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Abstract. Equilibrium flow in a physical network with a large number of users (e.g., 

transportation, communication, and computer networks) may not be unique if the 

costs of the network elements are not the same for all uses. Such differences among 

users may arise if they are not equally affected by congestion or have different 

intrinsic preferences. Whether or not, for all assignments of cost functions, each user’s 

equilibrium cost is the same in all Nash equilibria can be determined from the 

network topology. Specifically, this paper shows that in a two-terminal network, the 

equilibrium costs are always unique if and only if the network is one of several simple 

networks or consists of several such networks connected in series. The 

complementary class of all two-terminal networks with multiple equilibrium costs for 

some assignment of (user-specific) cost functions is similarly characterized by an 

embedded network of a particular simple type. 
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1  INTRODUCTION 

Different kinds of networks, such as transportation, communication, and computer 

networks, exhibit congestion effects whereby increased demand for certain network 

elements (e.g., roads, telecommunication lines, servers) tends to downgrade their 

performance or increase the cost of using them. In such networks, the users’ decisions 

(e.g., their choice of routes) are interdependent in that their optimal choices (e.g., the 

fastest routes) depend on what the others are doing. If everyone chooses optimally, 

given the others’ choices, then the users’ choices constitute a Nash equilibrium. Even 

if the users are identical in all respects, due to the congestion externalities, their 

choices at equilibrium may differ. However, if the number of users is very large and 

each of them has a negligibly small effect on the others, they have equal equilibrium 

payoffs or costs. Moreover, the payoffs or costs in different equilibria are the same. 

With a heterogeneous population of users, this need not be so. As the following 

example shows, when users are not identical, and are differently affected by 

congestion, equilibrium costs may vary not only across users but also from one Nash 

equilibrium to another.   

Example 1. A continuum of three classes of users travels on the two-terminal network 

shown in Figure 1(a). Each user has to choose one of the four routes connecting the 

users’ common point of origin o and the common destination d. The cost of each route 

is the sum of the costs of its edges. For each user class, the cost of edge ej is given by 

an increasing affine function of the fraction x of the total population with a route that 

includes ej. The fraction of the population in each class and the corresponding cost 

functions are given in the following table, where blank cells indicate prohibitively 

high costs: 

Cost functions  Fraction of  

Population e1 e2 e3 e4 e5 

Class I 4/13 3.1 + x 8x   x 

Class II 5/13  x 0.5 + x  x 

Class III 4/13   8x 2.1 + x x 
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Clearly, users in each class only effectively have a choice of two routes from o to d: 

e1 and e2 e5 for class I users, e2 e5 and e3 for class II, and e3 and e4 e5 for class III. (The 

costs of the other two routes are prohibitively high.) If all the users choose the first-

mentioned route for their class, their choices constitute a strict Nash equilibrium in 

that each user’s cost is strictly less than it would be on the alternative route. The same 

is true if everyone chooses the second-mentioned route. However, the costs in the first 

equilibrium (≅ 3.41, 0.77, and 2.46 for class I, II, and III users, respectively) are 

different from those in the second equilibrium (≅ 3.08, 0.88, and 3.02, respectively), 

and similarly for the average costs (≅ 2.10 in the first equilibrium and 2.22 in the 

second).  
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Figure 1. Two-terminal networks allowing for multiple equilibrium costs.  
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   In Example 1, neither of the two Nash equilibria Pareto dominates the other: for 

class I users, the first equilibrium cost is higher, and for class II and III, the second is 

higher. In fact, for the network in Figure 1(a), this would be so for any assignment of 

cost functions. The reason is that the routes in this network, as well as in the almost 

identical one 1(b), are independent in the sense that each of them has an edge that is 

not in any other route. As shown in [8, Theorem 3], this topological property implies 

that, for any assignment of cost functions, all the Nash equilibria are Pareto efficient. 

In the other two networks in Figure 1, routes are not independent. In these networks, 

some Nash equilibria may be strictly Pareto dominated by others. 

Example 2. A continuum of three classes of users travels from o to d on the network 

in Figure 1(c). The fraction of the population in each user class and the corresponding 

cost functions are given in the following table, where blank cells indicate 

prohibitively high costs: 

Cost functions  Fraction of  

Population e1 e2 e3 e4 e5 

Class I 3/7  6/7 + 3x 3x  6x 

Class II 2/7  8x  x 6x 

Class III 2/7 x  8x  6x 

Each user can only effectively choose between e5 and a single alternative route, which 

is e2 e3 for class I users, e2 e4 for class II, and e1 e3 for class III. There is one Nash 

equilibrium in which class I users take e5 and class II and III take the respective 

alternative routes. In this equilibrium (which can be shown to be Pareto efficient), 

everyone’s cost is the same, 18/7. There is another Nash equilibrium in which class I 

users take their alternative route e2 e3 and class II and III take e5. Again, the 

equilibrium cost is the same for all users, but this time it is higher, and equals 24/7. 

Any convex combination of these two equilibria (in terms of the proportion of users in 

each class taking each route) is also a Nash equilibrium, with costs given by the 

corresponding convex combination of the above costs. Thus, there is a continuum of 

Nash equilibria, which can be Pareto ranked since, in each equilibrium, the costs for 

all users are the same. 
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   The main result of this paper is that, if the costs to users are allowed to differ, 

whether or not there exit some cost functions with multiple equilibrium costs for some 

users depends on the network topology. For example, it is shown in [7] that in a 

network with parallel routes (like the one in Figure 2(a)), the equilibrium costs are 

unique for any assignment of cost functions. It is shown below that, indeed, the same 

is true for all five networks in Figure 2, as well as the networks created by connecting 

two or more of them in series. Moreover, these are essentially the only two-terminal 

networks in which uniqueness of each user’s equilibrium cost is guaranteed. For any 

other two-terminal network, it is possible to find an example with multiple 

equilibrium costs, very similar to Examples 1 or 2 above. Indeed, any such network 

has one of those in Figure 1 embedded in it, in a sense made precise below. Therefore, 

in a sense, the four networks in Figure 1 represent the only kinds of networks for 

which multiple equilibrium costs are possible. Thus, this paper gives two equivalent 

topological characterizations of two-terminal networks that may or may not have a 

multiplicity of equilibrium costs. The first directly identifies all networks with unique 

equilibrium costs for any assignment of cost functions, and the second all the 

networks in which, for some assignment of cost functions, the equilibrium costs are 

not unique. Moreover, the results below show that, in the first kind of networks, not 

only are the equilibrium costs unique but also the fraction of each class of users 

traversing each edge at equilibrium is generically unique. This means that, unless 

certain special relations exist among the cost functions, this fraction is the same in all 

Nash equilibria.   

   In this paper, networks are always assumed to be undirected, in contrast to the more 

common practice in the literature of assuming that edges are directed, and can be 

traversed in one direction only. Here, such traveling restrictions, if they exist, are 

considered part of the cost functions, which may assign a very high cost to one of the 

two directions. The merits of this approach are demonstrated by the results in this 

paper (and [8]). These results show that the uniqueness of the equilibria (and their 

Pareto efficiency) are, indeed, linked to the topology of the underlying undirected 

network. 



6 

o 

d 

L 

• 

• 

  o 

u 

L 

• 

• 

• 

d 

  o 

v 

L 

• 

• 

• 
d 

 

    (a)            (b)            (c) 

o 

u 

L 

• 

• 

• 

d 

v 

• 

  o 

u 

M 

• • 

• 

d 

v 

• 

e1 e2 

e4 e3 

 

    (d)            (e) 

Figure 2. Two-terminal networks in which the equilibrium costs are always unique. 

In (a), one or more edges are connected in parallel. This network is embedded in each 

of the other four. 

