GRAPH VALUE FOR COOPERATIVE GAMES

ZIV HELLMAN AND RON PERETZ

ABSTRACT. We suppose that players in a cooperative game are located
within a graph structure, such as a social network or supply route, that
limits coalition formation to coalitions along connected paths within the
graph. This leads to a generalisation of the Shapley value that is stud-
ied here from an axiomatic perspective. The resulting ‘graph value’ is
endogenously asymmetric, with the automorphism group of the graph
playing a crucial role in determining the relative values of players.
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1. INTRODUCTION

The standard interpretation of the Shapley value, as a measure of the av-
erage marginal contribution of a player to each and every possible coalition,
may strain credulity if taken too literally in a great many social situations.
This holds particularly when players may, due to affinity, consanguinity or
other factors, have clear preferences for joining certain coalitions as op-
posed to others. Consider, for just one example, a job market. Is it not more
likely that a potential hire will join a company if he knows someone within
the company? How likely is it for a job seeker to join a company if she does
not share a common language with any of its current employees?

Cases in which many theoretically possible coalitions will not realisti-
cally be formed are not limited to social situations alone. If one is studying
cooperative coalitions amongst players connected via supply routes, com-
puter networks or web links, there are clear structural reasons for entirely
excluding some coalitions that would otherwise play a role in the calcula-
tion of the classic Shapley value and including in consideration instead only
coalitions that are connected along the underlying network.
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Networks, for obvious reasons, have increasingly been a focus of study
in several disciplines over the past two decades.! What we propose here
is introducing network or graph structures directly into the study of coali-
tional game theory, by limiting consideration of potential coalitions solely
to coalitions that are connected along the graph. Doing so, in the tradition
of measuring average marginal contributions, yields different values that we
argue may be more appropriate for assessing the values of players in many
situations than the classic Shapley value.

The potential applications of a graph value are many. A partial list may
include: coalition formation in complex political situations; studying power
relations and cost sharing in situations with geographic constraints such as
supply routes along roads or rivers; coalition formation in social networks;
and perhaps even cooperation between neighbouring genes inside chromo-
somes.

This requires departing in some ways from the classic model of trans-
ferable utility games, which associates a certain worth to every coalition.
That model implicitly assumes that the only force that drives the formation
of coalitions is the worth they generate. The model we introduce here takes
into account a proximity relation between players represented as edges of an
undirected graph (a symmetric binary relation). It is assumed that a player
only joins a coalition if he is connected to one of its members. As a result
the only admissible coalitions are the connected subgraphs.

For our axioms we conservatively adopt the standard Shapley axioms
(plus monotonicity), with minor adjustments to fit them for our model. The
most significant difference this imposes is on symmetry (which is usually
regarded as the least controversial of the Shapley value axioms). Classic
symmetry cannot be carried over to our setting because the graph structure,
and the relative positioning of players along the graph structure, is in itself
an asymmetry. This leads to a weaker form of symmetry with respect only
to automorphisms of the underlying graph.

By hewing closely to most of the standard Shapley axioms, we are able to
carry out a step-by-step development of concepts that are directly analogous
to those associated with the standard Shapley value, such as probabilistic
values and random values. The price of using a weaker symmetry axiom,
however, is that it leads to a graph value that is not uniquely determined by
the axioms; we instead derive a convex set of possible values. Specification
of a unique graph value, it turns out, will in most cases require specifying a
particular random ordering, intuitively corresponding to agreement amongst

! Perhaps a contemporary canonical example would be an on-line social network, with
coalitions naturally growing in size by way of adding at each stage friends of current
members.
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the players as to how coalitions are likely to be formed along the connected
paths of the underlying graph.

On the other hand, the value we derive is a generalisation of the Shapley
value, because when the underlying graph is the complete graph the set of
admissible coalitions is again the full power set of the set of players. In
that case, there is a unique graph value that is exactly the classic Shapley
value. Conversely, we show that there are graphs for which the graph value
is unique and yet it is different from the Shapley value.

It should be noted that we do not depart from the classic assumption of
complete information. The study of coalitional games of incomplete infor-
mation is important in its own right. See for example Forges and Serrano
(2011).

1.1. Related Literature. Our main inspiration, and the paper that is most
similar in approach to this one, is Alvarez, Hellman and Winter (2013),
which proposes a way to measure the relative power of political parties in a
parliament by explicitly taking into account a political spectrum. That paper
notes that it is highly unlikely for a left-wing party to form a coalition with
a party holding strongly diametrical right-wing views unless there are other
parties in the coalition that can ‘bridge’ the ideological differences. In more
general terms, a political party will tend to join a pre-existing coalition only
if the coalition contains at least one other party that is ideologically close to
it. To formalise this idea, Alvarez, Hellman and Winter (2013) postulates
that parties can be ordered along a political spectrum (i.e., a strict linear
ordering), from right to left, and a coalition will form only if it consists of a
consecutive range of ideological views along this spectrum.’

One possible shortcoming of that approach is that it may be artificial to
ascribe all ideological differences to positioning along a single linear order-
ing. In practice, ideologies are often multidimensional, relating to several
issues. That observation led to the model presented in this paper, which
is a generalisation of the model in Alvarez, Hellman and Winter (2013).
As an added benefit, by extending the underlying topology of the connec-
tions between players to any graph, the model here is potentially applicable
to a very wide range of cooperative situations, including but by no means
restricted to political-coalitional settings.

