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Abstract. In a number of large, important families of finite games, not only is the set of pure-

strategy Nash equilibria nonempty but it is also reachable from any initial strategy profile by 

some sequence of myopic single-player moves to a better or best-response strategy. This 

weak acyclicity property is weaker than acyclicity of the game, which requires every such 

sequence to reach an equilibrium. It is equivalent to the acyclicity of some priority rule, 

which is a rule that allows only some improvement moves. For example, all perfect-

information extensive-form games are weakly acyclic, but they are generally not acyclic since 

even sequences of best-improvement steps may cycle. Weak acyclicity is equivalent to the 

existence of a weak potential, which, unlike a potential, increases along some rather than 

every sequence as above.  

Keywords: Weakly acyclic games, Weak potential, Priority rules. 

This paper concerns finite games, with a finite number 𝑛 of players and a finite strategy set 

𝑆𝑖 for each player 𝑖. Correspondingly, “strategy” always means pure strategy. The payoff 

function of player 𝑖 is denoted ℎ𝑖. A subgame of a finite game Γ is obtained by replacing each 

strategy set 𝑆𝑖 with some subset of 𝑆𝑖 and restricting the payoff functions correspondingly.1 

In the special case where the strategy sets of one or more players are reduced to singletons, 

it is possible to view only the remaining ones as players in the subgame. 

The improvement graph of a finite game Γ is the directed graph describing the players’ 

profitable unilateral deviations. Its vertices are the strategy profiles in the game, and for 

every pair of strategy profiles 𝑠 and 𝑡, there is a (directed) edge with head 𝑠 and tail 𝑡 if and 

only if there is some player 𝑖 such that 𝑠𝑗 = 𝑡𝑗  for all 𝑗 ≠ 𝑖 (in other words, 𝑠 = (𝑠𝑖 , 𝑡−𝑖)) and  

ℎ𝑖(𝑠) > ℎ𝑖(𝑡). 

The best-improvement graph of Γ is the subgraph obtained by adding to (1) the 

requirement that strategy 𝑠𝑖 is a best response to 𝑠−𝑖 (= 𝑡−𝑖), that is, ℎ𝑖(𝑠) ≥ ℎ𝑖(𝑠𝑖
′, 𝑠−𝑖) for 

all strategies 𝑠𝑖
′. Obviously, a strategy profile is a sink of either the improvement or best-

improvement graph if and only if it is a (pure-strategy Nash) equilibrium in Γ. In the 

following, “the graph” of Γ and related terms may refer to either graph. This convention 
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1 It should be clear from the context whether “subgame” is meant in this sense (Shapley 1964) or in 
the more familiar one pertaining to extensive-form games (Selten 1975). In particular, the former 
holds when the reference is to the normal, or strategic, form an extensive-form game 𝐺 and the latter 
holds when the reference is to 𝐺 itself.  
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enables the simultaneous presentation of two parallel terminologies. However, 

unambiguous use of any such term requires indicating the graph it refers to, for example, by 

prefixing it with either I- or BI-,2 unless the meaning can be understood from the context.  

A priority rule for a finite game Γ is any spanning subgraph of the graph of Γ that has the 

same sinks as the latter. Less formally, it is a rule that, at each strategy profile 𝑠 that is not an 

equilibrium, (potentially) restricts some players’ freedom of choice by allowing them to take 

only some moves or no moves at all, without making it impossible to leave 𝑠.3 For example, 

the rule may stipulate that certain kinds of moves take precedence over others, so that, 

whenever any of the former is feasible, none of the latter is allowed. One priority rule is 

stronger than another if it is a subgraph of it. The second, weaker priority rule allows every 

move allowed by the first one but not necessarily the other way around.4 The weakest 

priority rule, which is the (improvement or best-improvement) graph itself, is referred to as 

the trivial priority rule.  

A finite sequence 𝑠0, 𝑠1, … , 𝑠𝑚 (𝑚 ≥ 0) of (not necessarily distinct) strategy profiles is a walk 

of length 𝑚 in a priority rule if for 𝑙 = 1,2, … , 𝑚 there is an edge in the priority rule whose 

tail and head are 𝑠𝑙−1 and 𝑠𝑙, respectively. A walk is closed if 𝑚 > 0 and 𝑠𝑚 = 𝑠0, and it is a 

path if the 𝑚 + 1 strategy profiles are all distinct. One walk or path extends another if the 

former is obtained from the latter by appending to it one or more strategy profiles. A priority 

rule is acyclic if there are no closed walks in it, and weakly acyclic if some stronger priority 

rule is acyclic.  

