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Abstract

We consider sequential competition among sellers, who recognize future sellers as
potential competitors and therefore do not necessarily set their monopoly prices, which
are the prices they would set if consumers could only buy from the first arriving seller.
We show, however, that whether an equilibrium price is indeed lower than the sellers’
monopoly prices depends on the form of consumers’ impatience. With time discounting,
this is so. But when impatience reflects decreasing valuations, the equilibrium price may
coincide with the sellers’ monopoly prices, which means that their market power is not
diminished by competition with future sellers.

JEL Classifications C73, D91, L13
Keywords Sequential competition, Imperfect markets, Intertemporal consumer choice

1 Introduction

Firms or sellers that are alone in a particular market at a particular time have greater market
power than they would in the presence of close competitors. This market power, however,
may be constrained when consumers believe that future competitors will offer the good at
a lower price and so defer buying it.1 In this respect, competition between present and fu-
ture sellers resembles that between producers of partially substitutable products. However,
temporal separation between physically identical goods differs from product differentiation
along other dimensions in several important ways. For example, if the current seller is later
replaced by another seller, then a consumer who chooses not to buy from the current seller
cannot later reverse himself even if the price set by a later seller turns out to be higher than
he expected. In addition, that price may be affected by the demand that the later seller faces,
which in turn depends on the number of consumers who deferred buying the good. More-
over, sequential competition often involves uncertainty—both the current seller and the cur-
rent consumers may be uncertain about when the good will again be on the market.2 Thus
sequential competition creates unique strategic interdependencies between sellers and con-
sumers, and also involves issues of information and beliefs that do not always arise for other
forms of competition.
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1Zeithammer (2006) gives evidence that consumers’ decisions are affected by expectations of future sales of a

good. He finds that consumers on eBay bidding in a current auction and expecting a future auction for a similar
good reduce their bids.

2The appearance of sellers at uncertain times can apply when supply depends on the vagaries of nature. An
historically important example relates to sailing ships, which were subject to the whim of the winds, making the
length of a voyage over a given route uncertain, and so creating much uncertainty about when the next ship will
be in port and be available for another sea voyage (Marvin, 1902). For another example, given the risks of rockets
failing or of the space shuttle needing repair, a firm wishing to launch a satellite is unsure about the times at
which it would be able to launch.
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As Diamond (1971) demonstrated, competing identical firms may enjoy effective monopoly
power if each consumer bears an arbitrarily small cost in switching from one firm to another.
This is because the switching cost makes consumers buy from a firm at a price that leaves
them positive payoff even if it is slightly higher than the competitors’ price. Hence, each firm
can raise its price slightly above what other firms charge, and will do so as long as the others
charge less than the monopoly price.

The analog of a firm’s monopoly price in our case of sequential competition is the price
it would set if every consumer could only buy from the first seller he encounters. Switching
costs correspond to the loss of utility due to the waiting time to the next seller, which rep-
resents the consumers’ impatience. It turns out, however, that whether these costs indeed
result in the sellers enjoying complete monopoly power depends on the exact nature of the
consumers’ impatience. If the consumers’ impatience reflects declining valuations, meaning
that the item’s value to them is lower the later it is purchased,3 then Diamond’s conclusion
essentially holds: a common monopoly price for the sellers can be an equilibrium price.
However, if consumers simply discount the future, then an equilibrium price will generally
be lower than the monopoly price. These two forms of impatience are not equivalent. With
time discounting, a consumer prefers buying the good sooner rather than later, but the max-
imum price he is willing to pay is the same in both cases. Declining valuation, by contrast,
means that the consumer’s willingness to pay depends on the time of the transaction. As we
show in this paper, this difference has a dramatic effect on the equilibrium prices and thus
on the sellers’ gain from the absence of contemporary competitors.

Another important determinant of the effect of competition on the sellers’ market power
is the information they have about the history of sales or the current market conditions. As
this paper shows, if the sellers are completely uninformed and the consumers have declining
valuations, a common monopoly price is the only possible equilibrium price. But in the
more realistic case of informed sellers, who in particular know if their predecessor raised the
price and consequently lost some customers, lower equilibrium prices may also exist. Thus,
somewhat paradoxically, sellers may suffer from being better informed.

Information about the history of sales may harm sellers because it adds credibility to a
threat by consumers not to buy at a price higher than some specified maximum. The threat
is implicit in the following strategy. If a seller sets a high price, then some of the consumers
who would get positive payoff from buying the good refrain from doing so. Their number,
which is determined by the strategy, induces the next seller to lower the price precisely to the
point which equalizes the payoff of the consumers who did and did not buy from the first
seller. Hence, no consumer is harmed by following the strategy. Thus, the credibility of the
consumers’ threat depends on the next seller’s ability to react optimally to his predecessor’s
price, and in particular to set a lower price if old consumers, with relatively low valuations of
the good, are sufficiently numerous.

Related literature

Models of dynamic competition have yielded two extreme, opposing, results. When a buyer
faces a cost of searching for a seller, each seller may be able to charge the monopoly price, as
if there were no other sellers (Diamond, 1971). At the other extreme, if a monopoly sells the
good in later periods, it creates its own competition, and with rational expectations by buy-
ers the price will be the same as under perfect competition (Coase, 1972). The reasoning is
that after selling the good at some price, the firm faces a new demand curve from remaining
consumers. The firm will want to sell to them, at a lower price, and the process continues
until each consumer buys the good. The initial consumers, realizing that the seller has such
incentives, would then be willing to wait, to buy at the lower price.

3For example, a parent may value a crib more just before a baby’s birth than months afterward, when she
needs it for little more time.
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Much of the work considering dynamic competition has a consumer buying one unit of
the good (as we do) and a seller selling only one unit (whereas we have elastic supply by the
seller). Thus Said (2011) considers sequential auctions with randomly arriving buyers and
sellers. A key result is that the seller will almost surely trade with the first buyer at a price
close to the lowest possible valuation. Satterthwaite and Shneyerov (2007) study a first-price
auction with a reservation price. A buyer or seller who fails to trade remains in the market,
is rematched in the next period, and tries again to trade. We, in contrast, have the seller post
a price, and new sellers appear in future periods. Bargaining, rather than auctions, with the
appearance of new buyers or sellers, is modelled by Taylor (1995), Inderst (2008), and Fuchs
and Skrzypacz (2010).

Dynamic considerations appear in Fudenberg et al. (1987), who model a seller of an indi-
visible good. They have the seller uncertain about the buyer’s valuation, and becoming more
pessimistic over time. Multiple equilibria can appear, because of an externality between the
different buyers: if future buyers are likely to accept high prices, the seller is likely to switch
buyers, and thus the current buyer should also accept a high price. The opposite holds if
future buyers are expected to reject a high price. This general idea also appears in our pa-
per, but for a different reason—if buyers with declining valuations do not buy now, the future
price a profit-maximizing seller will post will be low.

The assumption of declining valuation for a good relates to work on transportation, where
each consumer valuation of a trip depends on when it is provided. In particular, work on
schedule delay in airlines (see Douglas and Miller, 1974, and Devany, 1975) considers con-
sumers who want to depart at a particular time, and are willing to pay less for an airline ticket
when the flight is earlier or later than the most preferred departure time. An airline, recogniz-
ing such behavior, then realizes that it can charge a higher price the more frequent the flights
it offers, so that the schedule delay is small. Related ideas appear in the bottleneck model of
commuting to work, where each person has a desired time of arriving to work, incurring a
cost if he arrives too early or too late (Vickrey, 1969, and Arnott et al., 1993).

2 The Model

A tractable model of sequential competition requires making some assumptions. In our
model, a consumer buys one or no unit of a particular good, and sellers have an unlimited
supply of it. This rules out, for example, auctions in which sellers only own a single unit.
Both sides of the market stay there only for a short time: a mere instant for the sellers, who
therefore do not overlap, and a fixed, finite period for the buyers, which we take as the unit
of time. The time axis extends from�1 to1. The origin, t = 0, has no special significance.

Consumers arrive at the market in a steady flow. The total mass, or “number”, of con-
sumers that arrive in a unit of time is taken as the unit of mass. Sellers arrive one at a time.
We model their arrival as a simple point process T on the time axis (Daley and Vere-Jones,
1988). A realization of the process is a finite or infinite collection of distinct points, which
represent the sellers’ arrival times. This excludes simultaneous arrivals of sellers but includes
deterministic arrival times and, in particular, arrival at regular intervals. Other special cases
of our model are a predetermined number of sellers with random arrival times, and arrival
only on positive t’s. In general, however, both the sellers’ arrival times and their number may
be uncertain, and a first and a last seller may or may not exist. To exclude certain artificial,
unreasonable cases, we assume that the total number of sellers arriving in any finite time
interval has a finite expectation (which defines the so-called mean measure of the process T )
and that the probability of very short inter-arrival times is small. Specifically, the latter means
that for every � < 1 there is � > 0 such that, at every time t at which a seller arrives and for
all possible histories of previous arrivals, the (conditional) probability that the waiting time
to the next seller is greater than � (or that no more sellers arrive) is greater than �. We also
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assume that there is non-zero probability that some seller arrives less than one unit of time
after his predecessor’s arrival. This assumption excludes the uninteresting case in which no
seller ever competes with another.