Weakening the axiom of symmetry for the sake of considering variations
on the Shapley value is a very old idea. Weighted Shapley values were

2 As here, Alvarez, Hellman and Winter (2013) work with a weak version of symmetry
and hence do not derive a unique value from the standard Shapley axioms alone. In that pa-
per, an axiom reminiscent of various balanced contributions axioms, relating to unanimity
games, needs to be added to attain uniqueness of the value.



GRAPH VALUE FOR COOPERATIVE GAMES 4

proposed by Lloyd Shapley himself in his seminal PhD thesis (Shapley
(1953b)). Each weighted Shapley value associates a positive weight with
each player. These weights are the proportions of the players’ shares in una-
nimity games. The symmetric Shapley value is the special case in which all
weights are the same. This concept was studied axiomatically in Kalai and
Samet (1987).

The weights in these models, however, are imposed exogenously, repre-
senting some pre-existing measure of the relative strengths of the players
which is then used for calculating weighted Shapley values. In contrast, in
the approach here asymmetries arise endogenously from the positioning of
the players along the underlying graph structure.

This paper is also far from the first to study situations in which not ev-
ery coalition is feasible or equally likely. The issue is usually tackled by
considering some structure on the set of players that circumscribes the way
players can form coalitions. Games with these kind of structures are usually
denoted games with restricted cooperation.

Among the earliest efforts in this direction, the beginnings of a large
literature, are Aumann and Dréze (1975) and Owen (1977). These start
from the supposition that cooperative games are endowed with a coalitional
structure, an exogenously given partition of the players. When coalitions
are formed, the players interact at two levels: first, bargaining takes place
among the unions and then bargaining takes place inside each union. Within
each union, however, every possible coalition is admissible.

Edelman (1997) and Bilbao and Edelman (2000) take an approach sim-
ilar to the one adopted in the present paper, using geometric constraints to
dictate which coalitions may be formed and which are deemed impossible.
They, however, use the theory of convex geometries as the basis for their
research, as opposed to the more restricted model of connected graphs used
here. We believe that much of the theory developed here can be extended
to the more general model of convex geometries. The modification that
would be required for this would apply to admissible coalitions, in that any
lattice with maximal chains of the size of the entire set of players would
be an acceptable admissible coalition, as opposed to connected subgraphs
alone. The symmetry axiom would then need to be modified to relate to
automorphisms of lattices. That said, we do wish to note that our axiomatic
treatment of symmetry more closely resembles Shpaley’s axiomatics as op-
posed to the more descriptive approach of Bilbao and Edelman (2000).

Graphs appear explicitly in Myerson (1977), but in a very different role
from the one they have in this paper. There, an undirected graph describes
communication possibilities between the players. A modification of the
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Shapley value is then proposed under the assumption that coalitions that are
not connected in this graph are split into connected components. In that
model too, within components all possible coalitions are admissible.

Myerson’s model implicitly assumes superadditivity by granting (discon-
nected) coalitions the sums of the worths of their connected components. In
our model disconnected coalitions are simply impossible, hence they do not
assume any worth and we need not assume superadditivity.

Myerson (1977) assumes a fixed coalitional function while letting net-
work structures vary, with axioms focussed on how allocation rules are re-
lated as the network structure changes. We consider the network as given,
with our axioms focussed on how allocation rules are related as coalition
functions vary, in the tradition of Shapley (1953a). An interesting future
extension to our research here might concentrate on relationships between
values attached to different graphs. Perhaps such an attempt can lead to a
unique specification of a value.

One may propose modelling impossible coalitions by setting their worths
to zero while all other coalitions have positive worths. However, the choice
of zero as the worth of impossible coalitions would be rather arbitrary
and unjustified, as it makes the model variant under conditions of strate-
gic equivalence.

A situation in which the above is particularly problematic is cost sharing
models (Megiddo, 1978; Granot and Huberman, 1981; Young, 1985). Con-
sider, for example, organisations attempting to establish a communication
network or supply route between themselves. Setting up a link between
two organisations induces a cost. Due to physical constraints or geographic
barrier, not every pair of organizations can be linked directly, while indirect
connections via a sequence of links requires the active cooperation of all the
organisations along these links. Examples may include a network of mon-
etary transactions between banks or commodity flows between countries.
The cost associated with a connected (admissible) coalition is the mini-
mal total cost of links that connect the members of that coalition (minimal
spanning tree). The cost of setting up the entire network has to be divided
amongst the players (organisations).

The Shapley value, with its axioms interpreted as describing acceptable
requirements for ‘fair’ cost allocation, has been proposed as the solution
for cost sharing problems (the literature on this is vast, going back at least
as far as Shubik (1962)). When some coalitions are deemed impossible,
one could be tempted to compute an appropriate Shapley value by associat-
ing an extremely large cost with each impossible coalition. This approach
does not work, since very large costs dictate heavy the costs in the resultant
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Shapley value. Some players will pay very large costs whereas others will
receive very large payments (negative cost). As the costs associated with
impossible coalitions grow, the actual costs of the links become negligible.
The present paper proposes a solution that generalises the Shapley value
to situations in which some coalitions are impossible while avoiding these
potential conceptual pitfalls.

Jackson (2005) considers network games in which players can influence
the structure of the network to serve their interests. Our model is different
in that it exogenously imposes a fixed network structure.

