limitations. For many economies, human capital stock data is unavailable and must be extrapolated (imperfectly) from human capital flows, creating measurement error. Furthermore, there are many types of human capital with potentially many different contributions to economic growth. Macroeconomic data often aggregates away this heterogeneity.

This paper analyses the role of human capital accumulation in U.S. income growth determination. County-level data allows us to explore different roles of different types of human capital accumulation. The data includes over 3,000 cross-sectional observations and 39 demographic control variables. The large number of observations provides enough degrees of freedom to provide estimates for the U.S. as a whole and for 32 states in and of themselves. Our human capital measures are of educational attainment and cover four distinct categories: percent of a population with (a) 9 toll years of school and no more, (b) with a high school diploma and no more, (c) with some college, and (d) with a bachelor degree or more. We find significant heterogeneity in estimated effects across the four types of human capital, as well as across individual U.S. states. Only one estimated effect of human capital in growth determination is (i) clearly detected in the full U.S. sample and (ii) consistent in that no state-wide sub-sample provides statistically significant evidence to the contrary: the percent of a county's population having attained a bachelor degree or higher level of education is positive associated with economic growth.

The variables we use as a measure of human capital offer two important advantages. First, they represent human capital stocks for each and every county. This is a departure from much of the economic growth literature which has (at least in part)
relied on extrapolation of stocks from flows. For example, Mankiw et al (1992) use school-enrollment rates as a human capital investment proxy for human capital stocks in cross-county growth regressions. ${ }^{1,2}$ As well, Kyriacou (1991) and Barro and Lee (1993) combine limited educational attainment observations with school-enrollment data to estimate human capital stocks for international samples. Second, our four-level categorization provides a distinction between different levels/types of human capital accumulation. Mankiw et al (1992) use data on high-school enrollment in their regressions. Klenow and Rodriguez-Claire (1997) add elementary and college enrollment variables to their analysis. Our data adds a distinction between more or less college-level education that we find to be economically important in our results. ${ }^{3}$ It should also be noted that none of the above studies use county-level data.

Besides the fine categorizations of human capital levels/types and the exceptionally large number of cross-sectional observations, the data offers numerous other advantages over the international data often used in identifying growth determination processes. A single institution collects the data, ensuring considerable uniformity of variable definitions. There is no exchange rate variation between the counties and the price variation across counties is smaller than across countries. Also, U.S. counties are characterized by exceptional mobility of technology, resources and factors of production. Of course, many of these advantages are embodied in U.S. statelevel data used by, e.g., Barro and Sala-i-Martin (1991) and Evans (1997a). However, the state level data sacrifices the large number of observations that the county-level data offers. This large number of observations, and accompanying degrees of freedom, allows

[^1]for a more detailed analysis of the roles of human capital in the U.S. by addressing interstate heterogeneity for 32 states. ${ }^{4}$

The primary contribution of this paper to the empirics of human capital and growth lies in the extensive dataset that we have constructed. However, we also utilize a consistent two stage least squares (2SLS) estimation procedure of a specification derived from the neoclassical growth model, as suggested by Evans (1997a, 1997b). Evans (1997b) demonstrates that data must satisfy highly implausible conditions for ordinary least squares (OLS) estimators to be consistent. (OLS is used by most studies with a neoclassical specification, e.g. Barro and Sala-i-Martin $(1991,1992)$ and Mankiw et al (1992).) Evans proposes a 2SLS method that produces consistent estimators. ${ }^{5}$

The neoclassical specification employed in this paper plays a role in interpreting human capital's role(s) in growth determination. As mentioned above, human capital can be hypothesized to have a role in technology adoption (balanced growth path effect) and/or technology development (balanced growth rate effect). These effects are, of course, not mutually exclusive, but understanding which, if either, is predominant seems to be important. Benhabib and Spiegel (1994) explore this question for a cross-country sample and find that the adoption effect is more important. Our neoclassical specification allows us to consider the same question for the U.S. in and of itself. As detailed in Section 2 below, with the average growth of income as the dependent variable, the estimated value of the coefficient on the initial income level provides a discriminating test. A negative value suggests that the neoclassical growth model (i.e. human capital aids adoption) is the better approximation to reality than an endogenous growth model (i.e. human capital aids development). As outlined below, and documented fully in Young et al (2003), this coefficient is negative and significant for the full U.S. sample and negative for every individual state sample where the value was statistically significant. This allows us to not only ascertain the correlation of human capital types with economic growth, but also to offer an interpretation supported by the data. The

[^2]criterion we use for reporting 32 states is that their regressions yielded significant initial income coefficient estimates, thus supporting the neoclassical specification.

Using county-level data on human capital stocks and the consistent 2SLS estimation, we find that (i) the percentage of a county's population with less than a highschool education is negatively correlated with economic growth, (ii) the percentage obtaining a high school diploma is positively correlated with growth, (iii) the percentage obtaining some college education has no clear relationship with economic growth but (iv) the percentage that obtains a bachelor degree or more is positively correlated with growth. Further, (v) there is significant qualitative heterogeneity in estimated coefficients across states for the 9 to 11 years and high school diploma categories but (vi) no qualitative heterogeneity for the college level categories. A broad conclusion is that individual high levels of human capital accumulation are conducive to the adoption and application of available technologies, and that this represents a positive contribution to economic growth via a higher balanced growth path.

An additional, and surprising, finding which we briefly discuss in this paper concerns another demographic variable included in our regressions: percentage of a county's population employed in the education services industry. Based on the above findings we would expect the coefficient on this variable to be positive or not significantly different from zero. In fact, we report that it is negative and significant for the full sample and for every individual state sample where the estimate is significant at the 10 percent level or better!

The paper is organized as follows. Section 2 discusses the econometric specification of the neoclassical growth regression and the 2SLS technique we employ. Section 3 describes the county-level data. Section 4 briefly describes the convergence rate parameter estimates on which our interpretation of human capital coefficient estimates rests. The estimates of contributions from different types/levels of human capital for full and individual U.S. state samples are presented and discussed in section 5. Section 6 briefly touches upon the finding that the prevalence of educational service employment is negatively correlated with economic growth. Section 7 concludes.

2. Econometric Model and 2SLS Estimation Procedure

The basic specification used here and in other cross-sectional growth regressions arises from the neoclassical growth model of Ramsey (1928), Solow (1956), Swan (1956), Cass (1965) and Koopmans (1965). ${ }^{6}$ The growth model implies that,

$$
\begin{equation*}
\hat{y}(t)=\hat{y}(0) e^{-B t}+\hat{y}^{*}\left(1-e^{-B t}\right) \tag{2.1}
\end{equation*}
$$

where \hat{y} is log of income per effective unit of labor (technology assumed to be labor augmenting), t is the time period (0 being the initial time period), and B is a nonlinear function of the economy's discount (average, subjective), population growth, and technological growth rates, as well as preference parameters. B governs the speed of adjustment to the steady state. The \hat{y}^{*} is the economy's steady-state log level of income per effective unit of labor. From (2.1) it follows that the average growth rate of income per unit of labor between dates 0 and T is,

$$
\begin{equation*}
\frac{1}{T}(y(T)-y(0))=z+\left(\frac{1-e^{-B T}}{T}\right)\left(\hat{y}^{*}-\hat{y}(0)\right) \tag{2.2}
\end{equation*}
$$

where z is the exogenous rate of technical progress and B represents the responsiveness of the average growth rate to the gap between the steady state of log income per effective unit of labor and the initial value. Since effective units of labor (L) are assumed to equal $L e^{z t}$, we have $\hat{y}(0)=y(0)$.

From this model, growth regressions are obtained by using OLS to fit crosssectional data on economies $1, \ldots, N$ to the equation,

$$
\begin{equation*}
g_{n}=\alpha+\beta y_{n 0}+\gamma^{\prime} x_{n}+v_{n} . \tag{2.3}
\end{equation*}
$$

In (2.3), g_{n} is the average growth rate of per capita income for economy n between years 0 and T [i.e., $\left.\frac{1}{T}(y(T)-y(0))\right], \alpha$ is a constant that is a function of $\mathrm{z}, \beta=\left(\frac{1-e^{-B T}}{T}\right), x_{n}$

[^3]is a vector of variables that control for cross-economy heterogeneity in determinants of the steady-state, \hat{y}^{*}, γ is a vector of coefficients on those variables, and ν_{n} is the error term assumed to have zero mean and finite variance.

An estimate of β provides a discriminating test between the neoclassical growth model, where technological change is exogenous and, therefore, human capital affects growth through better adoption of existing technologies, and endogenous growth theories where human capital accumulation may affect technological change directly. If $\beta<0$, then γ describes how the x_{n} affect the height of economy n 's balanced growth path. Otherwise, γ describes how the x_{n} affect n 's balanced growth rate (Evans, 1997b, pp.3-4).

However, Evans (1997b) shows that OLS estimates of β and γ will be consistent only when the data satisfy highly implausible conditions. Plausible departures from these conditions can produce large biases. Specifically, Evans demonstrates that unless (i) the dynamical structures of the economies examined have identical, first-order autoregressive representations, (ii) every economy affects every other economy symmetrically, and (iii) the set of conditioning variables controls for all permanent cross-economy differences, the OLS estimators of the speed of convergence are inconsistent. They are biased downwards, underestimating the speed of convergence.

