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“Wasn’t he sweet?” said Yossarian. “Maybe they should give him three votes.” 

Joseph Heller, Catch-22 

Abstract. A committee of people with common preferences but different abilities in identifying the 

best alternative (e.g., a jury) votes in order to decide between two alternatives. The first best voting 

rule is a weighted voting rule that takes the different individual competences into account, and is 

therefore not anonymous, i.e., the voters’ identities matter. Under this rule, it is rational for the 

committee members to vote according to their true opinions, or informatively. This is not necessarily 

true for an anonymous voting rule, under which members may have an incentive to vote non-

informatively. Thus, strategic, sophisticated voters may vary their voting strategies according to the 

voting rule rather than naively voting informatively. This paper shows that the identity of the best 

anonymous and monotone (i.e., quota) voting rule does not depend on whether the committee 

members are strategic or naive or whether some are strategic and some are naive. One such rule, 

called the second best rule, affords the highest expected utility in all cases.   

1  Introduction 

A committee or team is given the task of deciding which of two possible states of the world actually 

obtains. For example, a jury has to decide whether a defendant is guilty or innocent, or a medical 

panel must determine whether a patient’s condition warrants surgery. The committee may examine 

various pieces of information that can help reach this goal. However, if the information enables 

different interpretations and does not conclusively point to one state or the other, then even if the 

committee members are united in their desire to make the right decision, they may not agree on 

which decision is right. The members’ opinions need not carry equal weights. Some may be more 

competent than others in identifying the actual state. Moreover, competences, or levels of expertise, 

may be state-dependent. For example, a juror who strongly believes in the goodness of human nature 

is more likely to identify the state correctly if the defendant is innocent than if he is guilty. A physician 

who places great weight on a test that tends to over-diagnose a particular medical condition may 

have a relatively high rate of success in identifying patients who actually have the condition but a 

relatively low rate of correctly diagnosing healthy patients. The committee aims to aggregate its 

members’ opinions about the state in an efficient manner, taking into account the different individual 

competences, the prior probabilities of the two states, and the consequences of the two possible 

errors (e.g., convicting an innocent defendant and acquitting a guilty one). As shown in [6], it is always 
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possible to reach an optimal decision by weighting the members’ opinions so as to reflect their 

competences, and choosing one possible decision or the other according to whether or not the total 

weight of those favoring the former exceeds a certain threshold. Thus, if all the members vote 

naively, informatively, i.e., their votes always reflect their true opinions, then information is 

aggregated efficiently by an appropriately chosen weighted voting rule, which we refer to as the first 

best rule.1  

   A potential problem with a first best voting rule is that, for committees in which the members’ 

competences differ, the rule is generally not anonymous: different members are assigned different 

weights. Such a rule may therefore be infeasible if anonymity is required, for example, because votes 

must be kept confidential. Even if all committee members have the same preferences, restriction to 

anonymous voting rules may lead to non-informative voting.2 This is because, in a sense, an 

anonymous voting rule affords the same power to everyone, including the less competent members 

of the committee. Some of the latter may choose to suppress their own judgment and vote in a way 

that does not necessarily reflect their judgment if they think (correctly) that the other members can 

reach a better decision without them. Such strategic voting may increase the expected utility beyond 

the level of naive, informative voting. This raises the possibility that the identity of the best voting rule 

in a second best world, in which anonymity is required, may depend on whether the committee 

members are expected to vote strategically or naively. A third possibility is that only the more 

sophisticated members will vote strategically, and will choose their voting strategies to jointly 

maximize the expected utility, taking into account the voting rule used and assuming that the 

remaining, less sophisticated members will vote informatively. The main result in this paper shows 

that the identity of the best anonymous and monotone voting rule is in fact independent of these 

possibilities. A single such rule, referred to as the second best rule, affords the highest expected utility 

regardless of whether voting is strategic, naive or mixed.  

   The distinction between first and second best voting rules applies only to committees in which the 

members differ in their ability to correctly identify the state. Both rules are the same for a committee 

in which everyone is equally competent, since the first best rule is anonymous. Most related papers 

(e.g., [1], [10], [14], [17], [25], [35] and [36]) assume equal competences, and therefore do not 

consider issues arising when they are not. These issues are the main concern of the present paper.  

   Austen-Smith and Banks ([1]) demonstrated that the best voting rule for committees with equally 

competent members is characterized by the property that, under it, naive voting is (Nash) equilibrium 

behavior in that if all the members vote informatively, none has any incentive to unilaterally switch to 

a different voting strategy. This paper shows that with unequal competences, one direction in this 

characterization holds for first best rules and the other holds for second best rules. Since committee 

members are assumed to have no motivations other than to correctly identify the state, and all agree 

on the relative costs of the two possible errors, a sufficient (but not necessary) condition for naive 

voting to be equilibrium behavior is that a first best voting rule is used. In the class of anonymous and 

monotone voting rules, an essentially necessary (but not sufficient) condition is that the rule is second 

 
1 Optimal decision-making under the assumption of naive, informative voting has been studied 

extensively. Earlier studies of two-alternative models include [19], [27], [28] and [34]. Other related 

papers include [6], [7], [9], [20], [21], [31], [32] and [33]. Extensions of the two-alternative model have 

been suggested in [4], [5] and [8]. 

2 Assuming commonality of preferences avoids confounding this kind of strategic voting with the kind 

that may result from the misalignment of different individuals’ objectives. Strategic voting in the 

context of non-common preferences is studied, for example, in [12], [14], [15], [16], [17], [22], [23], 

[24], [26], [30] and [35]. For extensive strategic analysis of voting in committees, see [29]. 
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best. If naive voting is not equilibrium behavior, at least one of the less competent committee 

members can increase the expected utility by not voting informatively when all the other members do 

so.  

   Naive voting is always equilibrium behavior if complete symmetry exists between the two states of 

the world, which are also treated in a symmetric manner by the voting rule (regardless of whether the 

rule is anonymous, but assuming it is monotone). Any setting in which naive voting is not equilibrium 

behavior necessarily involves some sort of asymmetry: differences between the states regarding prior 

probabilities, the members’ abilities to identify the state, the cost of making the wrong collective 

decision, or treatment by the voting rule (e.g., an asymmetric tie-breaking rule). Asymmetry affects 

the rationality of naive, informative voting mainly by creating dependence between the state and the 

probability that each member is pivotal, i.e., his vote actually matters. State-dependent probabilities 

of being pivotal imply that the member’s vote has a different effect in the two states, which may give 

an incentive to vote in a way that does not reflect the member’s true opinion. Conversely, if the two 

probabilities are equal, it is perfectly rational for a member to act as if the decision is completely 

determined by his own vote.  

   This paper’s main model is binary in that it does not allow different degrees of certainty about the 

better decision (a member either believes that one decision is better than the other, or vice versa) or 

abstentions (the member must vote for one decision or the other). However, both the members’ 

confidence that their opinions are right and the ability to abstain may be important in the context of 

strategic voting. If different degrees of certainty are allowed, then the minimum level of confidence 

triggering a particular response (e.g., whether a juror votes “guilty” only if he is absolutely convinced 

of the defendant’s guilt or also if he is only quite convinced) may be chosen strategically. As we show, 

our main result does not hold in this case: the identity of the best anonymous voting rule may depend 

on whether or not strategic voting occurs. If abstentions are allowed, they may be used strategically 

to improve the quality of the collective decision. We show that the improvement is likely to be most 

dramatic if the committee members’ competences are such that, in some first best voting rule, some 

members have half the voting weight of the others. In this case, strategic abstention by the less 

competent members may lead to efficient information aggregation even under an anonymous, non-

first best voting rule.  

2  The Model 
An n-person committee, e.g., a jury, must decide whether to accept (decision +1) or reject (−1) a 

particular proposal, e.g., to acquit a defendant. The state of the world may be that the proposal is 

“good” (state +1) or “bad” (−1), e.g., the defendant is innocent or guilty. The state is determined as a 

random variable z, which equals +1 with (prior) probability 0  p  1 and −1 with probability 1 − p. All 

committee members have the same utility from the collective decision, which depends on both the 

decision d and the state z. In both states, the utility is higher if d = z than if d  z. The difference, 

which represents the state-dependant cost (for all members) of reaching the wrong collective 

decision, is denoted by c in state +1 and by c− in state −1. Without loss of generality, the costs are 

normalized so that c− = 1. Before the committee reaches its decision, each of its members i observes a 

random private signal si, which is either +1 or −1. The n signals, which together constitute the signal 

vector s = (s1, s2, … , sn), are conditionally independent, given the state. They represent the members’ 

opinions regarding the better decision. These opinions are based on their private information, life 

experience, and expertise.  

  We assume that the committee members’ signals are not negatively correlated with the state. 

Equivalently, the error probabilities i and i for each member i, which are, respectively, the 
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probability that i observes a −1 signal in state +1 (i.e., favoring rejection when the proposal is in fact 

good) and a +1 signal in state −1 (favoring acceptance of a bad proposal), satisfy  

 i + i  1 . (1) 

Most related papers (e.g., [1], [17] and [35]) make stronger assumptions about the signals, which 

imply that 0  i, i  1 ⁄ 2. Furthermore, nearly all of them also assume that the committee members 

are all equally competent, i.e., they have the same error probabilities. Our assumption is weaker, and 

does not even exclude the possibility that some members are more likely to be wrong than right.3 

Inequality (1), which can also be written as 1 − i  i or as i  1 − i, only means that the likelihood 

of a +1 signal is at least as high in state +1 as in state −1, and that the converse is true for a −1 signal. 

If 0  i  1, this can also be written as 

 LRi+  1  LRi− , (2) 

where LRi+ = (1 − i) ⁄ i is the likelihood ratio of a +1 signal for member i and LRi− = i ⁄ (1 − i) is the 

likelihood ratio of a −1 signal (see [13]). As we show in the Appendix, our assumption (i.e., the 

assumption that the signals are not negatively correlated with the state) is a necessary and sufficient 

condition for the following to hold: For every fixed subset of committee members S, the posterior 

probability of each state weakly increases as the number of members in S observing the 

corresponding signal increases. Note that such monotonicity is not obvious. Since the identities of the 

members observing each signal matter, conditioning only on their numbers entails bundling of 

qualitatively different situations, e.g., a situation in which only the less competent members observe 

a +1 signal and a situation in which only the more competent members observe that signal.  

