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1 Introduction 
A weighted network congestion game is played on a network, where each player has to 

choose a route connecting the players’ common origin and destination vertices. The players’ 

alternatives may differ, however, since not all of them are necessarily allowed to use all 

edges. Players may differ also in their weights, which quantify their contributions to 

congestion at the edges belonging to their routes. As congestion increases, an edge’s cost 

weakly increases or the gain from using it weakly decreases. 

Games of this kind may naturally be used to model negative externalities due to limited 

network resources. Costs may represent, for example, travel or service times and weights 

may represent the agents’ congestion impacts or their demands (assuming that these cannot 

be split among multiple routes). However, somewhat surprisingly, weighted network 

congestion games may also serve as concrete representations of arbitrary normal-form 

games: every finite game can be represented as (in other words, it is isomorphic to) such a 

network game (Milchtaich 2013).  

This representation result raises the question of what properties of the represented game 

can be inferred from the representation, in particular, from the network used. A particularly 

interesting property is the existence of at least one pure-strategy Nash equilibrium. A 

network has the (equilibrium-) existence property if every weighted network congestion 

game on it has a pure-strategy equilibrium, which implies the same for every finite game 

that can be represented as such a network game. The last implication may be relevant even 

if the finite game is completely specified, so that, in principle, the existence of pure-strategy 

equilibrium can be determined by exhaustive search. This is because doing so may take a 

long time even if the number of players is only moderately large. In fact, the equilibrium-

existence decision problem is NP-complete even for finite games where no player has more 
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than two strategies, two possible payoffs and two other players who may affect his payoff 

(Fischer et al. 2006). 

This paper solves the topological equilibrium-existence problem, which is the identification of 

all (undirected) two-terminal networks with the existence property. The problem was first 

raised by Libman and Orda (2001), who were also the first to give an example of a (two-

player) weighted network congestion game without a pure-strategy equilibrium. (For other 

versions of the same example, see Fotakis et al. 2005, Goemans et al. 2005, and Figure 5 

below). The solution builds on partial results obtained in Milchtaich (2006b). However, these 

results pertain to a somewhat different definition of weighted network congestion games, 

which in particular assumes that all players are allowed to use all edges and thus renders 

these network games incapable of representing finite games where different players have 

different numbers of strategies. This class of weighted network congestion games with 

public edges and several other related models are briefly discussed in Section 4.  

One of the related models concerns (unweighted) network congestion games with player-

specific costs. In these games, players have identical weights, but on the other hand, the 

edges’ cost functions are not the same for all players. Like weighted network congestion 

games, these network games are capable of representing all finite games (Milchtaich 2013).1 

However, for them, the topological equilibrium-existence problem is still open. 

2 Preliminaries 

2.1 Game theory 
A finite (noncooperative) game Γ has a finite number 𝑛 of players, numbered from 1 to 𝑛. 

Each player 𝑖 has a finite set of strategies 𝑆𝑖
Γ and a payoff function ℎ𝑖

Γ that specifies 𝑖’s payoff 

for each strategy profile (𝑠1, 𝑠2, … , 𝑠𝑛). A strategy profile is a pure-strategy (Nash) 

equilibrium if none of the players can increase his payoff by unilaterally switching to any 

other strategy.  

Two finite games Γ and Γ′ with the same number 𝑛 of players are isomorphic (Monderer and 

Shapley 1996; Milchtaich 2013) if it is possible to  

(i) renumber2 the players in Γ′ and 

(ii) find a bijection 𝜙𝑖: 𝑆𝑖
Γ → 𝑆𝑖

Γ′
 from the strategy set of each player 𝑖 in Γ to that of 

player 𝑖 (according to the new numbering) in Γ′  

such that for every strategy profile (𝑠1, 𝑠2, … , 𝑠𝑛) in Γ  

ℎ𝑖
Γ(𝑠1, 𝑠2, … , 𝑠𝑛) = ℎ𝑖

Γ′
(𝜙1(𝑠1), 𝜙2(𝑠2), … , 𝜙𝑛(𝑠𝑛)), 𝑖 = 1,2, … , 𝑛. 

 
1 The existence of representations of a similar kind was first indicated by Monderer (2007). 
2 Renumbering effectively pairs each player 𝑖 in Γ with a specific player in Γ′, namely, the one (re)assigned the 

same number 𝑖. Therefore, it could alternatively be defined as a bijection between the two sets of players, that is, 

a one-to-one mapping from the player set in Γ onto that in Γ′. 

(1) 
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Essentially, isomorphic games are just alternative representations of a single game. In 

particular, Γ has a pure-strategy equilibrium (𝑠1, 𝑠2, … , 𝑠𝑛) if and only if Γ′ has such an 

equilibrium (namely, (𝜙1(𝑠1), 𝜙2(𝑠2), … , 𝜙𝑛(𝑠𝑛))).  

Two games Γ and Γ′ with identical sets of players and respective strategy sets are similar if, 

for every strategy profile (𝑠1, 𝑠2, … , 𝑠𝑛), the change in the payoff of a player 𝑖 who 

unilaterally switches to another strategy 𝑠𝑖
′ is the same in both games: 

ℎ𝑖
Γ(𝑠1, 𝑠2, … , 𝑠𝑖

′, … , 𝑠𝑛) − ℎ𝑖
Γ(𝑠1, 𝑠2, … , 𝑠𝑖 , … , 𝑠𝑛)

= ℎ𝑖
Γ′

(𝑠1, 𝑠2, … , 𝑠𝑖
′, … , 𝑠𝑛) − ℎ𝑖

Γ′
(𝑠1, 𝑠2, … , 𝑠𝑖, … , 𝑠𝑛). 

Equivalently, for each player 𝑖, the difference ℎ𝑖
Γ − ℎ𝑖

Γ′
between player 𝑖’s payoffs in the two 

games is unaffected by changing only 𝑖’s own strategy, and can therefore be expressed as a 

function of the other players’ strategies. Similarity implies that the two games are best-

response equivalent (Monderer and Shapley 1996; Morris and Ui 2004), that is, a player’s 

strategy is a best response to the other players’ strategies in one game if and only if this is so 

in the other game. In particular, similar games have identical sets of pure-strategy equilibria.  

A game Γ is an exact potential game (Monderer and Shapley 1996) if it is similar to some 

game Γ′ in which all players have the same payoff function; that function 𝑃 is said to be an 

exact potential for Γ. Note that this concept is a cardinal one: an increasing transformation 

of payoffs does not generally transform an exact potential game into another such game. An 

ordinal generalization of exact potential is generalized ordinal potential (Monderer and 

Shapley 1996), or simply potential, which is defined as a real-valued function over strategy 

profiles that (strictly) increases whenever a single player changes his strategy and increases 

his payoff as a result. Clearly, if a potential exists, then its (even “local”) maximum points are 

equilibria. However, the existence of a potential in a finite game implies more than the 

existence of equilibrium. It is equivalent to the finite improvement property (Monderer and 

Shapley 1996): every improvement path (which is a finite sequence of strategy profiles 

where each profile differs from the preceding one only in the strategy of a single player, 

whose payoff increases as a result of the change) is finite. In other words, the game has no 

improvement cycles (which are finite improvement paths that start and terminate with the 

same profile). A potential does not necessarily exist in finite games that only possess the 

weaker finite best-(reply) improvement property (Milchtaich 1996). This property differs 

from the finite improvement property in only requiring finiteness of best-(reply) 

improvement paths (where in each step the new strategy is also a best response for the 

moving player) or equivalently nonexistence of best-improvement cycles.   

The superposition of a finite number 𝑚 of games with identical sets of players is the game 

with the same set of players where each player has to choose one of his strategies in each of 

the 𝑚 games and his payoff is the sum of the resultant 𝑚 payoffs (von Neumann and 

Morgenstern 1953). Thus, the 𝑚 games are played simultaneously but independently. It is 

easy to see that a strategy profile in the superposition of 𝑚 games is an equilibrium if and 

only if it induces (by projection) an equilibrium in each of the constituent 𝑚 games.  
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2.2 Graph theory 
An undirected multigraph consists of a finite set of vertices and a finite set of edges. Each 

edge 𝑒 joins two distinct vertices, which are referred to as the end vertices of 𝑒. Thus, loops 

are not allowed but more than one edge can join two vertices. An edge 𝑒 and a vertex 𝑣 are 

incident with each other if 𝑣 is an end vertex of 𝑒. The degree of a vertex is the number of 

edges incident with it. A (simple) path of length 𝑚 is an alternating sequence of vertices and 

edges 𝑣0𝑒1𝑣1 ⋯ 𝑣𝑚−1𝑒𝑚𝑣𝑚, beginning and ending with vertices, in which each edge is 

incident with the two vertices immediately preceding and following it and all the vertices 

(and necessarily all the edges) are distinct. If the first and last vertices are clear from the 

context, the path may be written more simply as 𝑒1𝑒2 ⋯ 𝑒𝑚. Every path traverses each of its 

edges 𝑒 in a particular direction: from the end vertex that immediately precedes 𝑒 in the 

path to the vertex that immediately follows it.   

A two-terminal network, or simply network, 𝐺 is an undirected multigraph with a pair of 

distinguished terminal vertices, a vertex 𝑜 called the origin and another one 𝑑 called the 

destination, such that each of the vertices and edges in the multigraph belongs to at least 

one path that begins with 𝑜 and ends with 𝑑. Such a path is called a route in 𝐺. A route may 

itself be viewed as a network. Indeed, it is an example of a sub-network of 𝐺, that is, a 

network that can be obtained from 𝐺 by deleting some of its edges and non-terminal 

vertices.  

Two networks are isomorphic if there is a one-to-one correspondence between their sets of 

vertices, and another such correspondence between the sets of edges, such that the 

incidence relation is preserved and the origin and destination in one network are paired with 

the origin and destination, respectively, in the other network. Isomorphic networks may be, 

and they normally are, viewed as identical: two copies of the same network. 