Evans (1997b) proposes a 2SLS instrumental variables approach that consistently estimates the speed of convergence as well as the effects of conditioning variables. We use a cross-section variant of his method. The method consists of two stages. In the first stage we use instrumental variables to estimate the equation,

$$
\begin{equation*}
\Delta g_{n}=\omega+\beta \Delta y_{n 0}+\eta_{n} \tag{2.4}
\end{equation*}
$$

where

$$
\Delta g_{n}=\frac{\left(y_{n, T}-y_{n, 0}\right)}{T}-\frac{\left(y_{n, T-1}-y_{n,-1}\right)}{T},
$$

$\Delta y_{n 0}=y_{n 0}-y_{n,-1}, y_{n}$ is the logarithm of per capita income for county n, ω and β are parameters, and η_{n} is the error term. We use the lagged (1969) values of all the
independent variables as instruments, with the exception of Metro Area, Water Area, and Land Area. ${ }^{7}$ Given the sample period we use here, we define,

$$
\Delta g_{n}=\frac{\left(y_{n, 1998}-y_{n, 1970}\right)}{T}-\frac{\left(y_{n, 1997}-y_{n, 1969}\right)}{T} .
$$

Next, define β^{*} as the estimator obtained from equation (2.4). In the second stage, we take the estimate for β^{*}, multiply it by $y_{n 0}$ and then subtract the product from g_{n}. This yields a variable,

$$
\begin{equation*}
\pi_{n}=g_{n}-\beta^{*} y_{n 0}, \tag{2.5}
\end{equation*}
$$

which is then regressed (using OLS) on an intercept and the vector of variables, x_{n}, that are potential influences on balanced growth path levels. This second-stage regression is of the form,

$$
\begin{equation*}
\pi_{n}=\tau+\gamma x_{n}+\varepsilon_{n}, \tag{2.6}
\end{equation*}
$$

where τ and γ are parameters and ε_{n} is an error term. This regression yields a consistent estimator, $\stackrel{\gamma}{\gamma}^{*}$. Also note that τ is the same, in principle, as the OLS α. It is an estimate of the exogenous rate of technical progress, z, or the balanced growth rate.

What this two stage procedure essentially does is, in the first stage, differences out any uncontrolled form of heterogeneity from the specification so that an omitted variable bias does not occur ${ }^{8}$ and then, in the second stage, uses the resulting estimate of

[^4]\square to recreate the component of a standard growth regression that would be related to the set of conditioning variables. This component can then be regressed on a constant and the conditioning variables, in "un-differenced" form, to estimate the effects of conditioning variables on balanced growth paths. This procedure ensures that none of the information contained in the levels of the conditioning variables is lost. ${ }^{9}$

Besides reporting OLS results below, as well as 2SLS results, for comparison, we also use a Hausman test as an additional aid in the determination of the appropriateness of the instrumental variable approach for the full U.S. sample. Two separate tests were performed. The first test was run on the β values and yielded an m value of 134.6. The second test was run on the entire model and yielded an m value of 1236.6. Indeed, both tests reject the null hypothesis at the 1% level, thereby suggesting that the OLS estimates are inconsistent.

3. U.S. County-Level Data

The data for this study were drawn from several different sources. The majority of the data, however, came from the Bureau of Economic Analysis Regional Economic Information System (BEA-REIS) and U.S. Census data sets. ${ }^{10}$ The BEA-REIS data are largely based on the 1970, 1980 and 1990 decennial Census summary tape files, the 1972, 1977, 1982 and 1987 Census of Governments, the Census Bureau's City and County Book from various years. All dollar variables are expressed in constant 1992 prices. Natural logs were used throughout the project. We exclude military personnel from the measurements of both personal income and population.

Our entire data set includes 3,058 county-level observations. ${ }^{11}$ We examine the full sample, as well as U.S. states as economic units in and of themselves. We report

[^5]estimation results for 32 of the 50 states. The standard we used for inclusion was whether or not, in the first-stage regressions, the estimate for β was statistically different from zero.

The measure we use for personal income is that of the U.S. Bureau of Economic Analysis (BEA). ${ }^{12}$ The definitions that are used for the components of personal income for the county estimates are essentially the same as those used for U.S. national estimates. For example, the BEA defines "personal income" as the sum of wage and salary disbursements, other labor income, proprietors' income (with inventory valuation and capital consumption adjustments), rental income (with capital consumption adjustment), personal dividend income and personal interest income. (BEA, 1994) "Wage and salary disbursements" are measurements of pre-tax income paid to employees. "Other labor income" consists of payments by employers to employee benefit plans. "Proprietors' income" is divided into two separate components-farm and non-farm. Per capita income for a county is defined as the ratio of this personal income measure for the county to the population of the county. We adjust the personal income measure to be net of government transfers and express the value in per capita 1992 dollars using the U.S. GDP deflator. Natural logs of the real per capita income measures are used in the analysis. ${ }^{13}$

In addition to the per capita income variable we also utilize 39 demographic conditioning variables. In Table 1 we provide the complete list of the variables we use in this study along with their definitions. In the table we also provide the source of each series as well as the period it covers. All 39 of these variables were used for estimation using the full sample. However, only 33 of these were used for the with-in state estimations to preserve degrees of freedom. Our standard for exclusion was that a conditioning variable, in the second-stage regression using the full sample, resulted in a coefficient estimate with zeros to at least the fourth decimal place (0.0000). The variables excluded from the within-state regressions were "land area," "water area," "education: public elementary," "education: public nursery," "education: private elementary," and "education: private nursery."

[^6]The variables that we focus on in this paper are four educational attainment variables: "Education: 9-11 years," "Education: H.S. diploma," "Education: Some college," and "Education: Bachelor.$+{ }^{, 14}$ Each variable represents the percentage of a county's population that has obtained its named level of education and no higher. The delineations and cut-offs for educational attainment are intuitive and also those used by the U.S. census. Initial values for each of the four variables were collected from the 1970 U.S. Census tapes. The data is based on self-reported values from the census surveys.

4. Motivating a Neoclassical Interpretation of Human Capital

The OLS and 2SLS estimates of β, the coefficient on the log of 1970 per capita income, are presented in Table 2 for the full U.S. sample and for 32 individual U.S. states. The speed of conditional convergence can be inferred from β. Associated with these estimates of β, Table 3 reports the asymptotic (conditional) convergence rates and corresponding 95 percent confidence intervals. ${ }^{15}$

For the full sample, the significant and negative β estimate provides support for the neoclassical growth model and facilitates our interpretation of human capital types as aiding in the adoption and use of existing technologies. The same applies to the 32 individual U.S. states. This interpretation holds that human capital accumulation, if contributing positively to economic growth, does not do so by increasing the long-run, balanced growth rate. Rather, human capital allows for a given county to more effectively obtain, install and apply existing technologies. Despite not affecting the balanced growth rate, such affects are still important because they speak to how quickly poor counties can catch up to their wealthier counterparts.

[^7]The convergence rate estimates in Table 3 provide a point of reference demonstrating that quantitative differences that arise from using the consistent 2SLS technique rather than OLS. For the full sample of 3,058 counties the 2SLS point estimate of the conditional convergence rate is 6.82 percent and is significant at the 1 percent level. This is compared to 2.37 percent using the inconsistent OLS method (also significant at the 1 percent level). The OLS 2.37 percent is similar to results that Barro and Sala-i-Martin (1992), Mankiw et al (1992), and Sala-i-Martin (1996) report. Sala-iMartin (1996) has noted that a roughly 2 percent convergence rate is so commonly found in international, inter-state and inter-regional growth regressions that it qualifies as a "mnemonic rule." The difference between the OLS and 2SLS estimate is nearly 300 percent. This suggests that OLS introduces substantial bias.

The difference is economically large. A 2.37 percent convergence rate implies the gap between the present per capita income level and the balanced growth path halves in 31 to 32 years, while a 6.82 percent rate implies the same in 12 to 13 years.

The basic finding that conditional convergence rates are higher than the 2 percent "mnemonic rule" of Sala-i-Martin (1996) holds when examining 32 states as economies in and of themselves. Figure 1 presents confidence intervals as vertical bars (that include the point estimates). The 2 percent rule is represented by a horizontal line. Every point estimate is above 2 percent, and the average point estimate is 8.1 percent. For one fourth (8) of the states the point estimate is above 10 percent. ${ }^{16}$ Considering the 95 percent confidence intervals, we find that only 3 states have a lower bound of the confidence interval not greater than 2 percent (California, Iowa, and South Dakota all bottom out at 1.8 percent). These results are encouraging for laggard counties in the limited sense that, given proper policies/conditions to induce and support balanced growth paths similar to leader counties, the laggard counties can approach their balanced growth paths relatively quickly. Human capital levels represent part of those conditions, and studying their contributions provides policy-makers insights into what constitutes improvements in those conditions.

[^8]
5. Analysis of Human Capital Coefficients

As Table 1 indicates, our data include four different variables measuring educational attainment within U.S. counties: the percent of the population with (a) 9-11 years of education and no more, (b) a high school diploma and no more, (c) some college education but less than a bachelor degree, and (d) a bachelor degree and/or higher degrees. ${ }^{17}$ Table 4 reports the 2SLS coefficient estimates for these four educational attainment variables for the full sample and within-state samples.

