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Introduction

A list of axioms, adapted from those which uniquely characterize the Shap-
ley value for finite-player cooperative games, determines a unique value
on certain classes of nonatomic cooperative games—games involving an
infinite number of players, each of which is individually insignificant (Au-
mann and Shapley, 1974). Concrete criteria for identifying a given non-
atomic game as belonging to such a class of games, and a formula for com-
puting the value, are known for certain kinds of vector measure games
(Aumann and Shapley, 1974). In a vector measure game, the worth of a
coalition S depends only on the value that a particular vector measure on
the space of players takes in S. In this context, the term “vector measure”
usually refers to an Rn-valued measure, that is, to a vector of n scalar mea-
sures. However, certain nonatomic games are more naturally described
in terms of measures that take values in an infinite dimensional Banach
space.

Consider, for example, a (transferable utility) market game v, where
the worth of a coalition S is

v(S) = max
�Z

S
u(x(i), i) dm(i)

���� ZS
x(i) dm(i) =

Z
S

a(i) dm(i)
�

, (1)

the maximum aggregate utility that S can guarantee to itself by an alloca-
tion x of its aggregate endowment

R
S a dm among its members (Aumann,

1964. In this formula, u(ξ, i) is the utility that player i gets from the bun-
dle ξ and m, the population measure, is a nonatomic probability mea-
sure.) Since v(S) depends on S only through certain integrals over S, if
m(SnT) = m(TnS) = 0 then v(T) = v(S). Thus, v(S) can be expressed
as a function of the characteristic function χS of the coalition S, seen as
an element of L1(m). The market game under consideration can therefore
be viewed as a vector measure game based on the L1(m)-valued vector
measure defined by S 7! χS.

Only one previous work known to me deals with vector measure games
based on vector measures with values in an infinite dimensional vector
space. Sroka (1993) studied games based on vector measures of bounded
variation with values in a relatively compact subset of a Banach space with
a shrinking Schauder basis. The vector measure considered above in con-
nection with the market game is not of this kind: its range is not a rela-
tively compact subset of L1(m), and L1(m) itself does not have a shrinking
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Schauder basis. (Only a separable Banach space with a separable dual
space can have such a basis. Considering the range of the measure in
question to be a subset of L2, say, rather then L1, would not help, for the
measure would not then be of bounded variation. Note that if the range
space were taken to be L∞ then the above set function would not even be
a measure; specifically, it would not be countably additive.) In the first
part of this paper, these limitations on the range of the vector measure
and on the space in which it lies are dispensed with. Thus, the results
of Aumann and Shapley are generalized to a much larger class of vector
measure games.

As the above market game example demonstrates, the present inter-
pretation of “vector measure games” is broad enough to include all games
in which the worth of a coalition is not affected by the addition or subtrac-
tion of a set of players of measure zero—the measure in question being
a fixed nonatomic scalar measure on the space of players. All the games
that belong to one of the spaces of games on which Aumann and Shapley
have proved the existence of a unique value have this property, and can
therefore be represented as vector measure games. This representation is,
however, not unique. It is therefore desirable to reformulate the conditions
for a vector measure game to belong to one of these spaces in a language
that does not make an explicit reference to vector measures. Such an alter-
native formulation is presented in the second part of the paper, where the
above conditions are stated as differentiability and continuity conditions
on a suitable extension of the game, an ideal game, that assigns a worth to
every ideal, of “fuzzy”, coalition, in which some players are only partial
members.

The last part of the paper contains an example that shows how these
general results can be applied to market games. Another application, in-
volving cooperative games derived from a particular class of nonatomic
noncooperative congestion games, is given in a separate paper (Milch-
taich, 2004). Two rather technical lemmas, which are of some independent
interest, are given in the Appendix.

Preliminaries

The player space is a measurable space (I, C). A member of the σ-field C is
called a coalition. A set function is a function from C into a real Banach space
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X. The variation of a set function v is the extended real-valued function jvj
defined by

jvj(S) = sup
n
∑

i=1
kv(Si)� v(Si�1)k (S 2 C),

where the supremum is taken over all finite nondecreasing sequences of
coalitions of the form S0 � S1 � � � � � Sn = S. A set function v is of
bounded variation if jvj(I) < ∞. A game is a real-valued set function v such
that v(∅) = 0. A game v is monotonic if T � S implies v(T) � v(S). BV
denotes the normed linear space of all games of bounded variation en-
dowed with the operations of pointwise addition and multiplication by
a (real) scalar and with the variation norm (called the “variation” in Au-
mann and Shapley, 1974) kvkBV = jvj (I). The monotonic games span this
space. The subspace of BV that consists of all finitely additive real-valued
set functions of bounded variation is denoted FA.

A vector measure is a countably additive set function. A (finite, signed)
measure is a real-valued vector measure. A vector measure µ is nonatomic
if for every S 2 C such that µ(S) 6= 0 there is a subset T � S such that
µ(T), µ(SnT) 6= 0. The variation jµj (also called the total variation mea-
sure) of a vector measure of bounded variation µ is a measure (Diestel
and Uhl, 1977, p. 3). jµj is nonatomic if and only if µ is nonatomic. The
subspace of BV that consists of all nonatomic (finite, signed real-valued)
measures is denoted NA.

An ideal coalition is a measurable function h : I ! [0, 1]. For a vector
measure µ and an ideal coalition (or a linear combination of ideal coali-
tions) h, µ(h) denotes the integral

R
h dµ. See Dunford and Schwartz

(1958, Section IV.10) for a definition of integration with respect to a vec-
tor measure. The space I of ideal coalitions is topologized by the NA-
topology, defined as the smallest topology on I with respect to which all
functions of the form µ(�), µ 2 NA, are continuous. As a base for the
neighborhood system of an ideal coalition h one can take the collection of
all open sets of the form fg 2 Ijmax1�i�k jmi(g � h)j < εg, with ε > 0
and m1, m2, . . . , mk 2 NA.

The range of a vector measure µ is the set µ(C). If the range of µ (or,
more precisely, the subspace it spans) is finite dimensional then µ is au-
tomatically of bounded variation. If in addition µ is nonatomic then its
range is compact and convex (Lyapunoff theorem). The range of a general
nonatomic vector measure need not be compact nor convex. However, for
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every vector measure µ the set µ(I) = fµ(h)jh 2 Ig is convex and weakly
compact (Diestel and Uhl, 1977, p. 263). This set coincides with the closed
convex hull of µ(C), and if µ is nonatomic then it is also the weak closure
of µ(C) (Diestel and Uhl, 1977, p. 264). We will call µ(I) the extended range
of µ.