2  GRAPH-THEORETIC PRELIMINARIES 

An undirected multigraph consists of a finite set of vertices together with a finite set 

of edges. Each edge e joins two distinct vertices, u and v, which are referred to as the 

end vertices of e. Thus, loops are not allowed, but more than one edge can join two 

vertices. An edge e and a vertex v are said to be incident with each other if v is an end 

vertex of e. The degree of a vertex is the number of edges incident with it. A path of 

length n is an alternating sequence v0 e1 v1 L vn−1 en vn of vertices and edges, 

beginning and ending with vertices, in which each edge is incident with the two 

vertices immediately preceding and following it, and all the vertices (and necessarily 

all the edges) are distinct. The first and last vertices v0 and vn are called the initial and 
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terminal vertices of the path, respectively. If these are clear from the context, the path 

may be written more simply as e1 e2 L en. An arc is a path of length one, consisting of 

a single edge and its two end vertices. It may be viewed as a specification of a 

particular direction to the edge. Obviously, each edge can be directed in two ways, 

which differ from each other in the identity of the end vertex chosen as the initial 

vertex and that chosen as the terminal vertex. One, and only one, of these two arcs is 

part of any path that includes the edge. In this sense, any such path specifies a 

particular direction for the edge. The set of all arcs in a network is denoted by A. 

   A two-terminal network (network, for short) is an undirected multigraph together 

with a distinguished ordered pair of distinct vertices, o (for “origin”) and d (for 

“destination”), such that each vertex and each edge belong to at least one path with 

the initial vertex o and terminal vertex d. Any such path will be called a route. The set 

of all routes in a network is denoted by R.  

   Two networks G' and G" may be identified if they are isomorphic in the sense that 

there is a one-to-one correspondence between the vertices of G' and G" and between 

their edges such that (i) the incidence relation is preserved and (ii) the origin and 

destination in G' are paired with the origin and destination in G", respectively. A 

network G' will be said to be embedded in the wide sense in a network G" if the latter 

can be obtained from the former by a sequence of operations of the following three 

types (see Figure 3):  

1. The subdivision of an edge; i.e., its replacement by two edges with a single 

common end vertex.  

2. The addition of a new edge joining two existing vertices. 

3. The subdivision of a terminal vertex, o or d; i.e., the addition of a new edge 

joining that vertex to a new vertex v, such that at least one (and possibly all1) of 

the edges originally incident with the terminal vertex are incident with v instead. 

                                                 

   1 The special case in which v replaces the terminal vertex (o or d) as the end vertex of all the edges 

originally incident with the latter is called “terminal extension” in [8]. The qualifier “in the wide sense” 

used in this paper is meant to distinguish the present notion of embedding from that in [8], which does 

not allow general terminal subdivisions but only terminal extensions. 
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   Two networks that can be obtained from the same network by a sequence of 

subdivisions of edges are said to be homeomorphic. For present purposes, such 

networks, which can be obtained from each other by the insertion and removal of non-

terminal degree-two vertices, are close to being identical.  
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Figure 3. The upper network is embedded in the wide sense in each of the lower 

three, which are obtained from it by carrying out the following operations: 

(1) subdividing an existing edge, (2) adding a new edge, and, finally, (3) subdividing 

the origin. 

   Two networks G' and G" with the same origin–destination pair, but no other 

common vertices or edges, may be connected in parallel. The set of vertices in the 

resulting network G is the union of the sets of vertices in G' and G", and similarly for 

the set of edges. The origin and destination in G are the same as in G' and G". Two 

networks G' and G" with a single common vertex (and, hence, without common 

edges), which is the destination in G' and the origin in G", may be connected in series. 

The set of vertices in the resulting network G is the union of the sets of vertices in G' 
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and G", and similarly for the set of edges. The origin in G coincides with the origin in 

G' and the destination is the destination in G". The connection of an arbitrary number 

of networks in series or in parallel is defined recursively. Each of the connected 

networks is embedded in the wide sense in the network resulting from their 

connection. 

   The following graph-theoretic result plays an important role in this paper. The 

proofs of this and of the other results in the paper are given in the Appendix. 

Proposition 1. For every network G, one, and only one, of the following conditions 

holds:  

(i) G is homeomorphic to one of the networks in Figure 2 or it consists of two or 

more such networks connected in series. 

(ii) One (or more) of the networks in Figure 1 is embedded in the wide sense in G. 

3  THE MODEL 

The population of users is an infinite set I, endowed with a nonatomic probability 

measure µ. The measure µ assigns values between zero and one to a σ-algebra of 

subsets of I, the measurable sets. These values are interpreted as the set sizes relative 

to the total population. A strategy profile is a mapping σ : I → R (from users to 

routes) such that, for each route r, the set of all users i with σ(i) = r is measurable. For 

each arc a, the measure of the set of all users i such that a is part of σ(i) is called the 

flow through a in σ and is denoted by fa. Note that each edge e is associated with a 

pair of arc flows, one giving the flow though e in one direction, and the other in the 

opposite direction. However, if all the routes in the network pass though e in the same 

direction, then one of these flows would always be zero, and in this case, there is no 

ambiguity in associating e with a single arc flow, which may be denoted by fe.  

   The cost of each arc a for each user i is given by a nonnegative and strictly 

increasing cost function c i
a : [0, 1] → [0, ∞). When the flow through arc a equals fa, 

the cost for user i of traversing a is c i
a(fa). Note that, for each user, each edge e is 

associated with a pair of cost functions, one for each direction. In each direction, the 

cost only depends on the flow through the edge in this direction. However, if all the 

routes in the network pass though e in the same direction (and, hence, the flow in the 
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opposite direction is always zero), then only one cost function has to be associated 

with e for each user i, which may be denoted by c i
e. The same would be true for all 

edges if passing through each edge were allowed in one direction only, as is the 

assumption in much of the literature (e.g., [4], [9], [10], [13], but not [3]). Clearly, this 

is equivalent to assigning a very high cost to the opposite direction. In this paper, for 

the sake of generality and simplicity of notation, the cost functions are not required to 

have the property that traversing each edge in a particular direction is very costly for 

all users.2 However, requiring this would not affect any of the results below. 

   The cost of each route r for each user i is defined as the sum of the costs for user i of 

the arcs forming part of r. The cost thus depends on the flow through each of r’s 

edges in the direction specified by this route. A strategy profile σ is a Nash 

equilibrium if each route is only used by those for whom it is a least cost route. 

Formally, the equilibrium condition is: 

 For each user i, ∑
a∈A

a is part of σ(i)

 c i
a(fa)  =  

 
min
r∈R

∑
a∈A

a is part of r

 c i
a(fa), (1) 

where, for each arc a, fa is the flow through a in σ. In an equilibrium σ, the minimum 

in (1) is user i’s equilibrium cost.  

4  EXISTENCE AND UNIQUENESS OF EQUILIBRIUM 

Under weak assumptions on the cost functions, at least one Nash equilibrium exists. 

Specifically, a sufficient condition for the existence of equilibrium is that, for every 

arc a, c i
a(x) is a continuous function of x for each user i and a measurable function of i 

for each 0 ≤ x ≤ 1.3 However, the main concern of this paper is with uniqueness. If all 

the users are identical, then the equilibrium itself is typically not unique. This is 

                                                 
   2 Other than that, the definition of cost function in this paper is standard. Note that this definition is 

considerably less general than in [8], where the costs are not required to be nonnegative and strictly 

increasing, are allowed to depend on the opposite flows as well as the flows through junctions, and are 

not assumed to be additively separable in the sense that the cost of each route is the sum of the costs of 

its arcs.  