We first consider the percent of the population with at least 9 years of education, but less than a high school (or its equivalent) degree. For the full sample the coefficient is -0.0221 and is significant at the 1 percent level. This seems sensible. It implies that the greater percentage of an economy's population without the remedial mathematics, writing and communications skills - as well as the minimum personal discipline and social behavior - necessary to obtain a high school diploma, the lower the economy's balanced growth path.

The significant negative estimated effect also brings to the fore the danger of interpreting years of schooling as a monotonic, linear measure of homogenous human capital accumulation. In fact, some years of schooling may not even be indicative of human capital at all. Mankiw (1997, p.106) notes that "[S]econdary-school [high-school] enrollment represents a decision between work and education. By contrast, a 7-year-old not at school might be home with a parent. This time may at least represent a form of home schooling [and in general] primary-school enrollment might contain little information about human capital accumulation." Mankiw is referring to enrollment, rather than attainment measures, but his point remains: opportunity cost is the natural measure of human capital and the opportunity cost to the first 9-11 years of education is often nil.

Passing that threshold, the coefficient for the population achieving, but not surpassing, a high school diploma has a point estimate of 0.0097 , also significant at the 1 percent level, for the full sample. Again, one can easily make the argument that the

[^9]completion of the high-school degree (the last two years of which are non-compulsory in most cases and apply to individuals old enough to join the labor force) has a positive opportunity cost and therefore represents a positive investment in human capital.

More surprisingly, for the full sample the coefficient point estimate is -0.0025 for the percent of the population with some college education but not enough for a bachelor degree. However, this estimate is not statistically different from zero. Compare this to the coefficient on the percent of the population with a bachelor degree or more: 0.0732 and significant at the 1 percent level. This point estimate, as well, dwarfs that of the high-school variable coefficient. A possible interpretation of this result again concerns opportunity cost. College education ostensibly involves a benefit in the form of increased skills/productivity for the individual, but it also involves a cost in the form of foregone wages. The results may imply that college education of at least 4 years represents (on average) a positive net return to individuals, while the net return on a 2-year degree is questionable.

Of course, the immediate response to the above is to ask: But then why do individuals go to college and not pursue bachelor degrees to begin with? Straightforward explanations include that the net return is positive but too small to be statistically identified and that individuals consistently overestimate the return. The first of these is a dead-end for this analysis, and the second is not appealing if we wish to maintain an assumption of some basic rationality on the part of agents. This does not rule out either of these explanations, but another explanation exists that is plausible and some evidence exists for: agents do not bear the full opportunity cost. Kane and Rouse (1995) and Surette (1997) both report that the estimated return to 2-year degrees is positive and equals about 4-6 percent and 7-10 percent respectively. However, these studies measure private return and not social return. They examine individuals' costs (tuition paid, wages forgone, experience forgone, etc.) and benefits (wage premiums). On the other hand, Kane and Rouse (p.600n) note that "Twenty percent of Federal Pell Grants, 10 percent of Guaranteed Student Loans, and over 20 percent of state expenditures for postsecondary education, go to community colleges." Our findings may be detecting that when the full opportunity cost is accounted for, the social return is nil.

Besides heterogeneity in the estimated effects of different types/levels of human capital accumulation, in all four of these categories of educational attainment we also find significant heterogeneity - sometimes qualitatively, sometimes only quantitatively, and in some cases both qualitatively and quantitatively - within categories across different states. In the case of the less than high school degree attainment, there are only 6 statistically significant (10 percent level or better) within-state coefficient estimates. These are evenly split as far as sign is concerned. They range from -0.0904 (South Dakota, 1 percent level) to 0.1171 (Colorado, 5 percent level). (These point estimates and their 95 percent confidence intervals are presented in Figure 2.) This heterogeneity is interesting. If the above interpretation we offered for the negative full sample coefficient (significant at the 1 percent level) is convincing, why would there be some individual state economies where having a larger percent of the population not obtaining a high school diploma be conducive to economic growth?

One potential explanation concerns compulsory education laws. The story could run two ways. Stronger (in terms of years required) laws might be associated with positive coefficients. The variable may include many people who would have had no high school education at all, given their druthers, and benefited by being forced to pick up some remedial math and verbal skills. On the other hand, stronger laws might be negatively associated with low coefficient estimates because of the opportunity cost forced on rather-be-truant individuals and the direct cost being incurred by the school system to deal with them. If these individuals are students being pushed through the school system (which is costly) while never actually receiving/accepting the benefits of education, they also forego the productive opportunities available in the meanwhile. However, neither of these stories is suggested by the data. Each of the 6 states included in Figure 2 has roughly similar age spans of compulsion: 7 to 16 (Alabama, Colorado, Illinois and North Carolina), 6 to 16 (South Dakota), or 6 to 18 (Texas) years old. ${ }^{18}$ There is no apparent correlation between these small differences and the coefficient estimates.

[^10]Heterogeneity also exists across the significant high school diploma variable estimates (Figure 3). Of the 8 coefficient estimates significant at the 10 percent level or better, 2 of them are negative (Mississippi and Ohio) and 1 has a 95 percent confidence interval entirely in the negative range (Mississippi). However, among the 6 coefficients with positive point estimates there is no statistically significant difference between them.

One straightforward potential explanation for the existing heterogeneity is simply that school systems are simply better in some states than others. ${ }^{19}$ This hypothesis can be informally tested by comparing average scholastic aptitude test (SAT) scores from the states with negative coefficient estimates to those with positive coefficient estimates.
Figures $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{4 c}$ plot total, math and verbal average SAT scores for the 1998-1999 school year, respectively, for the 8 states included in Figure 3. Indeed, Ohio has both the lowest math and verbal average score (and, of course, total as well). However, Mississippi - with the only coefficient negative and significant at the 5 percent levelhas SAT average scores neither exceptionally high nor low relative to the other seven states. Some school systems simply being better than others does not appear to be a satisfying explanation for the heterogeneity. ${ }^{20}$

No statistically significant heterogeneity can be detected among coefficients for the some college variable. This is shown in Figure 5. In the first place, for only 5 states is the coefficient statistically different from zero at the 10 percent level. Furthermore, the confidence intervals are all overlapping. Still, it should be noted that every point estimate shown is positive.

We find the same for the bachelor degree or more variable (Figure 6). Although we cannot distinguish the coefficient estimates for the 10 state coefficients significant at the 10 percent level, a full 9 of these 10 are significantly positive at the 5 percent level. In the case of the college education variable coefficients, in general, we cannot detect any statistically significant heterogeneity across U.S. states. The only statement we can make concerns homogeneity: the effect on a growth path of the percent of the population attaining four years of college education is positive uniformly across U.S. states.

[^11]
6. Human Capital Fosters Growth. Providing It Does Not?

Our data set also includes county-level measures of the percent of a county's population employed in education services. While the results of educational attainment above are different across individual states and types/levels of attainment, the overall picture still would suggest that the provision of education has a positive, or at worst insignificant effect on economic growth. We find to the contrary.

The percent of the population providing education services is negatively correlated with economic growth in the full sample (point estimate -0.0334 and significant at the 1 percent level). Furthermore, no statistically significant qualitative heterogeneity is detected across states. For the 6 states with coefficient estimates significant at the 10 percent level or better, each and every point estimate is negative.

Why does human capital appear to foster growth while the provision of it does not? Perhaps the benefits of education provided in a given county are not internalized by the county itself. For example, we find a positive partial correlation between four-year college or higher educational attainment and economic growth, but the correlation is silent as to where the education was attained. Individuals may attend college or university where human capital is relatively easy to accumulate, and then move to other counties as they join the workforce. In Higgins et al (2003) we find that the negative correlation between education service provision and growth is particularly strong in metro counties. This is consistent with an externality argument insofar as a large proportion of colleges and universities are in metro areas, and many students leave the metro areas upon graduation. Indeed the estimated partial correlation is insignificant when the sample only includes non-metro counties.

Another explanation is bureaucratic overexpansion of the public school systems. This hypothesis is frequently entertained in the popular media and is explored by Marlow (2001) in the California primary and secondary school districts. However, Marlow finds that an increase in the number of teachers has no statistically significant effect on SAT scores or dropout rates while an increase in the size of administrative staff increases the SAT scores and decreases the dropout rates.

7. Conclusions

We use county-level data to study the role of different types of human capital accumulation in U.S. growth determination. The data includes over 3,000 cross-sectional observations and 39 demographic control variables. The large number of observations provides enough degrees of freedom to obtain estimates for the U.S. as a whole and 32 states in and of themselves. The data contains measures of educational attainment for four distinct categories: (a) 9 to 11 years, (b) high school diploma, (c) some college and (d) bachelor degree or more. These variables represent human capital stocks for each and every county.

Using a consistent two stage least squares estimation procedure, we find that (i) the percentage of a county's population with less than a high school education is negatively correlated with economic growth, (ii) the percentage obtaining a high school diploma but no more is positively correlated with economic growth, (iii) the percentage obtaining only some college education has no clear relationship with economic growth, but (iv) the percentage that obtains a bachelor degree or more is positively correlated with economic growth.. Further, we find that (v) there is significant qualitative heterogeneity in estimated coefficients across states for the 9 to 11 years and high school diploma categories but (vi) no qualitative heterogeneity for the college level categories.

The most consistent and significant conclusion across samples is that the percent of a county's population obtaining a bachelor degree or higher level of college education has a positive relationship with economic growth. Oddly enough, despite findings (ii), (iv) and (vi) above, we find that the percentage of a county's population employed in educational services is negatively correlated with economic growth.