It can be shown that performing any of the following operations on a network 𝐺 creates a 

new network with the same terminal vertices (see Figure 1): 

(a) Subdivision of an edge: its replacement by two edges with a single common end 

vertex.  

(b) Addition of a new edge joining two existing vertices. 

(c) Subdivision of a terminal vertex: addition of a new edge 𝑒 joining 𝑜 or 𝑑 with a new 

vertex 𝑣, followed by the replacement of the terminal vertex by 𝑣 as the end vertex 

in two or more edges originally incident with the former.  

A network 𝐺 is embedded in the wide sense3 in a network 𝐺′ if the latter can be obtained 

from the former by applying the above operations any number of times in any order. Every 

sub-network of a network is embedded in the wide sense in it (Milchtaich 2005).  

 
3 Embedding in the wide sense, which was introduced in Milchtaich (2005), is more inclusive than the narrower 

notion of embedding used in Milchtaich (2006a). The difference is that, in the latter, the only kind of terminal 

subdivision (operation (c) above) allowed is terminal extension, in which all the edges originally incident with the 

terminal vertex become incident with the new vertex 𝑣 instead. Whereas embedding in the wide sense roughly 

corresponds to the notion of a minor of a graph, embedding in the narrower sense corresponds to a topological 

minor (see Diestel 2005).  
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Two networks 𝐺 and 𝐺′ are homeomorphic if they can be obtained from the same network 

by successive subdivision of edges, in other words, if each of them can be obtained from the 

other by the insertion and removal of non-terminal vertices of degree two. While technically 

distinct, homeomorphic networks are topologically similar and, from the perspective of 

network congestion games (of the kinds considered below), practically identical. In Figure 1, 

the two left networks are homeomorphic to one another and to the network with only two 

(terminal) vertices and two edges.  

A network 𝐺 may be connected with another network 𝐺′, which does not share any of its 

edges and vertices, in series or in parallel. The sets of vertices and edges in the resultant 

network are the unions of the corresponding sets in 𝐺 and 𝐺′, except that: for a connection 

in series, the destination in 𝐺 and the origin in 𝐺′ are identified, and become a single non-

terminal vertex; and for a connection in parallel, the two origin vertices as well as the two 

destination vertices are identified, and become a single pair of terminal vertices. For 

example, connecting a network that only has one edge in series with the left-most network 

in Figure 1, and then connecting the resultant network in parallel with a second single-edge 

one, gives the network in (b). The connection of an arbitrary number of networks in series or 

in parallel is defined recursively. Each of the connected networks is embedded in the wide 

sense in the resultant one.  

2.3 Network congestion games 
A weighted network congestion game on a (two-terminal4) network 𝐺 is a finite, 𝑛-player 

game that is defined as follows. First, each edge 𝑒 in 𝐺 is assigned a nondecreasing cost 

function5 𝑐𝑒: (0, ∞) → (−∞, ∞), an allowable direction, which must be that in which some 

route in 𝐺 traverses 𝑒, and a (possibly, empty) set of allowable users. An edge is public or 

private if it is allowable to all players or to one player only, respectively. It is required that 

 
4 The assumption of a single origin–destination pair may be viewed as a normalization. Any weighted network 

congestion game on a multi-commodity network, which has multiple origin–destination pairs, may also be viewed 

as a game with a single such pair. In that game, each of the two terminal vertices is incident with a single 

allowable edge (see below) for each player, which joins it with the player’s corresponding terminal vertex in the 

original game.  
5 The definition of cost function allows for negative costs, which may be interpreted as (net) gains from using the 

edge. However, negative costs do not play any role in Section 3, where all the results would hold also with the 

more restrictive definition that only allows nonnegative cost functions, 𝑐𝑒: (0, ∞) → [0, ∞).  

(a) (b) (c) 

𝑑 

𝑜 

𝑑 𝑑 

𝑜 𝑜 

𝑑 

𝑜 

𝑣 

𝑒 

Figure 1. Embedding. The left-most network is embedded in the wide sense in each of the other three, which 
are obtained from it by (a) subdividing an edge, (b) adding a new edge, and, finally, (c) subdividing the 
destination. 
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each player 𝑖 has at least one allowable route, that is, a route in 𝐺 that includes only edges 

that 𝑖 is allowed to use and traverses them in the allowable direction. The collection of all 

such routes is the player’s strategy set 𝑆𝑖. Second, a weight 𝑤𝑖 > 0 is specified for each 

player 𝑖, which represents the player’s congestion impact and is also (weakly) connected 

with the cardinality of his strategy set: For all 𝑖 and 𝑗 with 𝑤𝑖 < 𝑤𝑗, |𝑆𝑖| ≥ |𝑆𝑗|.6 The total 

weight 𝑓𝑒 of the players whose chosen route includes an edge 𝑒 is the flow (or load) on 𝑒. 

The cost of 𝑒 for each of its users is 𝑐𝑒(𝑓𝑒). A player’s payoff in the game is the negative of 

the total cost of the edges in his route.  

A weighted network congestion game is referred to as an unweighted network congestion 

game if the players’ weights are all identical and equal to 1. The equality of the weights 

entails, in particular, that the cost of an edge is not affected by the identities of its users but 

only by their number. A generalization that allows for a dependence of the cost for a user on 

his own identity is (unweighted) network congestion game with player-specific costs. In such 

a game, each edge 𝑒 is associated with a nondecreasing cost function 𝑐𝑖𝑒: (0, ∞) → (−∞, ∞) 

for each player 𝑖, and its cost for that player is 𝑐𝑖𝑒(𝑓𝑒), where (the flow) 𝑓𝑒 is the total 

number of players using 𝑒.  

The very specific definitions of network congestion games make them appear special. 

However, as the following representation theorem (Milchtaich 2013) shows, in a very 

fundamental sense, this is not so.  

 
6 The cardinality assumption is used in the proof of Lemma 5. Whether or not it can be dispensed with I do not 

know. In one, important sense, the assumption is not overly restrictive. The proof of the representation theorem 

(Theorem 1 below) only uses network games that satisfy the assumption, which means that the theorem’s results 

hold with as well as without it (Milchtaich 2013). Note that the cardinality assumption trivially holds if all players 

have the same number of strategies, or if the allowable users of each edge are those whose weight does not 

exceed a certain threshold. 

ቀ
0,0 1, −2

−2,1 0,0
ቁ 

𝑜 
 

𝑑 
 

𝑐𝑒1
(1) = −3

𝑐𝑒1
(2) = −3

 

𝑐𝑒3
(3) = 2 𝑐𝑒4

(3) = 2 

𝑒1 𝑒2 

𝑒4 𝑒3 

𝑒7 𝑒8 

𝑒5 𝑒6 

(a) 

𝑑𝑒4
(2) = 1

 
 

𝑒4 

𝑜 
 

ቀ
−2, −3 0,0
−1, −1 −3, −2

ቁ 

 
𝑐𝑒2

(3) = 2 

𝑒1 𝑒2 

𝑒3 

𝑑 

𝑐𝑒1
(3) = 2

 
 

(b) 

𝑒5 

𝑐𝑒5
(2) = 1

 
 

Figure 2. A two-player weighted network congestion game (a) and a two-player weighted network congestion 
game in the wide sense (b). In both games, the players’ weights are 𝒘𝟏 = 𝟏 and 𝒘𝟐 = 𝟐. Dotted, dashed and 
solid edges are allowable to player 1, player 2 and both players, respectively. The allowable directions are 
indicated where needed. All relevant costs other than those specified are zero. A player’s payoff is the negative 
of his total cost. The games’ normal (or strategic) forms are shown at the bottom.  
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Theorem 1. Every finite game Γ is isomorphic both to a weighted network congestion game 

Γ′ and to an (unweighted) network congestion game with player-specific costs Γ″. Γ is 

isomorphic to an unweighted network congestion game7 if and only if it is an exact potential 

game.  

An immediate corollary of the next lemma is that a representation of a finite game Γ as a 

particular variety of network congestion game is never unique.  

Lemma 1. If a network 𝐺 is homeomorphic to a network 𝐺′ or is embedded in the wide 

sense in it, then every weighted network congestion game, unweighted network congestion 

game, or network congestion game with player-specific costs on 𝐺 is isomorphic to a game 

of the same kind on 𝐺′.  

Proof. By the definitions of homeomorphism and embedding in the wide sense, it suffices to 

consider the special case in which either 𝐺′ is obtained from 𝐺 by one of the three 

operations defining embedding in the wide sense (Figure 1) or 𝐺 is obtained from 𝐺′ by the 

subdivision of an edge. Given a network congestion game Γ on 𝐺, it has to be shown that an 

isomorphic game of the same kind exists on 𝐺′. Such a game Γ′ can be obtained by 

“extending” Γ to 𝐺′, that is, assigning a cost function (or cost functions, if Γ is a network 

congestion game with player-specific costs), an allowable direction and a set of allowable 

users to each of the (one or two) edges in 𝐺′ that are not in 𝐺. The assignments are as 

follows.  

(a) If the operation connecting 𝐺 and 𝐺′ is the subdivision of an edge 𝑒 in 𝐺, each of the two 

“halves” of 𝑒 is assigned half its cost and inherits its allowable direction and set of 

allowable users.  

(b) If the operation is the addition of a new edge 𝑒 to 𝐺, no player is allowed to use 𝑒.  

(c) If the operation is the subdivision of a terminal vertex in 𝐺, which creates the new edge 

𝑒 (and a new vertex 𝑣), all players are allowed to use 𝑒 at zero cost. Since 𝑒 is incident 

with a terminal vertex, is has only one possible allowable direction. 

(d) If the operation is the subdivision of an edge 𝑒′ in 𝐺′, 𝑒′ is assigned the sum of its two 

halves’ costs in Γ and the allowable direction of either of them, and its allowable users 

are all players who, in Γ, have an allowable route that includes the two halves.  