   3 The proof of this assertion, which is very similar to that of [7, Theorem 3.1], is omitted. Its validity 

can also be deduced from more general results, [11, Theorems 1 and 2] or [12, Theorem 1]. 
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because, at equilibrium, any two groups of users of equal size taking different routes 

may interchange their choice of routes without affecting the equilibrium. However, 

the equilibrium flow through each arc in the network is the same in all Nash 

equilibria, and, therefore, each user’s equilibrium cost is unique ([1]). In fact, as the 

following proposition shows, this result extends to the case in which the users’ cost 

functions are only identical up to additive constants in the sense that, for each arc a 

and each pair of users i and i', the difference c i
a(x) − ci'

a(x) is a constant that does not 

depend on x. For a further extension of the uniqueness result, see [2]. 

Proposition 2. If the users’ cost functions are identical up to additive constants, then, 

for every two Nash equilibria, the flow through each arc in the network in the first 

equilibrium is equal to that in the second, and the same is true also for each user’s 

equilibrium cost.  

   The main question this paper is concerned with is whether, for a given network, 

uniqueness of the equilibrium arc flows and the equilibrium costs holds for arbitrary 

cost functions. A network will be said to have the uniqueness property if, for any 

assignment of cost functions, the flow through each arc is the same in all Nash 

equilibria. As the following proposition shows, this property can also be defined in 

terms of the equilibrium costs.4  

Proposition 3. For every network G, the following conditions are equivalent:  

(i) G has the uniqueness property. 

(ii) For any assignment of cost functions, each user’s equilibrium cost is the same 

in all Nash equilibria. 

(iii) For any assignment of cost functions, some user’s equilibrium costs are the 

same in all Nash equilibria. 

                                                 

   4 In the case of a homogeneous population of users (and, more generally, cost functions that are 

identical up to additive constants), the equilibrium costs are also unique if the cost functions are not 

strictly increasing but only nondecreasing. However, with a heterogeneous population of users, the 

assumption of strict monotonicity (which is part of the definition of cost function in Section 3) cannot 

be dispensed with. This is because, if only some users are not affected by congestion, changing these 

users’ choice of routes in an equilibrium may result in another equilibrium in which the costs to the 

other users are different from those in the first equilibrium.  
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   As mentioned in the Introduction, whether the uniqueness property holds for a 

network depends on the network topology. In [5] and [7], this property is shown to 

hold for any network consisting of one or more edges connected in parallel, as in 

Figure 2(a). Such a network will be called a parallel network. Clearly, connecting two 

or more networks with the uniqueness property in series results an a network that also 

has this property, since the users’ choice of routes in each constituent network does 

not restrict the choices or affect the costs in the other networks. This paper’s main 

result shows that the uniqueness property holds, in fact, for all the networks in 

Figure 2, and, moreover, these networks and those that are constructed by connecting 

several of them in series are essentially the only networks with this property. Any 

network homeomorphic to one of those in Figure 2 will be said to be nearly parallel. 

Note that a networks is nearly parallel if and only if it has a single route, two parallel 

routes, or can be constructed from a network with two parallel routes by adding one or 

more parallel paths, with the same initial and terminal vertices. 

Theorem 1. A network has the uniqueness property if and only if it is nearly parallel 

or it consists of two or more nearly parallel networks connected in series.  

   It follows immediately from Theorem 1 and Proposition 1 that the networks without 

the uniqueness property are precisely those in which one of the networks in Figure 1 

is embedded in the wide sense.  

Corollary 1. For every network G, there exists some assignment of cost functions with 

multiple equilibrium costs if and only if one of the networks in Figure 1 is embedded 

in the wide sense in G.  

   For the network in Figure 1(a), Example 1 in the Introduction specifies cost 

functions with two strict Nash equilibria such that each user’s equilibrium cost is not 

the same in both equilibria. These cost functions give rise to the same equilibrium 

costs in the second network in Figure 1, which differs from the first only in that the 

origin and destination are interchanged. For the network in Figure 1(c), Example 2 

specifies cost functions with two Nash equilibria, the first of which strictly Pareto 

dominates the second. In that example, both equilibria are not strict: any user taking e5 

would incur the same cost on his alternative route, and vice versa. However, it is easy 

to modify Example 2 in such a way that the two equilibria become strict. For example, 
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if the two cost functions of the form 8x are changed to 8.7 x, those of the form 6x to 

6.5 x, and the constant 6/7 to 1.1, each user’s route in the first equilibrium still has a 

lower cost than in the second, but, in both equilibria, the cost of the user’s equilibrium 

route is strictly less than those of the other routes. It follows that the modified cost 

functions can also be used for the network in Figure 1(d). That is, two strict Nash 

equilibria with costs arbitrarily close to those in the previous network can be obtained 

simply by assigning a sufficiently low cost (e.g., a cost function of x/50) to edge e6.   

   Another assignment of cost functions with a multiplicity (indeed, a continuum) of 

equilibrium costs for the network in Figure 1(d) is given in the next example. Note the 

very simple form of the cost functions in this example: linear, without constant terms. 

In Examples 1 and 2, differences among the users involve both the slopes of the cost 

curves, which reflect the degree by which different users are affected by congestion, 

and the intercepts, which represent their innate preferences. Proposition 2 shows that 

differences of the first kind are necessary for the existence of multiple equilibrium 

costs. The following example shows that differences of the second kind are not 

necessary.  

Example 3. A continuum of three classes of users travels from o to d on the network 

in Figure 1(d). The fraction of the population in each user class and the corresponding 

cost functions are given in the following table: 

Cost functions 
 

Fraction of  

Population e1 e2 e3 e4 e5 e6 

Class I 9/20 x 8x 8x 3x x x 

Class II 9/20 8x 3x x 8x x x 

Class III 1/10 8x x 8x x x 2x 

In this example, there is one Nash equilibrium in which 5/18 of class I users (1/8 of 

the total population) take the route e1 e6 e4, 5/18 of class II users take the route e2 e6 e3, 

and all the other users take e5. In this equilibrium, everyone’s cost is the same, 0.75. 

There is another Nash equilibrium in which 5/36 of class I users (1/16 of the total 

population) take the route e1 e6 e4, 5/36 of class II users take the route e2 e6 e3, the rest 
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of class I and II users take e5, and all class III users take the route e2 e6 e4. In this 

equilibrium, the cost for all users is 0.775.  

   From these examples, it is easy to construct an assignment of cost functions with 

multiple equilibrium costs for any given network that does not have the uniqueness 

property. Of course, other examples also exist. For example, in [5], such an example is 

given for a network in which the network in Figure 1(b) is embedded in the wide sense. 

5  EQUIVALENCE OF EQUILIBRIA 

The uniqueness result for a heterogeneous population of users (Theorem 1) can be 

taken one step further. If the network has the uniqueness property, then not only is the 

flow through each arc the same in all Nash equilibria but, generically, it is also made 

up of the same mixture of user types. While it is very easy, even for networks with the 

uniqueness property, to construct examples in which different types of users traverse a 

given arc in different equilibria, the generic uniqueness result entails that such 

examples depend on the existence of certain special relations among cost functions. If 

there is no a priori reason to assume that such relations exist, then a unique 

composition of user types would be expected for each arc.  