For econometric estimation of growth equations we employ the neoclassical specification, which enables us to use the sign of the estimated coefficient on the initial income level as a discriminating test between the validity of the neoclassical growth model against the alternative of the endogenous growth model. We find that this coefficient is negative and significant for the full U.S. sample. In addition, we find that it is negative also for every individual state sample where the value is statistically significant. Thus, the data support the neoclassical growth model, which implies that high levels of human capital accumulation are conducive to the adoption and application of
available technologies, and that this represents a positive contribution to economic growth via a higher balanced growth path.

Data Appendix: Measurement of Per Capita Income

Because of the critical importance of the income variable for the study of growth and convergence, we want to address its measurement in some detail. Two options were available to us for the construction of the county-level per capita income variable: (1) Census Bureau database, and (2) BEA-REIS database.

Income information collected by the Census Bureau for states and counties is prepared decennially from the "long-form" sample conducted as part of the overall population census (BEA, 1994). This money income information is based on the selfreported values by Census Survey respondents. An advantage of the Census Bureau's data is that they are reported and recorded by place of residence. These data, however, are available only for the "benchmark" years, i.e., the years in which the decennial Census survey is conducted.

The second source for this data, and the one chosen for this project, is personal income as measured by the Bureau of Economic Analysis (BEA). ${ }^{21}$ The definitions that are used for the components of personal income for the county estimates are essentially the same as those used for the national estimates. For example, the BEA defines "personal income" as the sum of wage and salary disbursements, other labor income, proprietors' income (with inventory valuation and capital consumption adjustments), rental income (with capital consumption adjustment), personal dividend income and personal interest income. (BEA, 1994) "Wage and salary disbursements' are measurements of pre-tax income paid to employees. "Other labor income" consists of payments by employers to employee benefit plans. "Proprietors' income" is divided into two separate components-farm and non-farm. Per capita income is defined as the ratio of this personal income measure to the population of an area.

The BEA's estimates of personal income reflect the revised national estimates of personal income that resulted from the 1991 comprehensive revision and the 1992 and 1993 annual revisions of the national income and product accounts. The revised national estimates were incorporated into the local area estimates of personal income as part of a

[^12]comprehensive revision in May 1993. In addition, the estimates incorporate source data that were not available in time to be used in the comprehensive revisions. ${ }^{22}$

The BEA compiles data from several different sources in order to derive this personal income measure. Some of the data used to prepare the components of personal income are reported and recorded by place of work rather than place of residence. Therefore, the initial estimates of these components are on a place-of-work basis. Consequently, these initial place-of-work estimates are adjusted so that they will be on a place-of-residence basis and so that the income of the recipients whose place of residence differs from their place of work will be correctly assigned to their county of residence.

As a result, a place of residence adjustment is made to the data. This adjustment is made for inter-county commuters and border workers utilizing journey-to-work (JTW) data collected by Census. For the county estimates, the income of individuals who commute between counties is important in every multi-county metropolitan area and in many non-metropolitan areas. The residence adjustment estimate for a county is calculated as the total inflows of the income subject to adjustment to county i from county j minus the total outflows of the income subject to adjustment from county i to county j. The estimates of the inflow and outflow data are prepared at the Standard Industrial Classification (SIC) level and are calculated from the JTW data on the number of wage and salary workers and on their average wages by county of work for each county of residence from the Population Census.

[^13]
Econometric Appendix

The method of ordinary least squares (OLS) could be used to infer the values of β and γ in equation (3). However, Evans (1997b) states that the OLS estimates obtained from (3) are unlikely to be consistent. ${ }^{23}$ In order to demonstrate this inconsistency, Evans first specifies a general autoregressive moving average (ARMA) data-generating process for $y_{n t}$:

$$
\begin{equation*}
y_{n t}-a_{t}=\delta_{n}+\lambda_{n}\left(y_{n, t-1}-a_{t-1}\right)+\sum_{i=1}^{q} \theta_{n i} \varepsilon_{n, t-i} \tag{1A}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta_{n}=\kappa+\xi_{n}^{\prime} x_{n}+\omega_{n} \tag{2A}
\end{equation*}
$$

where $\varepsilon_{n t}$ is a zero-mean, covariance stationary error process independently distributed over time and across economies. The error term, $\varepsilon_{n t}$, is uncorrelated with x_{n}, λ_{n} is an autoregressive parameter which lies on $(0,1]$, and $\theta_{n 0} \ldots \theta_{n q}$ satisfy the restriction $\theta_{n 0}=1$. As such, $y_{n t}-a_{t}$ will also have an autoregressive representation and will be covariance stationary if $\lambda_{n}<1$ or difference stationary if $\lambda_{n}=1$. The common time-specific effect experienced by every economy is represented by the term a_{t}. Evans assumes that Δa_{t} is covariance stationary and independent of $\varepsilon_{n t}$.

The common trend a_{t} for all the y variables will be the sole catalyst of economic growth in all economies if $\lambda_{n}<1$. In this case, growth is exogenous and economies would follow a balanced-growth path. If $\lambda_{n}=1$, on the other hand, then economy n will grow endogenously since $y_{n t}$ diverges from a_{t} and the y variables of all remaining economies. The parameter δ_{n} controls for the relative height of economy n 's balanced growth path if all the $\lambda \mathrm{s}$ are less than one. If $\lambda_{n}=1$, then δ_{n} controls for economy n 's relative growth rate. The error term ω_{n} measures the portion of δ_{n} that is not explained

[^14]by x_{n}. This error term is assumed to be uncorrelated with x_{n}. The inequality $\lambda_{n}<1$ will hold for an economy described by the neoclassical growth model.

Solving equation (1A) backward from year T to year 0 , substituting from equation (2A), and rearranging produces

$$
\begin{align*}
& g_{n}=\alpha_{n}+\beta_{n} y_{n 0}+\gamma_{n}^{\prime} x_{n}-\frac{\beta_{n} \omega_{n}}{1-\gamma_{n}}+\frac{1}{T} \sum_{i=0}^{T-1} \lambda_{n}^{i}\left(\sum_{j=0}^{\min [i, q]} \lambda_{n}^{-j} \theta_{n j}\right) \varepsilon_{n, T-i} \\
& +\left(\frac{\lambda_{n}^{T}}{T} \sum_{i=0}^{q-1} \lambda_{n}^{i}\left(\sum_{j=i+1}^{q} \lambda_{n}^{-j} \theta_{n j}\right) \varepsilon_{n,-i}\right. \tag{3A}
\end{align*}
$$

where $\beta_{n}=\frac{\lambda_{n}^{T}-1}{T}, \gamma_{n}=\frac{-\beta_{n} \xi_{n}}{1-\lambda_{n}}$, and $\alpha_{n}=\frac{a_{T}-a_{0}}{T-\beta_{n}\left(\frac{a_{0}+\kappa}{1-\lambda_{n}}\right)}$. If $\beta_{n}<0$, then economy n grows exogenously $\left(\lambda_{n}<1\right)$. On the other hand, if $\beta_{n}=0$, then economy n grows endogenously $\left(\lambda_{n}=1\right)$.

Now consider a special case in which every intercept δ_{n} is completely explained by the county characteristics included in $x_{n}\left(\omega_{n}=0, \forall n\right)$ and every series $y_{n t}-a_{t}$ is a first-order auto-regression $(q=0)$. Under these restrictions equation (3A) reduces to:

$$
\begin{equation*}
g_{n}=\alpha_{n}+\beta_{n} y_{n 0}+\gamma_{n}^{\prime} x_{n}+\frac{1}{T} \sum_{i=0}^{T-1} \lambda_{n}^{i} \varepsilon_{n, T-i} \tag{4A}
\end{equation*}
$$

The estimator for $\hat{\beta}$ can then be obtained in two steps. First, regress $y_{n 0}$ on an intercept and x_{n} to obtain the residual r_{n} and then regress g_{n} on r_{n}. (This is simply the OLS estimator of β.) Each term in $\frac{1}{T} \sum_{i=0}^{T-1} \lambda_{n}^{i} \varepsilon_{n, T-i}$ is uncorrelated with the intercept, y_{n}, x_{n} and the residual r_{n}. As a result, one has

$$
\begin{equation*}
p_{N \rightarrow \infty} \hat{\lim } \hat{\beta}=\frac{p \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \alpha_{n} r_{n}+p \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \beta_{n} r_{n} y_{n}+p \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \gamma_{n}^{\prime} r_{n} x_{n}}{p_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} r_{n}^{2}} \tag{5~A}
\end{equation*}
$$

Making further assumptions that α_{n} is uncorrelated with r_{n}, β_{n} is uncorrelated with $r_{n} y_{n}$, and γ_{n} is uncorrelated with $r_{n} x_{n}$, equation (5A) leads to

$$
\begin{equation*}
p \lim _{N \rightarrow \infty} \hat{\beta}=\frac{p \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \beta_{n} r_{n}^{2}}{p \lim \frac{1}{N} \sum_{n=1}^{N} r_{n}^{2}} \tag{6A}
\end{equation*}
$$

The probability limit of the OLS estimator is then a weighted average of the economy specific $\beta_{n} \mathrm{~s}$. It is a consistent estimator of that weighted average. ${ }^{24}$