1.2. Content. Section 2 defines the model and the basic concepts of coali-
tional games with an underlying graph. Section 3 provides an axiomatic
definition for graph values and related solution concepts. Section 4 inves-
tigates a few special cases. Section 5 discusses the necessity of the axioms
as well as a few questions for future research.

2. GRAPHS AND VALUES

2.1. Definitions.

A finite set of players N, of cardinality n = |N|, will be assumed fixed
throughout. We denote the set of all permutations over /N, meaning bijective
mappings 7 : N — N, by IIy. The i-th element of a permutation ™ € Il
will be denoted by 7;, and we will also denote 7<% := {r; | j < 7 (i)},
i.e. the predecessors of 7 in the list 7wy, 7o, ..., mp.

With tolerable abuse of notation, given a permutation 7 € 1Iy we will
also consider 7 to be a mapping 7 : 2V — 2V by defining 7 ({iy, i, ..., ix})
= {m(i1),m(i2),...,m(ix)}. We will also abuse notation by sometimes
writing ¢ instead of the singleton set {i} when no confusion is possible,
for the sake of readability.

The set of coalitions is the set of subsets of /N. Conventionally, a coali-
tional game over N is given by a characteristic function v which is a real-
valued function over the set of all coalitions, i.e., v : 2V = {S: S C N} —
R with the convention that v()) = 0. Denote the set of all coalitional games
by K.

A value for player i on K is a function ¢, : K — R. A (group) value on
K, ¢ = (p1,02,...,0n), associates a vector in R with each game.

We next suppose that there is additional structure on /N making it a graph.
An undirected graph G over N is an ordered pair (N, E'), where N, the set
of players, is now considered to be a set of vertices and F, the set of edges,
is a set of pairs of distinct elements in /N. A path is a sequence of edges
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connecting a sequence of vertices. Two players ¢, j € N are connected if G
contains a path from i to j.

We will assume that every graph G = (NN, E) in this paper is connected,
meaning that every pair of players are connected by some path.

The set of connected sub-graphs of a graph G (including the empty set)
will be denoted by A(G). Clearly, since A(G) C 2V, each element of
A(G) is in particular a coalition. We will term A(G) the set of admissible
coalitions.

For each player : € N, denote
(1) AG) " :={S € AG) |i¢ Sand SU {i} € A(G)}.

A(G)™" is always non-empty, because at minimum it contains the empty
set. In addition, given an admissible coalition 7" € A(G), denote

) TH:={ie N\T|TU{i} € AG)}
(hence in particular N* = (), and
3) T-:={ieT|T\icAG)}

Definition 2.1. A characteristic function v over the set of admissible coali-
tions, i.e., v : A(G) — R, with the convention that v(0)) = 0, is a coalitional
game over G.

Denote the family of all coalitional games over a fixed set of players NV
by G(N). We will frequently write simply G when N is clear by context.

Definition 2.2. A sequence of distinct admissible coalitions
SoCS1C...C Sk
ordered by containment is a chain over G.
A maximally ordered sequence of admissible coalitions
P=SCSC...SSn =N
is a maximal chain over G.
The set of all maximal chains over G will be denoted C(G). Note that

for every pair of successive integers k£ and k£ + 1 in a maximal chain, by
maximality Sy \ Sy is a singleton. This leads to the following concept.

Definition 2.3. For each maximal chain ¢ € C(G) there is an admissible
permutation of the elements of N, given by the mapping d : C(G) — Iy
defined by:

(4) d(C) = (Sl\SO,SQ\Sl,-..,Sn\Snfl)

The mapping d is obviously bijective. We henceforth denote D(G) =
d(C(Q)).
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We adapt the following standard concepts from the literature on coali-
tional games. A game v is simple if for every admissible coalition S, either
v(S) = lorwv(S) = 0. A game v is monotonic if v(S) > v(T) for all
S, T € A(G) satisfying S O T.

Definition 2.4. The unanimity game with carrier T' € A(G) is the mono-
tonic simple game Uy satisfying the condition that Ur(S) = 1 if and only
itT CS.

Relatedly, as in Weber (1988), define ﬁT to be the monotonic simple
game satisfying the condition that U7 (S) = 1 if and only if T' C S. ¢

Following the lines of many standard proofs in the theory of coalitional
games, it is easy to show that G(V) is a vector space of dimension |A(G)|.

We also introduce here a non-standard concept:

Definition 2.5. Let UV C A(G). The non-monotonic simple game Wy with
multi-carrier V is

(1 if S ew
Wu(S) = { 0 otherwise.

¢

Definition 2.6. Over the family of games /C, it is standard to define a proba-
bilistic value for player ¢ to be a value satisfying ¢;(v) = > g ps(v(SU
i) — v(S)) for a probability distribution {p%}scny;. Over G the analogous
expression for a probabilistic value is

pilv) = Y pr((TUi) —o(T))

TeAG)

for a probability distribution {p’} over the set {T" € A(G)™*}. We say
that ; is a pre-probabilistic value, if we only require that {p%.} is a signed
measure of total measure 1. Thatis, ) AG)—i py = 1, and p%r € R may
be negative. ¢

For a fixed game v, aplayeri € N is a null player if v(SU{i}) = v(S) for
all S € A(G)™". A player i is a dummy player if v(S U14) = v(S) + v({i})
for all S € A(G)™". A null player is a dummy player with v({i}) = 0.

