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Cointegration in Frequency Domain*

Abstract

Existence of a cointegration relationship between two time series in the time domain
imposes restrictions on the series zero-frequency behaviour in terms of their squared
coherence, phase, and gain, in the frequency domain. | derive these restrictions by
studying cross-spectral properties of a cointegrated bivariate system. Specifically, |
demonstrate that if two difference stationary series, X,and Y,, are cointegrated with a
cointegrating vector [1 b] and thus share a common stochastic trend, then at the zero

frequency, the squared coherence of (1- L)X, and (1- L)Y, will equal one, their phase

will equal zero, and their gain will equal |b|.



1. Introduction

Since the introduction of cointegration and common trend analysisin
econometrics and statistics by Engle and Granger (1987) and Stock and Watson
(1988), integration and cointegration tests have by now become an essential part of
the applied econometricians’ and macroeconomists' standard tool kit. These tests are
routinely applied to economic time series because the notion of cointegration has a
natural economic interpretation: existence of a cointegration relationship between two
variables indicates that the series “move together” in the long run, and so they share a
common stochastic trend, although in the short run the series may diverge from each
other. Since many economic theories make these kinds of 1ong-run and short-run
differential predictions about economic time series co-movements, many economic
models (and particularly macroeconomic models) lend themselves naturally to
cointegration testing (Engle and Grange, 1987).

The cointegtation property is along-run property, and therefore in frequency
domain it refers to the zero-frequency relationship of the time series. Therefore, there
is afrequency-domain equivalent of the time-domain cointegration property.
Specificaly, existence of a cointegration relationship between two time seriesin the
time domain imposes restrictions on the series zero-frequency behavior in terms of
their cross spectral measures in the frequency domain. The purpose of this paper isto
use a bivariate setting to derive these frequency-domain restrictions in terms of the
time series’ squared coherence, phase and gain, which are the measures practitioners
typically consider when studying cross spectral properties of time series.

Squared coherence is analogous to the square of the correlation coefficient and
measures the degree to which one series can be represented as alinear function of the

other. Phase measures the phase difference or the timing (i.e., lead or lag) between the



frequency components of the two series. Gain indicates how much the spectrum of
one series has been amplified to approximate the corresponding frequency component
of the other. It is essentially the regression coefficient of one series on another at
frequency w. Thus, the squared coherence, phase and gain are frequency-domain
equivalents of the correlation coefficient, time-delay (lag), and regression coefficient,
respectively, and, therefore, they have a natural interpretation in terms of the standard
time domain regression analysis.

The paper proceeds as follows: | derive cross spectral properties of a cointegrated
bivariate system by beginning with two non-stationary time series that are
cointegrated with a cointegration vector [1 b] , and using standard Fourier Transform
methods and matrix algebra, | derive frequency domain properties of the series' co-
movement in terms of their squared coherence, phase and gain. Specificaly, | show

that the squared coherence between such series, after differencing, will equal one,

their phase will equal zero, while their gain will equal |b|. The paper ends with a brief

conclusion in Section 3.

2. Cross-Spectral Properties of a Cointegrated Bivariate System

Let thetime seriesof X, and Y, be difference stationary. Thus, let X, ~ (1) and

Y, ~ (1), so that they can be written as
Xt = Xt—l + ut
and

Yo =Y v,



respectively, where u, ~1(0), and v, ~ 1(0) . Moreover, let us assume that X, and

Y, are cointegrated with the cointegrtaion vector [1 b] , SO that they satisfy
Yo =bX

where 11 ~1(0). Then, X, and Y, processes share a common stochastic trend and,
therefore, can be written in amatrix notation

X,
Y,

t

_O,+x O

%Tt +Y, E @

where T, is the common stochastic trend with the property
A-L)T =2,z ~iid(0,af) isawhite noise process, x,~ 1(0), and y, ~ 1(0).
Applying difference operator A = (1- L)to (1) yields a bivariate stationary

process

f-LX0_z+@-Lx O @
f-LY, g iz +@-L)y.0
with the special matrix
f(w) - E:AX faxay B ©)
Tavax fav O