But what if the assumption that every intercept δ_{n} is completely explained by x_{n} and also the assumption that every series $y_{n t}-a_{t}$ is a first-order auto-regression, are relaxed? Relaxing these assumptions, and imposing the additional restriction that the λ_{s} and ξ_{s} and, as a result, the β_{s} and γ_{s} are identical across all economies (for the simplicity of the exposition), (3A) can be re-written as

$$
\begin{align*}
& g_{n}=\alpha+\beta y_{n 0}+\gamma^{\prime} x_{n}-\frac{\beta \omega_{n}}{1-\gamma}+\frac{1}{T} \sum_{i=0}^{T-1} \lambda^{i}\left(\sum_{j=0}^{\min [i, q]} \lambda^{-j} \theta_{n j}\right) \varepsilon_{n, T-i} \tag{7A}\\
& +\left(\frac{\lambda^{T}}{T}\right) \sum_{i=0}^{q-1} \lambda^{i}\left(\sum_{j=i+1}^{q} \lambda^{-j} \theta_{n j}\right) \varepsilon_{n,-i}
\end{align*}
$$

[^15]where $\beta=\frac{\lambda^{T}-1}{T}, \gamma=\frac{-\beta \xi}{1-\lambda}$, and $\alpha=\frac{a_{T}-a_{0}}{T-\beta\left(\frac{a_{0}+\kappa}{1-\lambda}\right)}$. Applying the same steps to equation (6A) yields
\[

$$
\begin{equation*}
p_{N \rightarrow \infty} \hat{\beta}=\beta+\frac{(\Phi+\Psi)}{p_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} r_{n}^{2}} \tag{8A}
\end{equation*}
$$

\]

where $\Phi=\frac{\lambda^{T}}{T} p \lim _{N \rightarrow \infty} \frac{I}{N} \sum_{n=1}^{N}\left[\sum_{i=0}^{q-1} \lambda^{i}\left(\sum \lambda^{-j} \theta_{n, j+i+1}\right) r_{n} \varepsilon_{n,-i}\right]$ and $\Psi=-\frac{\beta}{1-\lambda} p \lim _{N \rightarrow \infty} \frac{1}{N} \sum r_{n} \omega_{n}$.
As a result, equation (8A) implies that $p_{N \rightarrow \infty} \lim _{\hat{\beta}} \hat{\text { differs from }} \beta$ if either $q>0\left(y_{n t}-a_{t}\right.$ is not a first-order AR process) or the cross-sectional variance of ω_{n} is positive (not all cross-sectional heterogeneity is accounted for). In other words, the OLS estimator is inconsistent unless (a) the log of income per capita has an identical first-order AR representation across economies, and (b) all cross-section heterogeneity is controlled for.

Evans shows that the resulting bias from $q>0$ is likely to be negligible in practice but the bias resulting from a positive cross-sectional variance for ω_{n} can be substantial. This is essentially an omitted variable bias. Evans demonstrates that

$$
\begin{equation*}
\operatorname{pim}_{N \rightarrow \infty} \hat{\beta}=\left\lfloor\frac{\operatorname{var}(y \mid x, \omega)}{\operatorname{var}(y \mid x)}\right\rfloor \beta \tag{9A}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{pim}_{N \rightarrow \infty} \hat{\gamma}=\left\lfloor\frac{\operatorname{var}(y \mid x, \omega)}{\operatorname{var}(y \mid x)}\right\rfloor \gamma . \tag{10A}
\end{equation*}
$$

The bracketed portions in equations (9A) and (10A) are the ratio of the cross-sectional variance of $y_{n 0}$ conditional on both x_{n} and ω_{n} to the cross-sectional variance of $y_{n 0}$ on
x_{n}. As such, $\hat{\beta}$ and $\hat{\gamma}$ will be biased towards zero unless the $x s$ are able to control for a large portion of the cross-economy variation in the $y s$.

The intuition here is that if a large portion of the growth of per capita income is explained by variables left out of the OLS regression, then the estimate of the convergence effect will be biased. In general, omitted variable bias can be either positive or negative. However, in this case, theoretically, the bias is negative. Evans (1997b, Tables on p .11 and p .15) estimates β for Mankiw, et al.'s (1992) international data using both the OLS, which yields inconsistent estimates, and the 2SLS approach (as outlined in section 2), which yields consistent estimates of both β and γ. He finds that the 2SLS estimate implies a conditional convergence rate between 4 to 5 times as large as the OLS estimate. The bias produced by the OLS in this case, therefore, is substantial.

References

Barro, Robert J. and Lee, Jong-Wah (1993), "International Comparisons of Educational Attainment," Journal of Monetary Economics. 32, 363-394.
Barro, Robert J. and Xavier Sala-I-Martin (1991), "Convergence Across States and Regions," Brookings Papers on Economic Activity. 1, 107-158.
Barro, Robert J. and Sala-i-Martin, Xavier (1992), "Convergence," Journal of Political Economy. 100, 223-251.
Benhabib, Jess and Spiegel, Mark M. (1994), "The Role of Human Capital in Economic Development: Evidence from Aggregate Cross-County Data," Journal of Monetary Economics. 34, 143-173.
Cass, David (1965), "Optimum Growth in an Aggregative Model of Capital Accumulation," Review of Economic Studies. 32, 233-240.
Colorado Department of Education, "Title 22, Colorado Revised Statutes: Education Article 33: School Attendence Law of 1963 Section 104."
Evans, Paul (1997a), "How Fast Do Economies Converge?" Review of Economics and Statistics. 36, 219-225.
Evans, Paul (1997b), "Consistent Estimation of Growth Regressions," unpublished manuscript, available at http://economics.sbs.ohiostate.edu/pevans/pevans.html.
Higgins, Matthew \& Daniel Levy and Andrew T. Young (2003), "Growth and Convergence Across the U.S.: Evidence from County-Level Data," Unpublished Working Paper.
Kane, Thomas J. and Cecilia E. Rouse. (1995), "Labor-Market Returns to Two- and Four-Year College," American Economic Review. 85, 600-614.
Klenow, Peter J. and Rodriguez-Claire, Andres (1997), "The Neoclassical Revival in Growth Economics: Has It Gone too Far?" in 1997 NBER Macroeconomics Annual. Cambridge, MIT Press, 83-103.
Koopmans, Tjalling C. (1965), "On the Concept of Optimal Economic Growth," in The Econometric Approach to Development Planning (Amsterdam, N. Holland).
Kyriacou, George A. (1991), "Level and Growth Effects of Human Capital: A CrossCountry Study of the Convergence Hypothesis," Unpublished Paper, New York University.
Mankiw, N. Gregory (1997) "Comment" in 1997 NBER Macroeconomics Annual. Cambridge, MIT Press, 103-107.
Mankiw, N. Gregory \& David Romer, and David N. Weil (1992), "A Contribution to the Empirics of Economic Growth, "Quarterly Journal of Economics. 107, 407-437.
Marlow, Michael L. (2001), "Bureaucracy and Student Performance in U.S. Public Schools," Applied Econometrics. 33, 1314-1350.
Ramsey, F. (1928), "A Mathematical Theory of Saving," Economic Journal. 38, 543559.

Sala-i-Martin, Xavier X. (1996), "Regional Cohesion: Evidence and Theories of Regional Growth and Convergence," European Economic Review. 40, 1325-1352.
Solow, Robert M. (1956), "A Contribution to the Theory of Economic Growth," Quarterly Journal of Economics. 70, 65-94. of Economics. 106, 327-368.
Surette, Brian J. (1997), "The Effects of Two-Year College on the Labor Market and Schooling Experiences of Young Men," Board of the Governors of the Federal

Reserve System, Finance and Economic Discussion Series, No. 1997/44, September.
Swan, Trevor W. (1956), "Economic Growth and Capital Accumulation," Economic Record. 32, 334-361.
U.S. Department of Education (1999-2000). National Center for Education Statistics, Schools and Staffing Survey, 1999-2000. Tables 1.01 and 2.01.
U.S. Department of Education (2001a). Digest of Education Statistics. Table 151.
U.S. Department of Education (2001b). Digest of Education Statistics. Table 137.

Young, Andrew T. \& Higgins, Matthew J. and Levy, Daniel (2003), "Heterogeneity in Convergence Rates and Income Determination across U.S. States: Evidence from County-Level Data," Unpublished Working Paper.