EXAMPLE. Let m be a probability measure on (I, C), and define µ :
C ! L1(m) by µ(S) = χS. Then µ is a vector measure of bounded vari-
ation whose variation is m. Therefore, µ is nonatomic if and only if m is
nonatomic. The range of µ consists of all (equivalence classes of) character-
istic functions of measurable subsets of I. This is a closed, but not convex,
subset of L1(m), and if m is nonatomic then it is also not compact. The
extended range of µ is the set of all (equivalence classes of) measurable
functions from I into the unit interval. Indeed, for every h 2 I , µ(h) = h.
Note that in this example the weak compactness of the extended range of
µ follows immediately from Alaoglu’s theorem and from the fact that the
relative weak topology on this set coincides with the relative weak* topol-
ogy on it when seen as a subset of L∞(m).

We will say that a real-valued function f defined on a convex subset
C of a Banach space X is differentiable at x 2 C if there exists a continuous
linear functional D f (x) 2 Y�, where Y is the subspace of X spanned by
C�C = fy� zjy, z 2 Cg and Y� is its dual space, such that for every y 2 C

f (x+ θ(y� x)) = f (x) + θ hy� x, D f (x)i+ o(θ)

as θ ! 0+. (The angled brackets h�,�i denote the operation of applying
an element of Y� to an element of Y.) This continuous linear functional,
which is necessarily unique, will be called the derivative of f at x. The func-
tion f is (weakly) continuously differentiable at x if it is differentiable in a (re-
spectively, weak) neighborhood of x in C and D f is (respectively, weakly)
continuous at x. The function f is (weakly) continuously differentiable if it is
(respectively, weakly) continuously differentiable in the whole of its do-
main. The restriction of a (weakly) continuously differentiable function to
a convex subset of its domain is (respectively, weakly) continuously differ-
entiable. Continuous differentiability and weak continuous differentiabil-
ity are equivalent for functions with compact domain. This follows from
the fact that the relativization of the weak topology to a compact subset of
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a Banach space coincides with the relative norm topology (because every
set that is closed, and hence compact, with respect to the relative norm
topology is compact, and hence closed, also with respect to the relative
weak topology). A real-valued function f defined on a bounded convex
subset C of a Banach space X is (weakly) continuous at every point x at
which it is (respectively, weakly) continuously differentiable.1 If X is a
Euclidean space and C is compact then f is continuously differentiable if
and only if it can be extended to a continuous function on X with contin-
uous first-order partial derivatives.

The closed linear subspace of BV that is generated by all powers (with
respect to pointwise multiplication) of nonatomic probability measures
is denoted pNA. There exists a unique continuous linear operator ϕ :
pNA ! FA that satisfies ϕ(µk) = µ for every nonatomic probability mea-
sure µ and positive integer k, called the (Aumann-Shapley) value on pNA.
See Aumann and Shapley (1974) for an axiomatic characterization of the
value.

For a game v, define kvk∞ = inffm(I)jm 2 NA, and jv(S)� v(T)j �
m(SnT) for every S, T 2 C with T � S} (inf ∅ = ∞). The collection of all
games v such that kvk∞ < ∞ is a linear subspace of BV, denoted AC∞, and
k�k∞ is a norm on this space. The k�k∞-closed linear subspace of AC∞ that
is generated by all powers of nonatomic probability measures is denoted
pNA∞. This space is a proper subset of pNA.

Vector Measure Games

A composed set function of the form f � µ, where µ is a nonatomic vector
measure of bounded variation and f is a real-valued function defined on
µ(I) such that f (0) = 0, will be called a vector measure game. Aumann and
Shapley (1974) proved that if the range of µ is finite dimensional then a
sufficient condition for a vector measure game f � µ to be in pNA (actu-
ally in pNA∞) is that f be continuously differentiable. The value of such
a vector measure game is given by the so-called diagonal formula. Sroka

1Proof: If U is a convex neighborhood of x in C in which f
is differentiable then it follows from the mean value theorem that
j f (y)� f (x)j � sup0<θ<1 jhy� x, D f (x+ θ(y� x))ij � jhy� x, D f (x)ij +
ky� xk supz2U kD f (z)� D f (x)k for every y 2 U. By a suitable choice of U the
last two terms can be made arbitrarily small.
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(1993) generalized this result to the case where the range of µ is a relatively
compact subset of a Banach space with a shrinking Schauder basis. These
results are generalized further in the following theorem.

THEOREM 1. Let µ be a nonatomic vector measure of bounded variation with
values in a Banach space X. If f is a weakly continuously differentiable real-valued
function defined on the extended range of µ such that f (0) = 0, then f � µ is in
pNA∞ and its value is given by the (diagonal) formula

ϕ( f � µ)(S) =
Z 1

0
hµ(S), D f (tµ(I))i dt (S 2 C). (2)

If X is finite dimensional then the converse is also true: a vector measure game
f � µ is in pNA∞ only if f is continuously differentiable on the range of µ.

The restriction that X is finite dimensional can not be removed. For ex-
ample, if m is Lebesgue measure on the unit interval and µ is as in the Ex-
ample in the previous section then the function f : µ(I) (� L1(m)) ! R
defined by f (h) =

R 1
0 t�1/2h(t) dt is not differentiable according to the

present definition. Nevertheless, f � µ 2 NA. The question of what con-
ditions on f , if any, are both necessary and sufficient for a general vec-
tor measure game f � µ to be in pNA∞, or in pNA, remains open (cf.
Kohlberg, 1973; Aumann and Shapley, 1974, Theorem C; Tauman, 1982).
Note that if the range of µ is relatively compact (this is automatically the
case if X is a reflexive space or a separable dual space; see Diestel and Uhl,
1977, p. 266) then by Mazur theorem (Dunford and Schwartz, 1958, p. 416)
the extended range of µ is compact. Therefore, in such a case f is weakly
continuously differentiable if and only if it is continuously differentiable.

If a vector measure game f � µ is monotonic, then for it to be in pNA it
suffices that f be continuous, rather than differentiable, at 0 and µ(I).

PROPOSITION 1. Let µ be a nonatomic vector measure of bounded variation,
and let f : µ(I) ! R be weakly continuously differentiable in µ(fh 2 I j 0 <
jµj (h) < jµj (I)g) and continuous at 0 and at µ(I). If f � µ is a monotonic
game then it is in pNA and its value is given by (2).

