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Abstract. 

This paper develops a theoretical model that examines the optimal price 
setting by on-course bookmakers in the racetrack betting market. The model suggests 
that opening prices should include a premium that compensates bookmakers for 
the risk that insiders will account for private information and exploit any 
mis-pricing made by the bookmakers. The model is an extension of the 
model developed by Makropoulou and Markellos (2007) for football betting to 
the racetrack betting market. Using an extensive dataset and performing Monte Carlo 
simulations to calculate the potential value of new information, we measure insider 
trading in the Australian racetrack betting market. 
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1. Introduction  

This paper develops a theoretical model that examines the optimal price setting by 

bookmakers in the racetrack betting market and then uses it to measure the extent of 

insider trading in the market. Bookmakers are faced with the risk that insiders will 

account for information arriving after the opening odds have been set and will thus 

exploit any mis-pricing by the bookmaker by betting on horses whose price presents an 

expected profit for the bettor. The model is an extension of the model developed by 

Makropoulou and Markellos (2007) and applied to the European soccer betting market. 

The basic intuition underlying the model is that fixed odds1 offered by bookmakers at the 

track are examples of call options and that, while bookmakers hope to offer only net of 

premium out-of-the-money options, when they err by underestimating a particular horse's 

true winning probability, they are liable to offer a net in-the-money option, which the 

insider (who is assumed to know her horse's true winning probability) will be glad to 

snap up. 

This paper also builds on the pioneering papers of Shin (1991, 1992 and 1992) in 

presenting a model designed to estimate the extent of insider trading in a horse betting 

market. His approach differs from ours in that he focuses exclusively upon starting prices 

(SP) and makes two highly restrictive assumptions; namely, that the proportion of 

outsiders backing any horse is equal to its true winning probability and that inside traders 

always win. A possible consequence of these assumptions is that estimates using Shin's 

model are invariably low (for example, Shin (1993) obtains around 2 percent and 

Vaughan Williams, L. and Paton, D. (1997) slightly less), whereas we present estimates 

of 20 percent and over, depending upon the exact estimation procedure used. For an 

empirical test of the Shin model, see Schnytzer and Shilony (2003) and for further 

discussion and extensive bibliography, see Sung and Johnson (2007). 

The other strand of research upon which we build is that which relates to the timing 

of inside trades. For a general discussion of this issue in the context of more general 

financial markets, see Foster and Vishwanath (1996), Jackson (1991) and Kyle (1989).  

                                                 
1  For the purposes of this paper, by odds, we mean that odds of, say 5 to 1 represent a net profit of $5 for 
every $1 bet on the winning horse.  
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More specifically, we extend the analysis presented in Schnytzer and Shilony (2002), 

where the issue of timing trades is considered in the context of the Australian racetrack 

bookmaking market. At the opening of the betting, prices are determined by a loose cartel 

and incorporate profit margins so that prices exceed the perceived winning probabilities 

for all horses.  These odds represent the most expert distillation of the public information 

available at the time that betting begins at the track, around 30 minutes before the start of 

the race. When betting begins, each bookmaker will accept different bets and since this 

implies different contingent debts for different bookmakers, the cartel collapses quickly.  

Thus, ceteris paribus, prices2 tend to fall over time.  However, as noted above, there are 

risk-neutral informed traders, whose estimates of winning probabilities for the horses 

with which they are associated are more accurate than those of the bookmakers. Should 

opening prices (OP) be less than the insiders’ valuation of the corresponding horse’s 

winning probability, the relevant insiders will place large amounts of money on the horse 

via a plunge (see Schnytzer and Shilony (1995)).  This leads to an immediate increase in 

the price of that horse and a reduction in the prices of all, or nearly all, other horses in the 

race.  Suppose, now, that there are two such groups of insiders, each wishing to plunge 

their own horse.  Since a plunge reduces the prices of other horses, each group has an 

incentive to wait for the other to plunge first.  On the other hand, since the information 

concerning any given horse is known to more than one person, the longer the insiders 

wait, the greater is the risk that the information will leak to a third party.  The recipient of 

the leak will then plunge the horse and the group of insiders – except perhaps the one 

responsible for the leak – may be left with odds at which betting is no longer worthwhile.  

This conflicting set of incentives gives rise to a game of timing presented and tested 

empirically in Schnytzer and Shilony (2002). They conclude, first, that the higher the 

level of opening prices, the later will be any plunge activity. Second, that an increase in 

the number of horses which have insiders associated with them leads to an earlier optimal 

plunge time and, finally, that an increase in the number of horses in a race also leads to an 

earlier optimal plunge time. 