Consider, for each player 𝑖, the following function 𝜙𝑖 from the set of 𝑖’s allowable routes in 

𝐺 to that in 𝐺′. If 𝑠𝑖  includes an edge 𝑒 as in (a), 𝜙𝑖(𝑠𝑖) is the route obtained from 𝑠𝑖  by 

replacing 𝑒 with its two halves and their common end vertex. If 𝑠𝑖  includes the two halves of 

an edge 𝑒′ as in (d) and their common end vertex, 𝜙𝑖(𝑠𝑖) is obtained by replacing these with 

𝑒′. If 𝑠𝑖  includes an edge that in 𝐺 is incident with a particular terminal vertex (𝑜 or 𝑑) but in 

𝐺′ the latter is replaced with a different end vertex 𝑣, which is shared with an edge 𝑒 as in 

(c), 𝜙𝑖(𝑠𝑖) is obtained from 𝑠𝑖  by inserting 𝑒 and 𝑣 next to the terminal vertex. For any 

other 𝑠𝑖, 𝜙𝑖(𝑠𝑖) = 𝑠𝑖. It is not difficult to see that 𝜙𝑖 is a bijection and that the identity (1) 

holds. Therefore, the games Γ and Γ′ are isomorphic. ∎ 

 
7 This condition can be expressed as the requirement that Γ′ = Γ″. 
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It follows from Lemma 1 that the collection of all networks on which a finite game Γ is 

representable is completely determined by the collection’s minimal elements, i.e., those in 

which no other element is embedded in the wide sense. There may be more than one such 

minimal network. For example, it is easy to see that if Γ is representable (minimally or 

otherwise) on the figure-eight network (see Example 1), then it is also representable on any 

network as in Figure 3(j). However, the first network is not embedded in the wide sense in 

the second one and vice versa.  

3 Topological Properties 
A (two-terminal) network 𝐺 has the (equilibrium-) existence property for weighted network 

congestion games if every such game on 𝐺 has at least one pure-strategy (Nash) equilibrium. 

𝐺 has the stronger finite improvement property for weighted network congestion games if 

every such game on it moreover has the finite improvement property. As the following 

lemma shows, both properties of networks are “hereditary”.  

Lemma 2. If a network has the existence property, then so does every network 

homeomorphic to it and every network embedded in the wide sense in it. The same is true 

for the finite improvement property.  

Proof. A logically equivalent proposition is the following. If some weighted network 

congestion game on a network 𝐺 does not possess a pure-strategy equilibrium or the finite 

improvement property, then a game with the same quality exists on every network 

homeomorphic to 𝐺 and on every network in which 𝐺 is embedded in the wide sense. The 

existence of such games follows from Lemma 1. ∎ 

The existence property for weighted network congestion games is preserved also by the 

operation of connecting networks in series. The reason the connected networks bestow the 

existence property on the resultant network 𝐺 is that, as the proof of the following lemma 

shows, any network congestion game on 𝐺 is the superposition (see Section 2.1) of such 

games on them.  

Lemma 3. A network made of two or more networks connected in series has the existence 

property if and only if each of the constituent networks has that property.  

Proof. Let 𝐺 be a network made of 𝑚 (≥ 2) networks, 𝐺1, 𝐺2, … , 𝐺𝑚, connected in series. For 

every weighted network congestion game Γ on 𝐺 and for each player, choosing an allowable 

route 𝑟 in 𝐺 is equivalent to choosing 𝑚 allowable routes 𝑟1, 𝑟2, … , 𝑟𝑚 in 𝐺1, 𝐺2, … , 𝐺𝑚, 

respectively, and connecting them in series. Therefore, Γ can be represented as the 

superposition of 𝑚 such games – one on each constituent network. In each of the 𝑚 games, 

the players and their weights, as well as the cost function and the allowable direction and 

users for each edge, are as in Γ. This proves that if for 𝑘 = 1,2, … , 𝑚 every weighted 

network congestion game on 𝐺𝑘 has a pure-strategy equilibrium, this is so also for 𝐺.  

Conversely, if there is a weighted network congestion game without an equilibrium on 𝐺𝑘, 

for some 1 ≤ 𝑘 ≤ 𝑚, then such a game exists also on 𝐺. Specifically, the superposition of 

the game on 𝐺𝑘 and any games on the other 𝑚 − 1 networks (say, games with zero payoffs) 

is (isomorphic to) a game on 𝐺 that does not have an equilibrium. ∎ 
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For the finite improvement property, a result similar to Lemma 3 does not hold. Indeed, as 

the next theorem shows, virtually the only networks with this property are the parallel (-link) 

networks, which are the networks that have only one edge or are made of several single-

edge networks connected in parallel (Figure 3(a) and (f)). 

Theorem 2. For a two-terminal network 𝐺, the following conditions are equivalent: 

(i) Every weighted network congestion game on 𝐺 has the finite improvement property. 

(ii) 𝐺 is homeomorphic either to a parallel network or to a parallel network connected in 

series with one or two single-edge networks. 

The main result of this paper is the following theorem, which identifies all networks with the 

existence property for weighted network congestion games. As it shows, essentially the only 

non-parallel such networks are the networks that can be obtained from the three-edge 

parallel network by “relocating” one edge’s end vertices. 

Theorem 3. For a two-terminal network 𝐺, the following conditions are equivalent: 

(i) Every weighted network congestion game on 𝐺 has a pure-strategy equilibrium. 

(ii) 𝐺 is homeomorphic to one of the networks in Figure 3(a)–(f) or to a network made of 

several such networks connected in series. 

(iii) None of the networks in Figure 3(g)–(j) or in Figure 4 is embedded in the wide sense 

in 𝐺.  

  

(f) (g) (h) (i) (j) 

𝑒2 

𝑑 

𝑣 

𝑜 

𝑢 

𝑒′ 𝑒4 

𝑒1 

𝑒3 
⋮  

𝑒″ 

 
 

⋯ 

𝑑 

𝑜 

   

𝑒2 

  

𝑒3 

  

𝑒4 𝑒1 

  

𝑑 

𝑢 

𝑜 

⋯ 
𝑒4 

𝑒1 

𝑒′ 

 
𝑒2 𝑒3 

⋯ 

𝑑 

𝑣 

𝑜 

𝑒1 𝑒2 𝑒3 
𝑒4 

𝑒′ 

⋯ 

𝑑 

𝑣 

𝑜 

𝑢 

𝑒1 𝑒2 𝑒3 

𝑒′ 

 

𝑒″ 

𝑒4 

𝑑 

𝑣 

𝑜 

𝑢 
𝑒′ 

𝑒″ 

𝑒1 𝑒2 𝑒4 

𝑑 

𝑣 

𝑜 

𝑢 

𝑒′ 𝑒4 

𝑒″ 𝑒1 

𝑒2 

𝑑 

𝑢 

𝑜 

𝑒′ 

𝑒1 𝑒2 
𝑒4 

(a) (b) (c) (d) (e) 

𝑑 

𝑣 

𝑜 

𝑒′ 

𝑒1 𝑒2 

𝑒4 

𝑑 

𝑜 

𝑒1 

Figure 3. A two-terminal network homeomorphic to any of those depicted here is said to be nearly parallel. 
A gray, unmarked curve indicates an optional edge and a gray ellipsis mark indicates any number of such edges. 
The networks in (a)–(f) have the existence property for weighted network congestion games, which means that 
every such game on them has a pure-strategy equilibrium. The networks in (g)–(j) lack this property.  
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Condition (ii) and (iii) in the theorem give two alternative characterizations for the set 𝒢 of 

all networks with the existence property for weighted network congestion games. The 

difference between them is that (iii) directly characterizes the set 𝒢∁ of all networks without 

that property. Its list of networks can be shortened to only six items: the five-edge versions 

of the networks in Figure 3(g) and (h) (both of which are embedded in the wide sense in 

each of the networks in (i) and (j)) and the four networks in Figure 4. These networks are the 

minimal elements in 𝒢∁, i.e., those in which no other element is embedded in the wide 

sense. As the existence property is hereditary (Lemma 2), the set of all networks lacking it is 

completely specified by its minimal elements.  

As an illustration of Theorem 3, consider the (underlying undirected) network in Figure 2(a). 

That network 𝐺 does not satisfy condition (ii) because (1) unlike the networks in Figure 3(a)–

(f), it has four vertices of degree three, and (2) it clearly cannot be constructed by connecting 

any two networks in series. Therefore, there are weighted network congestion games on 𝐺 

without pure-strategy equilibria. This conclusion also follows from the fact that every 2 × 2 

game can be represented as a weighted network congestion game on 𝐺 (Milchtaich 2013).  

As evident from its normal form, the specific game shown in Figure 2(a) does have a pure-

strategy equilibrium, indeed, a dominant-strategy one. Interestingly, however, it can be 

shown that a weighted network congestion game with the same normal form does not exist 

on any two-terminal network with the existence property. Thus, the existence of a pure-

strategy equilibrium in that simple, symmetric 2 × 2 normal-form game cannot be linked to 

topological equilibrium-existence. Viewed from a wider perspective, this finding is not 

surprising. In any game, any (pure) strategy profile can be made an equilibrium by simply 

boosting the associated payoffs. There is in general no reason to expect this “local” change 

to bring about representability as a network congestion game on a particular kind of 

network, which is a “global” property of the game in the sense of depending on all payoffs.  