   After the signals are observed, the committee takes a vote. Each committee member i must vote 

either +1 or −1 (see the last section for an extension of the model in which abstention is allowed). A 

voting strategy for i is a rule that determines his vote xi as a function i of the private signal, i.e., xi = 

i(si). (To keep our model tractable, we do not consider mixed strategies in this paper.) If i(+1) = +1 

and i(−1) = −1, then i is said to vote informatively. If i(+1) = i(−1) (= +1 or −1), then i votes non-

informatively. These three voting strategies are monotone in that i(+1)  i(−1). There is also one 

non-monotone voting strategy, which is given by i(+1) = −1 and i(−1) = +1. The n-tuple (1, 2, … , 

n) is the committee’s strategy profile. The collective decision of the committee is determined by a 

particular voting (or aggregation) rule, which prescribes either decision +1 or −1 for each voting 

vector x = (x1, x2, … , xn). The rule is anonymous if the collective decision does not depend on the 

voters’ identities but only on the number of voters who vote +1. This number will be denoted by x+. 

The rule is monotone if the following is true for every pair of voting vectors x and x′: if xi  x′i for all i 

and the collective decision +1 is prescribed to x, then it is also prescribed for x′. Anonymous and 

monotone voting rules are called quota (or cutoff) rules. Each such rule corresponds to an integer q, 

the quota, such that the collective decision is +1 if and only if x+  q. If q ≤ 0 or q ≥ n + 1 then the rule 

is trivial in the sense that the decision is either always +1 or always −1, respectively, regardless of the 

votes. If the number of committee members is odd and q = (n + 1) ⁄ 2, then the rule is the simple 

majority rule. Weighted voting rules are generalized quota rules. They are monotone but generally 

not anonymous. In such a rule, each member i is assigned a fixed voting weight wi  0 and the 

collective decision is +1 if and only if the sum of the weights of the members voting +1 equals or 

exceeds some fixed real number q.  

 
3 For example, if  i = 2 ⁄ 3,  i = 1 ⁄ 4 and p = 3 ⁄ 4, the (unconditional) probability that member i’s 

signal is incorrect is 3 ⁄ 4 · 2 ⁄ 3 + (1 − 3 ⁄ 4) · 1 ⁄ 4  = 9 ⁄ 16 (> 1 ⁄ 2). 
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3  Efficient Information Aggregation 
The committee’s decision-making process aggregates information efficiently (or completely) if, for 

every signal vector, the decision reached maximizes the conditional expected utility, given the signals. 

A first best voting rule is a rule under which information is aggregated efficiently if all the members 

vote informatively. Such a rule is not necessarily unique. However, multiple first best rules exist only if 

there are signal vectors that cannot possibly occur or for which both decisions give the same 

conditional expected utility. One first best rule has a particularly simple form.  

Theorem 1. There is always a first best rule that is a weighted voting rule. 

   This result is proved in [6] under slightly more restrictive assumptions than in this paper. A proof 

suitable for the present setting is given in the Appendix, along with the proofs of all the other results 

in this paper. The members’ weights in the first best voting rule reflect their competences. 

Specifically, we show in the Appendix that the weight wi of each member i can usually be written as 

the logarithm of LRi+ ⁄ LRi−, the quotient of the likelihood ratios of the +1 and −1 signals for member 

i. This quotient, which ultimately depends only on the error probabilities i and i, may be viewed as a 

measure of the quality, or informativeness, of i’s signal. The higher the quotient, the greater the 

effect of i’s signal on the (posterior) probabilities of the two states. 

4  Anonymity 
It follows from Theorem 1 that a first best voting rule is generally not anonymous. Committee 

members with different competences may have different voting weights, making their votes non-

interchangeable. This may be a problem in situations (such as voting on an unpopular proposal) in 

which considerations of confidentiality or simplicity favor anonymity, thus raising the question of 

which anonymous voting rule is best.4 A conceivable complication in identifying the best such rule is 

that anonymity may give rise to strategic voting, whereby one or more committee members vote 

non-informatively in order to increase the expected utility of the collective decision. This is 

demonstrated by the following simple example, in which an incentive to vote non-informatively exists 

under any non-trivial anonymous voting rule.   

 
4 One interpretation of the difference between unrestricted and anonymous voting rules, suggested 

to us by one of the referees, is the possibility or impossibility, respectively, of a communication phase 

prior to voting, in which committee members reveal their information so that its relative quality can 

be assessed. Since the committee members are assumed to have common preferences, the problem of 

misrepresentation, which is a central theme in the literature on strategic deliberation (e.g., [2], [3], [11] 

and [18]), does not arise. However, there may be non-strategic reasons for committee members not to 

speak their mind, such as a reluctance to express unpopular views or social dynamics, whereby less 

experienced members are overly influenced by the more experienced or more eloquent members. The 

effects of pre-voting communication on the members’ voting may also depend on the nature of the 

signals. We interpret the signals as the members’ opinions regarding the better decision, without 

precisely specifying the basis for these opinions. However, the consequences of information exchange 

may depend on whether the opinions are based mainly on factual knowledge, which is relatively easy 

to communicate, or intuition and gut feelings, which may be valuable reflections of the members’ life 

experiences but are less easily passed on to others. The assessment of the signals’ quality, which 

determines the members’ weights in the first best, non-anonymous voting rule, can be based on 

content in the former case but only on reputation or credentials in the latter.  
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Example 1. A two-person committee has to identify the state of the world. Member 1, with 0  1, 1 

 1, does not always identify the state correctly, whereas member 2, with 2 = 2 = 0, always does. A 

first best voting rule clearly assigns greater weight to member 2, whereas any anonymous voting rule 

by definition assigns equal weight to both members, and thus always prescribes the same decision 

when the votes differ. This implies that unless the anonymous rule is trivial, member 1 has an 

incentive to vote non-informatively. Specifically, if the decision in case of a disagreement is +1 or −1, 

and member 2 votes informatively, member 1 can increase the probability of a correct collective 

decision by disregarding his signal and always voting −1 or always voting +1, respectively. To see this, 

let the decisions when zero, one, or two members vote +1 be denoted by d0, d1, and d2, respectively. 

Without loss of generality, d1 = +1 (the analysis of the case d1 = −1 is similar). If member 1 switches 

from informative voting to always voting −1, the collective decision is affected if and only if member 

1’s signal is +1 and either (i) the state of the world is −1 and d0 = −1 or (ii) the state of the world is +1 

and d2 = −1. In both cases, the collective decision is changed from the wrong to the right one. If the 

voting rule is non-trivial, then (since d1 = +1 by assumption) d0 = −1 or d2 = −1 (or both), and member 

1’s change of voting strategy thus has a positive probability of turning an incorrect collective decision 

into a correct one, and never has the opposite effect.  

   Example 1 illustrates an important aspect of strategic voting in the context of common preferences 

under an anonymous voting rule. Namely, rather than being a bad thing, strategic voting has the 

potential of increasing the expected utility to above the level of informative voting by all committee 

members. In Example 1, non-informative voting by one member only is required. However, as the 

next example shows, it may take several members to make a positive change. 

Example 2. A three-person committee has to identify the state of the world. The prior probability and 

the cost of mis-identification are the same in both states (i.e., p = 1 ⁄ 2 and c = 1). The members’ error 

probabilities are given by 1 = 1 = 2 = 2 = 1 ⁄ 3 and 3 = 3 = 0. With informative voting by all three 

members, the anonymous voting rule under which the probability of a correct identification of the 

state is greatest, and equals 1 − (1 ⁄ 3)2 = 8 ⁄ 9, is the simple majority rule. Under this rule, none of the 

members has an incentive to unilaterally switch to non-informative voting if the others vote 

informatively. If either member 1 or 2 deviates by always voting +1 or always voting −1, the 

probability of a correct identification decreases to 1 − 1 ⁄ 2 · 1 ⁄ 3 = 5 ⁄ 6, since one state is always 

correctly identified while the other is incorrectly identified with probability 1 ⁄ 3. If only member 3 

votes non-informatively, the probability is even lower, and equals 1 ⁄ 2 · ((1 − (1 ⁄ 3)2) + (1 − 1 ⁄ 3)2) = 

2 ⁄ 3. However, if both members 1 and 2 deviate, and one of them always vote +1 and the other −1, 

the state is always correctly identified.  

   What strategy profile affords the highest expected utility under a given quota rule? The above 

examples suggest that some committee members should vote informatively and others non-

informatively. Intuitively, the latter would be expected to be the less competent members, whose 

signals are less reliable indicators of the state of the world. However, since a member’s error 

probabilities may be different in the two states, it is not generally possible to rank committee 

members according to them. Nevertheless, it is possible to partially order the members by saying that 

member i is less competent than j (and j is more competent than i) if i  j and i  j and at least 

one inequality is strict. (If both hold as equalities, the members are equally competent.) Member i has 

minimal competence if none of the others is less competent than i. The next proposition confirms this 

intuition by showing that, if i is less competent than j, then informative voting by j is always at least as 

good as by i. It also shows that it is not necessary to ever use the non-monotone voting strategy.   
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Proposition 1. Suppose that a monotone voting rule (whether anonymous or not) is used. For every 

strategy profile, the following assertions hold for every member i: 

(i) If i’s voting strategy is non-monotone, it can be changed to a monotone strategy without 

decreasing the expected utility. 

(ii) If i’s voting strategy is monotone, and there is some committee member j more competent 

than i who votes non-informatively, then switching i and j’s voting strategies does not decrease the 

expected utility.  

   Proposition 1 does not completely specify the strategy profile yielding the highest expected utility. 