The game itself is said to be acyclic or weakly acyclic if the trivial priority rule has the same 

property. A path in the trivial priority rule is also called an improvement or best-(reply) 

improvement path, depending on the graph considered. Correspondingly, alternative terms 

for the (weak) I- and BI-acyclicity properties of games are the (respectively, weak) finite 

improvement and finite best-(reply) improvement properties.5 It is easy to see that the four 

properties are linearly ordered by the implication relation, as follows:  

                                                            
2 A third graph considered in the literature is the best-reply graph, which differs from the best-
improvement one in that it describes also moves between (and not only to) best-response strategies. 
A strategy profile is a sink of the best-reply graph if and only if it is a strict equilibrium. The 
intersection of is the sets of edges in the best-reply and the improvement graphs coincides with the 
set of edges in the best-improvement graph.  
3 In particular, a priority rule may allow all players to move but restrict their choice of alternative 
strategies, or it may allow only one player to move at each strategy profile without interfering with 
the mover’s choice of strategy. Priority rules of the first kind are studied by Kukushkin (2004, 2011) in 
the context of restricted acyclicity. Priority rules of the second kind are called schedulers by Apt and 
Simon 2015. (However, schedulers are more general in that the mover’s identity may depend on both 
the current strategy profile and the history of moves.)  
4 These definitions entail reflexivity: every priority rule is both stronger and weaker than itself. The 
corresponding irreflexive relations may be indicated by the qualifier strictly.   
5 Young’s (1993) notion of (weak) acyclicity is similar except that it refers to the best-reply graph (see 
footnote 2) and may therefore be referred to as (respectively, weak) BR-acyclicity. BR-acyclicity in 
particular precludes the existence of best-response cycles in the sense of Voorneveld (2000). The 
latter differ from closed walks in the best-improvement graph of the game in that only one of the 
changes of strategy is required to be an improvement; the rest may be moves between two best-
response strategies.   
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I-acyclicity ⇒ BI-acyclicity ⇒ weak BI-acyclicity ⇒ weak I-acyclicity. 

For some examples of games possessing one or more of these properties see Monderer and 

Shapley (1996), Milchtaich (1996, 2009), Friedman and Mezzetti (2001), Milchtaich and 

Winter (2002), Kukushkin et al. (2005), Engelberg and Schapira (2011) and Theorems 2, 3, 4 

and 5 below.  

A real-valued function 𝑃 on the set of vertices is a potential for a priority rule if it increases 

along every walk in it, in other words, if for every two strategy profiles 𝑠 and 𝑡 that are 

respectively the head and tail of an edge in the priority rule, 

𝑃(𝑠) > 𝑃(𝑡). 

A function 𝑃 is a weak potential for a priority rule if it is a potential for some stronger 

priority rule, equivalently, if the subgraph obtained by eliminating all edges in the priority 

rule whose head and tail do not satisfy (2) is also a priority rule. A necessarily and sufficient 

condition for this is that every local minimum point of 𝑃, that is, a strategy profile 𝑡 that is 

not the tail of any edge in the priority rule whose head 𝑠 satisfies (2), is an equilibrium.   

A potential or weak potential for a game means such a function for the trivial priority rule. 

An alternative term for I-potential for a game, which stresses the distinction between this 

concept and the related cardinal one of exact potential (Monderer and Shapley 1996), is 

generalized ordinal potential. It is easy to see that the following implications between 

properties of a function 𝑃 on strategy profiles hold:  

I-potential ⇒ BI-potential ⇒ weak BI-potential ⇒ weak I-potential. 

The following theorem applies to both the improvement and best-improvement graph. 

Theorem 1. (Monderer and Shapley 1996, Kukushkin 2004) For a finite game or, more 

generally, a priority rule for such a game, the following properties are equivalent: 

(i) acyclicity, 

(2) 

(0,1,1) 
𝑃 = −2 

(1,0,0) 
𝑃 = −1 

(0,0,1) 
𝑃 = −1 

(1,0,1) 
𝑃 = −2 

(0,1,0) 
𝑃 = −1 

(1,1,0) 
𝑃 = −2 

(1,1,1) 
𝑃 = 0 

(0,0,0) 
𝑃 = −3 

Figure 1. The cube-like improvement (which is also the best-improvement) graph of a finite 𝟐 × 𝟐 × 𝟐 game. 
The players’ strategies are Right and Left for player 1, Up and Down for player 2, and In and Out for player 3. 
Shown for each strategy profile are the players’ payoff vector and the value of a weak potential 𝑷 defined as in 
the proof of Theorem 1. This game is (i) weakly acyclic but (ii) not acyclic, (iii) not solvable by iterated 
elimination of never-best response strategies and (iv) has the property that every subgame (which 
corresponds to a 𝒌-dimensional face of the cube, with 𝟎 ≤ 𝒌 ≤ 𝟑) has a unique equilibrium.  
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(ii) existence of potential, 

(iii) every walk can be iteratively appended with a strategy profile at most finitely many 

times before an equilibrium is reached. 