The diagonal elements of the f (w) matrix are the spectral density functions of

(1- L)X, and (1- L)Y, defined by:
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1 —iTw
fo = E IyAX (T)e dr (4a)
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1 —iTw
fay :_n_J’yAY (T)e dr (4b)

where y,, (r)and y,, (r) are the autocovariance functions of (1- L)X, and (1-L)Y,,

defined by
Y ax (T) = E[(Axm ~ Hax )(Axt ~ Hax )] (5a)
Yy (T) = E[(AYt+r ~ Hay )(AYt ~ Hay )] , (5b)

respectively, where 1, and 1, denotethe meansof (1- L)X, and (1-L)Y,,
respectively. The off-diagonal elements of the f (w) matrix are the cross-spectral

density functionsof (1- L)X, and (1- L)Y,, defined by

1 P —i T
fAXAY = 2_7_[ :[;VAXAY (T)e dr (63)
S Vaux (7)™ dT (6b)
AYAX ZIT_J; AYAX

where y,., (t)and y,.., (r)are the crosscovariance functions of (1- L)X, and

(1-L)Y,,and (L-L)Y, and (1- L)X, , defined by
Y axay (T) = E[(Axm ~ Hax )(AYt ~ Hay )] (72)

Vv (1) = E[(AYocr = Hay JOX, = i )+ (7b)

respectively.



To compute the el ements of the f () matrix, first compute the autocovariance-

crosscovariance matrix of (2), which is given by:

y(r) _ ¥ ax (1) YV axay (1) O

e (O Var @ H
[z, +

=E +Ax, bz, + Ay,
i Aytﬁzt X, bz, + 2y,

Eﬂzm + A%, )z +BX) (7., + DX, )(bz, +Ay,) D
" B bz, +y,) (2 + ) (b2, + By, )0z, + 2y F
[j/z (T) + yl(T) + yzl(T) + ylz (T) byz (T) + bylz (T) + y22 (T) + y12 (T) D

8
%ﬂvz (1) +y,, (1) +by (1) +y, (1) b?y, (1) +y,T) +by,,(T) +by,, (T)D 5 ©

where subscripts 1 and 2 denote Ax and Ay, respectively, for notational simplicity,
the diagonal elements of the last matrix in (8) are the autocovariance functions,

Va (T) and y,, (r), and the off-diagonal elements are the crosscovariance functions
Vasay (T) @nd . (T), respectively, as defined in (5a)-5(b) and 7(a)-7(b).

Applying the Fourier Transform to both sides of equation (8), multiplying
through by Zi , and using the spectrum and cross-spectrum definitions provided by
T

(4a)-4(b) and 6(a)-6(b), we get the special matrix

Of, (w) + f, (W) + () + f, (W) bf , (w) +bfy, () + f,,(w) + f1, (w)O
f(w) = %)fz(w) + f,, (W) +bf 4 (@) + f, (@) b*f,(w) + f,(w) +bf , (w) +bf,, (w) E ©)
H H

which can be rewritten as

1.0 D) O, O+ @)+ @) @)+ @)+ @) O,
"t (@) b2 1,(@) 3 (@) + D60 (0) + b (@) T, (@) + B, (@) + by (@)



The cross spectrum in (10) can be written in Cartesian form because the spectral

matrix f(a))is in general acomplex valued function. Thus, for example, we can write

fim (@) = € (@) =1 Oy (@), (11)

where ¢, (w) denotes the cospectral density function of m and n, and q,,, (w) denotes

the quadrature spectral density function of m and n. Therefore, using Priestley’ s (1981,

p. 668, Equation 9.1.53) result that f,,, (w)= f,,(w), (10) can be rewritten as

F, (@) bf, (@)
Bt () b2 1, ()

@)+ Fu(@)+ fu(w)  bfy,(w)+ f,,(w) + fy(w) 5(12)

f =
@ (@) +E (@) + T(@) T, (@) +bf (@) +bT o (@) B

|
I p -

where bar denotes a complex conjugate. Combining (12) with Cartesian representation

of f,(w)andf,,(w),

f, (w) =Ca (w) =i 0, (w) (133)
and
fo(w)=c,(@)-i 9, @) (L3b)
yields
()= f, (@) bf,(@) 00 f(w+2c,(w bf,, (@) + f,, (@) + T (w)% ”

T 010 B L@@ @ f, @+ 2, 3

Now, consider the value of the spectral matrix f (a))at frequency w =0, which

using (3) and (14) can be written as



Recall that z isawhite noise process, and therefore, its theoretical spectrumisflat and

equals f,(w)=0o?/2mfor al frequencies — < w< 77. In addition, Axand Ay are
| (1), and therefore their zero-frequency spectral density, cross spectral density and

cospectral density functions equal zero. Thus, every element of the second matrix of
the right hand side of (15) vanishes, and therefore the spectral matrix, evaluated at

frequency w =0, becomes

f(O) - DfAX (O) fAXAY (O)B
ElfAYAx (O) fAY O) U
Ug2  pg?z U
2Z 2 : S
02 s
- . (16)
B bo? b’c? S
Hor om B