However, it may help narrow the search for it. In particular, if each member i is less competent than 

member i + 1 or the two are equally competent, for i = 1, 2, … , n − 1, there exists a utility-maximizing 

strategy profile of the following form: For some k1 and k2, with 0  k1  k2  n, every member i with i  

k1, k1  i  k2, or k2  i votes +1 regardless of his signal, votes −1 regardless of his signal, or votes 

informatively, respectively. Note that the best strategy profile found in Example 2 has this form. 

5  Second Best Rules 

The examples in the previous section raise the possibility that the committee’s behavior under an 

anonymous, non-first best rule may depend on whether its members are naive or strategic. Naive 

voting means that everyone simply votes informatively. Strategic (or sophisticated) voting means that 

the committee’s strategy profile maximizes the expected utility under the voting rule used. Since our 

model does not allow for communication between committee members, which could be used for 

conditioning the votes on other members’ signals, choosing such a strategy profile is the members’ 

only possible mode of (tacit) cooperation. A more general possibility is that some members are 

strategic and others are naive. Strategic voting by the group of strategic members S (which in extreme 

cases may be the entire committee or an empty set) means that the strategies of the members in S 

(each of whom may vote informatively or non-informatively) jointly maximize the expected utility 

under the voting rule used and under the assumption that the members not in S will vote 

informatively. The expected utility thus achieved will be called the S-maximum under the voting rule. 

This is clearly determined by the set S as a monotone, non-decreasing function.  

   The possibility of strategic voting raises the question of whether, in a second best world in which 

only anonymous and monotone voting rules can be used, the voting rule should be chosen under the 

presumption that the committee will vote strategically, or vote naively, or that only a particular group 

of members (the more sophisticated ones) will vote strategically. Our main result in this paper shows 

that all of these possibilities essentially lead to the same voting rule. Although strategic voting may 

well affect the outcome (and, particularly, the efficiency) of the decision-making process, it does not 

affect the identity of the quota rule that affords the best outcome.  

Theorem 2. There is an integer q such that, for every group of committee members S, the S-maximum 

under the quota rule with quota q is greater than or equal to that under any other quota rule.  

   A quota rule as in Theorem 2 will be referred to as a second best rule. The proof of the theorem, 

which is given in the Appendix, shows that the second best rule(s) can be identified by computing the 

expected utility for different values of the quota q (which specifies the minimum number of +1 votes 

required for the decision to be +1) in the special case in which S is empty, i.e., the committee votes 

naively. Lemma 2 in the Appendix and the proof of Theorem 2 show that the expected utility is 

determined by q as a unimodal function, whose peak is at the second best rule(s). The following 

example illustrates this, and the theorem itself.  
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Figure 1 Quota rules in Example 3. The probability of a correct identification of the state under 

each value of the quota q is shown for: naive voting (triangles), strategic voting by member 1 

only (diamonds), and strategic voting by the entire committee (squares). Naive voting means 

that everyone votes informatively. Strategic voting by a group of members means that their 

strategies jointly maximize the probability of a correct identification of the state un der the 

quota q with the other members voting informatively. The probability of a correct 

identification is always highest under the second best rule (q = 3, simple majority).  

Example 3. A five-person committee has to identify the state of the world. The two states have 

different prior probabilities, given by p = 0.6 and 1 − p = 0.4, but equal costs of mis-identification (i.e., 

c = 1). Members 1 and 2, with 1 = 1 = 2 = 2 = 0.35, are less competent than members 3, 4 and 5, 

with 3 = 3 = 4 = 4 = 5 = 5 = 0.2. Straightforward (if somewhat tedious) computation shows that 

state +1 has higher posterior probability than −1 if and only if at least two of the three more 

competent members observe the signal +1, or at least one of them observes +1 and so do both 

members 1 and 2. If follows that the weighted voting rule with w1 = w2 = 1 ⁄ 2, w3 = w4 = w5 = 1, and q 

= 2 is first best (this can also be deduced from the explicit expression for the first best rule given in 

the proof of Theorem 1). Under this rule, the probability of a correct identification of the state with 

naive voting is 0.902. None of the anonymous voting rules is as good. The second best is the simple 

majority rule, under which the probability of correctly identifying the state with naive voting is 0.890. 

Strategic voting can improve on this. With non-informative voting by the two less competent 

members (only), where one always votes +1 and the other −1, the probability of a correct 

identification under the simple majority rule increases to 0.896, which is the highest probability that 

can be obtained by strategic voting under any quota rule. Thus, the efficient level of 0.902 cannot be 

obtained under a quota rule even with strategic voting. Figure 1 shows the probability of a correct 

identification of the state under all non-trivial quota rules for: (i) naive voting, (ii) strategic voting by 

member 1 only, and (iii) strategic voting by the entire committee. The highest expected utility is 

obtained under the second best rule in all three cases.  

   The second best voting rule in Example 3 is different from the first best rule, since the latter is not 

anonymous. The decision-making process thus does not aggregate information efficiently with naive 

voting under the second best rule. The same is true for the two previous examples. However, Example 

3 differs in that the decision-making process under the second best rule (and hence also under any 

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

P
ro

b
a

b
il

it
y

Quota



  

9 

other quota rule) is inefficient also if a group of committee members (or the entire committee) votes 

strategically. According to Theorem 1, efficiency requires the use of a weighted voting rule, with 

different weights reflecting the members’ diverse competences. In a quota rule, all the weights are 

unity. Strategic voting improves on this by effectively allowing zero weights: A member voting non-

informatively in effect sets his own voting weight to zero, and may also change the quota. Therefore, 

it follows from Theorem 2 that efficiency can be achieved by strategic voting under the second best 

rule if and only if there is a first best weighted voting rule with all the weights 0 and 1. This is the case 

in Examples 1 and 2 (where only the expert should be assigned a unit weight), but not in 3. 

6  Equilibrium 

Strategic voting does not require that committee members communicate with each other. In 

principle, they could reach an identical conclusion regarding the best strategy profile by 

independently analyzing the strategic situation. However, reaching such silent agreement is arguably 

less likely if (as in Example 2) it involves non-informative voting by several committee members or if 

there is more than one strategy profile that maximizes the expected utility. In such cases, naive voting 

is perhaps not unlikely. On the other hand, naive voting is unlikely if it is not equilibrium behavior: 

there is a committee member who can increase the expected utility by unilaterally switching to 

another voting strategy when all the other members vote informatively. Thus, naive voting is said to 

be equilibrium behavior when informative voting by all committee members is a Nash equilibrium in 

the (strategic form) game in which the committee members choose their voting strategies and the 

common payoff is the expected utility of the collective decision. Whether naive voting is equilibrium 

behavior depends on the voting rule used. This is always true under a first best voting rule, since by 

definition the rule achieves the highest possible expected utility when everyone votes informatively. 

Thus, we observe the following. (Although the assertion is nearly obvious, for completeness we give a 

formal proof in the Appendix.) 

Proposition 2. Under a first best voting rule, naive voting is equilibrium behavior. Indeed, no strategy 

profile gives a higher expected utility than informative voting by all the members.  

   Similar assertions do not hold for a second best voting rule. This is shown by Example 1, where naive 

voting is not equilibrium behavior under any non-trivial anonymous voting rule. In Example 3, naive 

voting is equilibrium behavior under the second best rule but not under the other non-trivial quota 

rules, all of which give member 1 an incentive to vote non-informatively. Clearly, such an incentive 

does not exist under a trivial voting rule, where the members’ votes have no effect on the decision. 

Another kind of setting in which no single member can ever affect the collective decision is one in 

which a large number of members always observe the same state-independent signals and vote 

accordingly. These two settings share the feature that there is some decision (either +1 or −1) which 

is always reached, in both states, if at least n − 1 members vote informatively. If such a decision does 

not exist, and if naive voting is equilibrium behavior, then we will say that it is non-trivially so. The 

following proposition asserts that the only quota rules for which this may occur are the second best 

ones. Such rules therefore necessarily satisfy the condition in Theorem 2, i.e., they are optimal 

regardless of whether the committee votes naively or strategically. 

Proposition 3. Suppose that a quota rule is used. If naive voting is non-trivial equilibrium behavior, 

then the rule is second best.  

   Checking whether naive voting is equilibrium behavior may be simplified by using Proposition 1, 

which implies that this is so if and only if none of the members with minimal competence can increase 

the expected utility by switching to a non-informative voting strategy. For example, the members with 



  

10 

minimal competence in Example 3 are 1 and 2, and it thus suffices to check the consequences of non-

informative voting by one of them. 

   Proposition 3 constitutes a partial converse to Proposition 2 for committees in which all the 

members are equally competent, so that the first and second best voting rules coincide. Thus, as 

already shown by Austen-Smith and Banks [1], an essentially necessary and sufficient condition for a 

non-trivial quota rule to be the (first and second) best one for such committees is that naive voting is 

equilibrium behavior under this rule.  

7  Symmetry 

Example 2, which shows that naive voting may be non-trivial equilibrium behavior also under a rule 

that is not first best, can be generalized. As the following proposition shows, naive voting is 

equilibrium behavior whenever there is complete symmetry between the two states of the world and 

the voting rule treats +1 and −1 votes symmetrically. This is mainly because, under these 

assumptions, the probability of each member being pivotal is the same in both states. Being pivotal 

means that the collective decision would be different if the member changed his vote. If the 

probability of being pivotal in one state is higher than in the other, it may be rational for the member 

to presume that the first state obtains, and to vote accordingly, regardless of the signal. This cannot 

happen in a symmetric setting and under a voting rule as above.  

Proposition 4. Suppose that the two states of the world are symmetric in that the prior probability, the 

cost of making the wrong collective decision and the members’ error probabilities are the same in both 

states. Naive voting is then equilibrium behavior under any monotone voting rule (whether 

anonymous or not) that is neutral in that if all members reverse their votes the committee’s collective 

decision is reversed.  