Table 1: Variable Definitions and their Source

Variable	Definition	Period	Source
Income	Per Capita Personal Income (excluding transfer payments)	1969-1998	BEA^{25}
Land Area	Land Area in km^{2}	1970-1990	Census ${ }^{26}$
Water Area	Water Area in km^{2}	1970-1990	Census
Age: 5-13 years	Percent of 5-13 year olds in the population	1970-1990	Census
Age: 14-17 years	Percent of 14-17 year olds in the population	1970-1990	Census
Age: 18-64 years	Percent of 18-64 year olds in the population	1970-1990	Census
Age: 65+	Percent of 65+ olds	1970-1990	Census
Blacks	Percent of Blacks	1970-1990	Census
Hispanic	Percent of Hispanics	1970-1990	Census
Education: 9-11 years	Percent of population with 11 years education or less	1970-1990	Census
Education: H.S. diploma	Percent of population with high school diploma	1970-1990	Census
Education: Some college	Percent of population with some college education	1970-1990	Census
Education: Bachelor +	Percent of population with bachelor degree or above	1970-1990	Census
Education: Public elementary	Number of students enrolled in public elementary schools	1970-1990	Census
Education: Public nursery	Number of students enrolled in public nurseries	1970-1990	Census
Education: Private elementary	Number of students enrolled in private elementary schools	1970-1990	Census
Education: Private nursery	Number of students enrolled in private nurseries	1970-1990	Census
Housing	Median house value	1970-1990	Census
Federal government employment	Percent of population employed by the federal government in the county	1969-1998	BEA
State government employment	Percent of population employed by the state government in the county	1969-1998	BEA
Local government employment	Percent of population employed by the local government in the county	1969-1998	BEA
Self-employment	Percent of population self-employed	1970-1990	Census
Agriculture	Percent of population employed in agriculture	1970-1990	Census
Communications	Percent of population employed in communications	1970-1990	Census
Construction	Percent of population employed in construction	1970-1990	Census
Finance, insurance \& real estate	Percent of population employed in finance, insurance, and real estate	1970-1990	Census
Manufacturing: durables	Percent of population employed in Manufacturing of durables	1970-1990	Census
Manufacturing: non-durables	Percent of population employed in manufacturing of non-durables	1970-1990	Census
Mining	Percent of population employed in mining	1970-1990	Census
Retail	Percent of population employed in retail trade	1970-1990	Census
Business \& repair services	Percent of population employed in business and repair services	1970-1990	Census
Educational services	Percent of population employed in education services	1970-1990	Census
Professional related services	Percent of population employed in professional services	1970-1990	Census
Health services	Percent of population employed in health services	1970-1990	Census

[^16]
Table 1: Variable Definitions and their Sources (Cont.)

Personal services	Percent of population employed in personal services	$1970-1990$	Census
Entertainment \& recreational services	Percent of population employed in entertainment and recreational services	$1970-1990$	Census
Transportation	Percent of population employed in transportation	$1970-1990$	Census
Wholesale trade	Percent of population employed in wholesale trade	$1970-1990$	Census
Poverty	Percent of the population living at or below the poverty level	$1970-1990$	Census
Metro area, 1970	Dummy Variable: 1 if the county was in a metro area in 1970, and 0 otherwise	1970	Census

Table 2: Analysis of Beta Values

State	Number of Counties	Unconditional	OLS	2SLS
United States ${ }^{27}$	3,058	-0.0068 (15.88)*	-0.0174 (22.15)*	-0.0345 (24.19)*
Alabama	67	-0.0039 (1.56)	-0.0251 (2.38)**	-0.0334 (20.49)*
Arkansas	74	-0.0086 (3.20)*	-0.0267 (4.48)*	-0.0384 (22.08)*
California	58	0.0218 (3.99)*	-0.0261 (2.50)**	-0.0235 (4.87)*
Colorado	63	-0.0041 (1.26)	-0.0134 (2.53)**	-0.0318 (13.41)*
Florida	67	0.0026 (0.81)	-0.0190 (2.06)**	-0.0319 (14.98)*
Georgia	159	-0.0065 (3.09)*	-0.0171 (4.33)*	-0.0367 (36.46)*
Idaho	44	-0.0182 (3.66)*	-0.0403 (2.23)**	-0.0406 (10.03)*
Illinois	102	-0.0030 (1.41)	-0.0255 (5.46)*	-0.0281 (9.07)*
Indiana	92	0.0004 (0.11)	-0.0061 (1.02)	-0.0299 (9.25)*
Iowa	99	-0.0069 (1.85)***	-0.0288 (5.65)*	-0.0289 (4.75)*
Kansas	106	-0.0163 (7.84)*	-0.0286 (9.76)*	-0.0301 (12.18)*
Kentucky	120	-0.0043 (2.85)*	-0.0253 (6.11)*	-0.0354 (19.74)*
Louisiana	64	-0.0032 (1.22)	-0.0222 (3.83)*	-0.0413 (13.83)*
Michigan	83	0.0056 (2.14)**	-0.0104 (1.36)	-0.0387 (16.52)*
Minnesota	87	-0.0056 (2.44)**	-0.0156 (2.85)*	-0.0260 (9.34)*
Mississippi	82	0.0012 (0.43)	-0.0182 (2.05)**	-0.0448 (13.43)*
Missouri	115	-0.0038 (2.34)**	-0.0171 (3.78)*	-0.0455 (10.74)*
Montana	56	-0.0244 (5.31)*	-0.0229 (3.31)*	-0.0328 (9.14)*
New York	62	0.0120 (4.45)*	0.0129 (1.24)	-0.0264 (7.78)*
North Carolina	100	-0.0033 (1.47)	-0.0171 (3.32)*	-0.0467 (7.11)*
North Dakota	53	-0.0119 (1.85)***	-0.0279 (3.29)*	-0.0594 (4.79)*
Ohio	88	0.0047 (1.83)***	-0.0136 (1.87)***	-0.0274 (7.68)*
Oklahoma	77	-0.0123 (6.49)*	-0.0248 (3.95)*	-0.0387 (22.11)*
Pennsylvania	67	0.0038 (1.31)	-0.0176 (2.53)**	-0.0312 (9.01)*
South Carolina	46	0.0014 (0.53)	-0.0118 (0.62)	-0.0336 (5.97)*
South Dakota	66	0.0003 (0.06)	-0.0193 (2.39)**	-0.0265 (4.77)*
Tennessee	97	-0.0002 (0.07)	-0.0199 (3.55)*	-0.0392 (15.21)*
Texas	254	-0.0086 (5.09)*	-0.0211 (8.10)*	-0.0356 (15.18)*
Virginia	84	0.0016 (0.62)	-0.0045 (0.69)	-0.0348 (15.81)*
Washington	39	-0.0129 (1.96)**	-0.0349 (1.09)	-0.0327 (9.29)*
West Virginia	55	-0.0053 (1.81)***	0.0043 (0.43)	-0.0336 (15.49)*
Wisconsin	70	-0.0009 (0.37)	-0.0191 (3.08)*	-0.0240 (6.83)*

t-statistics are reported in parentheses

* significant at 1% level
** significant at 5% level
*** significant at 10% level

[^17]Table 3 Asymptotic Convergence Rates - Point Estimates \& 95\% Confidence Intervals

State	Number of Counties	OLS Estimates \& 95\% C.I. ${ }^{28}$	2 SLS Estimates \& C.I.
United States ${ }^{29}$	3,058	0.0237 (0.0208, 0.0267)	0.0682 (0.0544, 0.0911)
Alabama	67	0.0424 (0.0036, 0.1080)	0.0931 (0.0492, 0.1466$)$
Arkansas	74	0.0479 (0.0166, 0.1098)	0.0738 (0.0570, 0.1363)
California	58	0.0457 (0.0046, 0.1249)	0.0375 (0.0178, 0.0868)
Colorado	63	0.0166 (0.0031, 0.0384$)$	0.0759 (0.0426, 0.1009)
Florida	67	0.0268 (0.0010, 0.1109)	0.0767 (0.0480, 0.1174)
Georgia	159	0.0230 (0.0109, 0.0413)	0.1043 (0.0699, 0.1142)
Idaho	44	0.0892 (0.0021, 0.1566)	0.0913 (0.0471, 0.1145)
Illinois	102	0.0434 (0.0213, 0.1168)	0.0537 (0.0337, 0.1062)
Indiana	92	0.0067 (-0.0054, 0.0245)	0.0622 (0.0354, 0.1221)
Iowa	99	0.0570 (0.0224, 0.1176)	0.0574 (0.0175, 0.0954)
Kansas	106	0.0560 (0.0360, 0.1086)	0.0639 (0.0434, 0.1228)
Kentucky	120	0.0431 (0.0233, 0.0922)	0.1054 (0.0561, 0.1160$)$
Louisiana	64	0.0341 (0.0128, 0.0955)	0.1555 (0.0989, 0.1940)
Michigan	83	0.0121 (-0.0043, 0.0427)	0.1152 (0.0536, 0.1659)
Minnesota	87	$0.0202(0.0053,0.0459)$	0.0454 (0.0305, 0.0719)
Mississippi	82	0.0249 (0.0009, 0.1509)	0.1405 (0.0455, 0.1923)
Missouri	115	0.0230 (0.0094, 0.0452)	0.0817 (0.0387, 0.1132)
Montana	56	0.0359 (0.0099, 0.0996)	0.0865 (0.0367, 0.1566)
New York	62	0.0111 (-0.0238, 0.0284)	0.0465 (0.0285, 0.0853)
North Carolina	100	0.0228 (0.0078, 0.0491$)$	0.1302 (0.0966, 0.1574)
North Dakota	53	0.0528 (0.0103, 0.1247)	0.0761 (0.0353, 0.1102)
Ohio	88	0.0170 (-0.0005, 0.0520)	0.0503 (0.0299, 0.1059)
Oklahoma	77	0.0415 (0.0139, 0.1136)	0.1152 (0.0574, 0.1437)
Pennsylvania	67	0.0240 (0.0043, 0.0707)	0.0705 (0.0291, 0.1099)
South Carolina	46	0.0142 (-0.0147, 0.1259)	0.0960 (0.0243, 0.1315)
South Dakota	66	0.0274 (0.0036, 0.1391)	0.0406 (0.0184, 0.1144)
Tennessee	97	0.0287 (0.0102, 0.0689)	0.0681 (0.0488, 0.1168$)$
Texas	254	0.0312 (0.0208, 0.0458)	0.1170 (0.0675, 0.1564$)$
Virginia	84	0.0047 (-0.0074, 0.0227)	0.0703 (0.0500, 0.1271)
Washington	39	0.0518 (-.0119, 0.0971)	0.0845 (0.0448, 0.1449)
West Virginia	55	0.0040 (-0.0184, 0.0199)	0.0634 (0.0466, 0.0972)
Wisconsin	70	0.0270 (0.0077, 0.0716)	0.0390 (0.0231, 0.0688)