The following lemma, which is of some independent interest, is used
in the proofs of Theorem 1 and Proposition 1.
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LEMMA 1. Let µ : C ! X be a nonatomic vector measure of bounded varia-
tion, and let f be a real-valued function defined on µ(I). Define µ̂ : C ! L1(jµj)
by µ̂(S) = χS. (Note that jµ̂j = jµj.) Then there exists a unique real-valued
function f̂ , defined on µ̂(I), such that

f̂ (µ̂(h)) = f (µ(h)) (h 2 I). (3)

For every h 2 I , if f is (weakly) continuous at µ(h) then f̂ is (respectively,
weakly) continuous at µ̂(h), and if f is weakly continuously differentiable at µ(h)
then f̂ is weakly continuously differentiable at µ̂(h) and D f̂ (µ̂(h)) satisfies

hµ̂(g), D f̂ (µ̂(h))i = hµ(g), D f (µ(h))i (g 2 I). (4)

It follows from Lemma 1 that, conceptually, there is only one kind
of vector measures that needs to be considered in the present context,
namely, vector measures that map coalitions into their characteristic func-
tions. One may thus wonder whether vector measures need to be consid-
ered at all. An alternative approach might be to express the above condi-
tions for a game to be in pNA∞ or in pNA directly in terms of a particular
“extension” of the game into a function on I . We will see in the next sec-
tion that these results can indeed be reformulated in such a manner.

Differentiable Ideal Games

An ideal game is a real-valued function on I that vanishes at (the constant
function) 0. We will say that an ideal game v� is monotonic if h � g implies
v�(h) � v�(g), and that v� is differentiable at h 2 I if there exists a (neces-
sarily unique) nonatomic measure Dv�(h), called the derivative of v� at h,
such that for every g 2 I

v�(h+ θ(g� h)) = v�(h) + θ Dv�(h)(g� h) + o(θ)

as θ ! 0+. An ideal game is differentiable if it is differentiable at every point
in I . An ideal game v� is a continuous extension of a game v if v�(χS) = v(S)
for every S 2 C and v� is continuous (with respect to the NA-topology).
Aumann and Shapley (1974, Proposition 22.16) showed that a continuous
extension is always unique, and that a sufficient condition for a game to
have such an extension is that there exists a sequence in pNA that con-
verges to the game in the supremum norm kvk0 = supS2C jv(S)j. The set
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of all games that satisfy this condition is closed under pointwise addition
and multiplication by a real scalar, and is denoted pNA0.

THEOREM 2. An ideal game v� is the continuous extension of some game
v in pNA∞ if and only if there is a nonatomic probability measure m such that,
for every h 2 I , the derivative Dv�(h) exists and is absolutely continuous with
respect to m, d(Dv�(h))/dm is essentially bounded, and d(Dv�(�))/dm is con-
tinuous at h as a function into L∞(m). The value of v is then given by

(ϕv)(S) =
Z 1

0
Dv�(t)(S) dt (S 2 C). (5)

The necessary and sufficient condition for an ideal game v� to be the
continuous extension of a game in pNA∞ that is given in Theorem 2 is
apparently stronger then the sufficient condition obtained by Hart and
Monderer (1997). In fact, Hart and Monderer’s condition is equivalent
to the requirement that d(Dv�(�))/dm be continuous as a function into
L1(m). The above condition is equivalent to the requirement that there is
a representation of the game as a vector measure game that satisfies the
conditions of Theorem 1. Thus, we have the following result.

LEMMA 2. A game v can be represented as a vector measure game f � µ,
with f weakly continuously differentiable on the extended range of µ, if and only
if v 2 pNA∞. A game v can be represented as a vector measure game f � µ, with
f weakly continuous on the extended range of µ, if and only if v 2 pNA0.

The following sufficient condition for a monotonic ideal game to be the
continuous extension of a game in pNA is derived from Proposition 1.

PROPOSITION 2. If v� is a monotonic ideal game such that limt!0+ v�(t) =
0 and limt!1� v�(t) = v�(1), and there exists a nonatomic probability measure
m such that, for every h 2 I with 0 < m(h) < 1, the derivative Dv�(h) exists
and is absolutely continuous with respect to m, d(Dv�(h))/dm is essentially
bounded, and d(Dv�(�))/dm is continuous at h as a function into L∞(m), then
the game v defined by v(S) = v�(χS) is in pNA and its value is given by (5).
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Proofs

Proof of Lemma 1. For every h 2 I � I and every continuous linear func-
tional x� 2 X�, x�(µ(h)) =

R
h d(x� � µ) =

R
h d(x� � µ)/d jµj d jµj by

Theorem IV.10.8 of Dunford and Schwartz (1958). Taking the maximum
over the unit sphere in X�, we get kµ(h)kX �

R
jhj d jµj = kµ̂(h)kL1(jµj),

since kd(x� � µ)/d jµjkL∞(jµj) � kx�kX� for every x�. Therefore, µ̂(h) 7!µ(h)
is a well-defined continuous function from µ̂(I) onto µ(I) that is contin-
uous also with respect to the relative weak topologies on these spaces. It
follows that f̂ is well defined by (3) and that it is (weakly) continuous at
µ̂(h) if f is (respectively, weakly) continuous at µ(h). Also, if f is weakly
continuously differentiable at µ(h) then Eq. (4) well defines a continu-
ous linear functional D f̂ (µ̂(h)) 2 L1(jµj)� (which is in fact equal to, or
rather identifiable with, d(D f (µ(h)) � µ)/d jµj 2 L∞(jµj)). jjD f̂ (µ̂(g))�
D f̂ (µ̂(h))jjL1(jµj)� � jjD f (µ(g))�D f (µ(h))jjSp(µ(I))� holds for every µ̂(g)
in a weak neighborhood of µ̂(h), and therefore D f̂ (�) is weakly contin-
uous at µ̂(h). By (3) and (4), and the definition of D f (µ(h)), for every
µ̂(g) 2 µ̂(I)
f̂ (µ̂(h) + θ(µ̂(g)� µ̂(h))) = f̂ (µ̂(h)) + θ hµ̂(g)� µ̂(h), D f̂ (µ̂(h))i+ o(θ)

as θ ! 0+. This proves that f̂ is differentiable at µ̂(h) and that the contin-
uous linear functional D f̂ (µ̂(h)) is indeed its derivative there. �

Proof of Theorem 1. Suppose that f satisfies the condition of the the-
orem. In light Lemma 1, it can be assumed without loss of generality
that X = L1(m), where m is a nonatomic probability measure, and that
µ(S) = χS (S 2 C). For a sub-σ-field F of C, define an L1(m)-valued
nonatomic vector measure µF by µF (S) = E(χSjF ), where E(�jF ) de-
notes conditional expectation. If F is finite then the range of µF , which
is a subset of the convex hull of the range of µ, clearly spans a finite di-
mensional subspace of L1(m). Therefore, by an immediate extension of
Proposition 7.1 of Aumann and Shapley (1974), f � µF 2 pNA∞. To prove
that f � µ is in pNA∞ it suffices to show that

lim
F
k f � µF � f � µk∞ = 0 (6)

as F varies over the finite subfields of C, directed by inclusion. (That
is, for every ε > 0 there exists a finite measurable partition of I such
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that, if F is the field generated by some finer finite measurable partition,
k f � µF � f � µk∞ < ε.)