   In the class of anonymous voting rules, the only monotone and neutral one (which only exists with 

an odd number of committee members) is the simple majority rule. By Proposition 4, if this rule is 

used and there is complete symmetry between the two states of the world, then naive voting is 

equilibrium behavior. In view of Proposition 3, this suggests that the simple majority rule is second 

best. The following proposition confirms this. Like Proposition 4, it only assumes symmetry between 

the two states. The n committee members do not have to be equally competent (cf. Example 2).  

Proposition 5. Suppose that the symmetry assumption in Proposition 4 holds. Then, a quota rule with 

quota n ⁄ 2 or n ⁄ 2 + 1 (n even) or (n + 1) ⁄ 2 (n odd) is a second best rule.  

8  A Richer Signal Space 

A natural generalization of the above model is to allow for different degrees of confidence. Each 

member i observes a signal si that is a number between −1 and +1. The closer the signal is to either 

extreme, the surer is i that the corresponding decision (−1 or +1) is better. A zero signal indicates that 

the member does not incline to either side. A natural generalization of (1) (or (2)) is the assumption 

(essentially, a monotone likelihood ratio property; see [10], [14] and [25]) that, for each member i, 

the conditional probability that the state is +1, given i’s signal si, can be expressed as a nondecreasing 

function of si. Such a richer signal space allows for more voting strategies. For example, a member’s 

strategy may be to vote +1 if and only if he is almost sure that the state is +1 (e.g., si  0.95). As 

shown below, such non-binary signals are qualitatively different from binary ones. In particular, 

Theorem 2 does not hold in this more general setting. Thus, the best anonymous and monotone 

voting rule may depend on whether voting is strategic or naive. 
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Figure 2 Quota rules in Example 4. The probability of a correct identification of the state under 

each value of the quota q is given for: naive voting (triangles), and strategic voting by member 

2 only (diamonds). Unlike member 1, who may only observe a +1 or −1 signal, member 2 may 

also observe a third signal, which is positively correlated with the +1 state. Naive voting entails 

that 2 votes +1 in this case. With strategic voting, the vote may be either +1 or −1, depending 

on the quota. 

   The latter statement requires some elaboration. If there are more than two possible signals, but 

only two ways to vote, what does naive voting mean? One possible meaning is that a member 

observing a positive or negative signal (assuming, for simplicity, that zero signals do not occur) votes 

+1 or −1, respectively. Another possibility is to interpret naive voting as sincere voting ([1]): voting +1 

or −1 according to whether, given the observed signal, the conditional expected utility of deciding +1 

is greater or less than that for −1. However, sincere voting is not the same as naive voting even if 

there are only two possible signals. In addition, it is not really naive, since it depends on the data: the 

prior probability of the two states, the cost of making the wrong collective decision in each state and 

the member’s error probabilities. However, as the following example demonstrates, this ambiguity is 

inconsequential. Theorem 2 fails under any reasonable interpretation of “naive voting”.    

Example 4. A two-person committee has to identify the state of the world. The prior probabilities and 

the costs of mis-identification are the same for both states (i.e., p = 1 ⁄ 2 and c = 1). In both states, 

member 1’s signal can be either +1 or −1. The corresponding error probabilities are 1 = 1 ⁄ 3 and 1 = 

1 ⁄ 4. For member 2, the probabilities of not observing the signal corresponding to the true state are 

similar, 2 = 1 ⁄ 3 and 2 = 1 ⁄ 4. However, when this happens, either in state +1 or −1, member 2 

does not observe the signal corresponding to the other state but rather a third, distinct signal, “1 ⁄ 7”. 

Simple computation shows that, when 2 observes this signal, state +1 has a higher conditional 

probability than state −1, and the conditional expected utility of deciding +1 is one-seventh of a unit 

higher than for −1. Therefore, naive voting, regardless of what it means in general, must entail that in 

this particular case member 2 votes +1 (in particular, this is so if 2 votes sincerely). Hence, with naive 

voting, member 2 always votes +1 in state +1, and does so with probability 1 ⁄ 4 in state −1. What 

about strategic voting? Suppose that only member 2 votes strategically (member 1 votes 

informatively) and a non-trivial quota rule is used, i.e., q = 1 or 2. If 2’s signal is +1 or −1, then the 

signal represents the true state and 2 should vote accordingly. If the signal is 1 ⁄ 7, member 2’s 

optimal vote depends on the quota: if q = 1 or 2, the expected utility is higher if he votes −1 or +1, 
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respectively. Thus, strategic voting by member 2 alone is better than naive voting if q = 1 but gives the 

same result if q = 2. Figure 2 shows the probability of a correct identification of the state under each 

of the two non-trivial quota rules for: (i) naive voting, and (ii) strategic voting by member 2 only. As 

the figure shows, q = 2 is better than q = 1 in case (i), but worse than q = 1 in case (ii). Thus, neither 

rule is an unqualified “second best”. 

9  Abstaining from Voting 

Another direction in which our model can be extended is allowing members to abstain. The definition 

of a weighted voting rule (and, as a special case, quota rule) can be generalized to accommodate 

abstention. For example, it may be defined as a voting rule prescribing the decision +1 when the 

difference between the total weights of the members voting +1 and those voting −1 exceeds some 

threshold.5 Thus, the collective decision is a function of  

 
i

 wi xi , 

or equivalently a function of 

 
i

 wi 
xi  + 1

2  , 

where xi = 0 if member i abstains. The latter expression equals the total weight of the members voting 

+1 plus one-half the total weight of those abstaining. Thus, in a sense, abstaining is equivalent to half 

supporting and half opposing the proposal.6   

   The possibility of abstaining may be used strategically. For example, a member may choose to 

abstain rather than vote against a proposal he considers bad. The potential advantage of doing this 

under an anonymous voting rule lies in the indication given by the abstention about the identity of 

the opposing member. As the following example shows, this may lead to a better collective decision.   

Example 5. Consider again the setting in Example 3. As shown, even with strategic voting, information 

is not aggregated efficiently under the second best rule, the simple majority rule in this case, or any 

other quota rule. However, efficiency can be achieved with strategic abstention. Member 1 should 

vote +1 if his signal is +1 but should abstain if it is −1. Member 2’s optimal voting strategy depends on 

the tie-breaking rule used (which is assumed to be deterministic). A “simple majority rule” may mean 

that the decision is +1 if and only if the number of +1 votes is greater than the number of −1 votes, or 

 
5 An alternative is to consider the ratio between the two total weights, or some other function. The 

space of applicable anonymous voting rules is considerably larger than without abstentions. This 

makes the issue of second best rules, which we do not pursue in this paper, more difficult to analyze 

than in the latter case. 

6 Abstention can also be defined this way. This definition can be extended by also allowing members 

to divide their votes in ways other than half–half. Chakraborty and Ghosh [10] showed that efficiency 

may be improved by allowing divisible votes. Their explanation for this is that allowing divisibility 

overcomes the problem of dimensionality: the rich signal space they consider may have more than 

two elements. The example and discussion below show that, for a committee in which the members 

have different competences, efficiency may be improved by abstention also when the problem is not 

dimensionality of the signal space (since the number of signals equals the number of possible votes) 

but anonymity of the voting rule.  
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also if they are equal. In the former case, member 2’s optimal strategy is the same as 1’s. In the latter, 

it is to abstain or vote −1 if the signal is +1 or −1, respectively. With these strategies and informative 

voting by the three more competent members 3, 4 and 5, information is aggregated efficiently: the 

probability of a correct identification of the state is 0.902. This is because, under both versions of the 

simple majority rule, the collective decision is +1 if and only if at least two of the three more 

competent members observe the signal +1, or at least one of them observes +1 and so do both 

members 1 and 2. Thus, the decision coincides with that under the first best rule with informative 

voting. 

   As indicated above, abstention may be viewed as halving the vote. Strategic abstention (which is a 

strategy, not an action) effectively halves the member’s voting weight. This may help explain how 

strategic abstention can increase the expected utility beyond the level achievable with strategic 

voting. As explained above, informative and non-informative voting correspond to weights of 1 and 0, 

respectively. Strategic abstention corresponds to 1 ⁄ 2. This applies to the strategy of abstaining upon 

observing −1 as well as to abstention prompted by a +1 signal (which are member 2’s two possible 

strategies in Example 5). Indeed, changing from the former to the latter only leads to subtraction of a 

constant (unity) from the difference between the total number of +1 and −1 votes. It follows that the 

potential benefit of strategic abstention is likely to be greatest when, as in Example 3, the first best 

rule can be expressed as a weighted voting rule with only two weights, which are in a two-to-one 

ratio. In this case, strategic abstention by the members with the lower weight can lead to efficient 

information aggregation.  

Appendix 
The appendix presents the proofs of the two theorems and five propositions in this paper. In the 

proofs, the assumption that the signals are not negatively correlated with the state plays a central 

role. This assumption, (1), implies that if member i observes both signals with positive probability (i.e., 

0  P(si = +1), P(si = −1)  1), then  

 P(z = +1 | si = +1)  P(z = +1 | si = −1) . (3) 

In other words, the conditional probability that the state of the world z is +1, given that i’s signal si is 

+1, is at least as high as that for the signal −1. This result can be generalized. It follows from the next 

lemma as a special case (namely, l = m = ñ = 0) that the posterior probability of each state weakly 

increases with the number of committee members observing the corresponding signal. Obviously, a 

similar result holds for any fixed subset of committee members S. Thus, the posterior probability of 

each state weakly increases with the number of members in S observing the corresponding signal. 

This result generalizes (3), which says the same when S is the singleton containing only member i. 

Therefore, the assumption that (1) holds for every i is a necessary and sufficient condition for a 

positive relation, in each subset of committee members, between the number of occurrences of each 

signal and the posterior probability of the corresponding state. The lemma’s assertion is in fact 

stronger than that. For example, it allows conditioning on the event that the number of +1 signals 

outside S, i.e. in the complementary set S̃ (or alternatively in some fixed subset of S), is equal to some 

fixed number m. The stronger version is needed for the proof of Theorem 2. 

