

Problem Set 8 – Maxima, Minima and Function Sketching

1. Investigate and sketch the following functions:

A.

$$\frac{\ln x}{x}$$

B.

$$2x^3 - 5x^2 - 4x$$

C.

$$x \cdot e^{-x}$$

D.

$$\frac{1}{e^x - 1}$$

E.

$$\frac{x^3}{x^2 - 12}$$

2. Using the following definitions for various costs of producing q products, with respect to the total cost function $TC(q)$:

Fixed cost

$$TFC = TC(0)$$

Variable cost

$$TVC = TC(q) - TC(0)$$

Average total cost

$$ATC = \frac{TC(q)}{q}$$

Average fixed cost

$$AFC = \frac{TFC(q)}{q}$$

Average variable cost

$$AVC = \frac{TVC(q)}{q}$$

Marginal cost

$$MC = TC'$$

Given a total cost function, $TC(q) = q^3 - 3q^2 + 10q + 5$,

- a. Find the functions: MC , AVC , AFC , TVC , TFC .
- b. Find the ranges in which the functions you obtained in the previous paragraph increase and decrease.
3. Prove:
 - a. If $f(x)$ and $g(x)$ are (strictly) increasing functions then $f + g$ is also (strictly) increasing.
 - b. Prove that if f is strictly increasing and g is strictly decreasing, then the function $f - g$ is strictly increasing.
4. Give an example of two functions $f(x)$ and $g(x)$ that are strictly decreasing such that the function $h(x) = f(x)g(x)$ is strictly increasing.

5. Prove that if f and g are (strictly) increasing, then the compound function $g[f(x)]$ is also (strictly) increasing.

6. A production possibility curve $y = f(x)$, where x is the quantity of one product and y is the quantity of another product, must satisfy the following properties:

- $f(x) \geq 0$
- $f'(x) \leq 0$
- $f''(x) \leq 0$

Which of the following functions can possibly be production possibility curves?

$$0 \leq x \leq 5 \quad f(x) = 25 - x^2 \quad (1)$$

$$0 \leq x \leq 5 \quad f(x) = \sqrt{25 - x^2} \quad (2)$$

$$1 \leq x \leq 10 \quad f(x) = \frac{x-1}{x} \quad (3)$$

$$0 \leq x \leq 100 \quad f(x) = \frac{100}{x} \quad (4)$$

7. a. Prove that the sum of two convex functions is a convex function.
 b. Prove that the sum of two concave functions is a concave function

8. The elasticity of demand of a function $f(x)$ at each point x is labelled $\eta(x)$ and defined as $\frac{xf'(x)}{f(x)}$. This measures the ratio between the relative change in $f(x)$ and the relative change in x .

The price elasticity, in contrast, is defined as $\eta = \frac{\Delta Q / Q}{\Delta P / P}$.

There are 100 items in the market, where the demand curve for each item is $D(p)$: $q = 4 - 0.2p$.

- Find the elasticity of demand for each item at price $p = 3$.
- Find the elasticity of demand for each item at price $p = 10$.
- Find the demand function of the entire market.
- Find the elasticity of the demand of the market at price $p = 3$.

9. We will denote by η_f , η_g , η_h the demand elasticities of functions f , g and h . Express η_h using η_f and η_g for the following cases:

- $h(x) = c + f(x)$ c is a constant
- $h(x) = g(x) * f(x)$
- $h(x) = \frac{g(x)}{f(x)}$

10. The demand function for heaters is: $q = 42 - 3p$.

- Find the quantity q at which the producer will attain the maximal revenue.
- What is the producer's maximal revenue if the cost function is $c = 2q^2$?

11. Prove that the demand function $p = \frac{a}{q+b} - c$ (where a , b and c are constant and positive) is decreasing and convex. Does the marginal revenue (MR) function have the same properties?

12. A radio producer sells x radios per week at a price of p per radio. The demand function for one week is: $x = 75 - \frac{3}{5}p$. The cost of producing x radios is: $500 + 15x + \frac{1}{6}x^2$.

- What is the optimal quantity of radios that it is worthwhile for the producer to sell per week?
- Assume that the government levies a tax t on each radio that the producer sells. The producer adds the tax to the production costs. What will be the optimal production amount now? What should the value of t be to maximise the state's revenue?

13. The total production cost of x radios per day is $0.25x^2 + 35x + 25$, and the price of one radio when it sells is $50 - 0.5x$.

- What should be the scope of daily production for maximal total profit?
- Show that at the optimal point for total profit the cost of producing one radio is minimal. Is this rule always true?