A consumer enters the market, or is “born”, at a certain time c and leaves it when he buys
the good or at time c + 1;whichever comes first. At every moment, each consumer has a
certain valuation of the good, 0 � v � 1, which is the maximum price he may be willing
to pay for it. The consumer’s payoff from buying at any price 0 � p � v is v � p, and if
he never buys the good, the payoff is zero. For any acceptable price, the consumer would
prefer buying the good right away rather than later. We consider two alternative sources for
this impatience: declining valuations and time discounting. In the first model, the value v
that a consumer assigns to the good decreases has his “age” x, or the time the consumer
has been in the market, increases. We model this dependence by setting v = 1 � x. In the
second model, a consumer’s valuation v is fixed throughout his lifetime. Because this means
that we cannot rely on age differences to create demand heterogeneity, we assume that the
consumers’ valuations are varied already at birth, specifically, that v is uniformly distributed
between 0 and 1. The consumers’ (identical) time preferences take the form of an exponential
discount function e��t, where � is the (common) discount rate. At any time t, the payoff that
a consumer with valuation v attaches to buying the good at price 0 � p � v at a later time
t+ � is e��� (v � p).

A seller sets and announces a price 0 � p � 1 for a unit of the good, sells the demanded
quantity, which he produces at zero cost, and then immediately leaves the market. His payoff
is the profit from selling the good, which equals the revenue.

Information and strategies

With sequential competition, the sellers’ and buyers’ possible strategies depend on the infor-
mation they have. To simplify the analysis, this paper considers only the two extreme cases
of sellers with either perfect information about the history of prior sales or no information
at all. Information or lack thereof turns out to greatly affect the sellers’ market power, so al-
lowing only one of these possibilities would be overly restrictive. In both cases, we suppose
buyers are perfectly informed about the past.

The (possible) randomness of the sellers’ arrivals makes our model a variant of a random-
player game (Milchtaich, 2004). In such a game, strategies are ascribed not to individual
agents but to agent types.

A seller’s type is his arrival time t. A strategy for type t is a rule that assigns an asking price
0 � p � 1 to each possible history at time t. Such a historyHt is a complete description of all
relevant past events: the arrival times of the previous sellers, the prices they set, and the total
mass and age distribution of the consumers who bought the good from them. A strategy is
feasible for a seller if it depends only on information about the history that the seller actually
possesses. Hence, the better informed sellers are about the past, the larger are their sets
of feasible strategies. When sellers are (perfectly) informed, their feasible strategies are all
the strategies of their respective types. With (completely) uninformed sellers, the feasible
strategies for each type of seller are simply specifications of an asking price 0 � p � 1. Other
conceivable settings are that some sellers are informed and some are uninformed, or that
sellers are only partially informed, for example, informed about the previous sellers’ asking
prices but not about the consumers’ reaction to them. For tractability, however, we consider
only the two extreme cases described above.

Each seller has certain (posterior) beliefs about the other sellers’ arrival times. Even for
an uninformed seller, these beliefs are not necessarily identical to those derived from the
common prior, which is the distribution of the point process T . The difference arises be-
cause an uninformed seller who arrives at time t knows something that was not necessarily
known in advance, namely, that a seller arrived at time t. This information may give an in-
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dication about the other arrival times. If the seller is uninformed, no additional information
is available to him, so that his posterior about the arrival times is the conditional distribu-
tion of T , given that a seller arrived at time t. This conditional distribution is called the Palm
distribution (Kallenberg, 1986). For an informed seller, the posterior is obtained by further
conditioning the Palm distribution on the actual arrival times of the previous sellers, that is,
by taking into consideration both the seller’s own arrival time and the history. For both kinds
of sellers, the posterior induces a probability distribution for each variable that can be ex-
pressed as a function of (some or all of) the arrival times, such as the total number of sellers,
the time � from the last seller’s appearance, and the waiting time � to the next seller (with
� or � defined as 1 if there are no earlier or later sellers, respectively). If the distribution is
degenerate, meaning that it assigns probability 1 to a particular value, then we say that the
seller knows the variable. For example, an informed seller by definition knows �, whereas
an uninformed seller may or may not know it. Note that, regardless of whether or not sellers
are informed, the probability that they all know that � � 1 is less than 1. This is because, by
assumption, the (prior) probability that the sellers’ arrivals are all one or more units of time
apart is zero.

A consumer’s type is specified by his time of birth c and his valuation of the good at that
time (which determines the valuation at any later time). A strategy for a consumer of type
c is a rule that assigns either the decision Buy or Wait to each buying opportunity he may
encounter. A buying opportunity is specified by the arrival time t of the seller (with c � t �
c + 1), the posted price 0 � p � 1 and the history Ht. To simplify the analysis, we assume
that all consumers are informed, that is, they know the history, so that all the strategies of
their respective types are feasible. This assumption entails that whenever a seller arrives at
the market, all the consumers have identical posterior beliefs about the future arrival times,
which coincide with those of the arriving seller if he is also informed.

The information, beliefs and strategies of the sellers and consumers together determine
each agent’s expectation at each moment regarding his gain from unilaterally switching to
any feasible strategy different from that specified for his type. For an uninformed agent,
“unilateral” means that all the other agents’ actions accord with their strategies. For an in-
formed agent, the meaning is similar, but only concerning future actions; the history may or
may not be consistent with the strategy profile. If the expected gain is positive, the devia-
tion is profitable for the agent. A strategy profile is a (Bayesian perfect) equilibrium if prof-
itable deviations do not exist. Note that this requirement concerns also histories that are not
consistent with the strategy profile, which means that it excludes irrational off-equilibrium
behavior by informed agents.

3 Monopoly Prices

Our main concern in this paper is the effect of competition from future sellers on the sellers’
market power. Competition has no effect if the prices sellers set and the profits they earn are
the same as they would be if each consumer could only buy from the first seller he encoun-
ters, in other words, if sellers had complete monopoly power.

A seller may face both young consumers, who were born after the previous seller ap-
peared and so did not yet have a chance to buy the good, and older consumers, who could
buy from the previous seller but chose not to do so. For 0 � p � 1, denote by �M (p) the
seller’s expected profit from selling the good at that price to young consumers only, assum-
ing that each such consumer who values the good at more than p buys it. This defines the
seller’s monopoly profit function �M : [0; 1] ! [0; 1], the form of which depends on the kind
of consumers’ impatience (see Figure 1). With declining valuations,

�M (p) = p E[min(�; 1� p)]; (1)
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Figure 1: The monopoly profit function �M of a seller who is uncertain about the time � since
the last seller appeared: with probability 2

3 , � = 1
4 , and with probability 1

3 , � = 1
2 . The con-

sumers are impatient, either because of declining valuations (solid line) or time discounting
(dashed line). The monopoly profit function peaks at the monopoly price, which is pM = 3

4
in the first case and pM = 1

2 in the second case.

and with time discounting,

�M (p) = E[min(�; 1)] p (1� p): (2)

In these equations, � is the time from the appearance of the previous seller and the expec-
tation is with respect to the seller’s beliefs. Thus, one seller’s �M may be different from that
of another. The unique (see Lemma 1 in Appendix A) maximum point 0 < pM < 1 of �M
is the seller’s monopoly price, and �M (pM ) is his monopoly profit. With declining valuations,
different sellers generally have different monopoly prices, which are all greater than or equal
to 1

2 . With time discounting, pM = 1
2 always.

The counterpart on the consumers’ side of monopolistic pricing is the monopoly strategy.
This strategy, which is oblivious to the current market conditions and the history, simply in-
structs the consumers to buy the good whenever doing so yields them positive payoff (with
the decision in the borderline case of zero payoff from buying left unspecified, as it is incon-
sequential to both the consumer and the other agents). The monopoly strategy would be
optimal if the possibility of buying from a later seller were absent.

4 Uninformed Sellers

The case of uninformed sellers may be viewed as a benchmark. In the next section, we com-
pare it to the arguably more realistic, but more involved, case of informed sellers, and thus
gain appreciation of the effect of the sellers’ information on their profits.

By definition, uninformed sellers do not know the previous sellers’ prices and the con-
sumers’ response to them. In addition, they may know the previous sellers’ arrival times only
if this information can be inferred from their own arrival time. Therefore, if the time of ar-
rival does not provide any information about how long ago the previous sellers appeared, all
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Figure 2: The highest equilibrium price in Example 1 as a function of the sellers’ arrival rate
�. When players have declining valuations, the equilbrium price is in fact unique (thick solid
line), and coincides with the seller’ monopoly price. With time discounting, the highest equi-
librium price (thick dashed line) is lower than the (constant) monopoly price (thin dashed
line).

sellers have the same monopoly price, and it is reasonable to expect that the prices they will
set are identical as well. The next two examples look at whether these two prices are equal.
All the assertions made concerning these and the other examples in this paper are proved in
Appendix B.