Let 7 € Ty be a permutation. For every chainc = () C S; € Sy C
... © @), the image of ¢ under 7 trivially satisfies the condition that ) C
w(S1) € 7w(S2) € ... € G. There is no guarantee, however, that 7(.Sk)
is an admissible coalition for any particular k£ < |N| the coalition (in the
terminology introduced in Dubey and Weber (1977), the class of games G is
not symmetric under all possible permutations). We will want to note when
a permutation of a graph preserves admissible coalitions.
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Definition 2.7. A permutation 7 € Il is an automorphism of G if 7(5) €
A(G) forall S € A(G). ¢

Denote the set of automorphisms of G' by Aut(G). Automorphisms are
exactly what they are supposed to be, namely permutations of the graph
structure:

Lemma 2.8. A permutation 7 is an automorphism of G = (N, E) if and
only if for every pairi,j € N, (i,7j) € E implies that (7(i),7(j)) € E.

Proof. In one direction, suppose that ¢ is an automorphism and let S =
{7, 7} be an admissible coalition of size two, which can only hold if (i, j) €
E. Then 7(S) = {m(i), 7(j)} is also an admissible coalition. But that can
only be true if 7(i) and 7 (j) are connected, i.e., (7 (i), 7(j)) € E.

In the other direction, first note that every permutation 7 trivially maps
the empty set and singleton sets to admissible coalitions. Suppose that
(i,7) € E implies that (7(i),n(j)) € E. Then all admissible coalitions
of size two are mapped to admissible coalitions. From here proceed by
induction: is S is an admissible coalition of size k, then the assumption
implies that every admissible coalition .S U 7 is mapped to an admissible
coalition 7(.S) U (7). ]

It follows immediately that for any automorphism 7 € Aut(G), for all
players i, 7(S) € A(G)~™® for each S € A(G)~ and 7(S+) = 7(S)* for
all S € A(G) such that S # N. Furthermore, for every chain ) C S; C
... C G the image ) C 7(S;) € ... € G is also a chain in C(G). In the
sequel we will consider Aut((G) to be a group acting on C(G) or D(G).

Example 2.9. Let the set of edges I be the set of all pairs of elements in
N, i.e. the resulting graph G = (N, F) is a complete graph. Then trivially
every subset of NV is an admissible coalition of GG and every permutation is
an automorphism. The standard Shapley value is a value (in fact, the unique
value) on the set of games over complete graphs. ¢

Example 2.10. Enumerate the members of /V as 1,...,n. Define the set
of edgestobe £ = {(k,k+1) | 1 < k < n — 1}. Call the resulting
graph G = (N, E) a spectrum graph. In this case the set of automorphisms
contains only two elements: the identity mapping and the mapping that
reverses the ordering of the players (so that player 1 is mapped to player n,
player 2 to player n — 1 and so on).

This structure and a related value over it is studied in Alvarez, Hellman
and Winter (2013) ¢

Strictly speaking, we need to distinguish between values for player 7 on
K and values on G, because games on K are distinct from G (their domains
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are different, because they admit different admissible coalitions), but we
will usually refer simply to values without specifying the domain when the
intended meaning is clear.

3. AXIOMATICS

3.1. Axioms and n-Linear Values.

Additivity Axiom. A value ¢; for ¢ satisfies additivity if for every pair of
games v, w € G,

wilv+w) = pi(v) + pi(w).

A group value ¢ = (1, ..., p,) satisfies linearity if each of its individual
constituent values does.

Linearity Axiom. A value ; for ¢ satisfies linearity if it is a linear function,
i.e., for every pair of games v, w € G and o € R

wi(v 4+ aw) = @;(v) + ap;(w).

A group value ¢ = (1, ..., p,) satisfies linearity if each of its individual
constituent values does.

Null Player Axiom. A value ¢; satisfies the null player axiom if ¢;(v) = 0
whenever i is a null player in any v € G. A group value ¢ = (¢1,...,¥n)
satisfies the null player axiom if each of its individual constituent values
does.

Dummy Axiom. A value ¢; satisfies the dummy axiom if ¢;(v) = v(i)
whenever 7 is a dummy player in any v € G. A group value ¢ = (¢1,. .., ©n)
satisfies the dummy axiom if each of its individual constituent values does.

Monotonicity Axiom. A value ; satisfies the monotonicity axiom if ¢;(v) >
0 for every monotonic game v € G. A group value ¢ = (¢1,...,@,) sat-
isfies the monotonicity axiom if each of its individual constituent values
does.

Lemma 3.1. Let @; be a value for i on G satisfying linearity. Then there is
a collection of constants {ar}reac) such that for allv € G

pi(v) = Y agu(T).
TEAG)

Furthermore, if @; satisfies the null-player axiom and i ¢ T+ U T~ then
ap =0, and ifi € TTUT™ then ary; + ap\; = 0.
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Proof. Consider the game Wy that assigns 1 to the coalition 7" and 0 to
all other coalitions. Any game v can be written as v = > r.c 4 V(1) Wity
and by linearity ©;(v) = > 7 4y 0i(Wiry)v(T). The proof is concluded
by setting ap = ¢;(W{ry) and noting that ¢ ¢ 7 U T~ implies that ¢
is a null player of Wyzy, and if ¢ € T U T~ then 4 is a null player in
Wirvimiy = Wiruiy + Wi ]
Corollary 3.2. The values satisfying the linearity and null-player axioms
are exactly all the values of the form

pi(v) = > prlu(TUi) —o(T)],

TeA—?
where {p. : T € A(G),i € T} are arbitrary real numbers.