                                                 
2  For the purposes of this paper, a horse’s price is defined as the probability equivalent of its un-normalised 
odds; i.e. the odds as offered by the bookmaker. 
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On the basis of these findings, it is clear that obtaining an accurate measure of the 

extent of insider trading even in this relatively simple financial market would require 

price and quantity data that are simply unavailable. The data used in this paper are similar 

to those used by Schnytzer and Shilony (2002) and provide odds at three stages of 

betting: opening prices (OP), middle prices (MP) and starting prices (SP). Accordingly, 

we are restricted to considering plunges which occur at either OP, MP or the best 

between the two, from the viewpoint of the insider, (BP)3.  On the other hand, a fully 

dynamic model of insider trading considered in terms of options pricing would be 

unnecessarily complex and possibly intractable. Accordingly, in section 2 of this paper, 

we present a simple model of bookmaker pricing in which all insiders are assumed to bet 

at OP. In section 3, the model is reformulated within an option pricing framework and in 

section 4 we present several measures of the extent of insider trading, one of which 

follows directly from the model. However, we also present results of simulations which 

take into account the fact that insider trading occurs at BP and not only at OP.  

Further, we take into account that whereas our model is built from the viewpoint of 

the bookmaker, we have access to ex-post plunging information which the bookmaker 

cannot know and which sheds further light on the extent of insider trading. Thus, for 

example, when estimating the average extent of insider trading per race, we weight 

values of call options on individual horses first by the winning probabilities of horses 

implied by OP (and thus used by bookmakers in pricing). This approach, following the 

model directly, effectively supposes that bookmakers know the extent of insider trading 

in advance. Or, more reasonably, such a measure is of the bookmakers' expectations 

regarding insider trading and it should not be surprising to find that these are 

overestimates. In order to get closer to the true extent of insider trading, we also weight 

option values by the relative and absolute extents of plunges as well as winning 

probabilities as implied by BP.  

Finally, our theoretical model assumes that the winning probabilities implied by OP 

are free of all biases and distortions. This is, however, untrue because all bookmakers' 

                                                 
3 Thus, the best price, BP, is simply the lower of the two, OP and MP. Plunges cannot occur in the 
Australian market at SP, since SP betting is illegal in Australia and thus SP are the ruling prices at the end 
of betting. For a comparison of the role SP in the Australian and UK horse betting markets, see Schnytzer 
and Snir (2008a). 
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odds are known to beset by the favorite-longshot bias and in the Shin model this bias is 

even a consequence of the presence of insiders in the market. Accordingly, in order to 

avoid possible biases in our estimates, we use a simple econometric technique to generate 

unbiased estimates of winning probabilities based on both OP and BP, respectively. We 

present these results together with those obtained by using the original biased probability 

estimates. Since analytical solutions are not available for these methods, Monte Carlo 

simulations are used. 

The results of our Monte Carlo simulations are presented in section 5 and range from 

mean estimates of around 20 through 33 percent insider trading over a sample of nearly 

4000 races simulated 1000 times, depending upon the assumptions underlying the 

specific method employed. It is found that the presence of the favorite-longshot bias in 

prices increases the estimates considerably if no correction to implied winning 

probabilities is made. Taking all factors into consideration we consider that the actual 

extent of insider trading in this market to be somewhere in the range of 20 to 22 percent. 

Our conclusions are presented in section 6. 

 

 

2. The Model  

Assume there are n horses in a race and that a bookmaker sells contingent claims on 

each horse. The contingent claim on horse j costs j  and pays 1 if horse j wins, and zero 

otherwise. A price j  implies odds
1 j

j
j







 . There are two populations of bettors on 

the race: outsiders and insiders. 

 

The assumptions regarding the information arrival process can be described as 

follows: Suppose that the horses’ true winning probabilities are given by 

1 2
1

, ,....., ,  where 1
n

n j
j

P P P P


 . These true winning probabilities reflect both public and private 

information. Moreover, we assume that the true probability of a certain outcome evolves 

according to the information flow throughout the betting period until the race starts and is 
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therefore stochastic. The stochastic process for the true probability could be either 

continuous or discontinuous, i.e. a jump process, or a mixture of the two. Strictly 

speaking, the process that affects the true probability should be seen as discontinuous, 

since the flow of information from small events that may affect the outcome does not 

happen continuously. However, these events are numerous and diverse in nature. 

Moreover, the arrival rate of such events is highly unlikely to be known. Therefore, the 

information arrival process may be proxied by a continuous stochastic process.  

 

Assume that nobody, not even an insider, knows in advance which horse is going to 

win the race, in contrast to Shin (1991,1992 and 1993), who assumed that insiders know 

which horse will win the race. At time zero the bookie declares the opening prices (OP). 

At this time all market participants, i.e. outsiders, insiders and the bookie have the same 

information set. This means that they all know the true winning probability of horse j at 

time 0, (0)jP . Obviously, if no inside information hits the market, there is no reason for 

this initial true winning probability to change. Suppose instead that at a subsequent time 

t>0 a private signal is revealed to the insiders, which makes the true winning probability 

equal to ( )jP t . This is observed only by the insiders. Thus, an insider knows the true 

winning probabilities, ( )jP t , at any 0 t T   while the bookie and the outsiders know only 

what is now the mistaken estimate at t = 0. A risk-neutral insider would wager on horse j 

if ( ) ( ).j jP t t  We do not make any assumptions concerning the likelihood of inside traders 

vis-à-vis either favorites or longshots. Since we assume that the bookmaker and the 

outsiders do not observe any private information, we expect the outsiders to support the 

horses in proportion to their perceived winning probabilities at time zero. These 

probabilities may be thought of as the winning probabilities implied by “public 

information”.  