   The theorem below is an extension of a similar result for parallel networks ([7, 

Theorem 4.3]). It is based on a model very similar to that used in this special case. A 

partition of the population is a finite disjoint family of sets I1, I2, … , In, the user 

classes, such that µ(Im) > 0 for all m and Um Im = I.5 A user class is interpreted as a 

collection of users who are known to have the same type. For a given partition of the 

population and a given network G, denote by G the set of all assignments of 

continuous and strictly increasing cost functions c i
a : [0, 1] → [0, ∞) with the property 

that, for every pair of users i and i' in the same class Im, c i
a = ci'

a for all arcs a. Since 

this property clearly implies that the mapping i a c i
a(x) is measurable for any fixed 

0 ≤ x ≤1, it follows from the remarks at the beginning of Section 4 that every element 

of G has a nonempty set of Nash equilibria. Two Nash equilibria σ and τ will be said 

to be equivalent if the contribution of each user class Im to the flow through each arc a 

                                                 

   5 Extension to the case of an infinite family (and even a continuum) of user classes is possible. The 

formulation would closely follow that in [7]. 
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is the same in σ and τ, i.e., the measure of the set of all users i ∈ Im such that a is part 

of σ(i) is equal to the measure of the set of users i ∈ Im such that a is part of τ(i). This 

condition clearly implies that the flow through each arc is the same in both equilibria. 

The distance between two elements of G, one with cost functions c i
a and the other 

with ĉ i
a, is defined as max |c i

a(x) − ĉ i
a(x)|, where the maximum is taken over all users i, 

arcs a, and 0 ≤ x ≤ 1. This defines a metric for G.6 In a metric space, a property is 

considered to be generic if it holds in an open dense set ([6, Section 8.2]). The 

following theorem asserts that the property that all Nash equilibria are equivalent is 

generic if and only if the network satisfies condition (i) in Proposition 1. 

Theorem 2. For every network G, the following conditions are equivalent:  

(i) G is nearly parallel, or it consists of two or more nearly parallel networks 

connected in series. 

(ii) For every partition of the population, there is an open dense set in G such 

that, for any assignment of cost functions that belongs to this set, every two Nash 

equilibria are equivalent. 

An equivalent way of stating condition (ii) is that, for every partition of the 

population, the set of all assignments of cost functions in G with two (or more) non-

equivalent Nash equilibria is nowhere dense in G. 

   The following corollary of Theorems 1 and 2 adds to Proposition 3. 

Corollary 2. Condition (ii) in Theorem 2 is equivalent to the uniqueness property.  

6  REMARKS 

The results in this paper, which link network topology with the uniqueness of the 

equilibrium costs or the arc flows, are similar in spirit to the results in [8], which link 

network topology with Pareto efficiency of the equilibria. However, uniqueness and 

Pareto efficiency are each equivalent to a different topological property. Specifically, 

                                                 

   6 It is shown in [7] that the metric space G is topologically complete. In other words, the metric 

defined above is equivalent to some complete metric for G (i.e., the metric topologies are the same).  
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a two-terminal network has the property that, for any assignment of cost functions of 

the form considered here, all the equilibria are Pareto efficient if and only if the 

network has independent routes in the sense that any route has at least one edge that is 

not in any other route ([8, Theorem 3]). On the other hand, independence of the routes 

is neither a necessary nor sufficient condition for the network to have the uniqueness 

property, since it holds for the first two networks in Figure 1 but not the last two, and 

for the first four networks in Figure 2 but not the last one.  

   A weaker topological property than independent routes, which holds for all the 

networks in Figure 1, is a series-parallel network, i.e., one that can be built from 

single edges by sequentially connecting networks in series or in parallel. However, 

since the network in Figure 2(e) is not series-parallel, even this is not a necessary (or 

sufficient) condition for the network to have the uniqueness property. In [8, 

Theorem 1], a series-parallel network is shown to be a necessary and sufficient 

condition for Braess’s paradox never to occur, with a population of identical users. 

Braess’s paradox is said to occur when lowering the cost of one or more arcs increases 

everyone’s equilibrium cost. As remarked in [8], with non-identical users, Braess’s 

paradox can occur even in a series-parallel network (but never in a network with 

independent routes). For instance, replacing the constant 6/7 in Example 2 with any 

greater number would leave only the first equilibrium mentioned, in which each user’s 

equilibrium cost is 18/7. Replacing it with any positive constant less than 6/7 would 

leave only the second equilibrium, in which all the users have equilibrium costs 

higher than 18/7.   

   Another variant of Example 2 may serve to show that, even with a population of 

identical users, equilibrium costs may not be unique if there are certain routes that 

users are not allowed to take. (This is a special case of non-additively-separable costs; 

see [8].) It differs from the original Example 2 in that the costs of the routes e2 e3, 

e2 e4, e1 e3, and e5 for all users are the same as their costs for class I, class II, class III, 

and all users, respectively, in the original example, and continuing from e1 to e4 is not 

allowed (or is very costly). This variant of Example 2 has the same continuum of 

equilibria as the original example, and thus a continuum of equilibrium costs.  

   This paper and [8] both consider undirected networks, and view directionality, if it 

exists, as part of the cost functions. In a series-parallel network, edges have intrinsic 

directions, since all routes pass through each edge in the same direction (see  
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[8]). Of the networks in Figures 1 and 2, only that in 2(e) is not series-parallel, and in 

this network, uniqueness of the equilibrium cost does not depend on how the edges 

joining u and v are directed. Nevertheless, the results in this paper would not hold if 

edges were viewed as having predetermined directions. This is demonstrated by the 

two directed networks in Figure 4. The undirected version of the one in Figure 4(a) is 

homeomorphic to the network in Figure 2(e). Therefore, for any assignment of cost 

functions, the equilibrium flow through each arc is unique, and, in addition, for every 

partition of the population, there is an open dense set in G such that, for any 

assignment of cost functions in this set, all Nash equilibria are equivalent. The same 

clearly holds for the second directed network in Figure 4, in which the directed routes 

are essentially the same as in the first in terms of their arcs. However, this directed 

network cannot be constructed by connecting in series directed versions of nearly 

parallel networks. This shows that Theorems 1 and 2 do not hold for directed 

networks. The directed network in Figure 4(b) also cannot be obtained by the 

subdivision or addition of edges or by the subdivision of terminal vertices from any of 

the networks in Figure 1, if these are directed as series-parallel networks. This shows 

that Proposition 1 also does not hold for directed networks, which demonstrates the 

usefulness of the present approach of linking the uniqueness of the equilibrium costs 

with the topology of undirected networks. 
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v 

• 

• 
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  o 
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• 
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 (a)      (b) 

Figure 4. Directed two-terminal networks in which the equilibrium costs are always 

unique.  
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APPENDIX 

The Appendix presents the proofs of the various results in the paper, as well as five 

lemmas required in the proofs. The term “uniqueness property” is defined in the 

paragraph preceding Proposition 3. The definition of nearly parallel networks is in the 

paragraph preceding Theorem 1. 

Lemma 1. For every network G, at least one of the two conditions in Proposition 1 

holds. 

Proof. The proof proceeds by induction on the number of edges in G. If there is only 

one edge, condition (i) in Proposition 1 clearly holds. Suppose that G has more than 

one edge. The induction hypothesis will be that the assertion of the lemma holds for 

every network with a smaller number of edges than G. If G can be constructed by 

connecting two other networks in series, then, by the induction hypothesis, (i) both 

networks are nearly parallel or consist of several nearly parallel networks connected 

in series, or (ii) at least one of the two networks has one of those in Figure 1 

embedded in it in the wise sense. In the first case, condition (i) in Proposition 1 holds 

for G, and in the second case, condition (ii) holds. Suppose, next, that G has more 

than one edge, but it cannot be constructed by connecting two other networks in 

series. Then, by [8, Lemma 1], there are two routes in G that do not have any common 

edges or vertices other than o and d (i.e., parallel routes). The edges and vertices in 

these two routes constitute a sub-network of G (i.e., a network obtained by deleting 

some of G’s edges and non-terminal vertices), which is homeomorphic to a two-edge 

parallel network. Consider the collection of all nearly parallel sub-networks of G with 

two or more routes. In this collection, consider a maximal sub-network G', i.e., one 

which is not itself a sub-network of one of the other members of the collection. If G' = 

G, then G is nearly parallel, and the proof is complete. Suppose, then, that at least one 

edge e in G is not in G'. Let r be a route in G that includes e, u the last vertex before e 

in r that is also in G', and v the first vertex after e in r that is also in G'. By 

construction, none of the edges and vertices in r that follow u and precede v are in G'. 