Lemma 1. For a given subset of committee members S̃, with ñ members (0  ñ  n), let s̃ be the part of 

the signal vector s consisting only of the signals of the members in S̃, and s̃+ the number of +1 signals 

in that part. For any interval of integers of the form I = {l, l + 1, … , m}, with 0  l  m, and any pair of 

integers r and q with r  q, if P(s+ = r, s̃+  I)  0 and P(s+ = q, s̃+  I)  0, then  
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 P(z = +1 | s+ = r, s̃+  I)  P(z = +1 | s+ = q, s̃+  I) . (4) 

   Since the proof of Lemma 1 is rather lengthy, we present it at the end of the appendix. 

Proof of Theorem 1. First, consider the case in which the error probabilities satisfy 0  i, i  1 for all i. 

   Suppose that all committee members vote informatively. For every voting vector x occurring with 

positive probability (i.e., the probability P(s = x) that the random signal vector s equals x is greater 

than zero), the conditional expected utility of deciding +1, given that the members’ signal vector 

equals x, is less than that for −1 if and only if   

 c P(z = +1 | s = x)  P(z = −1 | s = x) .  

The left-hand side of this inequality is the cost c of deciding −1 when the state is actually +1 multiplied 

by the conditional probability that the state is +1. The right-hand side is similar, with −1 and +1 

interchanged. (The corresponding cost is assumed to be unity.) By Bayes’ rule, the inequality is 

equivalent to  

 c p P(s = x | z = +1)  (1 − p) P(s = x | z = −1) . (5) 

The conditional probability on the left-hand side of (5) equals  

 
i

xi = +1

 (1 − i) 
i

xi = −1

  i . (6) 

(The first product involves all the members i voting +1, and the second those voting −1.) The 

logarithm of (6) equals 

 
i

xi = +1

 log (1 − i)  + 
i

xi = −1

 log i , 

which can also be written as   


i

xi = +1

 log 
1 − i

i
  +  

i

 log i . 

The logarithm of the conditional probability on the right-hand side of (5) is given by a similar 

expression, in which i is replaced (three times) by 1 − i. Therefore, taking the logarithm of both 

sides of (5) and rearranging gives the following equivalent inequality: 


i

xi = +1

 wi  q , 

where 

wi = log 
(1 − i)(1 − i)

ii
   and   q = log 

1 − p
c p  +  

i

 log 
1 − i

i
 . 

These wi’s and q define a weighted voting rule that prescribes the decision +1 to a voting vector x if 

and only if this decision maximizes the conditional expected utility, given that the signal vector equals 

x. This voting rule is, by definition, first best. 
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   It follows from (1) that the voting weight wi of each member i is nonnegative. The weight is zero if 

and only if i + i = 1, which holds if and only if i’s signal and the state are (statistically) independent. 

The voting weight can also be written as the logarithm of the quotient of the likelihood ratios of i’s 

two possible signals: 

wi = log 
(1 − i) ⁄ i

i ⁄ (1 − i)
 = log 

LRi+

 LRi−
 . 

   It remains to dispense with the initial assumption that i and i are not equal to 0 or 1. This can be 

preformed by approximating the error probabilities i and i of each member i by a pair iˆ  and iˆ  that 

satisfies 0 iˆ , iˆ   1 and iˆ  + iˆ   = i + i ( 1). These approximations can be arbitrarily close. 

Therefore, the continuity of (6) in the i’s and of the analog expression in the i’s implies that the iˆ ’s 

and iˆ ’s can be chosen in such a way that the corresponding random signal vector ŝ satisfies the 

following condition: For every voting vector x that satisfies (5),  

 c p P(ŝ = x | z = +1)  (1 − p) P(ŝ = x | z = −1) , (7) 

and similarly with the inequalities in (5) and (7) reversed. As shown above, for the approximate error 

probabilities (iˆ ’s and iˆ ’s) there is some weighted voting rule that is first best. The same rule is also 

first best for the original probabilities (i’s and i’s). This is because, if x is such that +1 is a worse 

decision than −1 when the signal vector s equals x (i.e., (5) holds), then, by virtue of (7), the voting 

rule under consideration prescribes the decision −1 for x. Similarly, this rule prescribes the decision +1 

whenever it is a strictly better collective decision than −1. ◼ 

Proof of Proposition 1. With fixed strategies for the other committee members, consider the effect of 

different voting strategies for i on the expected utility. The difference between the expected utility if i 

votes informatively or if he votes −1 regardless of his signal is given by  

 c p P(si = +1, i is pivotal | z = +1) − (1 − p) P(si = +1, i is pivotal | z = −1) . (8) 

This is because i’s vote matters only when he is pivotal, i.e., the decision is +1 or −1 if i’s vote is +1 or 

−1, respectively. Similarly, the difference between the expected utility if i votes informatively or if he 

always votes +1 is  

 −c p P(si = −1, i is pivotal | z = +1) + (1 − p) P(si = −1, i is pivotal | z = −1) . (9) 

Whether i is pivotal depends only on the votes, and hence on the signals, of the other members. Since 

the signals are conditionally independent, given the state of the world, (8) and (9), respectively, are 

equal to  

 c p (1 − i) P(i is pivotal | z = +1) − (1 − p) i P(i is pivotal | z = −1) (10) 

and  

 − c p i P(i is pivotal | z = +1) + (1 − p) (1 − i) P(i is pivotal | z = −1) . (11) 

The difference between the expected utility if i votes informatively or if he uses the non-monotone 

strategy of voting the opposite of his signal is given by the sum of (8) and (9), or equivalently the sum 

of (10) and (11). The latter two expressions cannot both be (strictly) negative, since this would imply 

that   

          max{c p P(i is pivotal | z = +1), (1 − p) P(i is pivotal | z = −1)}  

  c p i P(i is pivotal | z = +1) + (1 − p) i P(i is pivotal | z = −1) 

                   (i + i) max{c p P(i is pivotal | z = +1), (1 − p) P(i is pivotal | z = −1)} , 
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which is not consistent with (1). Therefore, there are only three possibilities: both (10) and (11) are 

nonnegative, in which case i maximizes the expected utility by voting informatively; only (10) is 

negative, in which case the maximum expected utility is attained if i always votes −1; or only (11) is 

negative, in which case the maximum expected utility is attained if i always votes +1. This proves 

assertion (i).  

   To prove (ii), consider a member j who is more competent than i and votes non-informatively. If i 

also votes non-informatively, then interchanging their voting strategies clearly has no effect on the 

expected utility. If i votes informatively, then the interchange has the same effect as changing i’s error 

probabilities to j and j. Therefore, it suffices to show that such a change of error probabilities 

(which makes i more competent) cannot decrease the expected utility. Consider (10), which gives the 

difference between the expected utility with informative voting by i and the expected utility if i votes 

−1 regardless of his signal. Clearly, only the former is affected by changing i’s error probabilities. 

Changing i and i in (10) to j ( i) and j ( i) either increases this expression or leaves it 

unchanged. Hence, it has the same effect on the expected utility. ◼ 

   The proof of Theorem 2 requires two additional lemmas, and some notation.  

Notation. For an integer q, the quota rule with quota q is denoted by Rq. Under this rule, if all 

committee members vote informatively, the decision is +1 if and only if the number s+ of +1 signals is 

at least q. The expected utility under Rq with informative voting by all the members is denoted by 

e(q). The smallest and largest integers q with P(s+ = q)  0 are denoted by qmin and qmax, respectively. 

   The next lemma shows that the function e() is unimodal.  

Lemma 2. The following assertions hold for every integer q: 

(i) If q  qmin and e(q)  e(q + 1), then e(q + 1)  e(q + 2) . 

(ii) If q  qmax + 1 and e(q)  e(q − 1), then e(q − 1)  e(q − 2) .  

Proof. For every q, the collective decision prescribed by the quota rule Rq is different from that 

prescribed by Rq + 1 only when precisely q members vote +1. Therefore, e(q)  e(q + 1) if and only if   

 c p P(s+ = q | z = +1)    (1 − p) P(s+ = q | z = −1) . (12) 

To prove (i), suppose that (12) holds and q  qmin. It has to be shown that a similar inequality to (12), 

in which q is replaced by q + 1, also holds. Suppose that this inequality does not hold. Then, P(s+ = q + 

1 | z = −1)  0 and, by Bayes’ rule, 

 c P(z = +1 | s+ = q + 1)    P(z = −1 | s+ = q + 1) . (13) 

If P(s+ = q)  0, then it follows from Lemma 1 (by choosing l = m = ñ = 0) that a similar inequality to 

(13) holds with q + 1 replaced by q. However, this contradicts (12). If P(s+ = q) = 0, then, since P(s+ = q 

+ 1 | z = −1)  0, the number of members i with i = 1 (who in state −1 observe the signal +1 with 

probability 1) must be q + 1. By (1), for each of these members i, i = 0, which implies that i observes 

the signal +1 with probability 1 in both states. Therefore, s+  q + 1  qmin with probability 1, which 

contradicts the definition of qmin. These contradictions prove (i). The proof of (ii) is similar, and can be 

obtained from the above proof essentially by interchanging the roles of +1 and −1. ◼ 

Lemma 3. For every profile of monotone voting strategies, there is an integer q such that the expected 

utility under the quota rule Rq is greater than or equal to that under any other anonymous voting rule.  
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Proof. It suffices to consider the special case in which all the members vote informatively. This is 

because, for each member i, non-informative voting is equivalent to informative voting but with 

different error probabilities: either i = 0 and i = 1, or i = 1 and i = 0. Suppose, then, that everyone 

votes informatively, and let q* be an integer such that e(q*)  e(q) for all q. To prove the assertion of 

the lemma, we assume that there is an anonymous voting rule R under which (with informative 

voting) the expected utility is greater than e(q*) (i.e., greater than under the quota rule Rq*), and show 

that this assumption leads to a contradiction. 

   Our assumption implies that there is some integer q with P(s+ = q)  0 such that the conditional 

expected utility, given that s+ = q, is greater under R than under Rq*. Suppose that the decisions 

prescribed by R and Rq* when q members vote +1 are +1 and −1, respectively (similar analysis applies 

if the decisions are −1 and +1, respectively). The difference between the conditional expected utility 

under R and that under Rq*, given that s+ = q, is  

 c P(z = +1 | s+ = q)  −  P(z = −1 | s+ = q) . 