[^18]| ee or Higher |
| :---: |
| 95% C.I. |
| $(0.0613,0.0852)$ |
| $(-0.0741,0.1639)$ |

 す
o
0
o
m
m
on
in
 6
0
o
0
0
0
0
0
0
0
0
0
0
i
i

 \circ
0
\vdots
0
4
4
0
0
\vdots $(-0.0983,0.1154)$

 N
N
N
0
N
N
N
0
0

 1
0
3
0
0
0
0
0

Education
95% C.I.
$(-0.0143,0.0094)$
$(-0.0538,0.2997)$

$(-0.0538,0.2997)$
$(-0.0832,0.1818)$
$(-0.0857,0.1884)$
$(-0.0769,0.1969)$

 $(-0.0345,0.0907)$ $(0.0045,0.2214)$
$(-0.0383,0.0698)$ ∞
0
0
0
0
0
0
n
0
0
0
i
i a
0
0
0
0
0
0
0
0
0
0
i
i

 $(-0.1595,0.0891)$ 6
0
0
0
0
0
0
0
0
1 $(-0.0755,0.0956)$
$(-0.1324,0.1712)$ $(-0.1125,0.0800)$ (0.0305, 0.2306) $(-0.0226,0.1683)$
$(-0.1105,0.1348)$
 n
n
n
0
0
0
0
0
0
0
i
i

 n
n
n
n
0
\vdots
0
0
0
0
0
\vdots
\vdots
i

$$
\begin{aligned}
& \text { No More } \\
& \text { 955\% C.I. } \\
& \hline(-0.0292,-0.0152) \\
& (0.0015,0.1649) \\
& (-0.0844,0.0397) \\
& (-0.2041,0.0694) \\
& (0.0191,0.2151) \\
& (-0.1282,0.1193) \\
& (-0.0210,0.0384) \\
& (-0.0859,0.2085) \\
& (-0.0952,-0.0223) \\
& (-0.0842,0.0175) \\
& (-0.0803,0.0174) \\
& (-0.0697,0.0135) \\
& (-0.0410,0.0692) \\
& (-0.0340,0.0717) \\
& (-0.1067,0.0211) \\
& (-0.0803,0.0520) \\
& (-0.0551,0.0743) \\
& (-0.0773,0.0319) \\
& (-0.2529,0.0368) \\
& (-0.0616,0.1229) \\
& (-0.0031,0.0821) \\
& (-0.0400,0.0742) \\
& (-0.0769,0.0732) \\
& (-0.0626,0.0584) \\
& (-0.1160,0.0962) \\
& (-0.1621,-0.0186) \\
& (-0.0477,0.0665) \\
& (-0.0836,-0.0353) \\
& (-0.0412,0.0668) \\
& (-0.3521,0.4135) \\
& (-0.0733,0.1674) \\
& (-0.0855,0.0308) \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \frac{95 \% \text { C.I. }}{0.0 .0156)} \\
& \text { (} 0.0038,0.0156 \text {) }
\end{aligned}
$$

$\begin{aligned} & \text { n } \\ & \text { n } \\ & 0 \\ & 0 \\ & \text { i } \\ & \text { i } \\ & i\end{aligned}$
(0.0053, 0.1255)
$(-0.0750,0.2048)$
$(-0.0240,0.0447)$
$\begin{gathered}6 \\ 0 \\ 0 \\ 0 \\ 0 \\ \text { i } \\ \text { - } \\ 0 \\ 0 \\ 0 \\ i\end{gathered}$
$(-0.0245,0.0238)$
$\begin{aligned} & (-0.0600,0.0243) \\ & (-0.0677,0.0302)\end{aligned}$
$\begin{aligned} & \text { n } \\ & \text { ô } \\ & \text { i } \\ & \text { i } \\ & \frac{0}{i} \\ & i\end{aligned}$
$(-0.0149,0.0523)$
$(-0.0856,0.0799)$
$(-0.1697,0.0258)$
$\begin{aligned} & \text { 증 } \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 0\end{aligned}$
(-0.0754, 0.0091)

2
0
0
0
0
\vdots
\vdots

$\begin{aligned} & 6 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& i\end{aligned}$
Figure 1:
95\% Confidence Intervals and Point Estimates of Within-State Asymptotic Convergence Rates

Bar-Ilan University Department of Economics WORKING PAPERS

1-01 The Optimal Size for a Minority

Hillel Rapoport and Avi Weiss, January 2001.
2-01 An Application of a Switching Regimes Regression to the Study of Urban Structure

Gershon Alperovich and Joseph Deutsch, January 2001.
3-01 The Kuznets Curve and the Impact of Various Income Sources on the Link Between Inequality and Development
Joseph Deutsch and Jacques Silber, February 2001.
4-01 International Asset Allocation: A New Perspective
Abraham Lioui and Patrice Poncet, February 2001.

6-01 Multi-Generation Model of Immigrant Earnings: Theory and Application Gil S. Epstein and Tikva Lecker, February 2001.

Daniel A.Schiffman, February 2001.
8-01 Cooperation and Competition in a Duopoly R\&D Market
Damiano Bruno Silipo and Avi Weiss, March 2001.
9-01 A Theory of Immigration Amnesties
Gil S. Epstein and Avi Weiss, April 2001.
10-01 Dynamic Asset Pricing With Non-Redundant Forwards
Abraham Lioui and Patrice Poncet, May 2001.

Electronic versions of the papers are available at http://www.biu.ac.il/soc/ec/wp/working_papers.html

11-01 Macroeconomic and Labor Market Impact of Russian Immigration in Israel

Sarit Cohen and Chang-Tai Hsieh, May 2001.
12-01 Network Topology and the Efficiency of Equilibrium Igal Milchtaich, June 2001.

13-01 General Equilibrium Pricing of Trading Strategy Risk
Abraham Lioui and Patrice Poncet, July 2001.
14-01 Social Conformity and Child Labor
Shirit Katav-Herz, July 2001.
15-01 Determinants of Railroad Capital Structure, 1830-1885
Daniel A. Schiffman, July 2001.
16-01 Political-Legal Institutions and the Railroad Financing Mix, 1885-1929 Daniel A. Schiffman, September 2001.

17-01 Macroeconomic Instability, Migration, and the Option Value of Education

Eliakim Katz and Hillel Rapoport, October 2001.
18-01 Property Rights, Theft, and Efficiency: The Biblical Waiver of Fines in the Case of Confessed Theft

Eliakim Katz and Jacob Rosenberg, November 2001.
19-01 Ethnic Discrimination and the Migration of Skilled Labor
Frédéric Docquier and Hillel Rapoport, December 2001.
1-02 $\begin{aligned} & \text { Can Vocational Education Improve the Wages of Minorities and } \\ & \text { Disadvantaged Groups? The Case of Israel }\end{aligned}$
Shoshana Neuman and Adrian Ziderman, February 2002.
2-02 What Can the Price Gap between Branded and Private Label Products Tell Us about Markups?

Robert Barsky, Mark Bergen, Shantanu Dutta, and Daniel Levy, March 2002.
3-02 Holiday Price Rigidity and Cost of Price Adjustment Daniel Levy, Georg Müller, Shantanu Dutta, and Mark Bergen, March 2002.

4-02 Computation of Completely Mixed Equilibrium Payoffs Igal Milchtaich, March 2002.

5-02 Coordination and Critical Mass in a Network Market An Experimental Evaluation

Amir Etziony and Avi Weiss, March 2002.
6-02 Inviting Competition to Achieve Critical Mass
Amir Etziony and Avi Weiss, April 2002.
7-02 Credibility, Pre-Production and Inviting Competition in a Network Market

Amir Etziony and Avi Weiss, April 2002.
8-02 Brain Drain and LDCs' Growth: Winners and Losers Michel Beine, Fréderic Docquier, and Hillel Rapoport, April 2002.

9-02 Heterogeneity in Price Rigidity: Evidence from a Case Study Using Micro-Level Data

Daniel Levy, Shantanu Dutta, and Mark Bergen, April 2002.
10-02 Price Flexibility in Channels of Distribution: Evidence from Scanner Data Shantanu Dutta, Mark Bergen, and Daniel Levy, April 2002.

11-02 Acquired Cooperation in Finite-Horizon Dynamic Games

 Igal Milchtaich and Avi Weiss, April 2002.12-02 Cointegration in Frequency Domain Daniel Levy, May 2002.

13-02 Which Voting Rules Elicit Informative Voting?
Ruth Ben-Yashar and Igal Milchtaich, May 2002.
14-02 Fertility, Non-Altruism and Economic Growth:
Industrialization in the Nineteenth Century
Elise S. Brezis, October 2002.
15-02 Changes in the Recruitment and Education of the Power Elites
in Twentieth Century Western Democracies
Elise S. Brezis and François Crouzet, November 2002.
16-02 On the Typical Spectral Shape of an Economic Variable
Daniel Levy and Hashem Dezhbakhsh, December 2002.
17-02 International Evidence on Output Fluctuation and Shock Persistence
Daniel Levy and Hashem Dezhbakhsh, December 2002.