Example 1 Uninformed sellers arrive according to a Poisson process. That is, the time � from
one seller to the next is independent of past arrivals and has an exponential distribution with
parameter �, which is the sellers’ arrival rate. If the consumers have declining valuations,
there is an equilibrium in which all sellers set the same price, and the same is true with time
discounting if the discount rate � is sufficiently low. In the first case, the equilibrium price
is unique, and is equal to the sellers’ common monopoly price. In the second case, there are
multiple equilibrium prices, which are all lower than the monopoly price.

An additional difference between the two forms of consumers’ impatience in Example 1 is
that, as Figure 2 shows, with declining valuations, the equilibrium price increases rather than
decreases as the sellers’ arrival rate increases and competition thus intensifies. This seem-
ingly paradoxical finding is actually a necessary consequence of declining valuations.4 The
price rises because when sellers arrive soon after each other, they face relatively young poten-
tial customers, who are willing to pay more. Parenthetically, the negative effect of this price
increase on social welfare is not strong enough to negate the positive effect of the shorter
waiting times to the next seller. As the sellers’ arrival rate increases, so does the expected
total equilibrium payoff (to sellers and consumers combined) in any time interval.

The next example differs from the previous one in that, even with consumers having
declining valuations, the sellers’ identical monopoly price is not necessarily an equilibrium

4Chen and Frank (2004) observe a somewhat similar phenomenon in a queuing system. In their model, a
monopolistic server charges a profit-maximizing service fee. Because an increase in the number of customers
admitted increases the expected queuing time, this fee generally declines with demand.
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Figure 3: The monopoly price and the highest equilibrim price in Example 2 as a function of
the time s between the two sellers’ arrivals. In the case in which consumers have declining
valuations, the equibrlium price is in fact unique, when it exists (thick solid line), and coin-
cides with the sellers’ monopoly price (thin solid line). In the case of time discounting, with
unit discount rate � = 1, the highest equilibrium price (thick dashed line) is lower than the
monopoly price (thin dashed line).

price. Indeed, for both forms of consumer impatience, an equilibrium with a common equi-
librium price may not exist (see Figure 3). The basic reason for the possible nonexistence of
an equilibrium price is that such a price is required to leave sellers with no incentive to either
increase or decrease their prices. These two requirements may well be contradictory, as they
involve different kinds of considerations. The profitability of a price decrease depends on the
existence in the market of old consumers, who had a chance to buy at the equilibrium price
but did not do so, whereas the profitability of a price increase depends on the consumers’
willingness to buy also at the higher price rather than wait to the next seller who will sell at
the equilibrium price.

Example 2 There are two, uninformed sellers, one arriving 0 < s < 1 units of time after the
other. An arriving seller does not know whether he is first or second but the consumers do know
that.5 If the consumers have declining valuations, then an equilibrium in which both sellers
set the same price exists if and only if s � 1

5+
p
32

(� 0:094), and that price is unique and is
equal to the sellers’ monopoly price. With time discounting, equilibria in which both sellers set
the same price exist if and only if e��s � 1

2 , and these equilibrium prices are all lower than the
monopoly price.

The relations between the monopoly and equilibrium prices seen in the above examples
hold very generally. This is shown by the following theorem, which, as proved in Appendix A,
holds even under more general assumptions than those in Section 1. In particular, it holds

5The sellers’ ignorance of their relative position can be modeled as follows. Let t be a random variable that
is uniformly distributed on [0;K], for some fixed large number K. Suppose that the sellers’ arrival times are
:::;�K + t;�K + t + s; t; t + s;K + t;K + t + S; 2K + t; 2K + t + s; :::. Thus, there are infinitely many pairs of
sellers as above, which do not influence one another because of the long time periods separating them. As the
consumers know the history of previous arrivals, (only) they can tell when the next seller will arrive.
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with any discount function, not only an exponential one, and for certain kinds of non-linearly
declining valuations. The same applies to Theorem 2 below.

Theorem 1 Suppose that the sellers are uninformed and that there is an equilibrium in which
they all set the same price pE . If the consumers have declining valuations, then pE necessarily
coincides with the monopoly price of each of the sellers. By contrast, with time discounting, pE

is necessarily lower than the sellers’ (common) monopoly price.

As Theorem 1 shows, whether competition with future sellers reduces the monopoly power
of uninformed sellers depends on the form of the consumers’ impatience. The proof of the
theorem in Appendix A reveals the reason for this dependence.

To understand the reason, recall that a seller’s monopoly profit function specifies the con-
nection between the price the seller sets and the profit under the (counterfactual) assump-
tion that consumers are only allowed to buy the good from the first seller they meet. Sup-
pose that the monopoly price, which maximizes the function, is the same for all sellers and
that they all set that price. A seller who unilaterally deviates by slightly reducing his price
decreases his monopoly profit, but on the other hand, attracts potential consumers of the
previous sellers for whom the monopoly price was just a little high. As for every differen-
tiable function, at the maximum point of the monopoly profit function the first-order effect
of changing the price is zero. With time discounting, this means that the second, positive
effect of attracting old consumers dominates, so that the price reduction is profitable. This
explains why, in this case, an equilibrium price must be lower than the monopoly price. With
declining valuations, this is not so. In this case, the positive effect of the price reduction is
also of low order. This is because the time that passed since the previous sellers’ visits means
that, to attract their potential customer who are still in the market, a more drastic price re-
duction is needed.

A similar difference between the two forms of consumers’ impatience applies to price
increases. The effect of raising the price to slightly above the competitors’ price can again
be decomposed into an effect on the monopoly profit and an additional effect, which in
this case is negative and expresses the loss that results from some consumers’ decision to
wait to the next seller. The second effect is again of low order in the case of declining valua-
tions, which means that the condition for profit maximization coincides with the first-order
condition of zero marginal monopoly profit. Therefore, with declining valuations, only the
monopoly price can be an equilibrium price. By contrast, with time discounting, the loss of
customers to the competition is of the same order as (in other words, roughly proportional
to) the price increase. Herein lies the crucial difference from Diamond’s (1971) model, where
a seller can increase his price with impunity to above the competitors’ price as long as the
price gap remains below the consumers’ switching cost. This difference explains why, with
time discounting, the conclusion that an equilibrium price must be the monopoly price does
not hold.

Different equilibrium prices

When sellers differ in their beliefs about how long ago the previous sellers arrived, they may
well differ also in the prices they set in equilibrium. In this case, even if the consumers have
declining valuations, each seller may have a unique equilibrium price that is different from
his monopoly price. This is demonstrated by the following example, in which the two sellers
are uninformed but they know whether they are first or second as well as the length of the
time interval between their arrivals. Depending on the latter, the two sellers’ equilibrium
prices may be lower than their respective monopoly prices, may coincide with them, or may
not exist (see Figure 4).

9



0.5

1

   
   

 E
qu

ili
br

iu
m

 p
ri

ce

0  0.25  0.5  0.75 1
 Inter­arrival time

Figure 4: The equilbrium prices for the first and second seller (black and gray lines, respec-
tively) in Example 3 as a function of the time s between their arrivals. Prices in the shaded
area that are lower than the first seller’s monoploy price of 12 are not equilbrium prices for
him in this example, but they are so in Example 4 (in the case where the probability that the
second seller arrives is 1

2).

Example 3 One seller arrives for sure at time 0. A second, uninformed seller arrives with prob-
ability 1

2 at (a fixed) time 0 < s < 1, and with probability 1
2 he never appears. The consumers

have declining valuations. If s � 1
26 or s � 1

8+
p
48

, there is a unique equilibrium price for each

seller, which is respectively lower than or equal to his monopoly price, but if 1
26 < s < 1

8+
p
48

,
an equilibrium does not exist.

The reason the second seller in Example 3 sets a price lower than his monopoly price (and
than the first seller’s price) if he comes almost immediately after the first seller (specifically,
if s � 1

26 � 0:038) is that he has in this case only very few potential customers who are young
and willing to pay a high price for the good. The seller can therefore profit from setting a
low price, which attracts some of the old consumers born before the first seller appeared.
Anticipating this price reduction, some consumers who would gain little by buying from the
first seller wait for the second seller. Therefore, the first seller cannot assume that all the
consumers with positive payoff from buying will do so, which forces him to lower his price
and receive a profit lower than his monopoly one. The profit for the second seller exceeds his
monopoly profit, which he can always get regardless of what the first seller does.