The proofs of Theorems 2 and 3 are given below. They are based on the following graph 

theoretic result (Milchtaich 2005, Proposition 2.1), which relates all (two-terminal) networks 

to two special kinds of networks. A nearly parallel network is any network that either has 

only one route or can be constructed by: (1) connecting two single-route networks in 

parallel, (2) adding any number of edges with identical end vertices and, finally, 

(a) (b) (c) (d) 

𝑜 

𝑑 

𝑣 

𝑢 

𝑒1 

𝑒3 

𝑒2 

𝑒6 

𝑒4 

𝑒5 

𝑑 

𝑢 

𝑜 

𝑒1 

 

𝑒3 𝑒4 

𝑒2 

 𝑒5 

𝑑 

 

𝑜 

  

𝑣 

𝑒1 

  

𝑒5 

𝑒3 

𝑒2 

  𝑒4 

𝑑 

 

𝑜 

  

𝑢 

𝑒5 

  

𝑒1 

𝑒3 

𝑒2 

𝑒4 

Figure 4. The forbidden networks. On each of these networks, there are weighted network congestion games 
without pure-strategy equilibria.  
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(3) subdividing each of these edges any number of times. Depending on whether at most 

one edge or several edges were added in the second step, a nearly parallel network is 

homeomorphic to one of those on the upper or lower row, respectively, in Figure 3. The 

forbidden networks are the four specific networks depicted in Figure 4. 

Proposition 1. For every two-terminal network 𝐺, one, and only one, of the following 

conditions holds:  

(i) 𝐺 is nearly parallel or it is made of two or more nearly parallel networks connected in 

series. 

(ii) One of the forbidden networks is embedded in the wide sense in 𝐺. 

3.1 The finite improvement property 
One direction of the equivalence in Theorem 2 is essentially the following well-known result 

(Milchtaich 1996). 

Lemma 4. Every weighted network congestion game Γ on a parallel network has the finite 

improvement property. 

Proof. The following argument (Even-Dar et al. 2003; Fabrikant et al. 2004) identifies a 

specific (generalized ordinal) potential for Γ. Since the number 𝑚 of all possible payoffs in 

the game is finite, they can be listed in an ascending order. Associate with each strategy 

profile an 𝑚-tuple, in which the 𝑗th entry (𝑗 = 1,2, … , 𝑚) is the number of players whose 

payoff is the 𝑗th entry in the list of possible payoffs. Next, rank all strategy profiles 

lexicographically with respect to these 𝑚-tuples. Thus, the highest-ranking strategy profile 

has the smallest number of players receiving the lowest possible payoff, and in case of a tie, 

the smallest number of players with the second-lowest payoff among the tied strategy 

profiles, and so on. The function 𝑃 that associates each strategy profile with its rank is a 

potential for Γ. Whenever a single player 𝑖 unilaterally changes his strategy and increases his 

payoff as a result, the new strategy profile is ranked higher than the original one. This is 

because the only players negatively affected by player 𝑖’s move are those using his new 

strategy, and their new payoff is equal to 𝑖’s new payoff and thus higher than his old one. ∎ 

To prove the other direction of the equivalence in Theorem 2, the following two examples 

are needed.  

Example 1. Two players, with weights 𝑤1 = 1 and 𝑤2 = 2, choose routes in the figure-eight 

network where edges 𝑒1 and 𝑒2 are connected in parallel, edges 𝑒3 and 𝑒4 are connected in 

parallel, and the two pairs are connected in series. The cost functions are 𝑐𝑒1
(𝑥) = 𝑐𝑒2

(𝑥) =

√𝑥 and 𝑐𝑒3
(𝑥) = 𝑐𝑒4

(𝑥) = 0.35𝑥. Suppose that the two players take turns in changing their 

strategies, with player 1 alternating between 𝑒1𝑒3 and 𝑒2𝑒4 and player 2 alternating 

between 𝑒1𝑒4 and 𝑒2𝑒3. If the order of moves is such that player 2 “chases” player 1, 

meaning that he moves from the first to the second strategy or back right after player 1 does 

the same, all changes of strategy are beneficial. Thus, the game does not have the finite 

improvement property. It does however have four equilibria, which are the strategy profiles 

where each edge is used by a single player. Note that the example can be immediately 

extended to an “expanded” figure-eight network, in which the two pairs of parallel edges are 

separated by an additional edge (as in Figure 4(d) with 𝑒5 removed).  
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Example 2. Three players, with weights 𝑤1 = 𝑤2 = 1 and 𝑤3 = 2, choose routes in the 

network in Figure 3(b) or (c). The cost functions are given (for 1 ≤ 𝑥 ≤ 4) by 𝑐𝑒1
(𝑥) = 8𝑥, 

𝑐𝑒2
(𝑥) = 3𝑥 + 6, 𝑐𝑒4

(𝑥) = 32.75 − 9/𝑥 and 𝑐𝑒′(𝑥) = 8𝑥 − 𝑥2. It is not difficult to check 

that, starting with the strategy profile in which the routes of players 1 and 2 include 𝑒1 and 

that of player 3 includes 𝑒2, the following is an improvement cycle: player 1 moves to use 𝑒2, 

player 2 moves to use 𝑒4, player 3 also moves to use 𝑒4, player 1 moves back to 𝑒1, player 2 

does the same, and player 3 moves back to use 𝑒2, thus completing the cycle. (The cycle can 

moreover be made a best-improvement one simply by not allowing each player to use the 

single edge he does not actually use.) Note that an equilibrium would be immediately 

reached if player 2, rather than 1, moved first (to 𝑒4), and a different equilibrium would be 

reached if player 3, rather than 2, moved second (to 𝑒4).  

Proof of Theorem 2. If 𝐺 satisfies (ii), then by Lemmas 2 and 4 it also satisfies (i). If 𝐺 satisfies 

(i), then by Lemma 2 and Examples 1 and 2 none of the following networks is embedded in 

the wide sense in it: the figure-eight network or its “expanded” version (see Example 1), the 

networks in Figure 3(b) and (c), and hence also all the other non-parallel networks in Figure 

3 and Figure 4 (in each of which one of the last two networks is embedded in the wide 

sense). By Proposition 1, this conclusion implies (ii). ∎ 

3.2 Networks with the existence property 
By Lemmas 3 and 4, a network made of several parallel networks connected in series has the 

existence property for weighted network congestion games. However, none of the networks 

in Figure 3(b)–(e) is of this kind. Indeed, the one in (e), dubbed the Wheatstone network, is 

not even series-parallel, meaning that it cannot be constructed from single-edge networks 

by any sequence of operations of connecting networks in series or in parallel. Thus, 

establishing the existence property for these networks requires a different approach.  

Somewhat unintuitively, the first step in significantly extending topological equilibrium-

existence beyond parallel networks is establishing it for a special kind of parallel networks, 

namely, those in Figure 3(a), but for a larger class of games, where it is possible for a player’s 

weight to only impact the cost for the other players. In a weighted network congestion game 

in the wide sense (see example in Figure 2(b)), each edge 𝑒 is associated with a pair of 

nondecreasing cost functions, 𝑐𝑒: (0, ∞) → (−∞, ∞) and 𝑑𝑒: [0, ∞) → (−∞, ∞), and its cost 

for each player 𝑖 is given by  

𝑐𝑒(𝑓𝑒) + 𝑑𝑒(𝑓𝑒 − 𝑤𝑖). 

The second term differs from the first one in not involving self-effect: the argument 𝑓𝑒 − 𝑤𝑖  

is the total weight of the other users of 𝑒, excluding player 𝑖 himself. Lack of self-effect may 

entail that the cost of an edge is higher for lower-weight players than for higher-weight 

ones. Thus, as in a network congestion game with player-specific costs, an edge’s cost is not 

necessarily the same for all users. Parenthetically, for weighted network congestion games 

in the wide sense, a result similar to Lemma 4 does not hold. Indeed, the finite improvement 

(and even best-improvement) property is not guaranteed even for a three-edge parallel 

network. Nevertheless, as the following lemma shows, an equilibrium always exists for that 

network. 
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Lemma 5. Every weighted network congestion game in the wide sense Γ on a parallel 

network 𝐺 with three or fewer edges has a pure-strategy equilibrium. 

Proof. Assume, without loss of generality, that 𝐺 has precisely three edges (some of which 

may not be allowable to any player), and hence three routes. Identify the edges with three 

points on an imaginary cycle and say that edge 𝑒 follows edge 𝑒′ (which precedes 𝑒) if 𝑒 is 

the first edge encountered with when moving along the cycle from 𝑒′ in the clockwise 

direction. There are two possible cases: either no player has more than two allowable edges, 

or at least one player is allowed to use all three. The analysis of both cases uses the 

following simple result. 

Claim 1. Let 𝑒 and 𝑒′ be two edges in 𝐺 that are both allowable to two players 𝑖 and 𝑗 with 

𝑤𝑖 ≤ 𝑤𝑗. If both players use 𝑒 and 𝑖 would not benefit from unilaterally moving to 𝑒′, then 

the same is true for 𝑗. 

This follows from the monotonicity of the cost functions 𝑐𝑒′  and 𝑑𝑒, which implies that if  

𝑐𝑒′(𝑓𝑒′ + 𝑤𝑖) + 𝑑𝑒′(𝑓𝑒′) ≥ 𝑐𝑒(𝑓𝑒) + 𝑑𝑒(𝑓𝑒 − 𝑤𝑖), 

then a similar inequality holds with 𝑖 replaced by 𝑗.  

First case: No player is allowed to use all edges. Associate with each strategy profile (which 

assigns an edge in 𝐺 to each player) the total weight �̂� of the players whose edge follows 

another edge that is allowable for them. There is obviously a unique strategy with �̂� = 0, 

which trivially satisfies the following: 

Each of the players is either not allowed to or would not benefit from moving from 

his current edge to the preceding edge.  

Claim 2. For every strategy profile satisfying 𝑄 that is not an equilibrium, there is a best- 

improvement path that starts at that strategy profile and ends at another strategy profile 

satisfying 𝑄 with a higher �̂�.  

To prove Claim 2, consider a strategy profile satisfying 𝑄 such that the cost to some player 𝑖 

can be reduced by moving 𝑖 to some (allowable) edge 𝑒, which is necessarily the one 

following (rather than preceding) his current edge 𝑒′. Such a move creates a strategy profile 

with a higher flow on 𝑒 and a lower flow on 𝑒′. This strategy profile may or may not have 

property 𝑄. However, due to the monotonicity of the cost functions, 𝑄 does not hold only if, 

for one or more of the players using 𝑒, moving to (the preceding) edge 𝑒′ is both allowed 

and beneficial. If this is so, choose one of these players with the highest weight, move that 

player from 𝑒 to 𝑒′, and repeat doing so until no more players can benefit from this move. 