 

The bookmaker declares his initial odds according to the public information set that 

exists today. Since any private information is conveyed to the bookmaker only after an 

informed trade takes place, the latter should include a premium in the OP to compensate 

him for this risk. We further assume that the variance of public information is very small, 
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in other words we do not expect any public information to be revealed after time zero. 

This assumption makes sense especially if one considers the nature of racetrack betting 

and the small betting period (about 30 minutes).4 Therefore, any changes in the quoted 

odds should be related to observed insider behavior.  

 

In reality, the sum of opening prices is always greater in any race than the sum of 

starting prices even in the apparent5 absence of insider trading. The reason is that opening 

prices tend to have a "cartel" level of profit built in since they are recommended to 

individual bookies by the bookmakers' association. Once betting begins, there is 

competition among bookies and thus the sum of prices will tend to decrease. However, in 

our model it is implicitly assumed that the only reason for OP to be higher than SP 

(which incorporate all available information, both public and private) is the risk that 

bookies run due to the existence of insiders. Thus, the model does not take into account 

the fact that OP would anyway be higher because of this “cartel” level of profit. This 

practically means that the estimates of insider trading obtained may overestimate its true 

extent if the premium included in OP is due to this “cartel” profit rather than to the risk 

that bookmakers face in the presence of insiders. On the other hand, it may be that the 

expected profit margins built into OP are designed just to compensate the bookies for 

inside trades. 

 

Trading proceeds in a number of stages, the first and the last of which we consider in 

our formal model. At stage 1, a proportion of the outsiders bet in the market at the OP set 

by the bookie. Also, all insiders may bet should the opportunity arise. At the other stages, 

the rest of the outsiders bet at new updated prices set by the bookie after having observed 

the insider trading pattern. It should be noted that insiders must utilize any special 

information they have during the betting, since it loses all value once the race starts. 

Furthermore, since insider trading is both legal -- only jockeys are forbidden to bet -- and 

                                                 
4 We thus exclude such phenomena as late scratchings from consideration in our analysis. 
5  Races in which there are no plunges visible in the data (odds at no point fall for any horse during the 
betting) are races in which inside trades are no observed. Of course, it could be that an insider has place a 
discreet bet with a single bookie and that this bet cannot be discerned in the average odds that rule in the 
market and are published. The greater the extent of this phenomenon, the more will our estimates of insider 
trading underestimate its true extent. 
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takes place at fixed prices, insiders have no incentive to hide their trading behavior from 

outsiders. Moreover, such information may no longer be valuable since the odds available 

about a particular horse would be lower after a plunge. Finally, we make the assumption, 

for the purposes of the formal model, that all insiders bet simultaneously. We relax this 

assumption in section 4 when estimating the extent of insider trading. 

 

Price updating effectively continues until the last stage at which starting prices are 

determined as the equilibrium prices observed in the market at the end of betting. Since in 

contrast to the British market there is no legal SP betting in the Australian market, these 

prices may be assumed to embody all the available useful information regarding the 

race’s outcome. 

 

A set of additional assumptions is necessary to proceed: 

a) There are no transaction costs.  

b) The bookmaker can accurately predict the expectations of outsiders, i.e., 

the amount of money that will be bet by them on each possible outcome is known 

with certainty. 

c) The true probabilities of race outcomes evolve according to the private 

information flow throughout the betting period until the event takes place. 

Moreover, the true probability of outcome j occurring, ( )jP t , follows a driftless 

continuous stochastic process such that: 

 

*( ) ( )t j jE P t P t     for any 0≤t<t*≤T 

 

where T denotes the end of the betting period. Hereafter, whenever the time 

subscript is dropped from the expectation it is assumed that t=0. 

d) The bookmaker is assumed to be risk-neutral, (i.e. an expected profit 

maximizer) and there is free entry in the market. This assumption is necessary, for 

if the bookmaker were a monopolist, he could capture rents. Under the free entry 

assumption however, the long-run competitive equilibrium will be established when 
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all bookmakers earn zero expected profits. Throughout the analysis we assume that 

bookmakers make zero expected profits in the market corresponding to each race. 

Moreover, assuming perfect competition allows for the demand of outsiders to be 

totally inelastic6,7   

e) The expectations of outsiders fully reflect all available information at time 

zero and hence are unbiased expectations of the true winning probabilities at time 

zero. This amounts to the assumption that outsiders are rational and thus do not 

suffer from any behavioral biases. This turns out to be an unrealistic assumption 

which we relax, and whose implications we investigate, in sections 4 and 5.  