5 Informed Sellers

If the inter-arrival time in Example 3 is not very short, specifically, if s � 1
8+
p
48

(� 0:067), then
the above argument does not apply and the monopoly prices are in fact equilibrium prices.
The same conclusion holds much more generally. In particular, it holds with informed as
well as uninformed sellers, as long as sellers never appear in very short succession and (as in
Example 3) they know how long ago the previous seller arrived. Moreover, the exact meaning
of “very short” here is the same as in the example. We interpret this result as saying that, with
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Figure 5: The consumers’ equilibrium strategy in Example 4. A consumer buys the good from
the first seller if and only if his age and the price fall within the shaded area. The depicted
strategy corresponds to an equilibrium price of p� = 23

53 and to the case where the second
seller is equally likely to arrive 4

53 units of time after the first seller or not at all.

declining valuations, competition from future sellers does not necessarily reduce the sellers’
monopoly power.

Theorem 2 Regardless of whether the sellers are informed or uninformed, if each of them
knows the time since the appearance of the previous seller and that time is never shorter than

1
8+
p
48

, and if the consumers have declining valuations, there is an equilibrium in which every
seller sells at his monopoly price and every consumer that would get positive payoff from buy-
ing at that price does so.

Where the cases of informed and uninformed sellers fundamentally differ, even under the
special circumstances considered in Theorem 2, is the existence of equilibrium prices lower
than the monopoly ones. Getting such prices requires the consumers to play an active role,
so to speak, in the determination of the prices, and punish a seller who sets a high price by
reducing his sells. Crucially, the next seller must be able to know that not all the consumers
who could buy from his predecessor did buy, so that he can set his own price accordingly.

The following example demonstrates this possibility. It differs from Example 3 mainly in
that the second seller is informed (and also in only considering inter-arrival times that fall
within a specific, narrow range, but on the other hand, allowing the second seller to appear
with high probability, and even with certainty). The difference results in additional equilib-
ria, in which the first seller sets lower prices than his monopoly price of 12 (see Figure 4).

Example 4 One seller arrives for sure at time 0. A second, informed seller arrives with proba-
bility 1

2 � � � 1 at (a fixed) time 1
8+
p
48
� s � 1

10 , and with probability 1� � he never appears.

The consumers have declining valuations. For any given price�s+(2� �)
p
s(1� s) � p� � 1

2 ,
there is an equilibrium in which the first seller’s price is p� and the second seller’s price is 1� s.

The consumers’ equilibrium strategy in this example is to buy the good from the second
seller at any price that gives them positive payoff, but to buy from the first seller only if the

11



price also does not exceed some threshold, which depends on their age. Specifically, older
consumers who would receive low payoff from buying the good from the first seller at the
equilibrium price p� do not buy it at any higher price, while younger consumers may buy
also at prices that are slightly higher than p� (see Figure 5). This strategy entails that the
punishment of a seller who sets a higher price than p� reflects the severity of the deviation;
it is not an all-or-nothing punishment. An all-or-nothing punishment strategy would not be
credible here. This is because, if a price p that is not much higher than p� prompted a boycott
of the first seller by all the consumers, including the younger ones, who are willing to pay
more, the second seller would have less incentive to lower his price. That price would then
remain relatively high, leaving the older consumers with lower payoff than they would get
from buying from the first seller at price p, which means that joining the others in severely
punishing that seller was against these consumers’ own interests.

Credibility, that is, rationality of the off-equilibrium behavior specified by the agents’
strategies, is an important consideration. Even with a single seller, equilibria exist in which
a price lower than the monopoly price is supported by a consumers’ threat not to buy at any
higher price. However, these equilibria are not subgame perfect. If the seller sets a mod-
erately high price, it may be optimal for individual consumers to buy the good after all. A
credible threat is possible only with sequential competition, and only if the sellers are suffi-
ciently informed about the previous sellers’ behavior or about the consumers’ demand.

As all the equilibria identified in Example 4 satisfy the credibility requirement, and both
sellers and consumers are informed, none of the equilibria is eliminated by any obvious no-
tion of equilibrium refinement. Multiplicity of equilibrium prices in this example thus ap-
pears to be a robust inherent property.

A Proofs: Theorems

The following proofs of the papers’ two theorems actually concern more general forms of
consumers’ impatience than specified in Section 2.

For the case of time discounting, the exponential discount function may be replaced by
any continuous and strictly decreasing functionD : [0; 1]! [0; 1]withD(0) = 1. In addition,
the assumption that the distribution of the consumers’ valuations is uniform is generalized
by allowing any continuous distribution on the unit interval [0; 1], with cumulative distribu-
tion function F and density f , such that there is a unique value of pmaximizing

p (1� F (p)):

That maximum point 0 < pM < 1 is the sellers’ (common) monopoly price. Correspondingly,
the equation for the monopoly profit function is generalized from (2) to

�M (p) = E[min(�; 1)] p (1� F (p)):

For the case of declining valuations, the assumption in Section 2 is that the valuation
function v : [0; 1] ! [0; 1] specifying the consumers’ valuation v(x) at each age x decreases
linearly from 1 to 0, which implies the same for the function a : [0; 1] ! [0; 1] that specifies
the maximum age of the consumers who may buy at each price p, which is given by

a(p) = max f0 � x � 1 j v (x) � pg : (3)

Consequently, the function �S : [0; 1]! [0; 1] defined by

�S(p) = p a(p); (4)

which is the monopoly profit function of a seller who knows that no other seller arrived in
the previous unit of time, is quadratic and strictly concave and has a maximum at p = 1

2 .
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That assumption is now generalized by allowing the valuation function v to be any contin-
uous and strictly decreasing function with v(0) = 1 (but possibly v(1) > 06) such that the
corresponding function �S defined by ((3) and) (4) is concave, has a unique maximum point
0 < pS < 1, and is strictly concave (and, necessarily, strictly decreasing) in [pS ; 1].7 As the fol-
lowing lemma shows, the monopoly profit function of any seller automatically have similar
properties. This function �M : [0; 1]! [0; 1], which generalizes (1), is given by

�M (p) = p E[min(�; a(p))] = E[min(�p; �S(p))]; (5)

where the expectation is with respect to the seller’s beliefs about the time � from the previous
seller’s appearance. If the seller knows �;the expectation symbol Emay be dropped.

Lemma 1 If the consumers have declining valuations, then every seler’s monopoly profit func-
tion �M is continuous and concave in [0; 1], has a unique maximum point 0 < pM < 1, and is
strictly concave in [pM ; 1]. If the seller knows the time � from the previous seller’s appearance,
then pM = max(pS ; v(�)).

Proof. As the function �S is assumed concave, and is easily seen to be continuous, the func-
tions

fmin(sp; �S(p))gs>0
are equicontinuous and concave in [0; 1], and therefore �M is also continuous and concave.
Let pM be a maximum point of�M . As the assumption concerning pS implies thatmin(sp; �S(p)) <
min(spS ; �S(p

S)) for all p < pS and s > 0, necessarily pM � pS . To prove that the maxi-
mum point is unique, it suffices to show that �M has no other maximum point in the interval
[pM ; 1]. For this, it suffices to show that �M is strictly concave there. Strict concavity fol-
lows from the claim below. This is because it follows from the claim and from the fact that
the function a is nonincreasing that, with positive probability,min (�p; �S(p)) = �S(p) for all
pM � p � 1. As �S is strictly concave on the interval [pM ; 1], this implies that �M is also strictly
concave (rather than just concave) there.

Claim With positive probability, � � a(pM ).

Suppose otherwise, that � < a(pM ) almost surely, so that

�M (p
M ) = pME [�] : (6)

The concavity of �S implies that this function, and hence also a, have one-sided derivatives
at pM . Therefore, there exists some � > 0 such that, for sufficiently small � > 0,

a(pM )� a(pM + �)

�
<
E [�]
�
: (7)

The continuity of a implies that Pr(� > a(pM + �)) < � for sufficiently small 0 < � < 1 � pM .

6It is occasionally convenient to view v as defined on the whole nonnegative ray, with v(x) = 0 for x > 1. This
means that the function may have a discontinuity point at 1.

7The conditions on �S hold, for example, if v is a concave piece-wise linear function. They also hold for the
power functions v(x) = (1� x)� (� > 0), the normalized exponential functions v(x) = �x��

1�� (0 < � 6= 1),
and more generally, whenever ( 1

v
)00 > 0 in (0; 1) and v(1) = 0. (This result follows from the identity �00S � v =

( v
v0 )

3
�
1
v

�00
.)
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However, this inequality and (7) lead to a contradiction:

0 > �
�
a(pM )� a(pM + �)

�
� �E [�]

� Pr(� > a(pM + �))
�
a(pM )� a(pM + �)

�
� �E [�]

�
�
pM + �

�
E
�
� �min(�; a(pM + �))

�
� �E [�]

= pME [�]�
�
pM + �

�
E
�
min(�; a(pM + �))

�
= �M (p

M )� �M (pM + �)

� 0;

where the third inequality holds because a(pM ) > � almost surely and pM + � < 1, the second
equality holds by (5) and (6), and the last inequality holds because pM is a maximum point of
�M . This contradiction proves the claim.