Clearly, player 𝑖 is not one of the movers. Indeed, his incentive to return to 𝑒′ can only 

decrease with each move. Therefore, Claim 1 implies that 𝑤𝑖 > 𝑤𝑗 for each of the movers 𝑗. 

Thus, the strategy profile reached after the last move differs from the original one in that 

player 𝑖 uses 𝑒 rather than 𝑒′ and the opposite is true for a certain number (possibly, zero) of 

other players. The total weight 𝑤′ of the latter must satisfy 𝑤′ < 𝑤𝑖. Otherwise (that is, if 

𝑤′ ≥ 𝑤𝑖), for each of them 𝑗, the monotonicity of the cost functions and the fact that 𝑤𝑗 <

𝑤𝑖 would imply the following: 

(𝑄) 
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(𝑐𝑒′(𝑓𝑒′) + 𝑑𝑒′(𝑓𝑒′ − 𝑤𝑗)) − (𝑐𝑒(𝑓𝑒 + 𝑤𝑗) + 𝑑𝑒(𝑓𝑒))

≥ (𝑐𝑒′(𝑓𝑒′ − 𝑤′ + 𝑤𝑖) + 𝑑𝑒′(𝑓𝑒′ − 𝑤′)) − (𝑐𝑒(𝑓𝑒 + 𝑤′) + 𝑑𝑒(𝑓𝑒 + 𝑤′ − 𝑤𝑖)). 

However, the left-hand side is (strictly) negative at least for the player 𝑗 who was the last to 

move from 𝑒 to 𝑒′ (otherwise the move would not have benefited him), while the right-hand 

side is positive since it gives the reduction in the cost for 𝑖 when he moved from 𝑒′ to 𝑒. This 

shows that the above inequality, and hence also 𝑤′ ≥ 𝑤𝑖, cannot hold.  

The result that 𝑤𝑖 − 𝑤′ is positive means that 𝑓𝑒 is higher, and 𝑓𝑒′ is lower, than the 

respective flow in the original strategy profile, before 𝑖 moved. Since the flow on the third 

edge 𝑒″ did not change, it follows that there are still no players who would gain from moving 

from 𝑒″ to (the preceding edge) 𝑒 or from moving from 𝑒′ to (the preceding edge) 𝑒″. 

Hence, 𝑄 holds for the new as well as for the original strategy profile. In the former, the total 

weight �̂� of the players whose current edge follows another allowable edge is higher by 

𝑤𝑖 − 𝑤′ than in the latter. This completes the proof of Claim 2. 

Since �̂� is bounded by the total weight of all players, Claim 2 proves that, if no player is 

allowed to use more than two edges, an equilibrium exists.  

Second case: Γ has some players 𝑖 with three allowable edges, possibly in addition to players 

𝑗 with only one or two such edges. Re-index the players in the game in such a way that, for 

some 1 ≤ 𝑘 ≤ 𝑛, the inequalities 𝑖 ≤ 𝑘 < 𝑗 hold for all players 𝑖 and 𝑗 as above (who differ 

in their number of strategies) and 𝑤𝑖 ≤ 𝑤𝑗 holds for all 𝑖 and 𝑗 with 𝑖 < 𝑗. (The cardinality 

assumption in the definition of weighted network congestion game implies that such re-

indexing is possible.) For each player 𝑖, define Γ𝑖  as the game obtained from Γ by excluding 𝑖 

and all lower-index players, so that they do not choose routes and do not contribute to the 

flows. In addition, define Γ0 = Γ.  

It follows from the first part of the proof that Γ𝑘, whose set of players (which may be empty) 

consists of all the players in Γ with one or two allowable edges, has a pure-strategy 

equilibrium. To prove that such an equilibrium exists also in Γ it suffices to show that, for all 

1 ≤ 𝑖 ≤ 𝑘, the existence of an equilibrium in Γ𝑖  implies the same for Γ𝑖−1. In fact, for any 

equilibrium in Γ𝑖, simply choosing a best response strategy for player 𝑖 gives an equilibrium 

in Γ𝑖−1. Clearly, any player 𝑗 whose edge is different from the edge 𝑒 chosen by 𝑖 still cannot 

gain from changing his strategy. (His incentive to do so is, if anything, even lower than 

before.) The same is true if 𝑗’s strategy is 𝑒. Since 𝑤𝑖 ≤ 𝑤𝑗, and since moving from 𝑒 to any 

other edge 𝑒′ is not beneficial to 𝑖, by Claim 1 the same applies to 𝑗. ∎ 

The significance of Lemma 5 lies in the fact that every weighted network congestion game in 

the wide sense Γ (and, in particular, every such game in the “regular” sense) on any of the 

non-parallel networks in Figure 3(b)–(e) is similar (see Section 2.1) to such a game on a 

parallel network as in (a). That game is obtained from Γ by a procedure dubbed 

parallelization, which is described in the proof of the following lemma. Parallelization both 

changes the network to a parallel one and transforms some cost functions with self-effect 

(𝑐𝑒’s) into cost functions without self-effect (𝑑𝑒’s) and vice versa. This suggests that the two 

kinds of cost functions may be intimately connected. 
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Lemma 6. Every weighted network congestion game in the wide sense Γ on any of the 

networks 𝐺 in Figure 3(b)–(e) is similar to such a game Γ̃ on a parallel network with three 

edges. 

Proof. Let �̃� be the parallel network, with edges 𝑒1, 𝑒2 and 𝑒4, that is obtained from 𝐺 by 

contracting edge 𝑒′ and, if 𝐺 has a fifth edge 𝑒″, also contracting that edge. Contraction 

(Diestel 2005) is the one-sided inverse of the operation of terminal subdivision (Figure 1(c)): 

it eliminates the edge and its non-terminal end vertex. Each of the three routes in �̃� 

corresponds to a route in 𝐺, which includes the former’s single edge and traverses it in the 

same direction. This correspondence between routes is one-to-one and onto, with one 

exception. The single exception is route 𝑒4𝑒2𝑒1 in the Wheatstone network (Figure 3(e)), 

which does not have a corresponding route in the parallel network �̃�. However, that route 

may be ignored since, by symmetry, it suffices to consider network congestion games on the 

Wheatstone network in which the allowable direction of 𝑒2 is from 𝑢 to 𝑣. Thus, it suffices to 

consider games Γ on 𝐺 in which every route that is allowable for some player has a 

corresponding (single-edge) route in �̃�. The next step is to describe the corresponding game 

Γ̃ on �̃�. 

The following description concerns the case in which 𝐺 is the Wheatstone network. The 

other three cases (Figure 3(b)–(d)) are rather similar (indeed, somewhat simpler). The game 

Γ̃ on �̃� inherits from Γ its set of players, their weights and their strategy sets (with the 

identification of routes in 𝐺 and �̃� described above). The cost functions in Γ̃ (which in the 

following are marked by a tilde accent) are derived from those in Γ (unaccented) as follows. 

For 0 ≤ 𝑦 < 𝑥 ≤ 𝑤, where 𝑤 = ∑ 𝑤𝑖𝑖  is the players’ total weight,  

�̃�𝑒1
(𝑥) = 𝑐𝑒1

(𝑥) − 𝑑𝑒″(𝑤 − 𝑥),      �̃�𝑒1
(𝑦) = 𝑑𝑒1

(𝑦) − 𝑐𝑒″(𝑤 − 𝑦),

�̃�𝑒2
(𝑥) = 𝑐𝑒2

(𝑥), �̃�𝑒2
(𝑦) = 𝑑𝑒2

(𝑦),

 �̃�𝑒4
(𝑥) = 𝑐𝑒4

(𝑥) − 𝑑𝑒′(𝑤 − 𝑥), �̃�𝑒4
(𝑦) = 𝑑𝑒4

(𝑦) − 𝑐𝑒′(𝑤 − 𝑦).

 

It has to be shown that the games Γ and Γ̃ are similar. That is, for each player 𝑖, the 

difference between the costs to 𝑖 in Γ and in Γ̃ can be expressed as a function of the route 

choices of the other players. If 𝑖’s route includes 𝑒2 (hence, does not include 𝑒1 or 𝑒4), the 

difference can be written as  

𝑐𝑒′(𝑤−𝑖,−4 + 𝑤𝑖) + 𝑑𝑒′(𝑤−𝑖,−4) + 𝑐𝑒″(𝑤−𝑖,−1 + 𝑤𝑖) + 𝑑𝑒″(𝑤−𝑖,−1), 

where 𝑤−𝑖,−4 or 𝑤−𝑖,−1 is the total weight of the players other than 𝑖 whose route does not 

include 𝑒4 or 𝑒1, respectively. The same expression gives the difference between the costs in 

Γ and in Γ̃ also if 𝑖’s route does include either 𝑒1 or 𝑒4. For example, if the route includes 𝑒1, 

its total cost for 𝑖 in Γ is 𝑐𝑒′(𝑤 − 𝑓𝑒4
) + 𝑑𝑒′(𝑤 − 𝑓𝑒4

− 𝑤𝑖) + 𝑐𝑒1
(𝑓𝑒1

) + 𝑑𝑒1
(𝑓𝑒1

− 𝑤𝑖), and in 

Γ̃ the cost is �̃�𝑒1
(𝑓𝑒1

) + �̃�𝑒1
(𝑓𝑒1

− 𝑤𝑖). It is not difficult to see that the difference between 

the two costs can again be written as (2). Thus, the difference is independent of 𝑖’s route, as 

had to be shown. ∎ 

Parenthetically, the assertion of Lemma 6 cannot be strengthened to isomorphism between 

Γ and Γ̃. In other words, the collection of all finite games representable as weighted network 

congestion games in the wide sense on the networks in Figure 3(b)–(e) is a proper superset 

(2) 
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of those representable using (a). For example, it is not difficult to show that the 2 × 2 game 

in Figure 2(b) cannot be represented as a weighted network congestion game in the wide 

sense on any parallel network; no such game shares its normal form.  