To see theimplications of this result for the behavior of the theoretical squared

coherence, phase and gain, recall from polar representation of f (w) that

KAZXAY (C{)) = | fAXAY (C{)] ’ [ fAX (w) fAY (w)] N (17)
vl 1M (0]
R =T =

and



[ axay (w) = | faxav (w][ fax (w)] N ' 19

where Im[ ., (w)] and Re[ f .., ()] denote theimaginary and real parts of
[f s (@], and K2, (@), @y (@), @nd T sy () denote the squared coherence,
phase, and the gain of (1- L)X, and (1- L)Y,, respectively (Jenkins and Watts, 1968).
Then, using the matrix (16) along with the definitions of squared coherence, phase,
and gain provided in (17), (18) and (19), we get that at the zero frequency the
following equalities hold.

For the squared coherence of (1- L)X, and (- L)Y,, (16) and (17) imply that at

frequency w =0,

K i (0)

_|po?z b2z 0" _
_| 21 |EZ7T 2 E -1 (20)

To determine the phase of (1- L)X, and (1- L)Y,, note that from the Cartesian

representation of f,,, (w) , we can write
fAXAY ((A)) = CAXAY ((A)) - I qAXAYw (21)
However, from (16) we know that at zero frequency

bo?
fAXAY (O) = 27_; :

(22)

Rewrite (21) for w =0,

fAXAY (O) = Caxay (O) i Uaxay (O) (23)
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and compare the resulting equation (23) to equation (22). The equality of the two
eguations requires that their right hand sides be equal. However, we know that for a
complex number to equal areal number, it is necessary that the imaginary part of the
complex number be zero. In other words, it is necessary that the imaginary part of the
complex number be zero. In other words, for equality of (22) and (23), it is necessary

that at the frequency w = 0, the cospectrum of (L— L)X, and (1- L)Y, satisfy

CAXAY (O) = Re[ fAXAY (O)]
_bo;
Com

(24)

and the quadrature spectrum of (1- L)X, and (1- L)Y, satisfy

Uaxay (0) =1 m[ faxay (0)]
=0. (25)

Substituting (24) and (25) into the definitions of phase (18) for the frequency

w = 0, we find that

_ 0 1m[ e (0]
Poca (0) = arctan- o e 0

= arctan(0)

=[] (26)

Finally, to determinethe gain of (1- L)X, and (1-L)Y,, we need to combine (16)

and (19) and evaluate the result for the frequency w =0. Thisyields
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w20
[ v (O): %E

=|b), (27)

bo?
2

where b isthe coefficient that measures the extent of the long run relationship between

X, and Y,. That is, bisthe coefficient in the cointegration relationship,
Y, =bX, + 1, , where u, ~1(0).
Equations (20), (26) and (27) establish the main results of this paper: if two

difference stationary series, X, and Y, , are cointegrated with the cointegtrating vector
[1 b], then the zero frequency squared coherence, phase, and gain of (1- L)X, and
(1- L)Y, will equal one, zero, and |0, respectively. Thisis a generalization of Levy

(2000), which only focuses on the behaviour of squared coherence and gain, and only

for thecase b = -1.

3. Conclusion

The contigration property is along-run property, and therefore in the frequency
domain, it refers to the zero-frequency relationship of the time series. Therefore there
is afrequency-domain equivalent of the time-domain cointegration property: existence
of a cointegration relationship between two time series in the time domain, imposes
restrictions on the series zero-frequency behavior in terms of their squared coherence,
phase, and gain in the frequency domain. In this paper, | derive these frequency-
domain restrictionsin a bivariate setting. Specificaly, | demonstrate that if two

difference stationary series, X, and Y, , are cointegrated with the cointegrating vector
[1 b], then the zero frequency squared coherence, phase, and gain of (1- L)X, and

(L- L)Y, will equal one, zero, and |0, respectively.
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It iswell known that the standard time series cointegration tests have alow
power. The results derived in this paper suggest that it may be useful to test for
cointegration in the frequency domain. Future work should examine limiting null
distributions and finite sample properties of such tests, in order to assess their

practical usefulness.
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