Consider now the case where the seller knows �. By definition of a, a price p satisfies
a(p) � � if and only if p lies in [0; v(�)]. Hence, by (5), �M (p) = �p for all p in that interval, so
that �M is strictly increasing there, and �M (p) = �S(p) for all p outside it. If v(�) � pS , then
�S , hence also �M , are strictly decreasing in the closed interval [v(�); 1], so that they attain
their maximum there at the point v(�), at which �M = �v(�). If v(�) < pS , then both �S and
�M attain their maximum at pS , where �M = �S(p

S). This proves that pM = max(pS ; v(�)).

A.1 Theorem 1

First case: declining valuations.

The equilibrium condition requires the expected profit �(pE) for any single seller from
setting the equilibrium price pE to be greater than or equal to the expected profit �(p) from
setting any other price 0 � p � 1. We have to show that this condition cannot in fact hold if
pE is not equal to the seller’s monopoly price pM .

If pE > pM , then
�(pE) = �M (p

E) < �M (p
M ) � �(pM ): (8)

The equality holds because the assumption of declining valuations implies that at equilib-
rium consumers never wait to the next seller, and therefore any consumer who was born after
the arrival of the previous seller will buy the good at price pE if this gives him positive payoff,
while any consumer born before the arrival of the previous seller but did not buy from him
will also not buy now. By the definition of the monopoly profit function, this means that the
seller’s expected profit from selling at the equilibrium price pE is �M (pE). The strict inequal-
ity holds because pM is the unique maximizer of �M . The weak inequality holds because the
lower price pM may also attract consumers who were born before the arrival of the previous
seller but did not buy from him (at price pE). It follows from (8) that, if pE > pM ,then the
seller would gain from reducing the price to pM .

Suppose now that pE < pM . Consider a price pE < p � 1 and a consumer for whom
buying the good is an optimal decision if the price is pE and waiting is an optimal decision
if the price is p. Thus, the consumer’s age x is such that (i) v(x) � pE � 0 and (ii) v(x) � p is
less than or equal to the consumer’s expected payoff if he defers buying the good. Condition
(ii) holds for two kinds of consumers: those for whom the difference v(x)� p is negative, and
consumers for whom it is nonnegative but not greater than the expected payoff from waiting
for the next seller. In the rest of the proof, the main idea is to show that, for p sufficiently close
to pE , consumers of the first kind greatly outnumber those of the second kind, so that the
anticipated arrival of future sellers has a vanishingly small effect on consumers’ decisions.

For a consumer of age xwho defers buying, the payoff is v(x+ �)� pE if the waiting time
� to the next seller makes this expression positive; otherwise the payoff is zero. Condition (ii)
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above is therefore equivalent to v(x)� p � E[max(v(x+ �)� pE ; 0)], or

E
�
min

�
v(x)� pE ; v(x)� v(x+ �)

��
� p� pE ; (9)

where the expectation is with respect to the consumers’ beliefs about � , that is, about when
the next seller will arrive. (As, by assumption, all the consumers are informed, their beliefs
about � are identical.) If the consumers know when the next seller will arrive, the distribution
of (the random variable) � is degenerate.

Fix � > 0. By the assumption in Section 2, there is some (small) 0 < � < 1 that makes
Pr(� > �) > 1

1+� . Since, by assumption, v is continuous and strictly decreasing in the unit

interval, there is some price pE < p < pM+�pE

1+� that is sufficiently close to pE to make

v(x)� v(x+ �) � (1 + �)
�
p� pE

�
(10)

for all 0 � x � 1 � �. It follows from (10) that for any consumer whose age y satisfies v(y) �
pE+(1 + �)

�
p� pE

�
, if the waiting time � satisfies � > � (which means that either � < � � 1�y

or 1� y < �; and in the latter case, trivially v(y + �) = 0), then

min
�
v(y)� pE ; v(y)� v(y + �)

�
� (1 + �)

�
p� pE

�
:

Therefore, for a consumer of such an age y;

E
�
min

�
v(y)� pE ; v(y)� v(y + �)

��
� Pr(� > �) (1 + �)

�
p� pE

�
> p� pE :

Thus, (9) does not hold for x = y, and therefore a consumer of this age prefers buying the
good at price p over waiting for the next seller. This conclusion shows that the age x of any
consumer who is willing to wait satisfies v(x) < pE+(1 + �)

�
p� pE

�
. If, in addition, v(x) � p

(that is, if the consumer is of the second kind considered above), then

a(pE + (1 + �)
�
p� pE

�
) < x � a(p): (11)

If the seller charges pE , he sells to all the consumers who were born after the previous
seller appeared and have positive payoff from buying at pE . The expected profit is then
�M (p

E). Raising the price to p changes the profit to some other value, �(p). The consumers’
response to the price increase may be thought of as having two stages. In the first stage, all
the consumers with positive payoff from buying at price p still do so, giving the seller a profit
of �M (p). In the second stage, the consumers who are better off waiting to the next seller
drop out. The resulting reduction in the number of customers is constrained by (11), which
gives the following upper bound on the second-stage loss of profit:

�M (p)� �(p) � p
�
a(p)� a(pE + (1 + �)

�
p� pE

�
)
�
: (12)

Because, by Lemma 1, �M is concave and has a maximum only at pM , and pE < p < pM ,

�M (p)� �M (pE)
p� pE � R; (13)

where

R =
�M (p

M )� �M (pE)
pM � pE > 0:

Inequalities (12) and (13) give

�(p)� �M (pE)
p� pE � R+ p

 
a(pE + (1 + �)

�
p� pE

�
)� a(pE)

p� pE � a(p)� a(p
E)

p� pE

!
: (14)
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If pE = 0, the right-hand side of (14) tends to R as p tends to pE . If pE > 0, it tends to
R + �pEa0(pE+), where a0(pE+) is the right derivative of a at pE . (The existence of this one-
sided derivative follows from its necessary existence for the convex function �S .) There-
fore, choosing sufficiently small � guarantees that in both cases the limit is positive, so that
�(p) > �M (p

E) for p sufficiently close to (but greater than) pE . Thus, raising the price by a
small amount increases the seller’s profit. This conclusion contradicts the assumption that
pE is an equilibrium price.

Second case: time discounting.

The proof that pE > pM cannot hold is identical to that in the first case. Suppose that
pE = pM . The equilibrium profit of a seller is given by

�(pE) = �M (p
E) = E[min(�; 1)] pE (1� F (pE));

where � is the time since the last seller’s visit. Choosing a lower price, p < pE ; would change
the profit to

�(p) = E [min(�; 1)] p (1� F (p)) + E [max(1� �; 0)] p
�
F (pE)� F (p)

�
;

where the first term, which is equal to �M (p), is the revenue from consumers born after the
arrival of the previous seller and the second term represents older consumers with p < v <
pE . It is not difficult to check that the above two equalities give:

�(pE)� �(p)
pE � p =

1

E[min(�; 1)]
�M (p

E)� �M (p)
pE � p � E [max(1� �; 0)] (1� F (pE)):

The first term on the right tends to zero as p tends to pE = pM , because, at the maximum
point, �

0
M = 0. Therefore, if the probability that � < 1 is greater than zero, the right-, and

hence also the left-hand side is negative for p sufficiently close to (and smaller than) pE . Thus,
pE can be a profit-maximizing price only for a seller who knows that � � 1. However, as
indicated (see Section 2), there is nonzero probability that this is not the case for at least
some sellers. This contradiction proves that pM cannot in fact be an equilibrium price.

A.2 Theorem 2

Suppose that the assumptions in the theorem hold, and the consumers have a valuation
function of the general form specified above. The lower bound on the time from one seller to
the next stated in the theorem is correspondingly generalized by replacing it with the smallest
solution s1 of the equation

s v(s) = max
0�p�1

�
p
�
a(p)� a(pS)

��
: (15)

This equation has at least one solution s in the interval [0; a(pS)], because the valuation
function is continuous and 0 � v(0) � maxp

�
p
�
a(p)� a(pS)

��
� maxp [p a(p)] = pS a(pS) �

a(pS) v(a(pS)). For the originally considered special case of linear valuation function (v(x) =
1�x), the smallest solution is s1 = 1

8+
p
48
� 0:067, because a(p) = 1�p and pS = argmaxp [p a(p)] =1

2 ,

so that (15) is the quadratic equation s (1� s) = 1
16 .8

Suppose that each seller sets his monopoly price, which by Lemma 1 is given by

pM = max(pS ; v(�)) � v(�);
8The linear valuation function is a limit case of the one-parameter family of exponentially-decreasing valua-

tion functions v(x) = �x��
1�� , with 0 < � 6= 1. It can be shown numerically that, for every such �, s1 is less than

about 0:082.
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where � is the time since the appearance of the previous seller. Any consumers born earlier
would not buy at that price, which means that for him the price is not worth waiting to.
Therefore, it is optimal for a consumer to buy at the first opportunity, if the requested price
is not higher than his valuation at that moment. Note that, by the above characterization of
the monopoly prices, the last condition may not hold only if the requested price is pS .