Let F be a sub-σ-field of C, and let S, T 2 C be such that T � S. For 0 �
t � 1, define ht = χT + tχSnT (2 I). By the fundamental theorem of calcu-
lus, applied to the function t 7! f (µF (ht)) (= f (µF (T) + tµF (SnT))),

( f � µF )(S)� ( f � µF )(T) =
Z 1

0
hµF (SnT), D f (µF (ht))i dt

=
Z 1

0

Z
I

µF (SnT)D f (µF (ht)) dm dt (7)

=
Z 1

0

Z
SnT

E(D f (µF (ht))jF ) dm dt,

where the last equality follows from the identityZ
I

E(hjF )g dm =
Z

I
hE(gjF ) dm (h 2 L1(m), g 2 L∞(m)),

applied to the functions h = χSnT and g = D f (µF (ht)). Note that the
same notation is used in (7) for the derivative of f at a point and for the
representation of that derivative as an element of L∞(m). In the special
case F = C we get

( f � µ)(S)� ( f � µ)(T) =
Z 1

0

Z
SnT

D f (µ(ht)) dm dt. (8)

It follows from (7) and (8) that

k f � µF � f � µk∞ � sup
h2I

kE(D f (E(hjF ))jF )� D f (µ(h))kL∞(m) .

Hence, in order to complete the proof of (6) it suffices to show that

lim
F
kE(D f (E(hjF ))jF )� D f (E(hjF ))kL∞(m) = 0 (9)

and
lim
F
kD f (E(hjF ))� D f (µ(h))kL∞(m) = 0 (10)

uniformly in h 2 I as F varies over the finite subfields of C, directed by
inclusion. D f is a weakly continuous function defined on a weakly com-
pact subset of L1(m). Therefore, it is uniformly weakly continuous and its
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range is compact. Theorem IV.8.18 of Dunford and Schwartz (1958) asserts
that, for every compact subset K of L∞(m), limF kE(gjF )� gkL∞(m) = 0
uniformly in g 2 K. This proves (9). The same theorem, together with the
above identity, implies that, for every g 2 L∞(m), limF

R
E(hjF )g dm =

limF
R

hE(gjF ) dm =
R

hg dm uniformly in h 2 I . Thus, with respect
to the weak topology on L1(m), limF E(hjF ) = µ(h) uniformly in h 2 I .
This, and the uniform weak continuity of D f , together imply (10).

Since f is weakly continuous, it follows from Lemma 5 in the Appendix
that the ideal game defined by h 7! f (µ(h)) is a continuous extension of
f � µ. Therefore, by Theorem H of Aumann and Shapely (1974), the value
of f � µ is given by

ϕ( f � µ)(S) =
Z 1

0

d
dθ

����
θ=0

f (tµ(I) + θµ(S)) dt (S 2 C)

(and the derivative on the right hand side of this equation exists for almost
every 0 < t < 1). By definition of D f , this gives (2).

The proof of the second part of the theorem will be given after the proof
of Theorem 2. �

Proof of Proposition 1. We prove Proposition 1 by making the following
two modifications to the proof of the first part of Theorem 1.

First, since f is continuous at 0, and since µ(h) ! 0 is equivalent to
m(h) ! 0, f is actually weakly continuous at 0. Similarly, f is weakly
continuous at µ(I). Since f is weakly continuously differentiable, and
hence weakly continuous, in µ(fh 2 I j 0 < m(h) < 1g) = µ(I)nf0, µ(I)g,
the ideal game h 7! f (µ(h)) is continuous. Aumann and Shapley (1974,
p. 150) showed that a continuous extension of a monotonic game is a
monotonic ideal game. It follows that, for every finite subfield F of C,
the restriction of f to µF (I) can be viewed as a nondecreasing continuous
function on the unit cube in Rn, where n is the dimension of the subspace
of L1(m) that is spanned by µF (I) (which is equal to the number of atoms
of nonzero m-measure of the field F ). This function is continuously differ-
entiable outside of the origin and (1, 1, . . . , 1). Therefore, by an extension
of Proposition 10.17 of Aumann and Shapely (1974, proposition and ex-
tension in p. 92), f �µF 2 pNA.

Second, for fixed ε > 0, let 0 < δ < 1/2 be such that f (µ(h)) < ε
and f (µ(1� h)) > f (µ(I)) � ε for every h 2 I that satisfies m(h) � δ.
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If S0 � S1 � � � � � Si0 � � � � � Si1 � � � � � I is a finite nondecreasing
sequence of coalitions such that m(Si0) = δ and m(Si1) = 1� δ, and if F
is a finite subfield of C, then for every i0 < i � i1 Eqs. (7) and (8) hold for
S = Si and T = Si�1. The monotonicity of f � µ and of f � µF implies that
∑i0

i=1 j( f �µF )(Si)� ( f �µ)(Si)� ( f �µF )(Si�1)+ ( f �µ)(Si�1)j < 2ε, and
a similar inequality holds for the sum over i1+ 1, i1+ 2, . . . . It follows that
k f � µF � f � µkBV < supδ�m(h)�1�δ kE(D f (E(hjF ))jF )� D f (µ(h))kL∞(m)
+4ε. Since the set fµ(h) 2 µ(I) j δ � m(h) � 1 � δg is weakly com-
pact, an argument similar to that given in the proof of Theorem 1 shows
that the limit of the last supremum as F varies over the finite subfields
of C, directed by inclusion, is zero. Since ε is arbitrary, this proves that
limF k f � µF � f � µkBV = 0, and therefore f � µ 2 pNA. �

Proof of Theorem 2. If v� satisfies the condition of the theorem then
v�(g) = v�(h) for every g and h in I that are equal m-almost everywhere.
Indeed, by the mean value theorem, there exists some 0 < θ < 1 such that

v�(g)� v�(h) = Dv�(h+ θ (g� h))(g� h)

=
Z
(g� h)

d (Dv�(h+ θ (g� h)))
dm

dm = 0.

Therefore, there exists a unique function f : µ(I) ! R, where µ is the
L1(m)-valued nonatomic vector measure of bounded variation defined by
µ(S) = χS, such that v�(h) = f (µ(h)) (h 2 I). This function is differ-
entiable. Indeed, its derivative at µ(h) is D f (µ(h)) = d(Dv�(h))/dm 2
L∞(m) (= L1(m)�), and it follows that D f (µ(�)) is continuous on I . Hence,
Lemma 5 in the Appendix implies that D f is weakly continuous. There-
fore, by Theorem 1, f � µ 2 pNA∞. The formula for the value of v (= f � µ)
now follows from (2) and from the above expression for D f .