 

 

Outsiders 

Assume for the moment that only outsiders exist in the market, W is the total amount 

of money bet by them at stage 1 on the n horses and wj is the amount bet on horse j, 

where j=1, 2,…, n. Assume also that the bookmaker gives (opening) odds of (1+θj) for 

each one of the horses and that the betting period is T periods of time, where T>0. Then, 

ignoring the time-value of money and making use of assumption (b), the expected profit 

of the bookmaker at time zero is: 

 

 
1

( ) ( ) (1 ) 
n

j j j
j

E W E P T w 


       (1) 

 

or, equivalently, using assumption (c): 

                                                 
6 If the bookmaker were a monopolist and demand was totally inelastic, maximizing profits would lead to 

unbounded prices 
7 Shin (1991, 1992) makes the assumption of ex ante competition among bookmakers. At the first stage of 

the game, the bidding stage, the bookmakers issue their bids. The expected profit of the bookmakers at this 

stage is zero. At the second stage, the price-setting, the bookmaker who has won the bid, sets prices that 

maximize his expected profit at this stage, given the winning bid at the first stage. On the other hand, 

Ottaviani and Sørensen (2005) consider ex post competition among bookmakers and assume that each 

bookmaker is assumed to make zero expected profit in the market corresponding to each horse.  
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1

( ) (0) (1 ) 
n

j j j
j

E W P w 


     (2) 

 

where Pj(0) and Pj(T) are initial and terminal values (time T) for the realized true 

winning probability of horse j, respectively.   

 

Given that
1

( ) 1
n

j
j

P t


 for each  0,t T , then for the bookmaker to have a zero 

expected profit, it is sufficient that for each j: 

 

 j
j

w
OP

W
  ,         where, 

1

1j
j







 (3) 

 

Therefore, if only outsiders exist in the market and, as assumed earlier, the 

bookmaker can accurately predict their expectations, then for the latter to have zero 

expected profit on each horse, it is sufficient that opening prices are set equal to the 

expectation of the bookmaker about the proportion of money bet on each horse i.e., 

j jp  , where ,j j n np w W . Therefore, in this case, the price set by the bookmaker for a 

certain horse might deviate from the efficient market price due to “false expectations” on 

the part of bettors, which induces the bookmaker to distort prices in order to preserve the 

zero-profit condition. Note that the efficient market price is equal to the true probability 

of a certain outcome occurring. 

 

Now, equations (1), (2) and (3) hold at any t.  Hence: 

 , ,
1

( ) ( ) (1 ) 
n

t t t j j t j t
j

E W E P T w 


       (4) 

 , ,
1

( ) ( ) (1 ) 
n

t t j j t j t
j

E W P t w 


     (5) 
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This means that at all times the bookmaker tries to quote odds so that his book is 

balanced. In the absence of insiders, given our assumptions, there can be no change in 

prices over time. 

 

Insiders 

If insiders also exist in the market, then the final distribution of bets will depend upon 

both the expectations of outsiders and insiders. As noted above, the bookmaker can 

predict with accuracy the expectations of outsiders but not those of insiders, since the 

latter are shaped according to the private signal they receive and this is not revealed to the 

bookie. It is assumed that at each point in time, the expectations of insiders fully reflect 

all information, and, hence, are an unbiased estimator of the true winning probability of 

horse j.  

 

Consider an insider who bets only if she expects a positive return; i.e., if her 

subjective probability is greater than the quoted prices. The subjective probability of the 

insider at any time t is equal to the true probability of outcome j being realized. 

Therefore, the bookmaker is expected to lose from informed bettors. If we assume that 

the time value of money is negligible over this small period, the bookmaker's expected 

loss at time zero to an informed bettor on a one unit bet (placed at time zero) is:  

 

   ( ) max 1 ( )(1 ),0  j ji
E E P T        (6) 

 

 

We assume further that insiders bet ,j iw  on the outcome(s) with favorable odds. The 

expected profit of the bookmaker is therefore: 

 

   , ,
j=1 1

( ) ( ) (1 ) max 1 ( )(1 ),0
n n

n j j n j j i j j
j

E W E P T w w E P T 


            (7) 

 

For the bookmaker to have zero expected profit, the following condition must be met:  
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   , ,
j=1 1

(0)(1 ) + max 1 ( )(1 ),0
n n

n j n j j j i j j
j

W w P w E P T 


       (8) 

 
 

Rearranging the terms in the above equation we obtain: 

 

   , ,

j=1

1 (0) (1 ) max 1 ( )(1 ),0
(0)

n
j n j i

j j j j
n j n

w w
P E P T

W P W
 

        
  

  (9) 

 

For this equation to hold it is sufficient that for each j: 

 

   , ,1 (1 ) max 1 ( )(1 ),0
(0)

j n j i
j j j

n j n

w w
E P T

W P W
        (10) 

 

The second part of the right-hand side of this equation is greater than or equal to zero. 

Therefore, the first part should be lower than unity implying that: 

 

 , (0)j n
j j

n

w
OP P

W
    (11) 

 

Therefore, if insiders also exist in the market, then prices should be set greater than 

the true probability of winning at time zero, in order for the bookmaker to have zero 

expected profit. Thus, the competitive price set by the bookmaker includes a premium 

that reflects the uncertainty of new information. Rearranging the terms in equation (10), 

we derive the competitive price the bookmaker should set as: 

 

   (0) max ( ) ,0j j j jOP P qE P T      (12) 

 

 

where q is the ratio of informed to noise betting, i.e. ,

,

j i

j n

w
q

w
 . 
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3. The Model in an Option-Pricing Framework  

The basic idea we propose is that the commitment made by bookmakers to sell at 

fixed prices, the quoted odds, can be analyzed as a call option. The bookmaker gives a 

prospective bettor a call option, i.e., the right to buy at the asking price φ>P0, where P0 is 

the initial true probability of a certain outcome occurring. Note that in order for the 

bookmaker to be compensated for the uncertainty of information, this option is issued 

out-of-the money and is similar to an American call option on a stock that pays no 

dividends. Informed bettors wait for updated information and place their bets only if the 

true probability at maturity, P(T), is greater than the initial price, φ. This is consistent 

with the option pricing theory for American options on a stock that pays no dividends, 

according to which it is never optimal to exercise the option before the expiration date. 