Similarly, the following properties are equivalent: 

(i′) weak acyclicity, 

(ii′) existence of weak potential, 

(iii′) for every strategy profile 𝑠, some path that starts at 𝑠 ends at an equilibrium.  

Proof. For an acyclic priority rule (or, as a special case, an acyclic game), consider for each 

strategy profile 𝑠 the length of the longest path that starts at 𝑠. This number is 0 if and only 

if 𝑠 is an equilibrium. Its negative, 

𝑃(𝑠) = − max{𝑚 ≥ 0 ∣ there is a path of length 𝑚 that starts at 𝑠}, 

defines a potential, as it is easy to see that 𝑃 increases along any walk. Conversely, for a 

priority rule that does have a closed walk, a potential clearly does not exist, and the walk can 

be extended indefinitely by repetition.  

By the first part of the proof, a priority rule is weakly acyclic if and only if some stronger 

priority rule possesses a potential, in other words, if and only if the priority rule itself 

possesses a weak potential. In this case, every walk in the stronger priority rule that starts at 

a given strategy profile 𝑠 is a path and strategy profiles can be appended to it only finitely 

many times before an equilibrium is reached, which proves that (iii′) holds. Conversely, for a 

priority rule that satisfies (iii′), consider for each strategy profile 𝑠 the distance in the priority 

rule to the closest equilibrium. The negative of this distance,  

𝑃(𝑠) = − min{𝑚 ≥ 0 ∣ there is a path of length 𝑚 that starts at 𝑠 and ends in an equilibrium}, 

defines a function 𝑃 on strategy profiles (see example in Figure 1) that is a weak potential for 

the priority rule. This is because, if a strategy profile 𝑠 is not an equilibrium, then 𝑃 increases 

along any of the shortest paths connecting it to an equilibrium, which in particular means 

that 𝑠 is not a local minimum point (see above). ∎ 

Sufficient Conditions for Weak Acyclicity 
In a finite game Γ, a never-best response strategy for a player 𝑖 is a strategy 𝑠𝑖 that is not a 

best response to any profile 𝑠−𝑖 of the other players’ strategies. Since, as indicated, only 

pure strategies are considered here, every strategy that is strictly dominated by a mixed 

strategy is a never-best response strategy but not conversely. Iterated elimination of never-

best response strategies means a finite sequence Γ0, Γ1, … , Γ𝑚 (𝑚 ≥ 0) of games such that 

Γ0 = Γ, each of the subsequent games is a subgame of the preceding game obtained by 

eliminating one or more never-best response strategies for one or more players, and there 

are no never-best response strategies in Γ𝑚. (It can be shown that the order of elimination 

does not matter, in the sense that the last subgame Γ𝑚 is unique. Obviously, the other 

subgames are also unique if in each step all eligible strategies are eliminated.) As the 
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following lemma shows, the elimination process in a sense preserves the best-response 

relation. 

Lemma 1. Consider iterated elimination of never-best response strategies in a finite game Γ, 

that is, a sequence of subgames Γ0 (= Γ), Γ1, … , Γ𝑚 as above. For 0 ≤ 𝑙 ≤ 𝑚, and any player 

𝑖 and strategy profile 𝑠 in Γ𝑙, the player’s strategy 𝑠𝑖 is a best response to 𝑠−𝑖 in Γ𝑙  if and only 

if this is so in Γ. Moreover, for 0 ≤ 𝑙 ≤ 𝑚, the set of all equilibria in Γ𝑙  coincides with that in 

Γ.  