An immediate corollary of the last two lemmas is the following result, which together with 

Lemmas 2, 3 and 4 establishes the “positive” part of Theorem 3.  

Lemma 7. Every weighted network congestion game in the wide sense on one of the 

networks in Figure 3(a)–(e) has a pure-strategy equilibrium. 

3.3 Networks without the existence property 
A network without the existence property for weighted network congestion games can be 

obtained from any network homeomorphic to one of those in Figure 3(b)–(e) by simply 

adding any single edge. This is because a network obtained this way necessarily has one (or 

more) of those in Figure 3(g)–(j) or Figure 4 embedded in the wide sense in it. As the 

following five examples show, there are four-player weighted network congestion games on 

the networks in Figure 3(g)–(j) and three-player games on those in Figure 4 that do not have 

pure-strategy equilibria. It can moreover be shown that, with one possible exception, these 

numbers of players are minimal for non-existence of equilibrium. Specifically, every three-

player weighted network congestion game in the wide sense on any of the networks in 

Figure 3(g)–(i) has a pure-strategy equilibrium, and the same is true for every two-player 

such game on any of the networks in Figure 4. 

Example 3. Four players, with weights 𝑤1 = 1, 𝑤2 = 2 and 𝑤3 = 𝑤4 = 3, choose routes in 

one of the networks in Figure 3(g)–(j). Each player has two allowable routes, each of which 

includes exactly one of the edges 𝑒1, 𝑒2, 𝑒3 and 𝑒4. One route for player 1, 2, 3 and 4, 

referred to as Left, includes 𝑒2, 𝑒2, 𝑒1 and 𝑒3, respectively, and the other route, Right, 

includes 𝑒3, 𝑒4, 𝑒2 and 𝑒4, respectively. The cost functions of edges 𝑒1, 𝑒2, 𝑒3, 𝑒4 and 𝑒′ are 

positive and satisfy: 𝑐𝑒1
(3) = 16; 𝑐𝑒2

(1) = 2, 𝑐𝑒2
(3) = 3, 𝑐𝑒2

(4) = 15, 𝑐𝑒2
(5) = 17; 𝑐𝑒3

(1) 

= 4, 𝑐𝑒3
(3) = 10, 𝑐𝑒3

(4) = 14; 𝑐𝑒4
(2) = 9, 𝑐𝑒4

(3) = 18, 𝑐𝑒4
(5) = 19; 𝑐𝑒′(6) = 1, 𝑐𝑒′(7) =

6, 𝑐𝑒′(9) = 7. The cost of edge 𝑒″, if it exists in the network, is 0. It can be verified that Left 

is the better choice for player 3, player 1 or player 4 if and only if the strategy of player 2, 

player 3 or player 1, respectively, is also Left. Therefore, in any equilibrium where player 2 

plays Left or Right, the other players necessarily do the same. However, this means that in 

the first case player 2 can decrease his cost from 10 to 9 by (unilaterally) changing his choice 

to Right, and in the second case, he can decrease it from 19 to 18 by changing to Left. This 

contradiction proves that a pure-strategy equilibrium does not exist.  

In all but one of the networks considered in Example 3, there is only one legitimate way to 

direct the edges. The exception is the network in Figure 3(j), where 𝑒2 and 𝑒3 may have 

identical or opposite directions. In Example 3, the former holds, and in the next example, the 

latter holds. This proves that, for Figure 3(j), and trivially also for all the other networks in 

Figure 3 and Figure 4, directionality is not an important consideration: pre-determining the 

edges’ directions would not affect equilibrium existence.  

Example 4. This example differs from the previous one in that it only refers to Figure 3(j) and 

in that the players’ routes are different: Left for player 1, 2, 3 and 4 means 𝑒′𝑒2𝑒″, 𝑒′𝑒1, 
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𝑒4𝑒3𝑒1 and 𝑒′𝑒1, respectively, and Right means 𝑒4𝑒″, 𝑒4𝑒″, 𝑒′𝑒1 and 𝑒′𝑒2𝑒″, respectively. 

(Note that for player 3 the two routes are actually on the sides opposite to those suggested 

by their names.) In addition, the cost functions are different, and satisfy: 𝑐𝑒1
(5) = 5, 

𝑐𝑒1
(6) = 16, 𝑐𝑒1

(8) = 17; 𝑐𝑒2
(1) = 1, 𝑐𝑒2

(3) = 2, 𝑐𝑒2
(4) = 6; 𝑐𝑒3

(3) = 1; 𝑐𝑒4
(3) = 5, 

𝑐𝑒4
(4) = 10, 𝑐𝑒4

(5) = 15; 𝑐𝑒′(6) = 3, 𝑐𝑒′(7) = 6, 𝑐𝑒′(8) = 12; 𝑐𝑒″(3) = 4, 𝑐𝑒″(4) =

12, 𝑐𝑒″(6) = 13. It can be verified that Left is the better choice for player 3, player 1 or 

player 4 if and only if the strategy of player 2, player 3 or player 1, respectively, is also Left. 

Therefore, in any equilibrium where player 2 plays Left or Right, the other players 

necessarily do the same. However, this means that in the first case player 2 can decrease his 

cost from 20 to 19 by (unilaterally) changing his choice to Right, and in the second case, he 

can decrease it from 18 to 17 by changing to Left. This contradiction proves that a pure-

strategy equilibrium does not exist.  

Example 5. Three players, with weights 𝑤1 = 3 and 𝑤2 = 𝑤3 = 4, choose routes in the 

network in Figure 4(a) or (b). The only restrictions on route choices are that edge 𝑒2 is only 

allowable to player 2, who is not allowed to use 𝑒1, and 𝑒4 is only allowable to player 3, who 

is not allowed to use 𝑒3. Thus, there are two allowable routes for each player: Left, which 

includes 𝑒5, and Right, which does not. The costs of the two private edges satisfy 𝑐𝑒2
(4) = 7 

and 𝑐𝑒4
(4) = 13. Those of the other edges are given (for 𝑥 ≥ 3) by 𝑐𝑒1

(𝑥) = 𝑥, 𝑐𝑒3
(𝑥) =

15 − 0.75(2 − 0.25𝑥)9 and 𝑐𝑒5
(𝑥) = 𝑥. It can be verified that Left is the better choice for 

player 1, player 2 or player 3 if and only if the strategy of player 2, player 3 or player 1, 

respectively, is Right. It follows that a pure-strategy equilibrium does not exist.  

Example 6. Three players, with weights 𝑤1 = 1 and 𝑤2 = 𝑤3 = 2, choose routes in the 

network in Figure 4(c). The only restrictions are that edge 𝑒2 is only allowable to player 2, 

who is not allowed to use 𝑒1, and 𝑒4 is only allowable to player 3, who is not allowed to use 

𝑒3. Thus, there are two allowable routes to each player: Left, which does not include 𝑒5, and 

Right, which does. The costs of the two private edges satisfy 𝑐𝑒2
(2) = 3 and 𝑐𝑒4

(2) = 9, and 

those of the other edges satisfy: 𝑐𝑒1
(1) = 1, 𝑐𝑒1

(2) = 2, 𝑐𝑒1
(3) = 8;  𝑐𝑒3

(1) = 2, 𝑐𝑒3
(2) =

10, 𝑐𝑒3
(3) = 12; 𝑐𝑒5

(𝑥) = 4𝑥. It can be verified that Left is the better choice for player 1, 

player 2 or player 3 if and only if the strategy of player 2, player 3 or player 1, respectively, is 

Right. It follows that a pure-strategy equilibrium does not exist. 

Example 7. Three players, with weights 𝑤1 = 1, 𝑤2 = 5 and 𝑤3 = 10, choose routes in the 

network in Figure 4(d). The only restrictions are that edge 𝑒2 is only allowable to player 2, 

who is not allowed to use 𝑒1, and 𝑒4 is only allowable to player 3, who is not allowed to use 

𝑒3. Thus, there are two allowable routes for each player: Left, which does not include 𝑒5, and 

Right, which does. Three of the edges have constant costs, 𝑐𝑒2
= 1.3, 𝑐𝑒4

= 6.25 and 𝑐𝑒5
=

40, and three have increasing costs, 𝑐𝑒1
(𝑥) = 2𝑥, 𝑐𝑒3

(𝑥) = 5𝑥 and 𝑐𝑒6
(𝑥) = 3.55√𝑥. It can 

be verified that Left is the better choice for player 1, player 2 or player 3 if and only if the 

strategy of player 2, player 3 or player 1, respectively, is Right. It follows that a pure-strategy 

equilibrium does not exist. 

Another example of a game without a pure-strategy equilibrium on the network in Figure 

4(d) can be obtained from Example 6 by simply setting 𝑐𝑒6
= 0. 
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Theorem 3 can now be proved.  

Proof of Theorem 3. If condition (i) holds, then it follows from Lemma 2 and Examples 3, 5, 6 

and 7 that condition (iii) also holds. If condition (ii) holds, then it follows from Lemmas 2, 3, 4 

and 7 that condition (i) holds. It remains to observe that, by Proposition 1, condition (iii) 

implies (ii). ∎ 

For weighted network congestion games in the wide sense, a result very similar to Theorem 

3 holds, except that the networks in Figure 3(f) are removed from condition (ii) and added to 

the list in (iii). The proof is very similar to that above, but also uses the following example, 

which is obtained from Example 3 by parallelization (see the proof of Lemma 6).  