Conversely, suppose that v� is the continuous extension of a game v in
pNA∞. There exists a sequence fvngn�1 of games in pNA∞ whose contin-
uous extensions satisfy the condition of the theorem such that kvn � vk∞ <
4�n for every n. Indeed, we can take these games to be polynomials in NA
measures. For every u 2 pNA∞ and for every ε > 0 there is a nonatomic
probability measure m such that ju�(h+ θg)� u�(h)j � jθj (kuk∞+ ε)m(g)
for every g, h 2 I and θ 2 R such that h+ θg 2 I (see that Appendix). It
follows that if u� is differentiable at h then

jDu�(h)(g)j � (kuk∞ + ε) m(g) � kuk∞ + ε (g 2 I).
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In particular,
��Dv�n(h)(g)� Dv�n0(h)(g)

�� � kvn � vn0k∞ for every n, n0, and
g, h 2 I , and therefore Dv�n(�)(�) converges uniformly to a real-valued
function γ(�, �) on I � I . For every h, γ(h, �) is (the continuous exten-
sion of) a nonatomic measure and, for every g, γ(�, g) is continuous on
I . Since, for every g, h 2 I and θ 2 R such that h + θg 2 I and for
every n, v�n(h + θg) � v�n(h) =

R θ
0 Dv�n(h + tg)(g) dt, in the limit we get

v�(h + θg) � v�(h) =
R θ

0 γ(h + tg, g) dt. This equation implies that v� is
differentiable at h (and Dv�(h) = γ(h, �)).

For every n, let mn be a nonatomic probability measure such that
jDv�n(h)(g)� Dv�(h)(g)j � 4�nmn(g) (g, h 2 I). The nonatomic proba-
bility measure m = ∑k�1 2�kmk satisfies 4�nmn(g) � 2�nm(g). Therefore,
Dv�n(h)� Dv�(h) is absolutely continuous with respect to m andd(Dv�n(h)� Dv�(h))

dm


L∞(m)

� 2�n.

Since vn satisfies the condition of the theorem, we may assume without
loss of generality that, for every h, Dv�n(h) is absolutely continuous with
respect to mn, its Radon-Nikodym derivative with respect to mn is essen-
tially bounded, and d(Dv�n(�))/dmn is continuous at h as a function into
L∞(mn). This remains true when mn is replaced by m. It follows that,
for every h, Dv�(h), too, is absolutely continuous with respect to m and
its Radon-Nikodym derivative with respect to m is essentially bounded.
And since the function d(Dv�(�))/dm : C ! L∞(m) is the uniform limit
of the continuous functions fd(Dv�n(�))/dmngn�1, this function is contin-
uous, too. �

Proof of Theorem 1 (continued). Suppose that dim X < ∞. If a vector
measure game f � µ is in pNA∞ then by Theorem 2 its continuous exten-
sion v� is differentiable. It is shown in the Appendix that v�(h) = f (µ(h))
(h 2 I). Hence, Dv�(h)(g� h) = d/dθjθ=0+ f (µ(h+ θ(g� h))) for every
g and h. The value of this derivative clearly depends only on µ(h) and
on µ(g� h), and can therefore be written as γ̂(µ(h))(µ(g� h)), where γ̂
is a function from µ(I) to X�. By Theorem 2, Dv�(�)(g) is continuous for
every g 2 I . Therefore, by Lemma 5 in the Appendix, γ̂(�)(µ(g)) is con-
tinuous for every g. This proves that f is continuously differentiable on
µ(I). �

14



Proof of Lemma 2. If f is weakly continuously differentiable on the ex-
tended range of a nonatomic vector measure of bounded variation µ then
f � µ 2 pNA∞ by theorem 1. Conversely, if v is in pNA∞ then it is shown
in the proof of Theorem 2 that v can be represented as a vector measure
game f � µ, with f weakly continuously differentiable.

If f � µ is a vector measure game such that f is weakly continuous
on the extended range of µ, which is a subset of some Banach space X,
then by Stone-Weierstrass theorem f can be uniformly approximated by
polynomials in elements of the dual space X�. Specifically, since µ(I) is
weakly compact, and since the continuous linear functionals on X sepa-
rate points in this set, for every ε > 0 there are a finite sequence of func-
tionals x�1 , x�2 , . . . , x�n 2 X� and a polynomial p in n variables such that
j f (µ(h))� p(x�1(µ(h)), x�2(µ(h)), . . . , x�n(µ(h)))j < ε for every h 2 I . Since
x�i � µ 2 NA for every i, it follows from Lemma 7.2 of Aumann and Shap-
ley (1974) that f � µ 2 pNA0.

Conversely, it is shown in the Appendix that if v� is the continuous
extension of a game v in pNA0 then there is a nonatomic probability mea-
sure m such that, for every g, h 2 I that are equal m-almost everywhere,
v�(g) = v�(h). It follows that there exists a real-valued function f , defined
on the extended range of the nonatomic vector measure of bounded varia-
tion µ defined as in the Example, such that v�(h) = f (µ(h)) (h 2 I). Since
v� is continuous, by Lemma 5 in the Appendix f is weakly continuous.
�

Proof of Proposition 2. It suffices to show that if v� satisfies the conditions
of the proposition then there exist a vector measure µ and a function f ,
which satisfy the conditions of Proposition 1, such that v�(h) = f (µ(h))
(h 2 I). Once we establish that v�(h) = 0 for every h that is equal m-
almost everywhere to 0 and that v�(g) = v�(1) for every g that is equal
m-almost everywhere to 1 we can proceed almost exactly as in the proof
of Theorem 2: define µ and f as in that proof, and use the same arguments
to show that D f (µ(�)) exists and is continuous in fh 2 Ij0 < m(h) <
1g = fh 2 Ijµ(h) 6= 0, µ(I)g, and that D f is therefore weakly continuous
in µ(I)nf0, µ(I)g. The proof for Eq. (5) is also similar. Hence, it only
remains to show that v�(h) ! 0 when µ(h) ! 0 (or, equivalently, when
m(h) ! 0) and that v�(g) ! v�(1) when µ(g) ! µ(I) (or, equivalently,
when m(g)! 1).