Proof. For 0 ≤ 𝑙 ≤ 𝑚, player 𝑖 and strategy profile 𝑠 in Γ𝑙, if 𝑠𝑖 is not a best response to 𝑠−𝑖 

in Γ𝑙, then the same is obviously true in Γ. Conversely, if in Γ player 𝑖’s strategy 𝑠𝑖 is not a 

best response to 𝑠−𝑖, then consider any strategy 𝑠𝑖
′ that is a best response. Since the games 

Γ0, Γ1, … , Γ𝑙  all include every strategy in 𝑠−𝑖, they must also all include the best response 

strategy 𝑠𝑖
′, which cannot be eliminated. This implies that strategy 𝑠𝑖 is not a best response 

also in the game Γ𝑙. The second part of the lemma follows from the first part and the fact 

that, for 0 < 𝑙 ≤ 𝑚, every equilibrium in Γ𝑙−1 is present also in Γ𝑙, since each of the 

strategies in it is a best response to the other strategies. ∎ 

A game Γ is solvable by iterated elimination of never-best response strategies if there exists 

a sequence as above such that, in the last subgame Γ𝑚, all strategy profiles are equilibria. In 

this case, by Lemma 1, the set of all strategy profiles in Γ𝑚 coincides with the set of all 

equilibria in Γ. In other words, solvability means that the equilibria in Γ are the only strategy 

profile that survive iterated elimination of never-best response strategies. 

Theorem 2. (Kukushkin 2012, Apt and Simon 2015) If a finite game is solvable by iterated 

elimination of never-best response strategies, then it is weakly BI-acyclic.  

Proof. Consider a game Γ solvable by iterated elimination of never-best response strategies 

and a corresponding sequence of subgames Γ0, Γ1, … , Γ𝑚. Define the height of a strategy in 

Γ as the largest index 𝑙 such that Γ𝑙  includes the strategy, and define the height of a strategy 

profile as the average height of the strategies in it. It suffices to establish the following. 

CLAIM. The function 𝑃 that maps strategy profiles to their height is a weak BI-potential for Γ. 

A strategy profile 𝑠 is an equilibrium if and only if 𝑃(𝑠) = 𝑚. 

To prove the claim, consider for a given strategy profile 𝑠 the minimum of its strategies’ 

heights. Clearly, this minimum 𝑘 is equal to 𝑚 if and only if 𝑠 is a strategy profile also in Γ𝑚, 

which by the solvability assumption means that it is an equilibrium. If 𝑘 < 𝑚, then all the 

strategies in 𝑠 are in Γ𝑘  but at least one of them, 𝑠𝑖, is not in Γ𝑘+1. Necessarily, for the 

corresponding player 𝑖, (in both Γ𝑘  and Γ; see Lemma 1) strategy 𝑠𝑖 is not a best response to 

𝑠−𝑖. Let 𝑠𝑖
′ be a strategy in Γ𝑘  that is a best response. Its height is necessarily greater than 𝑘, 

and therefore the strategy profile (𝑠𝑖
′, 𝑠−𝑖) satisfies 𝑃(𝑠𝑖

′, 𝑠−𝑖) > 𝑃(𝑠). Thus, 𝑠 is not a local 

minimum point of 𝑃. This conclusion completes the proof of the claim, and therefore also 

that of the theorem. ∎ 

A different sufficient condition for weak acyclicity is presented by the following theorem. For 

an example, see Figure 1. 
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Theorem 3. (Fabrikant et al. 2013) If a finite game has the property that every subgame has 

a unique equilibrium, then the game is weakly BI-acyclic.  

Interestingly, the weaker property that every subgame has at least one equilibrium is not 

sufficient even for weak I-acyclicity (Takahashi and Yamamori 2002). 

Extensive-Form Games 
The difference between acyclicity and weak acyclicity is illustrated by the example of finite 

extensive-form games with perfect information. In general, these games are not even BI-

acyclic, as the simple game in Figure 2 demonstrates. However, this particular 

counterexample is clearly driven by player 2’s nonbeneficial change of action at his 

unreached decision nod (simultaneously with the beneficial change at the reached nod). 

Indeed, in the subgame whose root is the unreached nod, the change of strategy is harmful. 

In other words, the agent (Selten 1975) residing at that node switches to an action that 

would not be optimal if the node were actually reached. The significance of this observation 

lies in the fact that the agent normal form of every finite extensive-form game with perfect 

information is acyclic. This fact can be stated also as follows. 

Theorem 4. (Kukushkin 1999) Every finite extensive-form game with perfect information in 

which each player has only one decision node is I-acyclic.  