Adding these edges and vertices to G' results in a sub-network of G that is 

homeomorphic to a network G" obtained by adding a single edge to G'. The assumed 

maximality of G' implies that G" is not nearly parallel. Therefore, to complete the 

proof of the lemma, it suffices to establish the following. 
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CLAIM. Let G" be a network resulting from adding a single edge to a nearly parallel 

network G' with two or more routes. Then, one of the networks in Figure 1 is 

embedded in G" in the wide sense or G" is nearly parallel. 

   The proof of the claim involves checking five cases, (a) through (e). In each case, G' 

is assumed to be homeomorphic to the corresponding network in Figure 2.  

CASE (a). If the edge added to G' has the end vertices o and d, then G" is nearly 

parallel (specifically, homeomorphic to a parallel network). If at least one end vertex 

is not o or d, then, depending on whether the network G' has (i) only two routes or (ii) 

three or more routes, the network G" is (i) homeomorphic to one of the networks in 

Figures 2(b)–2(e), or (ii) homeomorphic to a network obtained by adding one or more 

edges joining o and d to one of these four networks. In the first case, G" is nearly 

parallel, and in the second, one of the networks in Figures 1(a) and 1(b) is embedded 

in it in the wide sense.  

CASE (b). In this case, there is a unique non-terminal vertex u in G' of degree three or 

more, and a unique route r not containing u. If the end vertices of the edge added to G' 

are both in r (possibly coinciding with its initial or terminal vertices o or d), then the 

network in Figure 1(b) is embedded in the wide sense in G". If only one of the two 

end vertices is in r, and this vertex is not d, then the other end vertex is in some route 

containing u. Depending on whether that vertex follows, coincides with, or precedes 

u, the network in Figure 1(b), 1(c), or 1(d), respectively, is embedded in the wide 

sense in G". Exactly the same three possibilities exist if both end vertices of the added 

edge are in routes containing u, and at least one of them precedes u. If one end vertex 

coincides with u and the other one follows it, then, depending on where the latter 

vertex lies, G" is nearly parallel or has the network in Figure 1(a) embedded in the 

wide sense in it. Finally, if both end vertices follow u, then the network in Figure 1(b) 

is embedded in the wide sense in G".  

CASE (c). This case is very similar to the previous one, since the network in 

Figure 2(c) is obtained from that in 2(b) by interchanging o and d.  

CASE (d). In this case, there are two non-terminal vertices in G' of degree three or 

more, u and v, and a unique route r not containing u or v. The analysis of the present 

case is identical verbatim to that of Case (b) except for the final sentence, which has 

to be modified as follows. If both end vertices of the edge added to G' follow u, then, 
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depending on whether at least one of them precedes v, one of them coincides with v 

and the other one follows it, or both of them follow v, the network in Figure 1(b), 1(c), 

or 1(d), respectively, is embedded in the wide sense in G".  

CASE (e). The network in Figure 2(e) can be obtained from that in 2(b) by 

subdividing d, and from that in 2(c) by subdividing o. Therefore, it is not difficult to 

see that a network homeomorphic to G" can be obtained from one homeomorphic to 

either 2(b) or 2(c) by the addition of an edge followed by the subdivision of a terminal 

vertex. Clearly, if the network obtained in the interim stage, after the edge addition 

and before the terminal subdivision, is also homeomorphic to one of the networks in 

Figures 2(b) and 2(c), then G" is homeomorphic to the one in Figure 2(e). If the 

network obtained in the interim stage is not homeomorphic to one of these two, then it 

follows from the analysis of Cases (b) and (c) that one of the networks in Figure 1 is 

embedded in the wide sense in it, and in this case, the same is true for G". n 

Lemma 2. The uniqueness property holds for a network G if and only if it holds for 

every network homeomorphic to G, and in this case, it holds for any network obtained 

from G by removal of a single edge. If G can be constructed by connecting two other 

networks G' and G" in series, then the uniqueness property holds for G if and only if it 

holds for both G' and G". 

Proof. To prove the first part of the lemma, it clearly suffices to consider a network G' 

obtained from G by either removal or subdivision of a single edge e. In the former 

case, G' clearly has the uniqueness property if G has it, since removing an edge is 

equivalent to forcing its costs to be prohibitively high. In the latter case, only the sum 

of the costs of the two parts of e matters, since any route in G' containing one of them 

also contains the other. Therefore, given a cost function for e in a particular direction, 

subdividing this edge and assigning half the original cost function to each of its two 

parts has no effect on the routes’ costs. It is, therefore, clear that the uniqueness 

property holds for G' if and only if it holds for G.  

   If G results from connecting two networks G' and G" in series, then there is an 

obvious one-to-one correspondence between the set of all routes in G and the set of all 

pairs consisting of a route in G' and a route in G". Hence, there is a one-to-one 

correspondence between the set of all strategy profiles σ in G and the set of all pairs 

consisting of a strategy profile σ' in G' and a strategy profile σ" in G". There is also a 
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one-to-one correspondence, defined by restriction, between the set of all assignments 

of cost functions for G and the set of all pairs consisting of an assignment of cost 

functions for G' and an assignment of cost functions for G". It is not difficult to see 

that a strategy profile σ in G is a Nash equilibrium with respect to the first assignment 

if and only if the corresponding strategy profiles σ' and σ" are both Nash equilibria 

with respect to the corresponding assignments of cost functions for G' and G". If G 

does not have the uniqueness property, then there is an assignment of cost functions 

for G with two Nash equilibria σ and τ such that the flow through some arc a in σ is 

different from that in τ. If a is in G', say, then these arc flows are the same as in σ' and 

τ', respectively, and therefore G' does not have the uniqueness property. Conversely, 

if G' does not have the uniqueness property, then any assignment of cost functions for 

G' with two Nash equilibria that have different arc flows, and any assignment of cost 

functions for G" with at least one Nash equilibrium, together define an assignment of 

cost functions for G for which the equilibrium arc flows are not unique. n 

Lemma 3. The uniqueness property holds for all the networks in Figure 2. 

Proof. To prove that the network in Figure 2(a) has the uniqueness property, it 

suffices to show that those in 2(b) and 2(c) have this property. This is because, if the 

first network has more than one edge, connecting it in series with a network with a 

single edge creates a network that can also be obtained from that in Figure 2(b) or that 

in 2(c) by the removal of the edge joining o and d. Therefore, it follows from 

Lemma 2 that if the last two networks have the uniqueness property, so does the 

network in Figure 2(a). To prove that these two networks do, indeed, have the 

uniqueness property, it suffices to show that the one in 2(e) has it. This is because a 

network with a single edge connected in series with the network in Figure 2(b) or in 

2(c) can be obtained by the removal of one of the edges incident with the origin or the 

destination, respectively, in 2(e). Finally, the network in Figure 2(d) has the 

uniqueness property if and only if the one in 2(c) has it. This is because, in the former 

network, the edge preceding u and the edge following v together affect route costs in 

the same way as the single edge following v does in the latter. In conclusion, it 

suffices to prove that the uniqueness property holds for the network in Figure 2(e).  

   Let σ and σ̂ be two Nash equilibria with respect to the same assignment of cost 

functions for the network in Figure 2(e). For each arc a, let fa be the flow through a 
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in σ, f ̂ a the flow in σ̂, and ∆fa = fa − f ̂ a. Clearly, ∆fe1 + ∆fe2 = ∆fe3 + ∆fe4 = 0. It has to 

be shown that ∆fa = 0 for all arcs a. 