We call values that satisfy the linearity and null-player axioms n-linear
values.

In the sequel, we will gradually introduce further axioms and examine
the constraints that these axioms impose on the values of {p%}. The pic-
ture one ought to have in mind is the lattice of all admissible coalitions
(Figure 1). It can be described as an acyclic directed graph whose vertices
are the connected coalitions .A(G) and whose edges are pairs of the form
(T, T U ). Values satisfying (at least) the axioms of linearity and null-
player correspond to assignments of weights to the edges of the graph, with
©i(Wiruin) = P being the weight assigned to the edge (7,7 U ).
Lemma 3.3. An n-linear value ¢; for i on G satisfies the dummy axiom if

and only if it is a pre-probabilistic value.

Proof. In one direction we assume that ; satisfies the dummy axiom. For
each T' € A(G) ™" define p% = ary; = —ar = @;(Wyruiy). By Lemma 3.1,

piv) = > prl(TUi)—u(T)),
TeA(G)— ¢

Since 7 is a dummy player in the game Wa(ay+i = D e 4(y-s Wiruips we
have
Yo=Y eilWauy) = eilWagn) = Wae-(1) = 1.
TEAG)~ TeAG)™

Conversely, assume ) AG)—i pY- = 1 and let v be a game in which 7 is a
dummy player. By Lemma 3.1,

pi(v) = Y T Ui —o(D]= Y pro(i) = oli).

TeAG)™! TEA(G)~
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FIGURE 1. The lattice of coalitions for the 4-cycle C;

Lemma 3.4. An n-linear value p; for i on G satisfies monotonicity if and
only if the associated weights p', = o;(Wyruiy) are non-negative, for every
T e A7(G).

Proof. In one direction, we assume that (; is monotonic and shQW that the
weights pi = ¢;(Wiry,y are non-negative, for all 7' € A(G)™". For each
T, consider the unanimity game Ury;. We can write Ury; as Wity + Ury;.
Since 7 1s a null player in Up; and Upy; 1s monotonic, we get

P% = %(W{Tui}) = ¢;(Urui) > 0.
Conversely, assume that the weights p%. = ¢;(Wipy;; are non-negative,

and let v be a monotonic game. By Lemma 3.1 and since the marginal
contribution of ¢ to any coalition is non-negative,

pilv) = Y ppl(TUD) —o(T)] 2 0.
TeA(G)™?
|

Corollary 3.5. An n-linear value ¢; for v on G satisfies the dummy and
monotonicity axioms if and only if it is a probabilistic value.

Efficiency Axiom. A group value ¢ = (i1,. .., ,) satisfies efficiency if
forevery v € G

S ilv) = v(V).

iEN
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Definition 3.6. Let 7" and T~ be as defined in Equations (2) and (3). An
assignment of weights (ph);en 7ea-i(q) constitutes a unit pre-flow (on the
coalitional lattice of G7) if

Y pri= Y pr VT € AG)\ {0, N},

ieT— jeT+
E : i

Pnvi = 1
ieN—

It is a unit flow if in addition p’. is non-negative for every i € N and T €

A7(G).

Lemma 3.7. An n-linear value group ¢ on G satisfies efficiency if and only
if the associated weights {p, = p;(Wiruiy) : T € A™Y(G)} constitute a
unit pre-flow.

Proof. Let ¢ be an efficient n-linear value. We work here with the game
Wir, that assigns 1 to the coalition 7" and O to all other coalitions. Let
on(v) =D ey i(v) forany v € G. It is straightforward to show that

on(v) =) Z pT o(T Vi) = o(T))

ieN Te A(G
= Y o@D Pri- > Pk
TeA(G) €T~ jeT+

It immediately follows that Wi (N) = >, /- piT\i — D jer+ ph. But
Winy(N) = 1, hence 3, - phy; = 1, while Wir(N) = 0 forall T’ €
A(G) \ {N}, hence - piT\i = ZjET+ pr-

Conversely, assume the weights {p}, = ¢;(Wiruy) : T € A7(G)}
constitute a unit pre-flow and let v be a game.

) , 1 if T = N and
? . — J =
.Z_pT\l ZPT {o if) C T C N,

i€T JET+ - -
we have, by Lemma 3.1,

o(N)= Y o) | D pru— > b

Since

TeA(G) €T~ jeT+
=2 Z PreTUi) () =3 wilv)
1EN Te A(G iEN



GRAPH VALUE FOR COOPERATIVE GAMES 14

Corollary 3.8. An n-linear group value p on G satisfies efficiency and
monotonicity if and only if the associated weights {py = ©;(Wiruiy) -
T € A™(G)} constitute a unit flow.

A cut is a collection of coalitions C, such that ) € C and N ¢ C. Unit
pre-flows have the feature that given any cut the difference between the
weight that leaves and enters the cut is always 1. For example, A(G) \ { N}
is a cut. It has no incoming edges and the weight of the outgoing edges
Y ien- pﬁ\,\i is indeed 1, for any unit pre-flow {p’.}. Considering the cuts
Ci = {5 € A(G) : i ¢ S}, for any player i, and applying Lemma 3.3 we
get the following corollary.