It follows from this analysis of the consumers’ behavior that, if all the sellers choose their
monopoly prices pM , each of them receives his monopoly profit �M (pM ). It remains to prove
that no single seller would get a higher profit by choosing any price p 6= pM .

If p > pM , then, as explained above, no consumer born before the arrival of the previous
seller will buy at that price, which means that the seller’s profit is at most �M (p) (� �M (pM ),
by definition of pM ). If p < pM , then some consumers born before the arrival of the previous
seller may buy. However, these consumers are rather old, specifically, older by at least a(pS)
than any of the consumers born after the previous seller’s arrival. This is because, as indi-
cated, a consumer does not buy from a seller (at the seller’s monopoly price) only if the price
the seller sets is pS and his valuation is less than or equal to that, which means that the con-
sumer’s age is at least a(pS). Therefore, if p is low enough to appeal to some old consumers
(as well as to the young ones), the sellers’ profit is at most p

�
a(p)� a(pS)

�
. By definition of

s1, the last expression does not exceed s 1v(s1), which by the assumption s 1 � � is equal to
�M (v(s1)) (� �M (pM )).

B Proofs: Examples

This appendix proves the assertions made in the paper’s four examples.

B.1 Example 1

Suppose that all the sellers set the same price pE . Any equilibrium strategy for the consumers
must specify that they buy the good at that price or lower if doing so gives them positive pay-
off. It must also specify that they buy or do not buy at any higher price if the corresponding
payoff is higher or lower, respectively, than that expected from waiting to and (optionally)
buying from the next seller at price pE . Therefore, pE is an equilibrium price if and only if,
when all the sellers sell at that price and the consumers’ strategy satisfies the above condi-
tions, no seller can gain from setting a price p 6= pE . Below, we investigate this equilibrium
condition in the two cases of consumers’ impatience described in Section 2.

First case: declining valuations.

We show below that a necessary and sufficient condition for pE to be an equilibrium price
is that p = pE is a solution of the equation

p+
1

�
ln (1 + �p) = 1: (16)

Consider first a seller who deviates by setting a higher price, p > pE . The payoff of a
consumer of age x < 1 � p from buying at price p is 1 � x � p. The payoff from waiting to
the next seller (who will sell at price pE) is 1� (x+ �)� pE if this expression is positive and 0
otherwise, where � is the (random) waiting time to the next seller. Hence, the expected payoff
from waiting isZ 1�x�pE

0

�
1� (x+ �)� pE

�
�e���d� = 1� x� (pE + 1

�
) +

1

�
e��(1�x�p

E):
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Comparison of the two payoffs shows that a necessary condition for selling any units at all at
price p is

p < pE +
1

�
;

which means that the price difference must be lower than the expected waiting time to the
next seller, 1� . If this condition holds, then a consumer of age x is better off buying imme-
diately (at price p) than waiting to the next seller or not buying at all if and only if x < xp,
where

xp = 1� pE +
1

�
ln
�
1� �

�
p� pE

��
: (17)

It is not difficult to see that the threshold value xp is lower than 1�p. If positive, it is the age at
which a consumer is indifferent between buying and waiting. If negative, no consumer will
buy at price p.

The seller’s expected profit �(p) from setting a price pE < p < pE + 1
� with xp > 0 can

be computed as follows. From the seller’s perspective, the time � since the previous seller
appeared is exponentially distributed with parameter �. A consumer who did not buy from
that seller at price pE will certainly not buy at the higher price p. Therefore,

�(p) = p E [min(�; xp)]

= p

"Z xp

0
�se��sds+

Z 1

xp

�xpe
��sds

#
=

p

�

�
1� e��xp

�
=

p

�

 
1� e��(1�p

E)

1� � (p� pE)

!
;

where the last equality follows from (17). Differentiation gives

�0(p) =
1

�
�
e��(1�p

E)
�
1 + �pE

�
�(1� � (p� pE))2 :

The derivative is decreasing for pE < p < pE + 1
� , and therefore �(p) � �(pE) for all such p if

and only if �0(pE) � 0, or
e�(1�p

E) � 1 + �pE : (18)

Consider next a price p � pe. Any consumer of age x < 1 � p will buy at that price.
However, such a consumer is still in the market only if no previous seller arrived s units of
time earlier, for every x � (1 � pE) < s < x (as the consumer would have bought the good
from such a seller). The probability of this is e��x if x < 1 � pE , and e��(1�p

E) if x � 1 � pE .
Therefore, the expected profit of a seller selling at price p is

�(p) = p

"Z 1�pE

0
e��xdx+

Z 1�p

1�pE
e��(1�p

E)dx

#
=

p

�

�
1�

�
1 + �

�
p� pE

��
e��(1�p

E)
�
:

Since this is a quadratic, concave function, the inequality �(p)� �(pE) holds for all p � pE if
and only if �0(pE) � 0, or

e�(1�p
E) � 1 + �pE :

The price pE satisfies both the last inequality and the reverse one (18) if and only if it
solves (16). This proves that the latter is indeed a necessary and sufficient condition for an
equilibrium price.
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Equation (16) has a unique solution, because the expression on the left-hand side is
strictly increasing and is less or greater than 1 for p = 0 or p = 1, respectively. The solution
is equal to the sellers’ monopoly price pM . This is because the exponential distribution (with
parameter �) of the time � since the arrival of the previous seller implies that the monopoly
profit function is

�M (p) = pE [min(�; 1� p)]

= p

�Z 1�p

0
�se��sds+

Z 1

1�p
(1� p)�e��sds

�
=

p

�

�
1� e��(1�p)

�
:

The monopoly price pM maximizes �M , and hence satisfies the first-order condition

d�M
dp

=
1

�

�
1� (1 + �p) e��(1�p)

�
= 0:

This equation is equivalent to (16).
Equation (16) gives the equilibrium price as an implicit function of the sellers’ arrival rate

�. This function tends to 1
2 as � tends to 0, and it is strictly increasing (see Figure 2). The latter

can be verified by implicitly differentiating (16), which gives the equality�
1 +

1

1 + �p

�
dp

d�
+
1

�2

�
1� 1

1 + �p
� ln (1 + �p)

�
= 0:

Because 1� 1
1+x � ln(1 + x) < 0 for all x > 0, the equality proves that dp

E

d� > 0. Together with

(16), it also gives the upper bound dpE

d� < (pE)2, because it follows from the two equalities
that

p2 � dp

d�
= (

1

�
+ p)(p� 1

2 + �p
);

and the right-hand side is positive for p = pE > 1
2 .

Consider now the effect of the sellers’ arrival rate on social welfare. The latter is expressed
by the expectation of a consumer’s valuation of the good at the time he buys it, which is 1
minus his age x (and is zero if the consumer leaves the market without buying). As only
consumers younger than 1� pE buy the good, the expectation in question isZ 1�pE

0
(1� x)�e��xdx = 1� 1 + (�p

E � 1)e��(1�pE)
�

= 1� 2

�+ 1
pE

;

where the second equality uses (16). The expression in the last denominator increases with
increasing �, because, as shown above,

d

d�

�
�+

1

pE

�
= 1� 1

(pE)2
dpE

d�
> 0:

This proves that social welfare also increases.

Second case: time discounting.

Each seller’s expected profit is equal to the monopoly profit from setting the price pE :

�(pE) = �M (p
E) = E[min(�; 1)] pE (1� pE);

with
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E[min(�; 1)] =
Z 1

0
P(� > x) dx =

Z 1

0
e��x dx =

1� e��
�

: (19)

Setting a lower price, p < pE , would change a seller’s profit to

�(p) = E[min(�; 1)] p (1� pE) + p (pE � p);

where the decomposition reflects the fact that all the consumers with valuations p < v < pE

born during the last unit of time are still in the market and will buy at price p. The equilibrium
condition �(p) � �(pE) can therefore be written as

0 � (p� pE)
�
E[min(�; 1)] (1� pE)� p

�
:

This condition holds (indeed, holds as strict inequality) for all 0 < p < pE if and only if

E[min(�; 1)] (1� pE)� pE � 0:

By (19), the last inequality is equivalent to

pE � 1

1 + �
1�e��

: (20)

In particular, an equilibrium price is necessarily lower than the monopoly price pM = 1
2 .

Consider now a seller who increases his price, to some p > pE . Only customers born after
the last seller’s visit may have valuations higher than p, which means that the seller’s profit
�(p) cannot be greater than �M (p). As �M is the quadratic function (2), �M (p) < �M (p

E) if
p > 1� pE . Therefore, we only need to consider prices p � 1� pE .