CLAIM 1. If ∆fe1 ≥ 0 ≥ ∆fe3, then ∆fa = 0 for all arcs a.  

Suppose that the assumption of the claim holds, or equivalently ∆fe2 ≤ 0 ≤ ∆fe4. Let A1 

be the set of all arcs with the initial vertex u and terminal vertex v, and A2 the set of 

all arcs with the initial vertex v and terminal vertex u. Let R1
+
 be the set of all routes in 

G containing some arc a ∈ A1 with ∆fa > 0, and R2
−
 the set of all routes containing 

some arc a ∈ A2 with ∆fa < 0. For each user i, the cost of the equilibrium route σ(i) is 

less than or equal to the cost of any other route. Therefore, if some arc a ∈ A1 is part 

of σ(i), then c i
e1(fe1) + c i

a(fa) ≤ c i
e2(fe2), c

i
a(fa) + c i

e4(fe4) ≤ c i
e3(fe3), and c i

a(fa) ≤ c i
a'(fa') for all 

a' ∈ A1. If, moreover, σ(i) ∈ R1
+
 (i.e., ∆fa > 0), then it follows from the assumption 

∆fe1, ∆fe4 ≥ 0 ≥ ∆fe2, ∆fe3 that c i
e1( f ̂ e1) + c i

a( f ̂ a) < c i
e2( f ̂ e2), c

i
a( f ̂ a) + c i

e4( f ̂ e4) < c i
e3( f ̂ e3), and 

c i
a( f ̂ a) < c i

a'( f ̂ a') for all a' ∈ A1 with ∆fa' ≤ 0. In this case, the route σ̂(i) cannot include 

the edge e2, the edge e3, or any arc a' ∈ A1 with ∆fa' ≤ 0 (since less costly alternatives 

exist, and σ̂ is an equilibrium). This proves that, for all users i with σ(i) ∈ R1
+
, also  

σ̂(i) ∈ R1
+
. Therefore, if R1

+
 is not empty, there must be some a ∈ A1 with ∆fa > 0 

such that the measure of the set of all users i for whom a is part of σ(i) is less than or 

equal to the measure of the set of users i for whom a is a part of σ̂(i). However, this 

implies fa ≤ f ̂ a, which contradicts the assumption ∆fa > 0. This contradiction proves 

that R1
+
 is empty. A very similar argument shows that R2

−
 is empty. It follows that the 

total flow in all the arcs in A1 minus the total flow in all the arcs in A2 (i.e., the net 

flow from u to v) in σ is less than or equal to that in σ̂, which implies ∆fe1 − ∆fe3 ≤ 0. 

In addition, ∆fe1 = ∆fe3 if and only if ∆fa = 0 for all arcs a in A1 and A2. Since, by 

assumption, ∆fe1 ≥ ∆fe3, this proves that ∆fa = 0 for all arcs a in the network.  

CLAIM 2. If ∆fe1 > 0, then ∆fe3 ≤ 0.  

This will be proved by assuming that ∆fe1, ∆fe3 > 0 (and, hence, ∆fe2, ∆fe4 < 0), and 

showing that this assumption leads to a contradiction. Let A1, A2, R1
+
, and R2

−
 be as 
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in the proof of Claim 1, Iσ the set of all users i such that e4 is in σ(i) but not in σ̂(i), 

and Iσ̂ the set of all users i such that e4 is in σ̂(i) but not in σ(i). The difference 

between the measures of the last two sets equals ∆fe4 (i.e., ∆fe4 = µ(Iσ) − µ(Iσ̂)).  

   Consider any user i ∈ Iσ̂ such that some arc a ∈ A1 is part of σ̂(i). Since σ̂ is an 

equilibrium, c i
a( f ̂ a) + c i

e4( f ̂ e4) ≤ c i
e3( f ̂ e3). Since σ is an equilibrium and e4 is not in σ(i), 

c i
e3(fe3) ≤ c i

a(fa) + c i
e4(fe4). By nonnegativity and strict monotonicity of the cost functions 

and the assumption ∆fe3 > 0 > ∆fe4, this implies that c i
e4(fe4) < c i

e3(fe3) and c i
a( f ̂ a) < c i

a(fa). 

Since e4 is not in σ(i), the former inequality implies σ(i) = e1 e3. The latter inequality 

implies ∆fa > 0, and, hence, σ̂(i) ∈ R1
+
. Consider now any user i ∈ Iσ̂ such that σ̂(i) = 

e2 e4. Since σ̂ is an equilibrium, (i) c i
e2( f ̂ e2) + c i

e4( f ̂ e4) ≤ c i
e1( f ̂ e1) + c i

e3( f ̂ e3) and (ii) c i
e4( f ̂ e4) 

≤ c i
a( f ̂ a) + c i

e3( f ̂ e3) for all a ∈ A2. Since ∆fe2, ∆fe4 < 0 < ∆fe1, ∆fe3, (i) implies c i
e2(fe2) + 

c i
e4(fe4) < c i

e1(fe1) + c i
e3(fe3), from which it follows that σ(i) ≠ e1 e3. Since, by assumption, 

σ(i) does not include e4, there must be some a ∈ A2 with c i
a(fa) + c i

e3(fe3) ≤ c i
e4(fe4) that 

is part of σ(i). Since ∆fe3 > 0 > ∆fe4, c i
a(fa) + c i

e3( f ̂ e3) < c i
e4( f ̂ e4). It follows, by 

comparison with (ii) above, that ∆fa < 0, and, hence, σ(i) ∈ R2
−
. Together, this and the 

previous conclusion prove that Iσ̂ decomposes into two disjoint sets: The set Iσ̂1 of all 

users i with σ̂(i) ∈ R1
+
 and σ(i) = e1 e3, and the set Iσ̂2 of all users i with σ̂(i) = e2 e4 

and σ(i) ∈ R2
−
. Hence, µ(Iσ̂) = µ(Iσ̂1) + µ(Iσ̂2). Let Iσ1 and Iσ2 be the subsets of Iσ 

defined in a similar manner to Iσ̂1 and Iσ̂2 but with σ and σ̂ interchanged. Since these 

sets are clearly disjoint, µ(Iσ1) + µ(Iσ2) ≤ µ(Iσ). Therefore, [µ(Iσ1) − µ(Iσ̂1)] + [µ(Iσ2) − 

µ(Iσ̂2)] ≤ µ(Iσ) − µ(Iσ̂) = ∆fe4 < 0, which implies that µ(Iσ1) < µ(Iσ̂1) or µ(Iσ2) < µ(Iσ̂2). 

However, as shown below, each of these two inequalities leads to a contradiction. 