Assuming that the bookmaker is risk-neutral, then today’s option price can be determined 

by discounting the expected value of the terminal option price by the riskless rate of 

interest. Therefore, neglecting the time-value of money, the value of the call option is:  

 

   max ( ) ,0j jC E P T    (13) 

 

Equation (13) says that the value of the option at maturity will be either ( )j jP T  , 

or, zero, whichever is greater. If the true probability at time T is greater than the exercise 

price, the option will expire in-the-money. This means that the informed bettor will 

exercise it by placing her bet. Otherwise, the option expires unexercised. In an option-

pricing framework, equation (12) can now be transformed into the following equation: 

 

 (0)j jP qC    (14) 

 

In order to derive the value of the option we need to know the stochastic process 

followed by the true probability. This could be a jump process or a continuous one or 

even a mixture of the two. Here, it is assumed that the true probability follows a 

continuous process. Given that the probability can take values only in the range [0, 1], 
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assuming a Geometric Brownian Motion would be inappropriate, since this would imply 

that true probabilities can take values in the range [0,∞]. Consider instead that the true 

probability evolves according to the following stochastic equation: 

 

  ( )
1 ( )

( )
j

j
j

dP t
P t dz

P t
   (15) 

 

where σ is the instantaneous standard deviation of the change in the random variable, 

Pj(t), and dz is a standard Wiener process. It is readily shown that Pj(t) takes values in the 

range [0, 1]. Furthermore, given that this process is driftless, the expected value of Pj(t) at 

any t>0 is equal to the initial value Pj(0) and hence any deviations from this value are 

white noise. Knowing the stochastic process followed by Pj(t), the value of the call option 

can be calculated numerically via Monte Carlo simulation. The competitive price j  can 

be found from equation (14) by solving the underlying optimization problem. 

 

 

4. A Measure of Insider Trading 

We use the above model to derive a measure of the extent of insider trading. Our 

measure is applied to a dataset of the 1998 Australian Horse Racing season, covering 

4017 races with 45296 runners.8 For each of these horses, an option value is generated by 

Monte-Carlo simulation. 

To generate the option values, several input variables are required. Firstly, the time 

during which betting takes place, T, is set at 30 minutes. Second, the volatility is derived 

from the bookmakers' odds as follows: As the dataset includes prices at three moments 

(OP, MP and SP), prices are available roughly every 10 minutes. The ten minute 

volatility may thus be calculated by defining: 

1

1 1

, 1, 2
(1 )

i i
i

i i

u i
 

 


 


 

                                            (16) 

and then computing  

                                                 
8 The data were obtained from the CD-Rom, Australasian Racing Encyclopedia ’98, presented by John 
Russell. 



 15

              2 22
1 2

1

1
s u u u u

m
            (17) 

where   1 2

1
, 2u u u m

m
   .  

Consequently, the one-minute volatility equals: 

2

3

s

T
           (18) 

Finally, the initial true winning probability at time 0, P(0), is generated in two 

different ways. According to the first, we simply normalize OP as suggested by Dowie 

(1976). This is shown below to yield estimates with a favorite-longshot bias.  The second 

method involves regressing a dummy variable, equal to 1 when the horse wins the race 

and 0 otherwise, on OP. The predictions arising from this regression are unbiased 

estimates of the winning probabilities but since some emerge negative, these are set to 

0.0001, a value lower than the lowest positive predicted probability. The set of P(0) thus 

obtained were checked and found also to be free of any bias. The results are presented 

below. 

The true winning probability for each horse is simulated in 1000 steps using the 

standard Wiener Process. When the simulated price is larger than the strike price at the 

1000th and final step, the option value is this positive difference; otherwise, the option 

value is zero. 

In total, four specifications of Monte-Carlo simulation are run. The first and second 

specifications use OP as a strike price. In first specification, the true winning probability 

is OP modified so as to remove the favorite-longshot bias precisely as described above9 

and this specification thus follows the theoretical model directly. The second 

specification uses the normalized OP as estimates of P(0). The third and fourth 

specifications use the longest odds available at OP or MP as the point at which insiders 

trade. More specifically, the odds at which the insider bets is max (opening odds, middle 

odds), the best odds available to her, as this would give the insider the highest expected 

                                                 
9 See page 14. 
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payoffs.10 These odds are transformed into the best price, BP, which is used as the strike 

price. In the third specification, as in the first, the BP has any favorite-longshot bias 

removed by regression to form our estimate of the true winning probability at the time of 

insider betting. The fourth specification follows the second in that normalized BP are 

used.  Since trades at BP occur, on average, later than those at OP, the time of betting is 

no longer 30 minutes, but lies between 30 and 15 minutes, and so we set the time of 

betting at 20 minutes for the whole dataset. All specifications are repeated 1000 times 

and the option values are averaged to form the option value for each specific price. 