Corollary 3.9. Let ¢ be an n-linear group value on G. If ¢ satisfies effi-
ciency, then ; satisfies the dummy axiom for every player 1.

Let {r, }wem, be a probability distribution over IIy. For K, a random
order group value ¢ = (1, . .., (,) is defined by

Gv) = Y re(vw U —u(w),

wellny
foralli € N andv € K.

The usual interpretation of this definition is that each permutation repre-
sents an ordered queue of the players, who enter a room one by one accord-
ing to their number in the queue. Each permutation defines a dynamic way
of forming a coalition, which grows by one player at a time, thus enabling
us to measure the contribution of each player to the coalition formed by the
players who preceded him or her in entering the room.

The corresponding notion here is that not every queue of entering players
if possible: only those in which the next player to enter the room is ‘con-
nected’ to at least one player who is already in the room are admissible.
Hence we limit consideration only to admissible permutations, i.e. in the
set D(G). In particular, now letting {7 }rcp(c) be a probability distribu-
tion over D(G), a random order (group) value { = ((1,...,(,) over G is
defined by

Go) = D ralo(@Ui) —u(@),
T€D(G)
foralli € N and v € G. Similarly, if we only require that {r } rep(c) is a
signed measure of total weight 1, then such a ( is called a pre-random order
value.

The most intuitive way to construct a random order value is to suppose
that given an admissible coalition S one has a conditional distribution over
the players in ST that represents the probability of choosing the next player
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to join. This induces a probability distribution over all admissible permu-
tations from which the weights of a random order value can be derived.
Conversely, it is easy to calculate the conditional probability of a player
joining an already-formed coalition from the weights of a random order
value. Lemma 3.10 shows that probabilistic values can be derived from
random order values. Lemma 3.11 shows that if the linearity, efficiency,
monotonicity and dummy axioms are assumed then essentially every ran-
dom order value is derived from a conditional probability measuring how
likely a player is to join an already-formed coalition, with the random order
values and probabilistic values derivable each from the other.

Lemma 3.10. Let (r,;) be a probability distribution over D(G).> Let ¢ =
(Ciy ..., Cn) be the associated random order value. Then there is a collec-
tion of probabilistic values ¢ = (¢1,...,pn) such that p;(v) = (;(v) for
alli € N andallv € G.

Proof. Fori € Nandv e g
G)= Y re(w(@ Ui) — (@)

T€D(G)
= ) > | (T Ud) —u(T))
TeA(G)~t \{reD(Q)|r=T}

Setting pir = 3" cp(@)neier) T'x foralli € N and T' € A(G) ™" and using
that to construct a collection of probabilistic values suffices to complete the
proof. [

Note that unlike the weights p%. of probabilistic values, the weights 7,
of random order values do not uniquely determine a value. This is due to
the fact that the number of admissible orderings |D(G)| may be larger than
the number of pairs {(i,7) : i« € N,T € A(G)"'}. E.g., in the graph
whose n vertexes are connected as a simple cycle, |D(G)| is exponential in
n, whereas |{(i,T) : i € N,T € A(G)~"}| is only polynomial.

Lemma 3.11. An n-linear group value ¢ satisfies efficiency if and only if
it is a pre-random order value, and p further satisfies monotonicity if and
only if it is a random order value.

Proof. Consider the set of unit flows on the coalitional lattice of G. This is
a convex compact polytope in RUTTUDEAG).€TT} hence it is the convex
hull of its extreme points. The extreme points are unit flows supported on a
single path. Furthermore, the set of unit pre-flows on the coalitional lattice
of G is the affine span of the set of unit flows.

3 Recalling that D(@) is the set d(C(G)), the admissible permutations.
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The proof is concluded by Lemma 3.7, Corollary 3.9, and Corollary 3.5,
since unit flows supported on a single path correspond to random order
values supported on a single admissible permutation. [

Symmetry Axiom. A group value p = (¢1,. .., ¢,) satisfies symmetry if

#i(v) = @x(iy (T 0 W)
forallv € G, all 7 € Aut(G) and all i € N, where mov(T) := v(x~}(T)).

3.2. Characterisation of the Graph Value.

Definition 3.12. A group value ¢ = (p1,...,p,) overagraph G = (N, E)
is a graph value if it satisfies linearity and the dummy, monotonicity, effi-
ciency and symmetry axioms.

Recall that the linear space of games on G is denoted G. The space RY
can be viewed as a subspace of G, by letting 2(S) = Y, s z;, for z € RY.
The space of linear values Hom/(G, RY), is by itself a (finite dimensional)
linear space (over R). The group Aut(G) has right and left linear actions
on Hom(G,RY) defined naturally by

(mow)(v) =mo(p(v)),
(pom)(v) = p(mou),

for ¢ € Hom(G,RY), 7 € Aut(G), and v € G. With this notation ¢ is

symmetric if and only if p = 71 o p o 7.

It is also standard to define a linear action of Aut(G) on the space of
signed measures on C(G) by

(70 p)(A) = u(r =" (A)),
forany A C C(G), m € Aut(G), and p a signed measure on C(G).

Definition 3.13. A signed measure ;. on C(G) is Aut(G) invariant if p =
mopforall m € Aut(G).

Given a signed measure ji, denote the induced pre-random order value by
Cu- It is straightforward to check that

Gu O T =T 0 Crop,
for any 7 € Aut(G). If in addition (,, is symmetric, we have
Cu=7""0C 0T = Crop, Vm€E Aut(Q).
Since the mapping p +— ¢, is linear, taking

. 1
= e 2,

reAut(QG)
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gives an Aut(G)-invariant measure such that ¢, = ;.
This leads to a characterisation of the graph values.