1-03 Topological Conditions for Uniqueness of Equilibrium in Networks Igal Milchtaich, March 2003.

2-03 Is the Feldstein-Horioka Puzzle Really a Puzzle? Daniel Levy, June 2003.

3-03 Growth and Convergence across the US: Evidence from County-Level Data

Matthew Higgins, Daniel Levy, and Andrew Young, June 2003.
4-03 Economic Growth and Endogenous Intergenerational Altruism Hillel Rapoport and Jean-Pierre Vidal, June 2003.

5-03 Remittances and Inequality: A Dynamic Migration Model Frédéric Docquier and Hillel Rapoport, June 2003.

6-03 Sigma Convergence Versus Beta Convergence: Evidence from U.S. County-Level Data

Andrew T. Young, Matthew J. Higgins, and Daniel Levy, September 2003.
7-03 Managerial and Customer Costs of Price Adjustment: Direct Evidence from Industrial Markets

Mark J. Zbaracki, Mark Ritson, Daniel Levy, Shantanu Dutta, and Mark Bergen, September 2003.

8-03 First and Second Best Voting Rules in Committees
Ruth Ben-Yashar and Igal Milchtaich, October 2003.
9-03 Shattering the Myth of Costless Price Changes: Emerging Perspectives on Dynamic Pricing
Mark Bergen, Shantanu Dutta, Daniel Levy, Mark Ritson, and Mark J. Zbaracki, November 2003.

1-04 Heterogeneity in Convergence Rates and Income Determination across U.S. States: Evidence from County-Level Data

Andrew T. Young, Matthew J. Higgins, and Daniel Levy, January 2004.
2-04 "The Real Thing:" Nominal Price Rigidity of the Nickel Coke, 1886-1959 Daniel Levy and Andrew T. Young, February 2004.

3-04 Network Effects and the Dynamics of Migration and Inequality: Theory and Evidence from Mexico

David Mckenzie and Hillel Rapoport, March 2004.

4-04 Migration Selectivity and the Evolution of Spatial Inequality Ravi Kanbur and Hillel Rapoport, March 2004.

5-04 $\begin{aligned} & \text { Many Types of Human Capital and Many Roles in U.S. Growth: Evidence } \\ & \text { from County-Level Educational Attainment Data }\end{aligned}$ Andrew T. Young, Daniel Levy and Matthew J. Higgins, March 2004.

[^0]: * We thank Jordan Rappaport for kindly sharing with us some of his data, which was incorporated into this project. The third author gratefully acknowledges financial assistance from a National Science Foundation IGERT Fellowship. All remaining errors are our own.
 ** Corresponding author

[^1]: ${ }^{1}$ Mankiw et al (1992), working from the neoclassical growth model, actually derive a regression specification in terms of physical and human capital flows instead of stocks. However, doing so requires an assumption that countries in their sample are currently on their balanced growth paths.
 ${ }^{2}$ We also have variables representing school enrollment at public elementary level, private elementary level, public nursery level, and private nursery level. These variables are included in the full U.S. sample regressions. However, the related coefficient values were estimated to be 0 to four decimal places. Therefore, to preserve degrees of freedom, they were not included in the within-state regressions.
 ${ }^{3}$ Barro and Lee (1993) develop a 7-level categorization, adding finer distinction within the elementary and high-school level years of attainment. However, their measures are extrapolated from flows for over 50 percent of their observations and are for a sample of 129 countries. Our measures are stocks and focus entirely on one country: the U.S. Further, Barro and Lee do not pursue growth regressions in their own study.

[^2]: ${ }^{4}$ A full 29 of our states have counties numbering more than 50 (the number of U.S. states) each.
 ${ }^{5}$ We have previously employed this 2SLS estimation with the county-level data to study convergence within the U.S. (Higgins et al, 2003) and heterogeneity in convergence rates across U.S. states (Young et al, 2003).

[^3]: ${ }^{6}$ A derivation of the baseline specification from the growth model is provided by Barro and Sala-i-Martin (1992).

[^4]: ${ }^{7}$ See the data appendix for details.
 ${ }^{8}$ The derivation of this equation (see Evans (1997b)) depends on the assumption that the conditioning variables are (approximately) constant during the time frame considered, allowing them to be differenced out. We are indebted to Nazrul Islam for pointing out that, while this is a reasonable assumption for many conditioning variables in the literature (e.g., an index of democracy for an international sample over 15 years), many of our county-level conditioning variables potentially vary significantly (e.g., the percent of the population employed in the communications industry over 28 years). To make sure that this did not introduce significant omitted variable bias into our estimations we ran the three first stage regressions for the full U.S. sample with differenced values of all conditioning variables included as regressors. All point estimates of β from the modified first stages fell within the 95 percent confidence intervals of the Evans method first stage estimates. As well, if the β estimates are not significantly affected then neither are the second stage results (see below).

[^5]: ${ }^{9}$ This is a point on which Barro (1997, p.37) has criticized panel data methods. As they rely on time series information, the conditioning variables are differenced. However, the conditioning variables often vary slowly over time such that the most important information is in the levels.
 ${ }^{10}$ We thank Jordan Rappaport for kindly sharing with us some of the data used in this study.
 ${ }^{11}$ The original data set contained 3,066 observations. Eight counties, however, were excluded from the data set for various reasons. Primarily, counties were excluded for lack of data. Examples of counties that fell into this category include counties in northern Alaska and some counties in Hawaii. Some data for these counties were simply not recorded as far back as 1970. Furthermore, in Virginia, some cities are themselves independent counties. If the data for these independent cities were available we let them stand as their own county. However, if the data were not available, then we tried to incorporate the independent city into the surrounding county. If that was not feasible, it was then dropped from the data set.

[^6]: ${ }^{12}$ The data and their measurement methods are described in detail in "Local Area Personal Income, 19691992 " published by the BEA under the Regional Accounts Data, February 2, 2001.
 ${ }^{13}$ See the Data Appendix at the end of this paper for more detailed descriptions of the personal income measure.

[^7]: ${ }^{14}$ In addition, we analyze the effect of a variable measuring the percent of a county's population employed in education services on growth (see section 6).
 ${ }^{15}$ Following Evans (1997b, footnote 17, p.16), we use $c=1-(1+T \beta)^{\frac{1}{T}}$ to compute the asymptotic rate of convergence. The confidence intervals (in parentheses) are obtained in two steps. First, we obtain end points of the β confidence intervals by computing $\beta \pm(1.96 \times$ s.e. $)$, where s.e. is the standard error associated with the β estimate. Next, these endpoints are plugged into $c=1-(1+T \beta)^{\frac{1}{T}}$. If the low value of the confidence interval is less than $-T^{-1}$, the higher value is set equal to 1 . It is clear from the above that the confidence intervals computed this way may be asymmetric around the point estimates. As Figure 1 indicates, this is indeed the case in our data.

[^8]: ${ }^{16}$ It is worth noting that a 10 percent convergence rate implies that the distance from the balanced growth path is halved within 10 years.

[^9]: ${ }^{17}$ For the remaining four variables (for public and private elementary schools and nurseries) we get mixed results in the full sample in terms of statistical significance. Although two of them have statistically significant estimated coefficient values, none of the coefficients represent economically significant effects. The point estimates of all coefficients for the full sample are zero at four-digit precision.

[^10]: ${ }^{18}$ These laws are from a report by the U.S. Department of Education (2001a), except for the Colorado law, which comes from the Colorado Department of Education.

[^11]: ${ }^{19}$ Over the 1999-2000 school year private schools accounted for only 12 percent of elementary and secondary students in the U.S. (U.S. Department of Education (1999-2000)).
 ${ }^{20}$ The SAT score test of the hypothesis, however, relies on an assumption that the predominant portion of the population with high school degrees obtained their high school degrees in the considered state. For individual states, this seems a priori plausible but not certain.

[^12]: ${ }^{21}$ The data and their measurement methods are described in detail in "Local Area Personal Income, 19691992" published by the BEA under the Regional Accounts Data, February 2, 2001.

[^13]: ${ }^{22}$ For details of these revisions, see "Local Area Personal Income: Estimates for 1990-92 and Revisions to the Estimates for 1981-91," Survey of Current Business 74 (April 1994), 127-129.

[^14]: ${ }^{23}$ This section borrows heavily from Evans (1997b), which can be consulted for further details.

[^15]: ${ }^{24}$ Strictly speaking, even for this restrictive case, an OLS estimate less than unity does not mean that all the economies in the sample conform to the neoclassical growth model. Rather, it would mean that enough economies conform, so that the weighted average is less than unity. It would mean, therefore, that exogenous growth is the predominant case across the sample.

[^16]: ${ }_{26}$ All BEA variables are available for each year from 1969-1998.
 ${ }^{26}$ Note, all Census variables are gathered from the 1970, 1980 \& 1990 Census tapes. Values for 1969 were obtained via the interpolation method as discussed in the data section.

[^17]: ${ }^{27}$ See Higgins, Levy and Young (2002).

[^18]: ${ }^{28}$ Asymptotic convergence rates and 95% confidence intervals reported are for those estimates statistically different than zero in the 2SLS regressions.
 ${ }^{29}$ See Higgins, Levy and Young (2002) for full set of results for the United States.