Once the option values are generated, the extent of insider trading may be calculated 

as follows for the first two specifications: 

                
 
 

(0)

1 (0)

j jj
j

j j j j

OP Pq
a

q C OP P


 

  
.        (19) 

 

And for the thirds and fourth specifications, the extent of insider trading may be 

calculated as: 

 
 

,

,

(0)

1 (0)

j j BPj
j

j j j j BP

BP Pq
a

q C BP P


 

  
    (20) 

 

 

where , (0)j BPP  is one or other of the two estimated sets of BP, or the true winning 

probability at time of insider betting.  

 

The extent of insider trading per horse is weighted using the estimated initial true 

winning probability, P(0), for each specification. Moreover, for the third and fourth 

specifications, the initial true winning probability estimates at the time of betting, based 

on BP, are also used as weights. Finally, two additional weights are calculated. The first 

is the relative size of a plunge, called PW: max((MP-OP)/OP,0) + max((SP-MP)/MP,0). 

                                                 
10 We thereby assimilate, as well as possible, given the data, the fact that insiders trade not only at OP 
(Schnytzer and Shilony (2002)). 
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The second weight is the absolute size of the plunge called PW2: max(MP-OP,0) + 

max(SP-MP,0). 

Using these four weights, the weighted average degree of insider trading for each of 

the races in the sample is calculated. The simple average of these values is the extent of 

insider trading in the dataset.11  

As already noted, when using winning probabilities derived from prices at which 

insiders are assumed to bet, as weights, we are actually measuring the expected extent of 

insider trading as implicit in the bookmakers' pricing. Clearly, bookmakers expect the 

greatest losses from insider trading on the most favored horses. The favorite in a race is 

such precisely because his true winning probability is considered to be higher than that 

for any other horse and, to the extent that this remains true over the course of betting 

time, more insider trading may be expected to occur on this horse. On the other hand, 

using the two different measures of plunge activity as weights should yield a more 

accurate estimate of the extent of insider trading, since it only via plunges that insider 

trading may be detected in the absence of explicit quantity data. In other words, when 

weighting by price (OP or BP) it is implicitly assumed that insiders bet according to 

price, Shin's (1991, 1992 and 1993) assumption, albeit not applied to SP. Whereas, when 

we weight either absolute or relative plunges sizes, we are weighting on those horses 

where insiders were observed to have bet more heavily in accordance with plunge size. 

 

5. Results 

Table I displays descriptive statistics for the sums of opening, best and starting prices 

for the races in our sample. The table shows clearly that the average sum of prices 

decreases as between OP and SP. If bettors were to bet strictly in proportion to prices, 

allowing bookmakers to balance their books, then the excess of sums of prices per race 

above unity would represent the bookmakers' profit margins.  

 

 

 

                                                 
11 The sample size differs for the two procedures since the there were some cases in which the sum of OP in 
a race was less than one, and some in which the sum of BP was less than one, and these races were dropped 
from the sample. This left us with 3999 and 3992 races, respectively, out of an initial sample of 4017 races. 
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Table I: Descriptive statistics on the sum of prices per race 

Average Maximum
Standard 
deviation

OP 1.4326 2.0631 0.1138

BP 1.2456 1.7476 0.0981

SP 1.2477 1.7646 0.0940

Sum of prices per race

 
Note: OP are the opening prices, BP are the best prices available prior to SP and SP are the starting prices. 

 

At the opening of betting this margin is 43 percent, but by the start of the race the 

margin has decreased to 24 percent. The decrease in the margin indicates competition 

among bookmakers, forcing them to decrease prices and leading to decreased profits. 

Note that the margin on BP is very close to the margin on SP. So we should bear in mind 

that OP apparently contains some excess profits. Since the OP are above the competitive 

level, this could deter insiders from trading at these prices, leading to a lower degree of 

insider trading. This “cartel” level of profit does not hold for the set of BP, which have 

the same margin as on SP, and can be considered to be competitive prices. Hence, the 

insider is faced with lower prices at BP, and we might expect the extent of insider trading 

to be higher at BP than at OP.  

 

Table II displays the extent of plunges in the data set, where an early plunge is 

defined as a positive percentage price change from OP to MP and a late plunge is defined 

as a positive percentage price change from MP to SP. A sustained plunge is defined in the 

case where the horse in question receives both early and late plunges; the extent of the 

sustained plunge is then the percentage change from OP to SP. It can be seen in Table II 

that the majority of the 13852 plunges in the dataset are late plunges, suggesting insider 
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trading at MP. This confirms our intuition that insiders bet at the longest price available 

to them at either OP or MP. 