By assumption, this difference is (strictly) positive. This implies that (12) holds with strict inequality 

and, therefore, e(q)  e(q + 1). Since P(s+ = q)  0, and hence q  qmin, repeated application of Lemma 

2 gives that e(q)  e(q′) for all q′  q. The assumption that Rq* prescribes the decision −1 when q 

members vote +1 implies that q*  q. Therefore, by the previous conclusion, e(q)  e(q*), which 

contradicts the definition of q*. This contradiction proves that an anonymous voting rule R as above 

does not exist. ◼ 

Proof of Theorem 2. Let q* be such that e(q*)  e(q) for all integers q. We claim that q* has the 

property described in the theorem. In other words, the quota rule Rq* is a second best rule. The proof 

of this is by contradiction. That is, we assume the following: For some group of members S and some 

quota q  q*, the S-maximum under Rq is greater than under Rq*. (Note that since e(q*)  e(q), S 

cannot be empty.) There may be more than one pair (S, q) with this property. Without loss of 

generality, we choose S and q in such a way that the following conditions hold for every other pair 

(S′, q′) with a similar property: 

(a) S′ is not a proper subset of S, and 

(b) if S′ = S, then |q′ − q*|  |q − q*|. 

We have to show that the assumption that such S and q exist leads to a contradiction.  

   Denote the S-maximum under Rq by M. It follows from the definition of S-maximum and Proposition 

1 that M is the expected utility under Rq for some strategy profile (1, 2, … , n) such that every 

member in S votes informatively, votes +1 regardless of his signal, or votes −1 regardless of the signal 

and every member not in S votes informatively. Let n+ and n− be the numbers of members in S voting 

+1 or −1, respectively, regardless of their signal. The following claim shows that one of these numbers 

is in fact the cardinality of the entire group S.   

CLAIM. For the strategy profile (1, 2, … , n), the following assertions hold: 

(i) None of the members in S votes informatively. 

(ii) For every i  S, i  1 and i  1. 

(iii) If q  q*, then n+ = 0, and if q  q*, n− = 0. 

   Assertion (i) follows immediately from assumption (a) above: There is no i  S who votes 

informatively, for otherwise the (S ∖ {i})-maximum under Rq would also be M. The following rather 
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similar argument shows that there is no i  S with P(si = +1) = 1. Suppose that such a member i exists. 

If i’s strategy i is to vote +1 regardless of the signal, switching to informative voting does not affect 

the way i actually votes. If i is to always vote −1, switching to informative voting and raising the 

quota to q + 1 again does not change anything. In both cases, the (S ∖ {i})-maximum under some 

quota rule is equal to M, which contradicts assumption (a) above. This contradiction proves that for 

every i  S, P(si = +1)  1, and hence i  0 or i  1. In fact, i  1 must hold, since by (1) the other 

inequality implies it. A very similar argument shows that there is no i  S with P(si = −1) = 1, and 

therefore i  1 for every i  S. This proves (ii). To prove (iii), take any integer 0  m  n+ + n− and 

change the strategies of some (or all) of the members in S in such a way that m members (instead of 

n+) vote +1 and n+ + n− − m members (instead of n−) vote −1 regardless of their signal. At the same 

time, in order not to change the expected utility, change the quota to q + m − n+. Property (b) of S and 

q implies that |(q − n+ + m) − q*|  |q − q*| must hold. If q  q*, this inequality holds for every 0  m 

 n+ + n− only if n+ = 0. If q  q*, only if n− = 0. This completes the proof of the Claim.  

   In the rest of the proof, we assume that q  q*, and hence, by the Claim, n+ = 0. (The alternative is 

that q  q* and n− = 0. The proof in this case is very similar, and can be obtained from the following 

essentially by interchanging the roles of +1 and −1.) Let S̃ denote the complement of S, s̃ the part of 

the signal vector s consisting only of the signals of the members in S̃, and s̃+ the number of +1 signals 

in that part. (If S is the entire committee, S̃ is the empty set and s̃+ = 0.) Everyone in S̃ votes 

informatively. Therefore, by (i) in the Claim and since n+ = 0, the decision under the quota rule Rq is +1 

if and only if s̃+  q. If all the members voted informatively, the decision under Rq would be +1 if and 

only if s+  q. Therefore, the two collective decisions differ if and only if s+  q  s̃+, and the difference 

M − e(q) between the S-maximum under Rq and the expected utility under informative voting by all 

committee members is    

 −c p P(s+  q  s̃+ | z = +1) + (1 − p) P(s+  q  s̃+ | z = −1) . (14) 

Since M is, by assumption, greater than the S-maximum under Rq*, the latter is clearly equal to or 

greater than e(q*), and e(q*) = maxq′ e(q′)  e(q), the difference M − e(q) is (strictly) positive. Thus, 

(14) is positive, which implies that there is some r  q with 

c p P(s+ = r, s̃+  q | z = +1)  ( − p) P(s+ = r, s̃+  q | z = −1) . 

This inequality implies that 

 P(s+ = r, s̃+  q | z = −1)  0 , (15) 

and by Bayes’ rule, 

 c P(z = +1 | s+ = r, s̃+  q)  P(z = −1 | s+ = r, s̃+  q) . (16) 

By the Claim, every member i in S has i  1, which means that i has positive probability of not 

observing the signal +1 in state −1. Together with (15) and the inequality r  q, this implies that P(s+ = 

q − 1 | z = −1)  0. Therefore, it follows from Lemma 1 (by setting I = {0, … , q − 1} in (4)) that a similar 

inequality to (16) holds with r replaced by the smaller integer q − 1. Therefore, 

 c P(z = +1 | s+ = q − 1)  P(z = −1 | s+ = q − 1) .  

This inequality implies that when q − 1 members observe the signal +1, the conditional expected 

utility of deciding +1 is less than that of deciding −1. However, since it was assumed that q  q*, the 

decision prescribed by the quota rule Rq* is +1. Changing the decision to −1 would give a new 

anonymous voting rule such that, with informative voting, the expected utility under this rule is 
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greater than under Rq*, and therefore greater than under any quota rule. However, this contradicts 

Lemma 3. This proves that the initial assumption cannot be true. Thus, S and q as above do not exist.

 ◼ 

Proof of Proposition 2. Let a first best voting rule and a strategy profile (1, 2, … , n) be given. It has 

to be shown that under the given rule, the expected utility with the given strategies is less than or 

equal to that with informative voting by all the members. The special case in which all the members 

but one vote informatively shows that naive voting is equilibrium behavior.  

   Consider the voting rule which, for each voting vector (x1, x2, … , xn), prescribes the same collective 

decision prescribed by the given first best rule for (1(x1), 2(x2), … , n(xn)). Clearly, the following are 

equal: (i) the expected utility under this rule with informative voting by all the members, and (ii) the 

expected utility under the first best rule with the given strategies 1, 2, … , n. Since (i) is by 

definition less than or equal to the expected utility under the first best rule with informative voting by 

all the members, the same is true for (ii). ◼ 

Proof of Proposition 3. Suppose that a quota rule Rq is used, and that all committee members, except 

perhaps i, vote informatively. The difference between the expected utility if i also votes informatively 

or if his strategy is to vote −1 regardless of his signal is given by (8). The conditional probabilities in 

this expression can be computed by summing over all voting vectors in which i’s vote is +1 and he is 

pivotal, which means that the total number of members voting +1 equals the quota q. Thus, (8) is 

equal to  

 
x

xi = +1

x+ = q

 [c p P(s = x | z = +1) − (1 − p) P(s = x | z = −1)] . 

If naive voting is equilibrium behavior under Rq, this expression is nonnegative for all 1  i  n, and 

summation over i gives  

 
x

x+ = q

  q [c p P(s = x | z = +1) − (1 − p) P(s = x | z = −1)]  0 , (17) 

where the factor q comes from the fact that each voting vector x appearing in the summation does so 

exactly q times (since this is the number of members i with xi = +1). If naive voting is non-trivial 

equilibrium behavior, then in addition q  0 and qmin  q  qmax + 1. The first inequality, q  0, implies 

that (17) is equivalent to (12), and hence to e(q)  e(q + 1). A very similar argument, based on (9) 

rather than (8), shows that if naive voting is non-trivial equilibrium behavior, then also e(q)  e(q − 1), 

and therefore repeated application of Lemma 2 yields e(q)  e(q′) for all integers q′. As shown in the 

proof of Theorem 2, this property of q implies that Rq is a second best rule. ◼ 

Proof of Proposition 4. By assumption, p = 1 ⁄ 2, c = 1, and i = i for all members i. Suppose that a 

monotone and neutral voting rule is used. The key to proving that naive voting in this case is 

equilibrium behavior is to show that, if all committee members vote informatively, the probability 

that each is pivotal is the same in both states of the world. As shown below, this implies that each 

member i should vote as if the collective decision is determined by his vote alone.  

   By definition, member i is pivotal in a voting vector x if and only if replacing x with the voting vector 

x(i) defined by xi
(i) = −xi and xj

(i) = xj for all j  i changes the collective decision. Since the voting rule is 
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assumed to be neutral, it prescribes different decisions for x and −x (the components of which have 

opposite signs), as well as for x(i) and −x(i). It follows, since −x(i) = (−x)(i), that i is pivotal in x if and only 

if he is pivotal in −x. This proves the left equality in the following, and the right equality follows from 

the assumption that j = j for all j: 


x

i is pivoal in x

 P(s = x | z = +1)    = 
x

i is pivoal in x

 P(s = −x | z = +1)    = 
x

i is pivoal in x

 P(s = x | z = −1) . (18) 

With informative voting by all the members, the leftmost sum in (18) equals P(i is pivotal | z = +1), the 

probability that member i is pivotal in state +1. Similarly, the rightmost sum equals P(i is pivotal | z = 

−1). The equality between these two conditional probabilities, together with (1) and the assumption 

that p = 1 ⁄ 2 and c = 1, imply that (10) is nonnegative. Therefore, with informative voting by all the 

other members, the expected utility if i also votes informatively is greater than or equal to the 

expected utility if he votes −1 regardless of his signal. A similar argument shows that with informative 

voting by all the other members, the expected utility if i also votes informatively is greater than or 

equal to that if he always votes +1. In view of Proposition 1, this proves that naive voting is 

equilibrium behavior. ◼ 

Proof of Proposition 5. The main idea of the proof is as follows. By Lemma 2, the function e(), which 

gives the expected utility with informative voting under each quota rule, is unimodal. The proof of 

Theorem 2 shows that this function peaks at the second best rule(s). The symmetry assumption 

implies that the peak can only lie at the midpoint between q = 1 and q = n. A more detailed argument 

follows. 