   Suppose that µ(Iσ1) < µ(Iσ̂1). This means that there are more users i with σ̂(i) ∈ R1
+
 

and σ(i) = e1 e3 than users i with σ(i) ∈ R1
+
 and σ̂(i) = e1 e3. By definition of R1

+
, for 

every r ∈ R1
+
, there are more users i with σ(i) = r than users i with σ̂(i) = r. Therefore, 

there are more users i with σ(i) ∈ R1
+
 and σ̂(i) ∉ R1

+
 than users i with σ̂(i) ∈ R1

+
 and 

σ(i) ∉ R1
+
. Since the latter kind of users includes all those for whom σ̂(i) ∈ R1

+
 and 

σ(i) = e1 e3, it follows from the assumption at the beginning of this paragraph that 
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some users i exist with σ(i) ∈ R1
+
 and σ̂(i) ∉ R1

+
 for whom σ̂(i) ≠ e1 e3. For each such 

user i, there is an arc a ∈ A1 with ∆fa > 0 which is part of σ(i). Since σ is an 

equilibrium, c i
a( f ̂ a) < c i

a(fa) ≤ c i
a'(fa') ≤ c i

a'( f ̂ a') for every arc a' ∈ A1 with ∆fa' ≤ 0, which 

implies that such an arc a' cannot be part of σ̂(i). Therefore, none of the arcs in A1 is 

part of σ̂(i). Since, also, σ̂(i) ≠ e1 e3, the route σ̂(i) must begin with e2. Since σ and σ̂ 

are equilibria, the inequalities c i
e1(fe1) + c i

a(fa) ≤ c i
e2(fe2) and c i

e2( f ̂ e2) ≤ c i
e1( f ̂ e1) + c i

a( f ̂ a) 

hold. However, since the cost functions are strictly increasing and ∆fe1, ∆fa > 0 > ∆fe2, 

these inequalities contradict each other. A similar contradiction is reached if it is 

assumed that µ(Iσ2) < µ(Iσ̂2). In this case, there are more users i with σ(i) ∈ R2
−
 and  

σ̂(i) = e2 e4 than users i with σ̂(i) ∈ R2
−
 and σ(i) = e2 e4. Since, for every r ∈ R2

−
, there 

are more users i with σ̂(i) = r than users i with σ(i) = r, this implies that some users i 

exist with σ̂(i) ∈ R2
−
 and σ(i) ∉ R2

−
 for whom σ(i) ≠ e2 e4. For each such user i, there 

is an arc a ∈ A2 with ∆fa < 0 which is part of σ̂(i). Since σ̂ is an equilibrium, c i
a(fa) < 

c i
a( f ̂ a) ≤ c i

a'( f ̂ a') ≤ c i
a'(fa') for every arc a' ∈ A2 with ∆fa' ≥ 0, which implies that such an 

arc a' cannot be part of σ(i). Together with the assumption concerning i, this implies 

that σ(i) must begin with e1. Since σ and σ̂ are equilibria, the inequalities c i
e1(fe1) ≤  

c i
e2(fe2) + c i

a(fa) and c i
e2( f ̂ e2) + c i

a( f ̂ a) ≤ c i
e1( f ̂ e1) hold. However, since ∆fe1 > 0 > ∆fe2, ∆fa, 

these inequalities contradict each other. This completes the proof of Claim 2.    

CLAIM 3. ∆fa = 0 for all arcs a. 

This is established in Claim 1 under the assumption that ∆fe1 ≥ 0 ≥ ∆fe3. By symmetry, 

this also holds if ∆fe1 ≤ 0 ≤ ∆fe3. By Claim 2, ∆fe1 and ∆fe3 cannot both be (strictly) 

positive. By symmetry, they cannot both be negative, either. Therefore, the claim 

always holds. n 

Lemma 4. For each of the networks in Figure 1, there is an assignment of cost 

functions with two strict Nash equilibria σ and τ such that each user’s equilibrium 

cost in σ is different from that in τ.  

Proof. The cost functions given in Example 1 specify such an assignment for the 

networks in Figures 1(a) and 1(b). The modified version of Example 2 given in the 



25 

paragraph that follows Corollary 1 (Section 4) specifies such assignments for the 

networks in Figures 1(c) and 1(d). n 

Lemma 5. Let G be a network for which there exits an assignment of cost functions as 

in Lemma 4. Then a similar assignment exists for any network G' in which G is 

embedded in the wide sense. That is, there is an assignment of cost functions for G' 

with two strict Nash equilibria σ' and τ' such that each user’s equilibrium cost in σ' is 

different from that in τ'.  

Proof. Since the definition of embedding in the wide sense is recursive, it suffices to 

consider the case in which G' is obtained from G by (1) the subdivision of an edge, (2) 

the addition of an edge, or (3) the subdivision of a terminal vertex. In the first two 

cases, the conclusion is almost obvious. In case (1), the assignment of cost functions 

chosen for G' has to be the same as for G except that, for each user, the cost in each 

direction of the edge that was subdivided is equally divided between its two parts. In 

case (2), the cost for each user of the added edge has to be set higher than the user’s 

equilibrium costs in σ and in τ. It remains to consider case (3). Terminal subdivision 

adds an edge, incident with the origin or the destination, which some users have to 

traverse in order to start or finish their equilibrium route in σ or in τ. The cost of this 

edge for each user has to be set sufficiently low so that, in both σ and τ, it is less than 

(i) the difference between the cost of the equilibrium route and that of any other route 

(since the equilibria are strict, this difference is greater than zero) and (ii) the 

difference between the user’s equilibrium costs in σ and τ. n 

Proof of Proposition 1. By Lemma 1, for every network G, at least one of the two 

conditions in the proposition holds. By Lemmas 2 and 3, condition (i) implies that G 

has the uniqueness property. By Lemmas 4 and 5, condition (ii) implies that there is 

an assignment of cost functions for G with two strict Nash equilibria such that each 

user’s equilibrium cost in one equilibrium is different from that in the other. This 

clearly implies that G does not have the uniqueness property (since this property 

would imply that the cost of each route for each user is the same in both equilibria). 

Therefore, conditions (i) and (ii) cannot both hold for G. n 

Proof of Proposition 2. Suppose that the users’ cost functions are identical up to 

additive constants, and let i0 be one of the users. Then,  

 c i
a(x) − c i

a(y) = c
i0
a(x) − c

i0
a(y) (2) 
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for all users i, arcs a, and 0 ≤ x, y ≤ 1. Let σ and σ̂ be two Nash equilibria, and, for 

each arc a, let fa and f ̂ a be the flow through a in σ and in σ̂, respectively. For every 

user i and route r, define σr(i) as 1 or 0 according to whether r is equal to or different 

from σ(i), respectively. Define σ̂r(i) in a similar manner. Since σ is a Nash 

equilibrium, it follows from (1) that, for all users i, 

∑
r∈R

  [ ∑
a∈A

a is part of r

  c i
a(fa) ] (σr(i) − σ̂r(i)) ≤  0. 

Since σ̂ is a Nash equilibrium, similar inequalities hold with σ and σ̂ interchanged and 

fa replaced by f ̂ a. Therefore, for all users i, 

∑
r∈R

  [ ∑
a∈A

a is part of r

  (c i
a(fa) − c i

a( f ̂ a)) ] (σr(i) − σ̂r(i)) ≤  0. 

Changing the order of summation and using (2) gives 

∑
a∈A

  [ ∑
r∈R

a is part of r

  (σr(i) − σ̂r(i)) ] (c
i0
a(fa) − c

i0
a( f ̂ a)) ≤ 0, 

for all users i. Integration over i now gives  

∑
a∈A

 (fa − f ̂ a) (c
i0
a(fa) − c

i0
a( f ̂ a)) ≤ 0. 

By strict monotonicity of the cost functions, each term in the last sum is nonnegative, 

and is moreover positive if fa ≠ f ̂ a. Therefore, all terms must be zero, and fa = f ̂ a for all 

arcs a. This implies that the cost of each route for each user is the same in σ and σ̂, 

and, therefore, the equilibrium costs are also the same. n 

Proof of Proposition 3. It is shown in the proof of Proposition 1 that, for every 

network G, either the uniqueness property holds for G, in which case the equilibrium 

costs are unique for any assignment of cost functions; or the uniqueness property does 

not hold for G and, moreover, there is an assignment of cost functions with two strict 

Nash equilibria such that each user’s equilibrium cost in one equilibrium is different 

from that in the other. n  

Proof of Theorem 1. The proof is contained in that of Proposition 1. n 
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Proof of Theorem 2. Suppose that condition (i) does not hold. By the same argument 

used in the proof of Proposition 1, there is an assignment of cost functions for G with 

two strict Nash equilibria such that, for each user, one equilibrium cost is different 

from the other, and the two equilibria are therefore not equivalent. Moreover, 

inspection of the proofs of Lemmas 4 and 5 shows that there is a partition of the 

population into three user classes such that this assignment is in (the corresponding) 

G. Since the two equilibria are strict, there is some ε > 0 such that each of them is also 

an equilibrium in every assignment of cost functions in G that is less than a distance ε 

from the original one. This shows that the set of all assignments of cost functions for 

which all Nash equilibria are equivalent is not dense in G, and thus proves that 

condition (ii) of the theorem implies (i). It remains to prove the reverse implication. 