 

 

 

 

Table II: The extent of plunges in the dataset 

Plunges Number Average extent

Early Plunge 1281 21.25%

Late Plunge 9783 15.72%

Sustained Plunge 2788 26.33%

All 13852 18.37%
 

Note: An early plunge is defined as a positive percentage change from OP to MP. A late plunge is defined as a positive percentage 

change from MP to SP. When there are both early and late plunges, this forms a sustained plunge. 

 

It is interesting to note that most plunges are, indeed, late, justifying the incorporation 

of insider trading at BP into our empirical procedures. On the other hand, it must be 

borne in mind that many of the BP likely to be close to OP in size12 and that the average 

extent of early plunges exceeds that of late plunges. 

Table III displays the returns on betting at OP, BP and SP for a specified range of 

prices. As shown by Dowie (1976) and Crafts (1985), this table demonstrates the 

presence of a favorite-longshot bias in the data. The table shows that returns are, as 

expected, on average always negative, although for bets on horses at higher prices (lower 

odds), the returns are higher than for lower prices (higher odds). It is clear that the extent 

of the favorite-longshot bias is greater at OP than at SP.  

 

 
                                                 
12 When a horse is plunged at OP, there is certainly a decrease in the prices of most if not all of the other 
horses in the race, but the extent of the decrease will be quite small per horse unless the plunge was really 
larger. Thus, in an eleven-horse race, if the price of the plunged horse increases by 10 percent, the prices of 
the other horses will fall, on average, by only one percent if the sum of prices is to stay the same. Since, 
however, from Table 1, the sum of BP are around 20 percent below OP, there would occur another 2 
percent drop in the prices of the unplunged horses, yielding a total of 3 percent per horse.  
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Table III: Favorite-longshot bias at OP, BP and SP 

Range of prices OP BP SP

<0.05 -63.57% -53.06% -50.51%

0.05 - 0.2 -37.32% -25.92% -23.70%

0.2 - 0.35 -20.15% -6.45% -11.44%

0.35 - 0.5 -18.10% -5.14% -10.22%

>0.5 -10.01% -0.46% -3.76%

Returns

 
 

Table IV uses the same methodology as that employed in, for example, Schnytzer, 

Shilony and Thorne (2003), of grouping the horses by odds and then performing 

weighted regressions, the weights being the number observations per group, on the 

normalized winning probabilities derived from OP, BP and SP. The null hypothesis of no 

favorite-longshot bias, which requires a zero intercept and a slope of 1 jointly, is clearly 

refuted at any reasonable levels of significance. It is also clear from the results in Table 

IV that the extent of the bias falls, but is not eradicated, as the betting proceeds.  

 

Table IV: Econometric Tests for Favorite-Longshot Bias 

NOP -0.0184 1.2124 40 0.9908
(-8.47)* (63.89)*

NBP -0.0155 1.1796 40 0.9924
(-7.92)* (70.27)*

NSP -0.0125 1.1456 40 0.9933
(-6.87)* (74.93)*

R2Dependent variable Constant Dummy 
Win

N

 
Notes: NOP, NBP and NSP are the OP, BP and SP, respectively, normalized to sum to 1 in each race. t-statistics are in parentheses.  

* indicates a significance level of 1% level or better. 
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Owing to the presence of a significant favorite-longshot bias in both NOP and NBP, 

we ran the following regressions (Table V) and used the predicted values of winning 

probabilities as our estimates in the simulations, except where the predictions were 

negative, in which case the values were set to 0.0001.13 The resultant estimates are free of 

any significant favorite-longshot bias.14 

 

Table V: Regressions of Win on OP and BP 

Dependent 
variable

Constant OP BP N R2

Win -0.0211 0.8751 45296 0.0981
(70.18)* (-10.48)*

Win -0.0178 0.9764 45296 0.1012
(71.42)* (-9.11)*

 
Notes: Win is the dummy variable indicating a winning horse in the race. t-statistics are in parentheses.  

* indicates a significance level of 1% level or better. 

 

 

The measures of insider trading for each specification are reported in Table VI. 

Depending upon the weights employed, the prices at which insiders are assumed to bet 

and whether or not biased or unbiased estimates of winning probabilities are used in the 

simulations, the measures range between 20 and 33 percent. 

 

Table VI: Measures of degree of insider trading for each specification 

Weight OP BP OP BP

P(0) - OP 32.68% 31.67% 32.51% 32.34%

PW 26.38% 28.54% 22.64% 30.97%

PW2 26.48% 27.56% 20.40% 22.73%

P(0) - BP 30.61% 20.90%

Biased Unbiased

 

                                                 
13 In no case was the predicted probability greater than 1. 
14 Results of tests for the bias are available upon request. 
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Notes: P(0) – OP is true winning probability at time 0. PW is the [max((MP-OP)/OP,0) + max((SP-MP)/MP,0)]. PW2 is [max(MP-

OP,0) + max(SP-MP,0)]. P(0) – BP, is the true winning probability at time of insider betting. The size of the sample is 3992 races for 

the BP specifications and 3999 races for the OP specifications.  