Example 8. Four players, with weights 𝑤1 = 1, 𝑤2 = 2 and 𝑤3 = 𝑤4 = 3, choose routes in 

the network in Figure 3(f). Each player has two allowable routes: Left, which for player 1, 2, 3 

and 4 means 𝑒2, 𝑒2, 𝑒1 and 𝑒3, respectively, and Right, which means 𝑒3, 𝑒4, 𝑒2 and 𝑒4, 

respectively. The costs of the edges satisfy: 𝑐𝑒1
(3) = 16; 𝑐𝑒2

(1) = 2, 𝑐𝑒2
(3) = 3, 𝑐𝑒2

(4) =

15, 𝑐𝑒2
(5) = 17; 𝑐𝑒3

(1) = 4, 𝑐𝑒3
(3) = 10, 𝑐𝑒3

(4) = 14; 𝑐𝑒4
(2) = 2, 𝑐𝑒4

(3) = 11, 𝑐𝑒4
(5) =

 12. In addition, 𝑑𝑒 = 0 for all edges 𝑒 except 𝑒4, for which 𝑑𝑒4
(0) = 0, 𝑑𝑒4

(2) = 1, 

 𝑑𝑒4
(3) = 6. It can be verified that Left is the better choice for player 3, player 1 or player 4 

if and only if the strategy of player 2, player 3 or player 1, respectively, is also Left. 

Therefore, in any equilibrium where player 2 plays Left or Right, the other players 

necessarily do the same. However, this means that in the first case player 2 can decrease his 

cost from 3 to 2 by (unilaterally) changing his choice to Right, and in the second case, he can 

decrease it from 18 to 17 by changing to Left. This contradiction proves that a pure-strategy 

equilibrium does not exist. 

4 Related Models and Open Problems  
Existence of pure-strategy equilibrium and the finite improvement property are two of 

several properties of network congestion games that can be linked to the network topology. 

A third one is the property that all pure-strategy equilibria in the game are strong. Holzman 

and Law-yone (1997, 2003) studied this property in the context of unweighted network 

congestion games in which all edges are public. They showed that all such games on a 

network have the above property if and only if the network is extension-parallel, meaning 

that it can be built from single-edge networks by repeatedly connecting networks in series or 

in parallel, with the proviso that in the first case at most one network can have more than 

one edge. An equivalent way of stating this result is that an extension-parallel network is a 

necessary and sufficient condition for weak Pareto efficiency of all equilibria in all 

corresponding games, meaning that it is never possible to alter the players’ equilibrium 

route choices in a way that benefits them all. The equivalence holds because an equilibrium 

is strong if and only if the strategy choices of every subset of players constitute a weak 

Pareto efficient equilibrium in the subgame defined by fixing the strategies of the remaining 

players. That subgame is itself an unweighted network congestion game with public edges 

on the same network. 

Holzman and Law-yone’s result was originally established for directed networks, that is, with 

the edges’ directions fixed as part of the network’s specification. However, it holds also in 
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the present setting of undirected networks, where the edges’ directions may vary with the 

game considered. An undirected network is extension-parallel if and only if it has linearly 

independent routes, in the sense that each route includes at least one edge that is not part 

of any other route (Milchtaich 2006a). 

A similar connection between the network topology and the weak Pareto efficiency of all 

equilibria holds for nonatomic network congestion games with a continuum of identical 

players (Milchtaich 2006a). That is, a necessary and sufficient condition for weak Pareto 

efficiency of all equilibria in all such games on an (undirected) network (regardless of the 

cost functions and the directions that the game assigns to the edges) is that the network has 

linearly independent routes. Moreover, unlike in the finite case, this result holds also with 

non-identical players, that is, with player-specific cost functions.   

A network has the uniqueness property for a particular variety of network congestion games 

if in every game of that kind on the network the players’ (pure-strategy) equilibrium costs 

are unique. This topological property is not relevant for finite network congestion games, 

where it is virtually impossible to guarantee uniqueness, or for nonatomic ones with 

identical cost functions, where the equilibrium costs are always unique. For nonatomic 

network congestion games with player-specific costs, a network has the uniqueness 

property if and only if it is nearly parallel (Figure 3) or consists of two or more nearly parallel 

networks connected in series (Milchtaich 2005). The complementary class of networks that 

allow for multiple equilibrium costs consists of all networks in which one of the forbidden 

networks (Figure 4) is embedded in the wide sense. A similar result holds for network 

congestion games with finitely many players in which flow is splittable among multiple 

routes (Richman and Shimkin 2007).   

The topological efficiency and uniqueness problems for nonatomic network congestion 

games are not directly related to the topological equilibrium-existence problem studied in 

this paper, which concerns finite games. (For nonatomic network congestion games, the 

existence of pure-strategy equilibrium is not an issue, since it is guaranteed by weak 

assumptions on the cost functions; see Schmeidler 1970.) Nevertheless, the solutions to the 

three problems turn out to have broadly similar forms. In particular, each topological 

property is equivalent to the nonexistence of an embedded (in the wide sense) network 

belonging to a particular short list of “bad” networks. The solutions are also all formulated in 

terms of undirected networks, which may attest to the practical merit of viewing 

directionality as belonging to the game rather than pre-determined by the network. 

However, this perspective leaves open the following question: For which directed networks 

is the existence of equilibrium guaranteed in all weighted network congestion games that 

respect the edges’ directions? The remarks that precede Example 4 may be the first step in 

answering this question.   

The rest of this section considers several other models that are related to but different from 

that studied in Section 3, and presents several results and open problems pertaining to these 

models.  
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4.1 Public edges 
The existence property for weighted network congestion games where all players are 

allowed to use all edges is less demanding than in the general case considered above 

(Theorem 3). In particular, it holds for the nearly parallel networks in Figure 3(g)–(i). This 

result is proved in Milchtaich (2006b) by first showing that on a parallel network (even one 

with four edges or more; Figure 3(f)) every weighted network congestion game in the wide 

sense with public edges has a pure-strategy equilibrium. Indeed, an equilibrium can easily be 

found by employing the greedy best response algorithm (Fotakis et al. 2006), whereby the 

players enter the game one by one with heavier players entering first (see the proof of 

Lemma 5, second case). A straightforward generalization of the parallelization argument 

used in Lemma 6 then extends the result to all the networks in Figure 3(a)–(i). (The 

argument partially applies also to the remaining nearly parallel networks, which are 

represented by Figure 3(j). However, it only applies to games in which the edges with end 

vertices 𝑢 and 𝑣 all have the same allowable direction: from 𝑢 to 𝑣 or vice versa.) 

The main open problem regarding the topological equilibrium-existence problem for 

weighted network congestion games with public edges is whether, or to what extent, the 

existence property holds for networks that are not nearly parallel or made of several such 

networks connected in series. In particular, it is not known whether any of the forbidden 

networks has this property. An example of a network (with linearly independent routes) that 

does not have the existence property can be obtained from the forbidden network in Figure 

4(a) by subdividing 𝑒1 and joining the resultant new vertex with 𝑑 by a new edge. A 

weighted network congestion game with public edges on that network that does not have a 

pure-strategy equilibrium is presented in Milchtaich (2006b). Another network without the 

existence property is shown in Figure 5. 

4.2 Player-specific costs 
Another open problem is the characterization of the networks with the existence property 

for (unweighted) network congestion games with player-specific costs. It is known that these 

include all parallel networks (Milchtaich 1996). Although a game of this kind on a parallel 

network does not always have the finite improvement property, there is a simple algorithm 

that, starting with any strategy profile, identifies a best-improvement path ending at an 

equilibrium, whose length is polynomial in the number of players and edges. As in the case 

of weighted network congestion games with public edges, a parallelization argument 

extends the equilibrium-existence result to all the nearly parallel networks in Figure 3(a)–(i) 

(and partially also to (j)) (Milchtaich 2006b).  

The set of networks that are known not to have the existence property only partially 

overlaps the corresponding set for weighted network congestion games with public edges. It 

includes the networks obtained by adding: (1) an edge with end vertices 𝑜 and 𝑢 to the 

network in Figure 4(a) (equivalently, end vertices 𝑣 and 𝑑 in (b) or 𝑜 and 𝑑 in (c)), (2) an edge 

with end vertices 𝑢 and 𝑣 to the network in Figure 4(d), or (3) an edge with end vertices 𝑜 

and 𝑑 to the Wheatstone network in Figure 3(e) (Milchtaich 2006b). Moreover, there are 

network congestion games with player-specific linear cost functions (with positive coefficients) 

on the three resultant networks that do not have pure-strategy equilibria. For the network 

defined in (3), one example of a (nonlinear) game without an equilibrium is given in Figure 5. 
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4.3 The complexity of the equilibrium-existence decision problem 
The desirability of solving the topological equilibrium-existence problem for the kinds of 

network congestion games considered in the last two subsections is underlined by the fact 

that, even for a network with only a moderately large number of edges, deciding whether a 

specific, given game has a pure-strategy equilibrium may be computationally difficult. 

Moreover, as the following proposition shows, this is so even with only two players. The 

proposition unifies an earlier result of Ackermann and Skopalik (2007), which concerns 

network congestion games with player-specific costs, and a somewhat stronger version of a 

result of Dunkel and Schulz (2008), which concerns weighted network congestion games 

with public edges. The idea of the proof is to start with a simple network congestion game 

where the unique equilibrium is not strict, and would be eliminated by any small increase in 

the cost of some edge. That edge is then connected in series with an auxiliary network for 

which it is difficult to decide whether collision-free routing is possible.  

Proposition 2. The problem of deciding whether a pure-strategy equilibrium exists is 

NP-complete for each of the following two classes of games: 

(i) Two-player weighted network congestion games with public edges and nonnegative cost 

functions.  

(ii) Two-player (unweighted) network congestion games with player-specific costs and 

nonnegative cost functions. 