   By the symmetry assumption and (1), i = i  1 ⁄ 2 for all i. Therefore, qmin = 0 and qmax = n. In 

addition, for any q, the probability that in state +1 q members observe the signal +1 and n − q observe 

−1 is equal to the probability that in state −1 q members observe −1 and n − q observe +1. In other 

words, P(s+ = q | z = +1) = P(s+ = n − q | z = −1). Since by the symmetry assumption p = 1 ⁄ 2 and c = 1, 

this implies that if all the members vote informatively, the expected utility under the anonymous 

voting rule that prescribes the decision +1 if and only if the number of +1 signals is at least q is equal 

to the expected utility under the rule prescribing −1 if and only if the number of −1 signals is at least 

q. In other words, for every q, e(q) = e(n − q + 1), and hence also e(q + 1) = e(n − q), which implies that 

 e(q) − e(q + 1) = e(n − q + 1) − e(n − q) . (19) 

CLAIM. If 0  q  n ⁄ 2 or n ⁄ 2  q  n, then e(q)  e(q + 1) or e(q)  e(q + 1), respectively.  

   To prove this, suppose that 0  q  n ⁄ 2. If e(q)  e(q + 1), repeated application of Lemma 2 yields 

e(n − q)  e(n − q + 1), but (19) implies that e(n − q + 1)  e(n − q). This contradiction proves that e(q) 

 e(q + 1). A similar argument shows that, if n ⁄ 2  q  n, then e(q)  e(q + 1). 

   It follows from the Claim that, for an integer q* with n ⁄ 2  q*  n ⁄ 2 + 1, e(q*)  e(q) for all q. As 

shown in the proof of Theorem 2, this property of q* implies that the quota rule Rq* is second best. 

 ◼ 

Proof of Lemma 1. By Bayes’ theorem, for any interval I and integer q with P(s+ = q, s̃+  I)  0, 

P(z = +1 | s+ = q, s̃+ I) = 
p P(s+ = q, s̃+  I | z = +1)

p P(s+ = q, s̃+I | z = +1) + (1 − p) P(s+ = q, s̃+I | z = −1)
 .  (20) 

The right-hand side of (20) can be expressed as a function of the members’ error probabilities, the i’s 
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and i’s. This function is continuous (indeed, rational). Therefore, it suffices to prove the assertion of 

the lemma under the additional assumption that 0  i, i  1 for all i. Under this assumption, for any 

interval of integers of the form I = {l, l + 1, … , m} with 0  l  m and integers r and q with r  q,  

P(s+ = r, s̃+  I)  0 and P(s+ = q, s̃+  I)  0 if and only if r and q lie in the interval {l, l + 1, … , m + n − ñ} 

and ñ  l. In this case, q + 1 also lies in that interval, so that P(s+ = q + 1, s̃+  I)  0. Therefore, it 

suffices to consider in the proof of the lemma only the special case r = q + 1. Since 0  p  1, it follows 

from (20) that (4) holds for r = q + 1 if and only if  

 P(s+ = q + 1, s̃+  I | z = +1) P(s+ = q, s̃+  I | z = −1)  

                       P(s+ = q, s̃+  I | z = +1) P(s+ = q + 1, s̃+  I | z = −1) . (21) 

Hence, we only have to show that (21) holds, for an interval I = {l, l + 1, … , m} and integer q which are 

kept fixed throughout the rest of the proof. 

   For each voting vector x and member i, let x(i) be the voting vector defined by xi
(i) = −xi and xj

(i) = xj 

for all j  i. 

CLAIM 1. For every pair of voting vectors x and y and every member i with xi = +1 and yi = −1,  

 P(s = x | z = +1) P(s = y | z = −1)  P(s = x(i) | z = +1) P(s = y(i) | z = −1) . (22) 

   This can be proved as follows. Since the only difference between x and x(i) is that i’s vote in the 

former is +1 and in the latter −1, P(s = x | z = +1) = (1 − i) A and P(s = x(i) | z = +1) = i A, where A is a 

nonnegative expression that depends only on the error probabilities of the members other than i (see 

(6)). Similarly, P(s = y | z = −1) = (1 − i) B and P(s = y(i) | z = −1) = i B, for some nonnegative 

expression B. Thus, if both sides of (22) are explicitly written as products of probabilities, the only 

difference between them is that the product (1 − i)(1 − i) on the left-hand side is replaced on the 

right-hand side by ii. Since (1 − i)(1 − i) = (1 − i − i) + ii  ii by (1), the inequality (22) holds.  

   To use Claim 1 to prove (21), we need to consider the following set of pairs of voting vectors: 

V = {(x, y) | x+ = q + 1, y+ = q , x̃+ I and ỹ+  I} , 

where a tilde (˜) over a voting vector indicates that only the votes of the members in S̃ are 

considered. Two pairs (x, y) and (x′, y′) in V will be said to be joined by committee member i if xi = +1, 

yi = −1, x(i) = y′ and y(i) = x′. These conditions are equivalent to the following, symmetric ones: x′i = +1, 

y′i = −1, x′(i) = y and y′(i) = x. Two pairs in V can be joined by at most one member i (since x(j) = y′ = x(i) 

cannot hold if j  i). This relation between elements of V can be described by an undirected graph , 

with the vertex set V, in which two vertices are joined by an edge if and only if they are joined by 

some committee member i. More precisely,  is a multigraph, or pseudograph. It does not have 

multiple edges, but may have loops, which represent elements of V that are joined with themselves 

by some (unique) committee member i.  

CLAIM 2. Positive weights can be assigned to the edges in  such that, for each vertex (x, y), the 

weights of the edges incident with (x, y) (including loops) sum up to 1.   

   Before presenting the proof of Claim 2, which is rather involved, we show how the existence of such 

weights implies (21). For every two pairs (x, y) and (x′, y′) in V (possibly, (x, y) = (x′, y′)), let W(x, y; 

x′, y′) be the weight of the edge joining them, if such an edge exists, and 0 otherwise. For every (x, y) 

 V,  
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 
(x′, y′)  V

  W(x, y; x′, y′) = 
(x′, y′)  V

  W(x′, y′; x, y)  = 1 , 

and therefore, by Claim 1,  

          P(s = x | z = +1) P(s = y | z = −1)   

   
(x′, y′)  V

  W(x, y; x′, y′) P(s = y′ | z = +1) P(s = x′ | z = −1) .   

Summing over all pairs in V gives  

           
(x, y)  V

  P(s = x | z = +1) P(s = y | z = −1)  

  
(x, y)  V

     
(x′, y′)  V

  W(x, y; x′, y′) P(s = y′ | z = +1) P(s = x′ | z = −1) (23) 

 = 
(x, y)  V

     
(x′, y′)  V

  W(x′, y′; x, y) P(s = y | z = +1) P(s = x | z = −1) 

                                  = 
(x, y)  V

  P(s = y | z = +1) P(s = x | z = −1) . 

(The first equality holds since its two sides differ only in the order of summation.) The first and last 

sums in (23) are equal to the expressions on the left- and right-hand sides of (21), respectively. 

Therefore, (23) shows that (21) holds. 

   To complete the proof of the lemma, it remains to prove Claim 2. The proof requires two additional 

claims, and the following notation. For (x, y)  V, denote: 

n+ − = |{j | xj = +1 and yj = −1}| ,  n− + = |{j | xj = −1 and yj = +1}| , 

ñ+ − = |{j  S̃ | xj = +1 and yj = −1}| , ñ− + = |{j  S̃ | xj = −1 and yj = +1}| , 

ñ+ + = |{j  S̃ | xj = yj = +1}| . 

(|T| is the cardinality of set T.) It is not difficult to see that the following identities hold:  

 ñ+ + + ñ+ − = x̃+ ,   ñ+ + + ñ− + = ỹ+,  (24) 

n+ − − n− + = x+ − y+ = (q + 1) − q = 1 . 

CLAIM 3. In every (connected) component of the graph , n+ −, n− +, ñ+ − + ñ− + and ñ+ + are constants, 

i.e., they have the same values at all vertices. 

   To prove the claim, is suffices to consider two elements in V, (x, y) and (x′, y′), that are joined by 

some i, so that xi = +1, yi = −1 and (x′, y′) = (y(i), x(i)). Clearly, ñ+ + is the same at (x, y) and (y(i), x(i)), and 

so is also ñ+ − + ñ− +, which equals |{j  S̃ | xj  yj}|. Since by (24) n+ − = n− + + 1, it remains only to show 

that the value of n+ − at (x, y) is equal to the value of n− + + 1 at (y(i), x(i)). The former is equal to the 

cardinality of the set {j | xj = +1 and yj = −1}, and the latter to that of {j | yj
(i) = −1 and xj

(i) = +1} plus 

one. Since the latter set is obtained from the former by deleting from it the single element i, the two 

values are indeed equal. This completes the proof of Claim 3. 
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CLAIM 4. Each component of the graph  satisfies at least one of the following two conditions: 

(i) All the vertices in the component have the same number   1 of neighbors 

(possibly, including themselves).  

(ii) At each of the vertices, 1  ñ+ −  n− +.  