The profit �(p) may actually be less than �M (p). This is because for some potential cus-
tomers it may be better to wait to the next seller, who will sell at price pE . The payoff this
alternative yields depends on the waiting time � to the next seller, and in particular, for a
consumer of age x, on whether x + � � 1. Specifically, waiting is not an optimal option for
the consumer if and only if his valuation v satisfies

v � p > E[e���1x+��1] (v � pE);

or

v > pE +
p� pE

1� E[e��� 1��1�x]
:

The probability that such a consumer is still in the market (because he did not have a chance
to buy at price pE) is e��x. Therefore, the expected profit from setting price p is

�(p) = p

Z 1

0
max

�
1� pE � p� pE

1� E[e��� 1��1�x]
; 0

�
e��xdx: (21)

If p is sufficiently close to pE to make

1� pE � p� pE
1� E[ 1��1]

� 0; (22)

then by (19) and (21)

�(p)� �(pE) = p

Z 1

0

�
1� pE � p� pE

1� E[e��� 1��1�x]

�
e��xdx� pE

Z 1

0
(1� pE)e��x dx

= (p� pE)
Z 1

0

�
1� pE � p

1� E[e��� 1��1�x]

�
e��xdx:

20



A necessary and sufficient condition for this difference to be nonpositive for all p > pE satisfying
(22) (which moreover implies that the difference is in fact negative) is that the integral on the
right-hand side is nonpositive for p = pE . This is so if and only if

pE � 1

1 + �
1�e��

R 1
0

e��x

1�E[e��� 1��1�x]dx
: (23)

This inequality is consistent with the previous condition (20) if and only if the discount rate

� satisfies Z 1

0

e��x

1� E[e��� 1��1�x]
dx � 1: (24)

The integral depends on � as a strictly decreasing function. This is because the denominator
is strictly increasing, and tends to 1 or e��(1�x) when � tends to 1 or 0, respectively. At the
first limit, (24) does not hold, and at the second limit, it holds as strict inequality, becauseZ 1

0

e��x

e��(1�x)
dx =

e� � e��
2�

> 1:

Therefore, for any discount rate above the threshold defined by equality in (24), an equi-
librium where all sellers set the same equilibrium price does not exist. For discount rates
sufficiently far below the threshold, there are many equilibria. In fact, as we show below, any

1

1 + 1
2
e��e��
1�e��

< pE � 1

1 + �
1�e��

is an equilibrium price for sufficiently low discount rate.
Fix any such price pE . As shown above, a seller would only decrease his profit by deviating

to any price p that is lower than pE or higher than 1�pE , and the same holds for all p satisfying
(22) if the discount rate � is low enough to give (23). Consider then a price

pE + e��(1� pE) � p � 1� pE ; (25)

and let x0 be the unique point in [0; 1] satisfying

e�(1�x0)(p� pE) = 1� pE :

As Equation (21) shows, a seller’s profit from setting the price p is determined by � as a non-
decreasing function, which in the limit �! 0 becomes

p

Z 1

x0

�
1� pE � e�(1�x)(p� pE)

�
e��xdx =

e��

2�
p
�
p+ pE � 2 +

�
2(1� pE)� e�(1�x0)(p� pE)

�
e�(1�x0)

�
=

e��

2�
p

�
p+ pE � 2 + (1� pE)1� p

E

p� pE

�
=

e��

2�

p(1� p)2
p� pE :

The last expression is determined by p as a strictly decreasing function in the interval speci-
fied by (25), and it therefore attains its maximum at the left endpoint. At that point, inequality
(22) holds (as equality, and x0 = 0), which as indicated implies that �(p) < �(pE) if � is suffi-
ciently close to 0. It therefore follows from the joint continuity of the expression in (21) in p
and � that, for sufficiently low �, the same inequality holds simultaneously for all p satisfying
(25).
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B.2 Example 2

First case: declining valuations.

The monopoly profit function in this case is given by

�M (p) =
1

2
p (1� p) + 1

2
pmin(s; 1� p);

because a seller is equally likely to be first or second. The maximum point of this function,
which is the monopoly price pM , is given by

pM =

8<:
1+s
2 ; 0 < s � 1

3
1� s; 1

3 � s �
1
2

1
2 ; s � 1

2

(26)

(see Figure 3). By Theorem 1, in any equilibrium with a single equilibrium price, that price is
pM . To check whether such an equilibrium actually exists, suppose that both sellers set the
price to pM but one of them contemplates setting a different price p.

If p > pM � s, then the seller’s profit from setting this price will not be greater than �M (p),
because consumers who already had a chance to buy the good at the lower price pM but
chose not to do so will also not buy now at price p. Therefore, the profit from setting price p
will be less than �M (pM ), the (monopoly) profit from selling at price pM . If 0 < p � pM � s
(which by (26) is possible only if s < 1

2 ), then the profit will be 1
2p (1� p) +

1
2p(p

M � p).
This is because, if the seller is the second one, some consumers who did not buy from the
first seller at price pM , namely, those older than 1 � pM + s but younger than 1 � p, will
buy at price p. If 1

3 � s < 1
2 , then by (26) pM = 1 � s, and therefore �M (pM ) = s (1� s),

whereas maxp
�
1
2p (1� p) +

1
2p(p

M � p)
�
= 1

16 (2� s)
2 � 1

16

�
2� 1

3

�2
< 1

3

�
1� 1

3

�
� s (1� s).

This proves that pM is indeed an equilibrium price if s � 1
3 . If s < 1

3 , then pM = 1+s
2 , and

therefore �M (pM ) = 1
8 (1 + s)

2 and maxp
�
1
2p (1� p) +

1
2p(p

M � p)
�
= 1

64 (3 + s)
2. The maxi-

mum is greater than 1
8 (1 + s)

2 if and only if s < 1
5+
p
32

, and for such s, the maximum point p

satisfies p = 3+s
8 < 1�s

2 = pM � s. Therefore, pM is not an equilibrium price if s < 1
5+
p
32

but

it is so if s � 1
5+
p
32

.

Second case: time discounting.

If both sellers set the same price pE , their expected profit is

�(pE) =
1 + s

2
pE(1� pE):

A unilateral change of price to p < pE changes the seller’s profit to

�(p) =
1 + s

2
p (1� pE) + p (pE � p);

where the second term reflects the fact that all consumers with valuations p < v < pE born
during the last unit of time are still in the market. The difference

�(p)� �(pE) = (p� pE)
�
1 + s

2
(1� pE)� p

�
is nonpositive for all 0 < p < pE if and only if

pE � 1

2 + 1�s
1+s

: (27)
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Therefore, this inequality presents an upper bound, which is lower than the monopoly price
pM = 1

2 , to any equilibrium price. In the following, we assume that (27) holds.
If a seller changes his price to p > pE , the profit changes to

�(p) =
1 + s

2
p (1� p)� 1� s

2
p min(

p� pE
e�s � 1 ; 1� p): (28)

The second term represents the loss of consumers to the other seller, and it is computed as
follows. If the seller charging p arrives first, some of the consumers younger than 1 � s will
find it beneficial to wait and buy from the next seller, even though their valuation satisfies
v > p. Specifically, these are the young consumers for whom

0 < v � p < e��s(v � pE);

or

p < v < p+
p� pE
e�s � 1 :

This gives (28). By that equation,

�(p)��(pE) = max
�
(p� pE)

�
1 + s

2
(1� pE � p)� 1� s

2

p

e�s � 1

�
; s p (1� p)� 1 + s

2
pE(1� pE)

�
:

Therefore, the payoff difference is nonpositive for all p > pE if and only if this is so for both
the first and second expression on the right-hand side. The first condition holds if and only
if

1 + s

2
(1� pE � pE)� 1� s

2

pE

e�s � 1 � 0;

that is,

pE � 1

2 + 1�s
1+s

1
e�s�1

; (29)

and the second condition holds if and only if

pE �
1�

q
1�s
1+s

2
:

Therefore, pEis an equilibrium price if and only if it solves both inequalities as well as (27). It
is not difficult to check that the set (specifically, interval) of all such solutions is nonempty if
and only if e��s � 1

2 .

B.3 Example 3

Consider a generalized version of the example, where the probability that the second seller
arrives is 0 < � < 1. We prove below that there is a number 0 < s0(�) < 1

8+
p
48

(� 0:067) such
that the following holds:

1. If 0 < s � s0(�), the unique equilibrium prices are p1 = 1��
4�3� (2� �+ 2�s) for the first

seller and p2 =
1��(1+s)
4�3� for the second seller, and p1 > p2.

2. If s � 1
8+
p
48

, the unique equilibrium prices are p1 = 1
2 and p2 = max(1 � s; 12), so that

p1 � p2.