Theorem 4 is a special case of a more general result, which applies regardless of the 

numbers of the players’ decision nods. Namely, if a walk in the improvement graph does not 

involve changes of actions at unreached decision nods as in Figure 2, then it cannot be 

closed (Kukushkin 2002). Put differently, the priority rule that forbids changes of strategies 

involving such changes of actions is acyclic. An alternative (similar, but a trifle stronger) 

acyclic priority rule can be defined as follows. For a player 𝑖 and a strategy profile 𝑠, call a 

unilateral change of strategy from 𝑠𝑖 to another strategy 𝑠𝑖
′ parsimonious if ℎ𝑖(𝑠𝑖

′, 𝑠−𝑖) >

ℎ𝑖(𝑠𝑖
″, 𝑠−𝑖) for every strategy 𝑠𝑖

″ that differs from both 𝑠𝑖 and 𝑠𝑖
′ but is a combination of 

them, in the sense that the action it prescribes at each of player 𝑖’s decision nodes is also 

prescribed by one or both of these strategies. Clearly, any non-parsimonious change of 

strategy can be replaced by a parsimonious one without decreasing the payoff of the player 

involved as a result. Therefore, the subgraphs of the improvement- and best-improvement 

graphs obtained by considering only parsimonious changes of strategies are priority rules.  

Figure 2. An extensive-form game with perfect information that is not BI-acyclic. The best-improvement graph 
of the game has the following closed walk: (𝑳, 𝒓′𝒍″), (𝑹, 𝒓′𝒍″), (𝑹, 𝒍′𝒓″), (𝑳, 𝒍′𝒓″) and back to (𝑳, 𝒓′𝒍″).   
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Lemma 2. In a finite extensive-form game with perfect information 𝐺, the I-priority rule and 

the BI-priority rule that allows only parsimonious changes of strategies are acyclic.  

Proof. It needs to be shown that every walk 𝑠0, 𝑠1, … , 𝑠𝑚 in the I-priority rule (or, as a special 

case, the BI-priority rule) under consideration is not closed. For a subgame 𝐺̂ of 𝐺 and a 

strategy profile 𝑠, denote by 𝑠̂ the strategy profile in 𝐺̂ obtained by restricting each player’s 

strategy to the decision nodes in that subgame. In particular, 𝑠̂0, 𝑠̂1, … , 𝑠̂𝑚 are the strategy 

profiles corresponding to the walk. Now, choose 𝐺̂ in such a way that there is exactly one 

player 𝑖 whose strategies 𝑠̂𝑖
0, 𝑠̂𝑖

1, … , 𝑠̂𝑖
𝑚 are not all equal. For any 0 ≤ 𝑙 < 𝑚 such that 

𝑠̂𝑖
𝑙 ≠ 𝑠̂𝑖

𝑙+1, consider the strategy 𝑠𝑖
𝑙+1/2

 (≠ 𝑠𝑖
𝑙+1) in 𝐺 that coincides with 𝑠𝑖

𝑙 inside 𝐺̂ and with 

𝑠𝑖
𝑙+1 outside it. Since the chance from 𝑠𝑖

𝑙 to 𝑠𝑖
𝑙+1 increases 𝑖’s payoff and is parsimonious, 

ℎ𝑖(𝑠𝑖
𝑙+1/2

, 𝑠−𝑖
𝑙 ) < ℎ𝑖(𝑠𝑙+1). The inequality implies that, in the subgame 𝐺̂ , strategy 𝑠̂𝑖

𝑙+1 

yields player 𝑖 a higher payoff than 𝑠̂𝑖
𝑙 against the other players’ strategies 𝑠̂−𝑖

𝑙 . Since by 

assumption the latter do not change (that is, 𝑠̂−𝑖
0 = 𝑠̂−𝑖

1 = ⋯ = 𝑠̂−𝑖
𝑚 ), the conclusion implies 

that the walk cannot be closed. ∎ 

A change of strategy that changes the action only at a single decision node is (vacuously) 

parsimonious. Therefore, Theorem 4 is an immediate corollary of Lemma 2. However, as the 

lemma guarantees the existence of an acyclic priority rule also in the general case, its 

usefulness is not limited to the special games considered in that theorem. It also provides an 

alternative proof for the following result.  

Theorem 5. (Kukushkin 2002) Every finite extensive-form game with perfect information is 

weakly BI-acyclic.  

By Theorems 4 and 5, acyclicity or weak acyclicity of a finite game Γ is a necessary condition 

for the existence of some perfect-information extensive-form game 𝐺 whose agent normal 

form or normal form, respectively, is Γ. If Γ is the agent normal form of 𝐺, then it has the 

additional property that every subgame has an equilibrium. However, if Γ is the normal 

form, then this is not necessarily so. For example, if in Figure 2 player 2 were only allowed to 

use strategies 𝑟′𝑙″ and 𝑙′𝑟″, an equilibrium would not exist. 
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