   To prove this, note first that the number of neighbors of a vertex (x, y) is equal to the number of 

committee members i such that xi = +1, yi = −1 and (y(i), x(i))  V. If xi = +1 and yi = −1, the last 

condition holds if and only if l  x(i)̃+  m and l  y(i)̃+  m. This is automatically so if i  S̃, but if i  S̃, 

the condition holds if and only if x̃+  l and ỹ+  m. This shows that the number of neighbors of a 

vertex (x, y) is n+ − if x̃+  l and ỹ+  m, and n+ − − ñ+ − if at least one inequality does not hold. In the first 

case, (x, y) is joined with elements of V by each of the members i with xi = +1 and yi = −1, and in the 

second case, only by such i who do not belong to S̃. Since by Claim 3 the value of n+ − is the same at all 

vertices in a component, and by (24) n+ −  1, this shows that a component of  does not satisfy 

condition (i) only if it includes at least one vertex (x, y) with ñ+ −  1 such that x̃+ = l or ỹ+ = m. We have 

to show that the existence of such a vertex implies that the component satisfies condition (ii). 

   Let (x, y) be as above. By (24), x̃+ + ỹ+ is equal to 2ñ+ + + (ñ+ − + ñ− +). Since by Claim 3 the latter is 

constant in the component, every other vertex (x′, y′) in it satisfies x̃′+ + ỹ′+ = x̃+ + ỹ+. By definition of 

V, all four terms in this equality are between l and m. Since by assumption x̃+ = l or ỹ+ = m, this implies 

that 

 l  x̃+  x̃′+  m  and  l  ỹ′+  ỹ+  m . (25) 

Since ñ+ + is constant in the component, it follows from the first part of (25) and the first equality in 

(24) that the value of ñ+ − at (x′, y′) is greater than or equal to that at (x, y). This shows that the 

minimum value of ñ+ − in the component is attained at the vertex (x, y). Since it is assumed that at that 

vertex ñ+ −  1, the same is true at all vertices in the component. It remains to show that the other 

inequality in (ii), ñ+ −  n− +, also holds at all vertices. This inequality is equivalent to each of the 

following two: (a) ñ+ + + ñ− +  ñ+ + + (ñ+ − + ñ− +) − n− +, and (b) ñ+ − + ñ+ +  ñ+ + + n− +. By Claim 3, the 

value of the expression on the right-hand side of inequality (a) at any vertex in the component is 

equal to the value at (x, y), and the same is true for the expression on the right-hand side of (b). Since, 

necessarily, n− +  ñ− +, it follows from (24) that the right-hand side of (a) is less than or equal to x̃+ and 

the right-hand side of (b) is greater than or equal to ỹ+. By assumption, x̃+ = l or ỹ+ = m. Therefore, it 

suffices to show that the following inequalities hold at all vertices in the component: (a′) ñ+ + + ñ− +  l, 

and (b′) ñ+ − + ñ+ +  m. At each vertex (x′, y′), these inequalities can be written as ỹ′+  l and x̃′+  m, 

which hold by (25). Therefore, condition (ii) holds. This completes the proof of Claim 4. 

   The proof of Claim 2 can now be completed. Clearly, it suffices to show that for any given 

component of the graph  there is an assignment of weights to the edges in the component such that 

the total weight of the edges incident with each vertex is unity. If condition (i) in Claim 4 holds for the 

component, all the edges in it may simply be assigned the weight 1 ⁄ . In the rest of the proof, we 

assume that condition (ii) in Claim 4 holds for the component. 

   Consider two neighboring vertices in the component, (x, y) and (x′, y′) (which can be distinct or the 

same vertex), that are joined by some (unique) member i. The weight that needs to be assigned to the 

edge joining the vertices depends on whether or not i is in S̃. If i  S̃, the weight is  

 
1

n+ − [1  +  
C





n− +

ñ− +  




n− +

ñ+ −

 ] , (26) 
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where C is a positive integer, given explicitly below, which is the same for all the edges in the 

component. If i  S̃, the weight is 

 
1

n+ − [1  −  
C





n− +

ñ− +  




n− +

ñ+ − − 1

 ] . (27) 

(As shown below, the explicit expression of C is such that this weight is positive.) Since by assumption 

n− +  ñ+ −  1 everywhere in the component, the combinatorial coefficients in (26) and (27) are well 

defined. Each coefficient may have different values at (x, y) and (x′, y′). However, if i  S̃, the product  





n− +

ñ− +  




n− +

ñ+ −  

has the same value at both vertices, since the values of ñ− + and ñ+ − at (x, y) are equal, respectively, to 

those of ñ+ − and ñ− + at (x′, y′) and, by Claim 3, n− + is the same at both vertices. Similarly, if i  S̃, then  





n− +

ñ− +  






n− +

ñ+ − 
− 1

 

has the same value at both vertices, since the values of ñ− + and ñ+ − − 1 at (x, y) are equal, 

respectively, to those of ñ+ − − 1 and ñ− + at (x′, y′). Since, by Claim 3, 1 ⁄ n+ − is constant in the 

component, this shows that the weight ((26) or (27)) of the joining edge can be computed at either 

vertex.  

   We have to show that the weights of the edges incident with each vertex (x, y) in the component 

sum up to 1. There are two cases to consider. In the first case, x̃+  l and ỹ+  m, and in the second, x̃+ 

= l or ỹ+ = m. As shown in the proof of Claim 4, in the first case (x, y) is joined with elements of V by 

n+ − − ñ+ − (= n− + + 1 − ñ+ −, which is a positive number since it is assumed that n− +  ñ+ −) members not 

in S̃ and ñ+ − ( 1 by assumption) members in S̃. Hence, the total weight of the edges incident with 

(x, y) is 

 
n+ − − ñ+ −

n+ −  [1  +  
C





n− +

ñ− +  




n− +

ñ+ −

 ]  +  
ñ+ −

n+ − [1  −  
C





n− +

ñ− +  




n− +

ñ+ − − 1

 ] (28) 

                 = 1 + 
C

n+ − 




n− +

ñ− +

 [(n− + + 1 − ñ+ −) (n− + − ñ+ −)! ñ+ −!

n− +!
 − 

ñ+ − (ñ+ − − 1)! (n− + − (ñ+ − − 1))!

n− +!
]  

                          = 1 . 

In the second case, in which x̃+ = l or ỹ+ = m, (x, y) is joined with elements of V only by n+ − − ñ+ − 

members not in S̃. In this case, the total weight is  

 
n+ − − ñ+ −

n+ −  [1  +  
C





n− +

ñ− +  




n− +

ñ+ −

 ] .  

The requirement that this equals 1 determines C uniquely. Specifically, C has to be such that the 

second term on the left-hand side of (28) is zero, which is the case if  

  C = 




n− +

ñ− +  




n− +

ñ+ − − 1
 . (29) 

It has to be shown that this expression for C is independent of (x, y), i.e., it has the same value at 



  

25 

every other vertex (x′, y′) in the component with x̃′+ = l or ỹ′+ = m. For such a vertex, (25) implies that 

x̃′+ = x̃+ = l or ỹ′+ = ỹ+ = m. Since, by Claim 3, n− +, ñ+ − + ñ− + and ñ+ + have the same values at (x, y) and 

(x′, y′), this implies that  

 




n− +

ñ+ − + ñ− + + ñ+ + − x̃+  




n− +

x̃+ − 1 − ñ+ +  = 




n− +

ñ+ − + ñ− + + ñ+ + − x′̃+
 




n− +

x′̃+ − 1 − ñ+ +   (30) 

or 

 




n− +

ỹ+ − ñ+ +  




n− +

ñ+ + + ñ+ − + ñ− + − ỹ+ − 1
 = 





n− +

y′̃+ − ñ+ +  




n− +

ñ+ + + ñ+ − + ñ− + − y′̃+ − 1
 .  (31) 

For the vertex (x, y), the expressions on the left-hand sides of (30) and (31) are both equal to the 

expression in (29). For (x′, y′), the expressions on the right-hand sides are equal to the expression in 

(29). The value of C is therefore the same regardless of whether (x, y) or (x′, y′) is used to define it, 

and in addition,  

           C = 




n− +

ñ+ − + ñ− + + ñ+ + − l
 




n− +

l − 1 − ñ+ +    or   C = 




n− +

m − ñ+ +  




n− +

ñ+ + + ñ+ − + ñ− + − m − 1
 . (32) 

   It remains to show that the weight (27) is positive for every vertex (x′, y′) in the component under 

consideration with x̃′+  l and ỹ′+  m. (For a vertex with x̃′+ = l or ỹ′+ = m, (27) is zero, since (29) holds. 

However, such a vertex is not incident with any edge whose weight is given by (27).) Clearly, it suffices 

to show that if the first equality in (32) holds, then at (x′, y′) 





n− +

ñ+ − + ñ− + + ñ+ + − l
 




n− +

l − 1 − ñ+ +   




n− +

ñ− +  




n− +

ñ+ − − 1
 , 

and if the second equality holds, then  





n− +

m − ñ+ +  




n− +

ñ+ + + ñ+ − + ñ− + − m − 1
  





n− +

ñ− +  




n− +

ñ+ − − 1
 . 

The inequality that has to be proven has a similar form in both cases. With  = n− + and  = ñ− +, it has 

the form 

 






 






  






 





(  + ) − 
 , (33) 

where, in the first case,  = ñ+ − + ñ− + + ñ+ + − l and  = l − 1 − ñ+ +, and in the second case,  = m − ñ+ + 

and  = ñ+ + + ñ+ − + ñ− + − m − 1. Since, by the assumption concerning (x′, y′) and the definition of V, l  

x̃′+  m and l  ỹ′+  m, it follows from equations similar to (24) that in both cases     . Therefore, 

regardless of which equality in (32) holds, the corresponding inequality holds as a special case of the 

following general claim. 

CLAIM 5. Inequality (33) holds for any four integers satisfying         0. 

   The proof of this claim, which involves standard manipulations of combinatorial coefficients, is 

omitted. ◼ 
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