For every g, h 2 I such that h � g and m(h) < m(g), v�(h+ t(g� h))
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is nondecreasing as a function of t in the interval [0, 1] and has a non-
negative continuous derivative in the interior of that interval. For h = 0
(identically) and g = 1 (identically) this function is continuous also at the
end points. Therefore, for every sequence fhng � I such that µ(hn) ! 0
and for every sequence fgng � I such that hn � gn and µ(gn)! µ(I),

lim inf
n

[v�(gn)� v � (hn)] � lim inf
n

Z 1

0
Dv�(hn + t (gn � hn))(gn � hn) dt

= lim inf
n

Z 1

0
hµ(gn � hn), D f (µ(tgn + (1� t)hn))i dt

�
Z 1

0
hµ(I), D f (tµ(I))i dt = v�(1)

by Fatou’s lemma and the continuity of D f in µ(I)nf0, µ(I)g. Taking gn =
1 for every n shows that v�(hn)! 0. Taking hn = 0 for every n shows that
v�(gn)! v�(1). �

Application: Market Games

We give a new proof to the following result, due to Aumann and Shapley
(1974, Chapter VI).

THEOREM 3. Suppose that (I , C) = ([0, 1], the Borel sets). Let m (the pop-
ulation measure) be a nonatomic probability measure, k (the number of different
goods) a positive integer, a (the endowment) an m-integrable function from I into
the interior of the k-dimensional nonnegative orthant Rk

+
, and u (the utility func-

tion) a real-valued function that is defined on Rk
+
� I and satisfies the following

assumptions:

for every ξ 2 Rk
+, u(ξ, �) is a measurable function on I; (11)

for every i 2 I, u(�, i) is a continuous function on Rk
+

; (12)

for every i 2 I, u(�, i) is strictly increasing (in each
component separately), and u(0, i) = 0; (13)

for every i 2 I and j, ∂u(ξ, i)/∂ξ j exists and is continuous

at each ξ 2 Rk
+ for which ξ j > 0; and (14)
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u(ξ, i) = o(∑
j

ξ j) as ∑
j

ξ j ! ∞, integrably in i, (15)

that is, for every ε > 0 there is an m-integrable function γ : I ! R such that,
for every ξ 2 Rk

+ and i 2 I, ∑j ξ j � γ(i) implies u(ξ, i) � ε ∑j ξ j. Then the
maximum in (1) is attained for every coalition S, and the market game v defined
by this equation is in pNA. The value of this game coincides with the unique
competitive payoff distribution of the (transferable utility) market.

Proof. It follows from (11) and (12) that u is Borel measurable (Klein
and Thompson, 1984, Lemma 13.2.3). Define an ideal game v� : I ! R by

v�(h) = max
Z

u(x)h dm, (16)

where the maximum is taken over the set fx : I ! Rk
+ j x is measurable

and
R

xh dm =
R

ah dmg of all (feasible) allocations and u(x) denotes the
function on I whose value at i is u(x(i), i). This maximum is attained
(which means, in particular, that it is finite; Aumann and Shapley, 1974,
Proposition 36.1). Furthermore, by Proposition 36.4 and the discussion in
pp. 189–190 of Aumann and Shapley (1974), for every h such that

R
h dm >

0 there is a unique vector p(h) in the interior of Rk
+, called the vector of

competitive prices corresponding to h, such that, for some allocation x,

u(x(i), i)� p(h) � x(i) = max
ξ2Rk

+

[u(ξ, i)� p(h) � ξ] (17)

for m-almost every i for which h(i) 6= 0 (the dot stands for scalar prod-
uct). It is not difficult to see that such an allocation x maximizes the inte-
gral in (16). If x is an allocation that satisfies (17) for every i then the pair
(x, p(h)) is called a transferable utility competitive equilibrium correspond-
ing to h. Such an allocation always exists: Since u is Borel measurable on
Rk
+ � I and is continuous in the first argument, there exists a measurable

function x : I ! Rk
+ that satisfies (17) for every i for which the maximum

on the right-hand side of that equation is attained (Wagner, 1977, Theorem
9.2). But, as we show next, this maximum is in fact attained for every i. It
follows that, given an allocation x that satisfies (17) for m-almost every i
such that h(i) 6= 0, we can change the values that x takes at those points
where (17) does not hold in such a way that the new function be an alloca-
tion that satisfies (17) everywhere.
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For every positive integer s there exists, by (15), an m-integrable func-
tion γs : I ! (0, ∞) such that, for every i and ξ 2 Rk

+,

e � ξ � γs(i) implies u(ξ, i) <
1
s

e � ξ, (18)

where e is the vector with all components 1. If s > 1/ minj pj(h) then
(1/s) e�ξ � p�ξ. It then follows from (18) that, for every i, the maxi-
mum on the right-hand side of (17) is attained in, and only in, the set
fξ 2 Rk

+j e�ξ < γs(i)g. Consequentially, if (17) holds, x(i) 6= 0, and
minj pj(h) > 1/s, then γs(i)/e�x(i) > 1, and hence

0 � u(x(i), i)� p(h) � x(i) < u(
γs(i)

e � x(i)
x(i), i)� p(h) � x(i)

< γs(i)� p(h) � x(i) (19)

by (13) and (18). It follows that if x is an allocation that satisfies (17) for
every i then

R
u(x) dm <

R
γsdm < ∞.

LEMMA 3. The function p(�) that sends each element of the set Im = fh 2
Ij m(h) > 0g to the corresponding vector of competitive prices is continuous
(with respect to the NA-topology).

Proof. It suffices to show that if fhngn�0 � Im is such that
R

ghn dm !R
gh0 dm for every g 2 L1(m) then p(hn) ! p(h0). The idea (borrowed

from Aumann and Shapley, 1974, p. 188) is to identify the competitive
prices corresponding to h 2 Im with equilibrium prices of a suitable ex-
change economy Eh (see Hildenbrand, 1974, Chapter 2). There are k + 1
kinds of goods in Eh: the k original ones plus “money” (the 0-th good). The
consumption set of each player i is R+ �Rk

+ = Rk+1
+ (thus, no player is al-

lowed to hold a negative amount of money), his utility function is given by
(ξ0, ξ) 7! u(ξ, i) + ξ0, and his endowment is (γs(i), a(i)), where s is some
positive integer, that does not depend on i, such that minj pj(h) > 1/s. The
population measure is h dm. As is readily verified (see (19)), an allocation
x satisfies (17) if and only if the bundle (γs(i)� p(h)�x(i) + p(h)�a(i), x(i))
maximizes player i’s utility in the set f(ξ0, ξ) 2 R+ � Rk

+ j ξ0 + p(h)�ξ =
γs(i) + p(h)�a(i)g. It follows that (1, p(h)) are equilibrium prices for Eh.
Moreover, by the uniqueness of the competitive prices corresponding to h,
these are the only equilibrium prices for Eh that are of the form (1, p), with
minj pj > 1/s.
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If there is some positive integer s such that infj,n pj(hn) > 1/s then,
for every i and n, we can choose the monetary endowment of player i
in Ehn to be equal to γs(i). The exchange economies then differ only in
their population measures. The assumption concerning fhng implies, in
this case, that the (preference–endowment) distribution of Ehn tends to
that of Eh0 , and similarly for the aggregate endowments. It follows, by
Proposition 4 in Section 2.2 of Hildenbrand (1974), that every cluster point
of the corresponding sequence of normalized equilibrium prices f1/(1+
∑j pj(hn)) (1, p(hn))g is a (k + 1)-tuple of normalized equilibrium prices
for Eh0 . The first component of such a cluster point cannot be zero: the
equilibrium price of money must be positive. Therefore, the sequence
fp(hn)g must be bounded. If p is a cluster point of this sequence then
(1, p) are equilibrium prices for Eh0 . And since minj pj > 1/s, p = p(h0).
This proves that fp(hn)g converges to p(h0).