   Suppose that the network G satisfies (i). Fix some partition of the population, with 

user classes I1, I2, … , In, and consider the corresponding space of assignments of cost 

functions G. For each element of G and each user class Im, the number of least cost 

routes for the users in Im, which will be denoted by λm, is the same in all Nash 

equilibria. This is because the cost for each user of each route is determined by the arc 

flows, which, by Theorem 1, are the same in all Nash equilibria. Therefore, the mean 

number of least cost routes, λ = ∑n    
m=1 µ(Im) λm, is also the same in all equilibria, and 

thus defines a real-valued function on G.  

CLAIM 1. The function λ  : G → R is upper semicontinuous and has a finite range.  

The proof of the first part of the claim is very similar to that of [7, Lemma 3.4], and 

will be omitted. The second part follows from the fact that the cardinality of the range 

of λ does not exceed the number of routes in G times the number of user classes. 

CLAIM 2. For every assignment of cost functions in G that is a point of continuity of 

λ, all Nash equilibria are equivalent.  

To prove this claim, consider an assignment of cost functions in G with two non-

equivalent Nash equilibria σ and σ̂. It has to be proved that λ has a discontinuity at 

this assignment. For each user class Im and arc a, denote by f
m
a  the measure of the set 

of all users i ∈ Im such that a is part of σ(i), and by f ̂
m
a  the corresponding quantity 

for σ̂. Since the two equilibria are not equivalent, there is some user class Im0 and 
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some arc a0 such that f
m0
a0 ≠ f ̂

m0
a0. By assumption, G is nearly parallel or it consists of 

several nearly parallel networks connected in series. The arc a0 is in one of these 

networks, G'. Without loss of generality, it may be assumed that, for each user i, the 

routes σ(i) and σ̂(i) coincide outside G'. (If this is not so, σ̂ can be replaced by another 

Nash equilibrium, in which the users’ routes agree with their routes in σ outside G' 

and with their routes in σ̂ inside G'.) For every route r' in G' and every user class Im, 

let f
m
r' be the measure of the set of all users i ∈ Im such that r' is part of (or coincides 

with) σ(i), and f ̂
m
r' the corresponding quantity for σ̂. For some such route and user 

class, f
m
r' ≠ f ̂

m
r'. Therefore, some real number α exists such that the affine combination 

f ̃
m
r' =

def
α f

m
r' + (1 − α) f ̂

m
r' is nonnegative for all routes r' in G' and all user classes Im, and 

zero for some such route r'1 and user class Im1 with f
m1
r'1 ≠ f ̂

m1
r'1. Since the measure µ is 

nonatomic, a strategy profile σ̃ exists such that, for all routes r' in G' and all user 

classes Im, the measure of the set of all users i in Im such that r' is part of (or coincides 

with) σ̃(i) is equal to f ̃
m
r'. Since, by the uniqueness property, ∑n    

m=1 f
m
a  = ∑n    

m=1 f ̂
m
a  for all 

arcs a, the flow through each arc in σ̃ is the same as in σ and σ̂. For each route r' in G' 

and each user class Im, f ̃
m
r' > 0 only if f

m
r' > 0 or f ̂

m
r' > 0, and, hence, only if r' is part of 

some least cost route for user class Im. Therefore, σ̃ is a Nash equilibrium. 

CLAIM 3. There is some arc a1 in G', which is part of r'1, such that f ̃
m1
a1 = 0 but f

m1
a1 > 0 

or f ̂
m1
a1 > 0. 

This is easily shown if G' is homeomorphic to one of the networks in Figures 2(a)–

2(d). In each of these networks, each route r' contains an arc a that is not part of any 

other route. Since, by construction, f ̃
m1
r'1 = 0 and f

m1
r'1 ≠ f ̂

m1
r'1, this implies that similar 

equality and inequality must with the route r'1 replaced by one of its arcs a1. If G' is 

homeomorphic to the network in Figure 2(e), there are two cases to consider. If r'1 

contains both u and v (the two non-terminal vertices with degree three of more), then 

there is an arc that is part of this route and no other route in G'. Therefore, this case is 

similar to the one considered above. If r'1 contains only u or only v, then denote by a2 

and a3 the first and last arcs in r'1, respectively. If either f ̃
m1
a2 or f ̃

m1
a3 is greater than zero, 

the other must be zero. This is because, since f ̃
m1
r'1 = 0, if f ̃

m1
a2 , f ̃

m1
a3  > 0, then f ̃

m1
r'2 > 0 for 

some route r'2 in G' containing a2 but not a3, and f ̃
m1
r'3 > 0 for some route r'3 containing 
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a3 but not a2. Since σ̃ is an equilibrium and the cost functions are nonnegative and 

strictly increasing, one of the last two inequalities implies that the cost to user class Im1 

of the path starting at u and terminating at d (and does not pass through v) is strictly 

greater than the cost of the path starting at v and terminating at d (and does not pass 

through u), while the other inequality implies that the second cost is strictly greater 

than the first. This contradiction proves that f ̃
m1
a2 = 0 or f ̃

m1
a3 = 0. Since f

m1
a2 + f ̂

m1
a2 ≥ f

m1
r'1 + 

f ̂
m1
r'1 > 0, f

m1
a2 and f ̂

m1
a2 cannot both be zero. Similarly, f

m1
a3 and f ̂

m1
a3 cannot both be zero. 

This completes the proof of Claim 3. 

   The proof of Claim 2 can now be completed. It follows from Claim 3 that, for every 

ε > 0, σ̃ is an equilibrium in the assignment of cost functions obtained from that 

considered above by adding ε to each cost function c i
a(x) with i ∈ Im1 and a = a1 and 

leaving all the other cost functions unchanged. The distance between this assignment 

and the old one is ε, and therefore can be chosen arbitrarily small. In the new 

assignment, the set of least cost routes for each user i is a subset of the old set, since 

the cost of each route r is either equal to the old cost or exceeds it by ε. The latter 

possibility holds if and only if i ∈ Im1 and a1 is part of r. By Claim 2, f
m1
a1  > 0 or f ̂

m1
a1  > 

0, which implies that, in the old assignment of cost functions, a1 is part of a least cost 

route for user class Im1. Since this is not so in the new assignment, the value of λm1 for 

this assignment is smaller by at least unity than for the old one. This proves that λ has 

a discontinuity at the old assignment. This completes the proof of Claim 2. 

   Together with Claims 1 and 2, the following claim completes the proof of the theorem. 

CLAIM 4. In every metric space X, the set of all points of continuity of an upper 

semicontinuous function g : X → R with a finite range is open and dense. 

Every point of continuity of g has an open neighborhood in which g is constant, and 

hence continuous. This proves that the set of all points of continuity is open. To prove 

that it is dense in X, consider any open set U. Let x0 ∈ U be such that g(x0) = 

min x∈U g(x). By upper semicontinuity of g, there is a neighborhood V of x0 such that 

g(x) ≤ g(x0) for all x ∈ V. Clearly, in U ∩ V, g(x) = g(x0) for all x, and g is therefore 

continuous at x0.  n 
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