Proof. The hardness of the problem is established by reduction from the directed edge-

disjoint paths problem with two pairs of terminal vertices, which is NP-complete (Fortune et 

al. 1980). The input of that problem is a directed version of a network 𝐺 similar to that 

defined in Section 2.2, except that it has two origin vertices, 𝑜1 and 𝑜2, and two destination 

vertices, 𝑑1 and 𝑑2. It may be assumed that the four terminal vertices are distinct, that there 

is at least one path beginning with 𝑜1 and ending with 𝑑1 which traverses each of its edges in 

𝑐𝑒1
(𝑥) = 𝛼𝑥2 

𝑒4 

𝑜 
 

𝑐𝑒6
(𝑥) = 31𝑥 

𝑒1 𝑒2 

𝑒3 

𝑑 

𝑐𝑒3
(𝑥) = 32 

𝑒5 

𝑐𝑒5
(𝑥) = 15𝑥

 
 

𝑐𝑒4
(𝑥) = 5𝑥 

𝑒6 

𝑐𝑒2
(𝑥) = 27 

Figure 5. A two-player weighted network congestion game with public edges and weights 𝒘𝟏 = 𝟏 and 𝒘𝟐 = 𝟐. 
If the coefficient 𝜶 in 𝒄𝒆𝟏

 is 𝟗/𝟖, there is no pure-strategy equilibrium. However, if 𝜶 = 𝟏𝟎/𝟗, there is a unique 

such equilibrium, in which player 1 chooses the route 𝒆𝟏𝒆𝟓𝒆𝟒 and player 2 chooses 𝒆𝟏𝒆𝟑 (and is indifferent 
between that route and 𝒆𝟐𝒆𝟒). The game can be turned into an (unweighted) network congestion game with 
player-specific costs by replacing each cost function 𝒄𝒆 with a pair of player-specific cost functions such that 
𝒄𝟏𝒆(𝟏) = 𝒄𝒆(𝟏), 𝒄𝟐𝒆(𝟏) = 𝒄𝒆(𝟐) and 𝒄𝟏𝒆(𝟐) = 𝒄𝟐𝒆(𝟐) = 𝒄𝒆(𝟑). The players’ strategies and payoffs in the 
resultant game are identical to those in the original, weighted one. 
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the specified direction, a similar path connects 𝑜2 and 𝑑2, and every edge belongs to some 

path of the first or the second kind. The problem is to decide whether there exists a pair of 

paths, one connecting 𝑜1 and 𝑑1 and the other connecting 𝑜2 and 𝑑2, that do not share any 

edges. Turning this decision problem into an equilibrium-existence problem only requires 

adding to 𝐺 a few edges and vertices and defining suitable cost functions. The first step is to 

add new origin and destination vertices, 𝑜′ and 𝑑′, and connect each of them with each of 

the two corresponding original terminal vertices (see Figure 6). The resultant two-terminal 

network 𝐺′ is then inserted “between” 𝑜 and 𝑒1 in the network depicted in Figure 5, so that 

𝑜 is identified with 𝑜′ and is replaced by 𝑑′ as an end vertex of 𝑒1. The cost functions in 

Figure 5 remain in effect, with 𝛼 = 10/9, both (i) in the case in which the two players differ 

in their weights, 𝑤1 = 1 and 𝑤2 = 2, and (ii) in the case in which they differ in their cost 

functions. In case (i), the edges connecting 𝑜′ with 𝑜𝑗 and 𝑑′ with 𝑑𝑗 (𝑗 = 1,2) are assigned 

the cost function [𝑥 − 𝑗]+ (where [𝑦]+ means max{𝑦, 0}), and in case (ii), the corresponding 

cost function for player 𝑖 (= 1,2) is [𝑥 − 𝑗 + 𝑖 − 1]+. The remaining edges 𝑒, which are those 

belonging to 𝐺, are assigned identical cost functions, which are 𝑐𝑒(𝑥) = [𝑥 − 2]+ (𝑁 + 1⁄ ) 

in case (i) and 𝑐1𝑒(𝑥) = 𝑐2𝑒(𝑥) = [𝑥 − 1]+ (𝑁 + 1)⁄  in case (ii), where 𝑁 is the number of 

edges in 𝐺.  

Each of the cases (i) and (ii) defines a network congestion game belonging to the 

corresponding class in the proposition. Choosing a route in this game means choosing a 

route in the network in Figure 5, and if that route includes 𝑒1, also choosing a route in 𝐺′. It 

is easy to see that, for player 2, the cost of a route in 𝐺′ is 0 if and only if (1) its first and last 

edges are incident with vertices 𝑜2 and 𝑑2, respectively, and (2) none of the edges in the 

route is used also by player 1. When (1) holds for player 2’s route in 𝐺′, the cost for player 1 

of any route there that begins and ends with the edges incident with 𝑜1 and 𝑑1, respectively, 

is less than 1, and it is equal to 0 if and only if the route does not share with player 2’s route 

any edges in 𝐺. Using these facts, it is not difficult to check that a pair of strategies in the 

game is an equilibrium if and only if the players’ routes in the network in Figure 5 are the 

indicated equilibrium ones and the costs of their routes in 𝐺′ are zero. The second condition 

holds for some pair of routes in 𝐺′ if and only if the answer to the decision problem specified 

by 𝐺 is affirmative.  

𝑜′ 
 

𝑑′ 

𝑑1 
 

𝑜2 
 

𝑑2 
 

𝑜1 
 

𝐺 
 

𝐺′ 

Figure 6. An instance 𝑮 of the directed edge-disjoint paths problem (black) and the two-terminal network 𝑮′ 
obtained from it by the addition of origin and destination vertices, 𝒐′ and 𝒅′, and four connecting edges (gray).  
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Note that deciding whether a given strategy profile is an equilibrium means checking if each 

player’s route is a least-cost one with respect to the costs determined by the other player’s 

route. The number of required steps is at most of the order of the number of vertices 

squared. ∎ 

The decision problem considered in Proposition 2 is of course NP-hard also without the 

restrictive assumptions of public edges and nonnegative costs or with an unbounded 

number of players. Its hardness is rooted in the fact that, for general networks, the number 

of routes (and of strategies) may increase exponentially as the number of edges increases. 

With an unbounded number of players, deciding whether a pure-strategy equilibrium exists 

may be difficult also with network topologies where the number of routes is comparable 

with the number of edges.   

For network congestion games in which the players may differ in both their weights and cost 

functions, Dunkel and Schulz (2008) showed that the equilibrium-existence decision problem 

is NP-complete even with parallel networks. The corresponding topological equilibrium-

existence problem, by contrast, is quite trivial. On a two-edge parallel network, every 

weighted network congestion game with player-specific costs has a pure-strategy 

equilibrium, but this is not so for a three-edge parallel network even in the case of only 

three players (Milchtaich 1996). 

4.4 Matroid congestion games 
Each (two-terminal) network topology entails a particular set of combinatorial restrictions on 

the players’ strategy sets in all corresponding network congestion games. For example, for 

any topology, different strategies are incomparable in that the set of edges in one strategy is 

not a subset of that in any other strategy. The restrictions take an extreme form in the case 

of parallel networks, which correspond to the so-called singleton congestion games: each 

player simply has to choose one allowable edge. This observation leads to the question of 

whether the existence of equilibrium in the latter and similar classes of network congestion 

games can be linked directly to the combinatorial structure of the strategy sets, rather than 

to the network topology giving rise to that structure. Specifically, Ackermann et al. (2009) 

presented the following combinatorial version of the equilibrium-existence problem: What is 

the most general combinatorial structure for which a pure-strategy equilibrium is 

guaranteed to exist in every corresponding congestion game in which players may differ in 

their weights, and what is that structure when players differ in their cost functions? The 

congestion games that the two versions of the problem refer to are more general than the 

corresponding network congestion games considered in this paper. Each player’s strategy 

set is an arbitrary collection of subsets of a common set of resources, which may or may not 

be the edges of a network.  

As Ackermann et al. (2009) showed, the most general games of both kinds for which the 

existence of equilibrium is guaranteed are matroid congestion games, in which the strategy 

set of each player consists of the bases of a matroid on the set of resources. These games 

share with singleton congestion games the property (which reflects the corresponding 

property of bases of a matroid) that all strategies of a player include the same number of 

resources, but they allow for much more varied and elaborate combinatorial structures, for 
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example, strategy sets that consist of all pairs of resources. However, a noteworthy aspect of 

these results is that they do not take into account how the strategy sets of different players 

interweave. This means, in particular, that the existence of a pure-strategy equilibrium in 

weighted network congestion games and network congestion games with player-specific 

costs may be guaranteed even if the players share a common strategy set that does not 

consist of the bases of a matroid, for example, if some allowable routes includes fewer 

edges than others (which is normally the case for the networks in Figure 3(b)–(e)). The 

results only entail that, with such a strategy set, it is possible to systematically substitute a 

different edge for each allowable edge for each player, such that with the modified strategy 

sets a pure-strategy equilibrium may not exist. However, a strategy modified in this way is 

not necessarily a route in the network. 

The positive part of the solution to the combinatorial equilibrium-existence problem 

obtained by Ackermann et al. (2009) does apply to network congestion games. However, its 

usefulness for the graph-theoretic version studied in the present paper is limited. This 

assessment is based on the following fact.  

Proposition 3. In a network congestion game on a two-terminal network 𝐺, the strategy set 

of a player consists of the bases of a matroid on the set of edges if and only if the sub-

network of 𝐺 that includes only the edges belonging to the player’s allowable routes is 

parallel or is made of several parallel networks connected in series. 

Proof. It has to be shown that the first condition (the matroid property) is equivalent to the 

following graph theoretic one: the player’s allowable routes all have the exact same vertices 

and pass them in the same order. Since different routes have incomparable sets of edges, 

the routes’ sets of edges are the bases of a matroid if and only if they satisfy the bijective 

exchange axiom (White 1986): there is a one-to-one correspondence between the sets of 

edges in any pair of allowable routes, such that replacing any edge 𝑒 in one route with the 

corresponding edge 𝑒′ in the other route again gives the set of edges in some allowable 

route. Clearly, the corresponding edges 𝑒 and 𝑒′ must have the same end vertices. 

Therefore, the bijective exchange axiom is equivalent to the above graph theoretic 

condition. ∎  
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