It remains to show that infj,n pj(hn) = 0 is impossible. We will prove
this by assuming that pj(hn)! 0 for some j and showing that this leads to
a contradiction. If, for every n, (xn, p(hn)) is a transferable utility competi-
tive equilibrium corresponding to hn then in particular u(xn)� p(hn)�xn �
u(xn+ ej)� p(hn)�(xn+ ej), where ej is the jth unit vector in Rk, and there-
fore 0 < u(xn + ej) � u(xn) � pj(hn) ! 0. This is consistent with (12)
and (13) only if xn(i) ! ∞ for every i, and hence only if

R
maxfe�(2a �

xn), 0ghn dm ! 0. But this contradicts the fact that
R

maxfe�(2a� xn), 0ghn
dm � e�

R
(2a� xn)hn dm = e�

R
ahn dm ! e�

R
ah0 dm > 0. �

Proof of Theorem 3 (continued). Let g and h be two elements of Im, and
let (y, p(g)) and (x, p(h)) be two corresponding transferable utility com-
petitive equilibria. since (17) holds for every i,

v�(g)� v�(h) =
Z

u(y)g dm�
Z

u(x)h dm

=
Z

u(x) (g� h) dm�
Z
[u(x)� u(y)] g dm

�
Z

u(x) (g� h) dm�
Z

p(h) � (x� y) g dm (20)

=
Z

u(x) (g� h) dm� p(h) �
Z
(x� a) g dm

=
Z
[u(x)� p(h) � (x� a)] (g� h) dm.
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Similarly,

v�(h)� v�(g) �
Z
[u(y)� p(g) � (y� a)] (h� g) dm. (21)

If h � g then the right-hand side of (21) is nonpositive. Hence, v� is
monotonic.

Let 0 < c0 < c1 < � � � be such that the series γ = (1/c0) e�a+∑s�1 (1/cs) γs
converges m-almost everywhere and

R
γ dm = 1. Let mγ be the nonatomic

probability measure defined by dmγ = γ dm. It follows from (21) and (22)
that, for some 0 � θ � 1,

v�(g)� v�(h) =
Z 1

γ

�
u(x)� p(h) � (x� a) + θεg,h

�
(g� h) dmγ,

where εg,h : I ! R is defined by εg,h(i) = maxξ2Rk
+
[u(ξ, i) � p(g)�(ξ �

a(i))] �maxξ2Rk
+
[u(ξ, i) � p(h)�(ξ � a(i))]. If s is a positive integer such

that pj(g), pj(h) > 1/s for all j then, as shown above, both maxima are
attained in the set fξ 2 Rk

+je�ξ < γs(i)g. Therefore, m-almost everywhere,

1
γ

��εg,h
�� � 1

γ
max

e�ξ�γs
j(p(g)� p(h)) � (ξ � a)j

� 1
γ
(γs + e � a)max

j

��pj(g)� pj(h)
�� � cs max

j

��pj(g)� pj(h)
�� .

Since, by Lemma 3, p(�) is continuous on Im, maxj
��pj(g)� pj(h)

�� ! 0
when g ! h. This proves that v� is differentiable at h, that its derivative
there is absolutely continuous with respect to mγ, and that

d (Dv�(h))
dm

=
1
γ
[u(x)� p(h) � (x� a)] 2 L∞(mγ).

(The essential boundedness of (1/γ) [u(x)� p(h) � (x� a)] follows from
(19) and from the definition of γ.) Since, for every g and h as above,d (Dv�(g))

dmγ
� d (Dv�(h))

dmγ


L∞(mγ)

=

 1
γ

εg,h


L∞(mγ)

� cs max
j

��pj(g)� pj(h)
�� ,

the function d (Dv�(�)) /dmγ is continuous at h.
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A transferable utility competitive equilibrium (x, p(h)) corresponding
to an ideal coalition h 2 Im is easily seen to correspond also to th, for
every 0 < t < 1. Therefore, v�(th) = tv�(h) for every 0 � t � 1. (Inci-
dentally, this shows that v� is differentiable at 0 if and only if v 2 NA.)
In particular, limt!0+ v�(t) = 0 and limt!1� v�(t) = v�(1), and if (x, p(1))
is a transferable utility competitive equilibrium corresponding to the ideal
coalition h = 1 then d (Dv�(t)) /dm = (1/γ) [u(x)� p(1) � (x� a)] for
every 0 < t � 1. It follows, by Proposition 2, that the market game v is in
pNA and its value is given by

(ϕv)(S) =
Z

S
[u(x)� p(1) � (x� a)] dm (S 2 C).

Thus, the value of v is equal to the competitive payoff distribution (Au-
mann and Shapley, 1974, p. 184) of the market. �

Appendix

Approximation lemma

The method of approximation employed in the proofs of Theorem 1 and
Proposition 1 can be used more generally for approximating games in
pNA∞, pNA, or pNA0. All three spaces of games are generated by powers
of nonatomic probability measures, but the norm is different in each case.
The norm on pNA0 is the supremum norm k�k0, the norm on pNA is the
variation norm k�kBV , and pNA∞ is endowed with the norm k�k∞. These
norms satisfy k�k0 � k�kBV � k�k∞, and the spaces themselves satisfy
pNA∞ � pNA � pNA0. Each of the three norms can be “extended” in
a natural way to a norm on the linear space of extensions of games in the
respective space. Specifically, we define kv�k0 = suph2I jv�(h)j, kv�kBV =
sup0�h0�����hn�1 ∑n

i=1 jv�(hi)� v�(hi�1)j, or kv�k∞ = inffm(I)jm 2 NA,
and jv�(g)� v�(h)j � m(g� h) for every g, h 2 I with h � gg when the
ideal game v� is the continuous extension of a game v in pNA0, in pNA, or
in pNA∞, respectively. The extension operator v 7!v� is linear and norm-
preserving on each of the three spaces (Aumann and Shapley, 1974, p. 151;
Hart and Monderer, 1997). If f � µ is a vector measure game in pNA0 such
that the range of µ is finite dimensional, then the continuous extension v�

of f � µ is given by v�(h) = f (µ(h)). This can be shown as follows. First,
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since the range of a finite dimensional nonatomic vector measure coincides
with its extended range, for every h 2 I we can find a coalition S such that
µ(h) = µ(S). Second, for the same reason, for every given neighborhood
of h in I we can choose S in such a way that χS is in that neighborhood.
Therefore, by the continuity of v�, for every given ε > 0 we may assume
that S satisfies jv�(χS)� v�(h)j < ε. But v�(χS) = f (µ(S)) = f (µ(h)).