Definition 3.14. A symmetric pre-random order value over GG is a pre-
random order value whose weights are Aut(G)-invariant. A symmetric
random order value over GG is a random order value whose weights are
Aut(G)-invariant.

Theorem 3.15. A group value ¢ = (1, ..., pn) over G is a graph value if
and only if it is a symmetric random over value.

Proof. In one direction, let ¢ be a random order value whose weights are
Aut(G) invariant. It is easy to check that all the axioms are satisfied by
such a value.

In the other direction, suppose that ¢ satisfies the above axioms. By
Corollary 3.5, linearity and the dummy and monotonicity axioms justify
using probabilistic values, while Lemma 3.11 shows that adding efficiency
implies that ¢ = (, is a random order value induced by a random order .
By symmetry, the Aut(G)-invariant probability measure

= \Aut Z Ton

TrGAut (G)
induces . [

Since Aut(G) is a group acting on the set D(G) (equivalently, on C(G))
we can consider the set O(G) of orbits of Aut(G). The set O(G) parti-
tions D(G). Hence we can choose a representative element from each orbit
w € O(G). The condition of Aut(G) invariance of random order weights
immediately implies the next two corollaries.

Corollary 3.16. A group value over G is a graph value if and only if
it is a random order value whose weights (Tﬁ)ﬂep(g) satisfy the condi-
tion that there exists a collection of non-negative weights {p,, }.co(c) with

> weo(q) Pw = 1 such that rp = |Aut(G)| " p,, for each w € O(G) and
each m € w.

Corollary 3.17. For each orbit w € O(G) denote by U(w) the uniform
probability distribution over {7} rc,. A group value over G is a graph
value if and only if the system of weights of the associated random order
value is contained in the convex hull of {U(w)}ueco(c)-

3.3. Summary of the Axiomatics of the Graph Value.

Recall that we defined a group value over G to be an n-linear value if it
satisfies the linearity and null-player axioms. The results of this section are
then succinctly summarised in Table 1.
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n-Linear Group Value +: Equivalent to:

dummy pre-probabilistic value
dummy, monotonicity probabilistic value
efficiency pre-random order value
efficiency, monotonicity random order value
dummy, efficiency, symmetry Aut(G)-invariant pre-r.0.v.
dummy, efficiency, monotonicity, symmetry | Aut(G)-invariant r. o. v.

TABLE 1. Axiomatics summary.

4. SHAPLEY VALUE VS GRAPH VALUE

Let G be the complete graph over N, as in Example 2.9. Since Aut(G) =
ITx in this case, there is only one orbit, and Corollary 3.16 implies that
there exists a unique graph value. This unique graph value is precisely the
Shapley value. It is, of course, a celebrated result of Shapley (1953a) that
the Shapley value is unique, but we see this emerging from our discussion
here from the perspective of graph values.

In contrast to the Shapley value, the graph value in general is not unique,
because there may be several orbits. A graph is entirely anti-symmetric if
|O(G)| = |D(G)|. This occurs, for example, if Aut(G) consists solely
of the identity permutation; there are many well-known examples of such
graphs. If GG is a entirely anti-symmetric graph then any probability dis-
tribution over D(G) defines the weights of a random-order value that is a
graph value for GG. It follows from this that there are graphs whose set of
graph values contains more than one point.

From previous results it is clear that if |O(G)| = 1 then there is only
one graph value, namely the one random-order value that assigns uniform
weight to each element of D((). This, however does not mean that |O(G)| =
1 is a necessary condition for the existence of a unique graph value, as the
next result shows.

The n-cycle, for n > 3 is the graph whose vertex set is {1,...,n} with
edge set £ = {{1,2},{2,3},...,{n—1,1}}. There are two orbits for each
n-cycle, which may be termed the ‘cycle-structure order preserving orbit’
and the ‘non-order preserving orbit’.

Claim 4.1. The graph value over the n-cycle is unique for all n. The graph
value over the 3-cycle is the Shapley value, but for all n > 4 the graph
value differs from the Shapley value.

Proof. Let G be an n-cycle . If n = 3 the n-cycle is the complete graph over
3 elements and therefore there is a unique graph value that is the Shapley
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value. We concentrate henceforth on the case n > 4 and and let ¢ be any
graph value over G.

By construction, for each player ¢ there are exactly two players j and k
that are connected to ¢ in G. Let ' C G be a connected coalition of players
in G of size 1 < |T'| < n. Define i to be an internal vertex of 7" if each of
the two players j and k connected to 7 are also in 7. Consider the unanimity
game Urp. If 7 is an internal vertex of 7' then ¢ is pivotal with respect to a
given admissible permutation 7 of N iff ¢ is the last player in the ordering
defined by 7. By symmetry, each internal player has an equal probability of
being last; it follows that o;(Ur) = 1/n for all internal vertices 7.

The two players on the boundary of 7" are symmetric and they must there-
fore receive the same value by the symmetry axiom. By efficiency,

w;(Ur) = % (1 - mT_2) :

for each player j on the boundary of 7.

This is sufficient to show that the graph value is unique over the n-cycle
and that it differs from the Shapley value, which would give each player
equal value over Ur, not distinguishing between interal and boundary play-
ers. ]

Finally, we consider one more example of a graph with an interesting
graph value.