 

 

Now, we assumed above that there are no behavioral biases in the bookmakers' 

estimates of "true" winning probabilities. The question therefore arises: how has the fact 

of a favorite-longshot bias influenced our measure of the extent of insider trading? From 

Table 4, it may be concluded that the favorite-longshot bias seems to have yielded over-

stated estimates and this is dramatically the case when winning probabilities derived from 

BP are used in the estimation (30.61% as against 20.9%) and when the absolute levels 

(PW2) of plunges are used in both the OP (26.38% as against 22.64%) and the BP 

(27.56% versus 22.73%) estimates. Other than that, there seems little difference between 

the respective estimates, none reaching a difference of 4%. Given that the differences in 

estimates are not consistent is size or direction, it is difficult to explain why the bias 

impacts as it does. 

When comparing the OP measures and BP measures, it is clear that the BP measures 

are equal or slightly higher than the OP measures when plunge weights are used. One 

possible reason is that we allow the insider to bet at the most favorable moment, either at 

OP or MP. The values of the options will be higher as the strike price is lowest on BP, as 

compared to OP. The considerably higher option values at BP may also explain the far 

greater number of plunges occurring at BP than at OP (Table 1). 

Another reason why the degree of insider trading at OP is lower in these estimates 

than at BP is the possibility of herding. The general betting public may see which horses 

are plunged, and thus backed by insiders, and may follow suit. If we allow the insider to 

bet at BP, this may have already included some outsiders following insiders. If the insider 

is assumed to bet only at OP, any herding by the public cannot be taken into account in 

the simulations and thus this degree of insider trading figures to be lower than when 

using BP15. 

On the other hand, when using prices as weights in the estimations, there is almost no 

difference between the estimates at OP and BP. But it should be recalled that these 

                                                 
15 See Schnytzer and Snir (2008b) for empirical evidence of herding in this market. 
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estimates are bookmaker's expectation of insider trading and thus there is no reason to 

expect a difference. From the bookmaker's point of view, all that matters is that his 

estimates be higher, rather than lower, than the realization as seen through the plunges, 

and this is certainly the case when probabilities derived from OP are used in the 

estimations. 

 

This relationship between the values generated options for the OP and BP 

simulations, using biased and unbiased estimates of true winning probabilities, is 

displayed in Table VII. The mean and maximum option values are consistently higher for 

estimates using unbiased rather than biased measures of true winning probabilities. Now, 

from equation (13), we have the option values calculates as   max ( ) ,0j jC E P T   . 

Since the respective prices remain the same as between the two sets of estimates, it is 

clear that the results are due, on average, higher estimates of true winning probabilities. 

But why this should be so - for example, whether the favorite-longshot bias under-prices 

favorites relatively more than it over-prices longshots and why this might be so – is 

unclear. 

 

Table VII: Values of the generated options 

Option values OP BP OP BP

Mean 0.00197 0.00293 0.00230 0.00307

Standard deviation 0.00530 0.00732 0.00680 0.00828

Maximum 0.15435 0.12714 0.18402 0.14439

Biased Unbiased

 

 

Table VIII displays the distribution of the four specifications. The specifications with 

unbiased estimates of true winning probabilities have a larger tail to the right compared to 

the specifications with biased estimates. As Table VII indicates, the reason is that the 

option values generated for the unbiased set of true winning probabilities are on average 

higher and also have a higher standard deviation. This leads to the larger tail for the 

unbiased specifications as compared with the biased specifications.   
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On the basis of the forgoing discussion, it seems reasonable to conclude that the 

extent of insider trading in the Australian bookmakers' horse betting market is at least 20 

percent of all bets in this market. This is considerably higher than the level of 2 percent or 

so obtained by Shin (1993), a result doubtless owing to the significant differences in our 

basic assumptions. 
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Table VIII: Distribution of insider trading for four specifications 

Specification 1: Unbiased - OP Specification 2: Biased - OP 
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6. Conclusions 

 In this paper, we have presented a theoretical model that examines the optimal price 

setting by bookmakers in the racetrack betting market and then used the model to 

measure the extent of insider trading in the Australian bookmakers' racetrack betting 

market. Bookmakers are faced with the risk that insiders will account for information 

arriving after the opening odds have been set and will thus exploit any mis-pricing by the 

bookmaker by betting on horses whose price presents an expected profit for the bettor. 

The basic intuition underlying the model is that the odds offered by bookmakers at the 

track may be viewed as call options and that, while bookmakers hope to offer only net of 

premium out-of-the-money options, when they err by underestimating a particular horse's 

true winning probability, they are liable to offer a net in-the-money option, which the 

insider (who is assumed to know her horse's true winning probability) will buy. Using 

Monte Carlo simulations to estimate horses' winning probabilities, we have derived the 

values of the call options offered for each horse using both opening and best prices and 

obtained measures of the extent of insider trading in this market in the 20 to 33 percent 

range.  

 By using different sets of winning probability estimates in accordance with whether 

or not the estimates contain a favorite-longshot bias, we have shown that the biased 

estimates gives rise to upward biases in the estimates of the extent of insider trading. 

Finally, since herding does not affect our measure when estimated at opening prices, we 

are confident that 20 percent represents a clear lower bound on the extent of insider 

trading in the Australian racetrack betting market. 
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