For every game v in pNA0 there exists a nonatomic probability mea-
sure m such that v is in pNA0(m), the closed linear subspace of pNA0

that is generated by powers of nonatomic probability measures that are
absolutely continuous with respect to m. (If fµ(k)gk�1 is a sequence of vec-
tors of nonatomic probability measures, µ(k) = (µ

(k)
1 , µ

(k)
2 , . . . , µ

(k)
n(k)
), and

fp(k)gk�1 is a sequence of polynomials such that
v� p(k) � µ(k)

0 ! 0,

then m can be chosen as ∑k�1 2�k
�

1/n(k)
�
(µ
(k)
1 + µ

(k)
2 + � � �+ µ

(k)
n(k)
).) For

every g, h 2 I such that g = h m-almost everywhere, v�(g) = v�(h). Simi-
larly, if v is in pNA or in pNA∞ then there exists a nonatomic probability
measure m such that v is in pNA(m) or in pNA∞(m), respectively. These
subspaces are defined in a similar way to pNA0(m). For every finite sub-
fieldF of C and for every g 2 L1(m), the conditional expectation E(gjF ) is
defined as that function on I which is constant on each atom S of the field
F and is equal there to (1/m(S))

R
S g dm (= 0, by convention, if m(S) = 0).

The ideal game v�F defined by v�F (h) = v�(E(hjF )) is easily seen to be con-
tinuous. Its “restriction” to C is the game vF defined by vF (S) = v�F (χS).

LEMMA 4. Let X be one of the three spaces, pNA(m), pNA∞(m), or pNA0(m),
and let k�k be the norm on that space. Then a game v is in X if and only if vF is
in X for every finite field F � C and limF kvF � vk = 0 as F varies over the
finite subfields of C, directed by inclusion.

Proof. One direction in trivial: if v is the limit of a net in X then v 2 X.
Conversely, if v is in X and F is a finite subfield of C then it is not too
difficult to see that kvFk � kv�k (= kvk). Hence, for every game u that is
a linear combination of powers of nonatomic probability measures that are
absolutely continuous with respect to m, kvF � uFk � kv� uk. Therefore,
it suffices to prove that uF 2 X and limF kuF � uk = 0 for every such u.
Consider, then, a game of the form ηk, where η is a nonatomic probability
measure that is absolutely continuous with respect to m and k is a positive
integer.
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For every F , ηF is a nonatomic probability measure that is absolutely
continuous with respect to m. In fact, dηF/dm = E(dη/dmjF ). There-
fore, (ηk)F = (ηF )

k 2 X. Since kuwk∞ � 4 kuk∞ kwk∞ for every u, w 2
pNA∞ and kλk∞ � 2 kλkBV for every λ 2 NA (Monderer and Ney-

man, 1988),
ηk
F � ηk

 � ηk
F � ηk


∞ =

∑k�1
l=0 ηk�l�1

F ηl (ηF � η)


∞
�

∑k�1
l=0 4k kηFk

k�l�1
∞ kηkl

∞ kηF � ηkBV = k4k kE(dη/dmjF )� dη/dmkL1(m).
By Theorem IV.8.18 of Dunford and Schwartz (1958), the limit of the last
expression as F varies over the finite subfields of C, directed by inclusion,
is zero. �

Topological lemma

The relative weak topology on the extended range of a nonatomic vector
measure of bounded variation µ is the strongest topology on that set with
respect to which µ(�) is continuous on I . This result constitutes the first
part of the following lemma.

LEMMA 5. If µ is a nonatomic vector measure of bounded variation with val-
ues in a Banach space X, then a set A � µ(I) is open with respect to the relative
weak topology on µ(I) if and only if fh 2 Ijµ(h) 2 Ag is open (with respect
to the NA-topology on I). In this case, a function f from A to some topological
space Y is weakly continuous if and only if f (µ(�)) : fh 2 Ijµ(h) 2 Ag ! Y
is continuous.

Proof. We have to show that if hα ! h is a converging net in I then
µ(hα) ! µ(h) weakly, that is, x�(µ(hα)) ! x�(µ(h)) for every continuous
linear functional x� 2 X�. But this follows immediately from the fact that
x� � µ 2 NA. Conversely, we have to show that if xα ! x is a weakly con-
verging net in µ(I) then there exists h 2 I such that µ(h) = x and in every
neighborhood of h there is some h0 such that µ(h0) 2 fxαg. Let fhαg � I
be such that µ(hα) = xα for every α. It follows from Alaoglu’s theorem
that, by passing to a subnet if necessary, we may assume that there is some
h 2 I such that m(hα) ! m(h) for every m 2 NA that is absolutely con-
tinuous with respect to jµj. In particular, x�(xα) = x�(µ(hα))! x�(µ(h)),
and therefore x�(µ(h)) = x�(x), for every x� 2 X�. This proves that
µ(h) = x. Every neighborhood of h contains an open neighborhood of the
form fg 2 Ijmax1�i�l jmi(g� h)j < εg, where ε > 0, m1, m2, . . . , mk 2
NA are absolutely continuous with respect to jµj, and mk+1, . . . , ml 2 NA
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are singular with respect to jµj. This follows from the fact that every
nonatomic measure can be written as the sum of two nonatomic measures,
one absolutely continuous with respect to jµj and the other singular with
respect to jµj. Let α be such that jmi(hα � h)j < ε for every i � k. Let h0 2 I
be equal to h in some subset of I of jµj-measure zero in which mk+1, . . . , ml
are supported and equal to hα elsewhere. Then µ(h0) = µ(hα) = xα, and
jmi(h0 � h)j < ε for every k < i � l as well as for every i � k.

The second part of the lemma follows from that fact that, for every set B
in Y, f�1(B) is weakly open in µ(I) if and only if fh 2 Ijµ(h) 2 f�1(B)g
is open. �
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