Example 4.2. The n-star graph is defined over the vertex set {0, i1, 92, ..., }
with edges {{0,4:},{0,42},...,{0,4,}}. Consider the simple majority game
v and any graph value i over the n-star graph. Then straightforward com-
binatorial calculations show that

o(v) =0
Vi, (V) = Vi, (v) = ... =1y, (v) = %
¢

The result in Example 4.2 is again very different from the Shapley value,
because the internal vertex receives a zero value under all circumstances.
This is because the graph value essentially counts the number of times each
player is a pivot player among all admissible permutations. In the simple
majority game over the star graph, the internal node can never be the pivot
player in any admissible coalition.

This may at first seem surprising, since one natural representation of the
internal node of a star graph is a market maker through whom everyone else
needs to go to conduct trade, or similarly a hub for resource distribution.
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One might think this would grant the internal player a great deal of power,
yet the axioms that we assumed, which are almost verbatim adaptations
of the standard Shapley axioms for our setting in which only connected
coalitions may be formed, end up giving that player zero value.

One explanation for this phenomenon is as follows. In the standard Shap-
ley value approach, measuring the average marginal gain a player causes by
joining coalitions is entirely equivalent to measuring the average marginal
loss he causes by leaving coalitions. In the graph value setting, this equiv-
alence no longer obtains. Since only connected coalitions may be formed,
leaving a coalition is only possible if the remaining coalition is connected.
Another way to put this idea is that if a market maker disconnects from the
other players, then no coalition of more than one player can be formed. A
market maker who quits therefore cannot improve his own payoff.

5. REDUNDANCY OF AXIOMS AND SOLUTION UNIQUENESS

The original Shapley axioms are: additivity, null player, efficiency and
symmetry. In the axiomatics of the graph value in the above section, the
additivity and null player axioms are replaced by the stronger assumptions
of linearity and the dummy axiom, and the monotonicity axiom is added.
Naturally, we would like to know if the (seemingly) weaker set of axioms
implies the stronger set of axioms.

It is not too hard to show that the dummy axiom is implied by the con-
junctions of null-player, efficiency and additivity axioms (Corollary 3.9).
Additivity is equivalent to linearity over QQ, and in conjunction with mono-
tonicity® it implies linearity. Thus, the graph value axioms are equivalent to
the Shapley axioms + Monotonicity.

Our question becomes: what are the graphs for which any solution con-
cept that satisfies the Shapley axioms is monotonic? It turns out that the
answer is related to the uniqueness of the graph value.

Theorem 5.1. If G is a graph on which the graph value is unique, then any
solution concept on G satisfying the Shapley axioms is the unique graph
value.

Theorem 5.2. Let G be a connected graph on which the graph value is not
unique. There are solution concepts on G satisfying

(1) the Shapley axioms but not linearity,
(2) the Shapley axioms + linearity but not monotonicity.

4 Continuity, a weaker assumption than monotonicity, is sufficient.
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Examples of graphs on which the graph value is unique are the complete
graph K, (on which the graph value is the classic Shapley value) and the
cycle C,.

Question 5.3. Are the complete graph K, and the cycle C,, the only graphs
on which the graph value is unique.

Now we turn to proving Theorems 5.1 and 5.2. Theorem 5.2(2) follows
from the next lemma.

Lemma 5.4. The values that satisfy the Shapley axioms + Linearity are
exactly the affine span of the graph values.

Proof. We first fix some notation. Denote the following sets of values
RO random order,
PRO  pre-random order,
SRO  symmetric random order (= graph values by Theorem 3.15),
SPRO symmetric pre-random order (= Shapley axioms
+ Linearity axioms by Lemma 3.11).

PRO is an affine space that contains RO. Lemma 3.11 asserts that PRO is
exactly the affine span of RO. The mapping

1
ANipr— ——— E -1
(Y2 | ut( )‘ s oOpoTm
reAut(G)

is a linear projection from the space of linear values to the subspace of sym-
metric linear values. The sets PRO and RO are convex Aut(G)-invariant
sets; therefore they are A invariant. It follows that A(PRO)=SPRO is the
affine span of A(RO)=SRO. ]

Lemma 5.4 implies that if the graph value is unique then it is the only
value that satisfies the Shapley axioms + linearity. Next we examine the
effect of weakening linearity to additivity.

Proof of Theorem 5.1. Additivity is equivalent to linearity over Q. Denote
the Q-linear space of all rational games by

Gi={veg:v(S)eqQ VS}.
For a real number x # 0 let
G, =2G ={vegG:z () eqQ, VS}.

For any value that satisfies the Shapley axioms ¢ and any x € R\ {0},
let ¢, be the restriction of ¥ to G, and ¢, the R-linear extension of 1, to
G. Note that ¢, is a value that satisfies the Shapley axioms + linearity. If
there is only one value satisfying the Shapley axioms + linearity, then 1) is
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uniquely defined on every G,, and since § = erR\ (o} G, ¥ 1s uniquely
defined on G. This completes the proof of Theorem 5.1. [

Proof of Theorem 5.2(1). Let ® be the set of all graph values. Let B be
a basis for R over Q. Any function h : B — ® defines a distinct Q-linear
value ¥", by ¥ = h(b),, for all b € B, proving Theorem 5.2(1). [
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