

Problem Set 3 – Special Functions

Linear Functions and the Equation of the Line

1.
 - a. Describe the family of linear functions satisfying $f(4) = -3$
 - b. Which of the functions you found above satisfy the equation $f(2) = 7$?
 - c. Which one has a slope of $3/4$?
2. Find the equation of the line parallel to the line $x+2y = 32$ forming a triangle of area 1 with the two axes.
3. Find the equations of the lines containing the sides of the triangle whose vertices are $(-4, 5)$, $(0, 3)$, $(2, -1)$.
4. Given the family of lines defined by $(k^2 - 36)x + (k^2 - 15k + 36)y + (k - 1)^2 = 0$, where k is a parameter, find the values of k such that the associated line satisfies the property that:
 - a. It is parallel to the x -axis
 - b. It passes through the origin
 - c. It cuts through the angle between the axes
 - d. It is parallel to the line $2y + 5x = 3$
5. Given the functions
$$f(x) = x^2 - 2x - 3$$
$$g(x) = -2x^2 + 13x - 15$$
 - a. Describe the domains and ranges of f and g .
 - b. Calculate the roots of f and of $f - g$.
6. Given the function $f(x) = (m - 4)x^2 + 10x + m$,
for what value of m does the range of this function include only numbers that are less than 4?
7. Given the function $x^2 - mx + m + 3 = 0$,
for what value of m does this function have two solutions, one less than 3 and the other greater than 3?
8. For what values of m is the expression $(m^2 - 1)x^2 + 2(m - 1)x + 2$ positive for all x ?
9. Production costs for producing Q items at a certain firm depends on the number of machines being used. If 5 machines are run, the total production cost is

$TC_1(Q) = 2Q^2 + 8Q + 10$. If 15 machines are in use, the total production cost is $TC_2(Q) = Q^2 + 4Q + 231$.

For any given production amount Q , the firm will choose the number of machines (either 5 or 15) that reduce production costs to a minimum. For which values of Q will the firm choose to use only 5 machines, and for which values of Q will the firm choose to use 15 machines?

10. Suppose the following game is given: the player chooses a number x such that $0 \leq x \leq 3$, and then receives a payoff the lesser of $2x+3$ and x^2-x+5 .

- Find the function that gives the payoff that the player receives as a function of x .
- Which x should the player choose in order to receive the maximal payoff?

Sequences

11. Determine whether the sequence $a_n = \frac{n-1}{3n+5}$ is monotonic and whether it is bounded.

12. Given the sequence

$$a_n = \begin{cases} \frac{2n}{n+3} & \text{if } n \text{ even} \\ 2 & \text{otherwise} \end{cases}$$

write down the first five elements of the sequence. Determine whether this sequence is monotonic. Is it bounded? Is it injective?

13. Given the sequence 1, 1.1, 1.11, 1.111 ...

- Write this sequence as a function of n .
- Determine whether this sequence is monotonic. Is it bounded?

14. Given the sequence $\frac{(-1)^{n+1}}{n+1}$

- Write down the first five elements of this sequence.
- Determine whether this sequence is monotonic. Is it bounded? If it is bounded, find its upper bound and its lower bound.

15. Given the function $f(n) = \frac{4-2n}{3n+2}$ $f: \mathbb{N} \rightarrow \mathbb{R}$

- Determine this is a surjective function.
- Is it injective?

- c. Is it monotonic? If yes, is it monotonically increasing or monotonically decreasing?
- d. Is the function bounded? If yes, find its bounds.