3. If s0(�) < s < 1
8+
p
48

, no equilibrium exists.
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In Case 1, the equilibrium price p1 is lower than the first seller’s monopoly price, which is
1
2 , and p2 is lower than the second seller’s monopoly price, which ismax(1�s; 12). In particular,
for � = 1

2 and s < s0(
1
2) =

1
26 , the equilibrium prices satisfy p1 = 3

10 +
1
5s <

4
13 and p2 =

1
5 (1� s). The probability � that the second seller will arrive determines the critical value
s0(�) as a continuous and strictly decreasing function (see (36) below), which tends to 0 or

1
8+
p
48

as � tends to 1 or 0; respectively.
To prove the assertions made in Cases 1–3, fix the second seller’s price p2 and consider

the consumers’ reaction to any price 0 < p1 < 1 the first seller may set. A consumer whose
valuation v of the good at time 0 exceeds p1 receives the payoff v� p1 if he buys it at that time
and the expected payoffmax (� (v � p2 � s) ; 0) if he chooses to wait. The first option is better
if and only if v exceeds the critical value vc given by

vc = max

�
p1 � �(p2 + s)

1� � ; p1

�
= p1 +

�

1� � max (p1 � p2 � s; 0) : (30)

Therefore, if p1 � p2 + s, all the consumers who would get positive payoff from buying at
time 0 do so. But if p1 > p2 + s, then the consumers with v < vc, who are the ones older than
1�p1��(1�p2�s)

1�� , do not buy. We conclude that the first seller’s profit �1 depends on the price
p1 he sets as follows:

�1(p1) =

8<:
p1(1� p1); p1 � p2 + s
p1
1�p1��(1�p2�s)

1�� ; p2 + s < p1 � 1� � (1� p2 � s)
0; p1 > 1� � (1� p2 � s)

: (31)

Therefore, price p1 is profit-maximizing if and only if

p1 =

8<:
1��
2 + �

2 (p2 + s) ; p2 + s � 1��
2��

p2 + s;
1��
2�� � p2 + s �

1
2

1
2 ; p2 + s � 1

2

: (32)

Plugging this into (30) gives vc < 1.
If s � 1

2 (which falls in Case 2), then (32) and (30) give p1 = vc = 1
2 regardless of p2, which

means that all the consumers younger than 1
2 buy the good from the first seller. It follows

that the second seller’s price p2 is profit-maximizing if and only if it is also 1
2 . In the rest of the

proof, we assume that 0 < s < 1
2 and examine the optimally of p2 by looking a the profit the

second seller would make if he changed it unilaterally to any other price p.
One option is to sell only to young consumers, who were born after time 0, by setting a

price p � 1 � s (> 1
2 , by assumption). The corresponding profit is given by the expression

p (1� p), which attains its maximum of s(1� s) at the unique maximum point p = 1� s. The
alternative is to set a lower price that will appeal also to older consumers, who were born
before time 0 but did not buy the good then because their valuations were lower than the
threshold vc specified by (30). As the value of the good decreases linearly with time, selling to
such consumers requires setting a price 0 � p � vc � s (< 1 � s). The corresponding profit,
which comes from selling to both young and old consumers, is p (vc � p) :The maximum of
this expression, which is attained at the unique maximum point p = 1

2v
c, is (12v

c)2. Therefore,
if (12v

c)2 > s(1� s) (which is possible only if 12v
c < vc � s), then p2 = 1

2v
c is the second seller’s

unique profit-maximizing price, and if (12v
c)2 < s(1 � s), then p2 = 1 � s has this property.

If an equality holds, both prices, and only them, are profit-maximizing. In the following, we
examine these conditions more closely.

Suppose first that p2 > 1
2 � s. By (32) and (30), p1 = vc = 1

2 , so that (12v
c)2 � s (1� s) if

and only if s � 1
8+
p
48

(� 0:067). This proves that, for 1
8+
p
48
�s < 1

2 , the prices p2 = 1 � s
and p1 = 1

2 are equilibrium prices. There are no other equilibrium prices with p2 > 1
2 � s for

any 0 < s < 1
2 , because p2 = 1

2v
c = 1

4 could be so only if s were less than 0:067, which would
contradict the assumption p2 > 1

2 � s.
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Suppose now that p2 � 1
2 � s. By (32),

p1 � p2 � s =
1� �
2

� 2� �
2

min

�
p2 + s;

1� �
2� �

�
� 0; (33)

and therefore vc = p1��(p2+s)
1�� . As shown, p2 (which is less than 1 � s) is an equilibrium price

if and only if p2 = 1
2v
c and

p22 � s (1� s) : (34)

The first condition, which is equivalent to

p2 =
p1 � �s
2� � ; (35)

and (33) together imply p1 > p2 � s. If 1��2�� � p2 + s �
1
2 , their unique solution is p1 = 2s and

p2 = s (< 1
2 ), which does not satisfy (34). If p2 + s < 1��

2�� , the solution is

p1 =
1� �
4� 3� (2� �+ 2�s)

p2 =
1� �(1 + s)
4� 3� ( <

1

4
):

These prices satisfy (34) and the inequality p2 + s < 1��
2�� if and only if s � s0 (�), where

s0 (�) =
2 (1� �)2

(8� 7�) (2� �) + (4� 3�)
p
�2 + 12 (1� �)

; (36)

and in this case, they are the unique equilibrium prices. By (31), the first seller’s equilibrium
profit is p1

1�p1��(1�p2�s)
1�� , which equals p1 (1� p2) ;and the second seller’s profit is p22. For

s > s0 (�) ;there are no equilibrium prices with p2 + s � 1
2 .

B.4 Example 4

The parameters of this example are similar to the generalized version of Example 3, except
that the second seller arrives with probably 1

2� � � 1 and 1
8+
p
48
�s � 1

10 . The second pair of

inequalities is equivalent to 1
4 �

p
s (1� s) � 3

10 .
For any �s + (2� �)

p
s(1� s) � p� � 1

2 , we show that there is an equilibrium in which
the first seller sells at price p�. For example, if the second seller arrives with probability � = 1

2 ,
and he does so s = 4

53 (� 0: 075) units of time after the first seller, then for every price between
23
53 and 1

2 there is an equilibrium in which the first seller sets this price. If the second seller
arrives with certainty 1

10 units of time after the first seller, then every price between 2
5 and 1

2
is an equilibrium price for the first seller.

The consumers’ equilibrium strategy specifies that a consumer buys from the second
seller at any price lower than his valuation (at time s), but buys from the first seller at a re-
quested price 0 � p � 1 if and only if his age (at time 0) is less than xp, where

xp =

8<:
1� p; p � p�
1� 2

2�� (p� �s) ; p� < p < 1� �
�
1
2 � s

�
0; p � 1� �

�
1
2 � s

� : (37)

In other words, if p � p�, a consumer buys the good from the first seller if and only if he values
it at more than p, but if p > p�; he buys if and only if the value to him exceeds 2

2�� (p� �s).
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The second threshold is higher than p, because, for p > p� (� �s+ (2� �)
p
s(1� s)),

2

2� � (p� �s)� p >
2

2� � (p
� � �s)� p� (38)

=
�

2� � (p
� � 2s)

� �

2� �

�
�s+ (2� �)

p
s(1� s)� 2s

�
= �

�p
s(1� s)� s

�
> 0:

The second seller’s price p2 is determined as follows. If the price p set by the first seller
is such that 1 � xp � 2

p
s (1� s), then p2 = 1 � s, which yields the profit s (1� s). Only

consumers who were not yet born at time 0 buy at that price. Selling also to those who were
then older than xp, and for this reason did not buy from the first seller, would require setting a
price p2 � 1�xp�s, for which the profit would be p2 (1� p2 � xp). However, p2 (1� p2 � xp) �
1
4 (1� xp)

2 � s (1� s) for any p2. If 1 � xp > 2
p
s (1� s), then p2 =

1�xp
2 (< 1 � xp � s,

as 1 � xp > 2s), and the corresponding profit is p2 (1� p2 � xp) = 1
4 (1� xp)

2 (> s (1� s)).
Therefore, by (37) and the assumption 1

4 �
p
s (1� s) � 3

10 : (i) if p � p� (� 1
2 ), then 1 � xp =

p � 1
2 � 2

p
s (1� s) and p2 = 1 � s, and (ii) if p > p� (� �s + (2� �)

p
s(1� s)), then

1� xp = min
�

2
2�� (p� �s) ; 1

�
> 2
p
s (1� s) and

p2 =
1� xp
2

= min

�
p� �s
2� � ;

1

2

�
: (39)

In case (i), p � p� < p2, and so it is optimal for consumers who value the good at more
than p at time 0 to buy at that price, as their strategy indeed instructs them to do. In case (ii),
buying the good at time 0 (at price p) is optimal for a consumer of age x < 1� p if and only if
1� x� p � � (1� x� p2 � s), or (1� �)x � 1� p�� (1� p2 � s), and waiting for the second
seller is optimal if and only if the reverse inequality holds. By (39),

1� p� � (1� p2 � s) � (1� �)
�
1� 2

2� � (p� �s)
�
; (40)

with equality if xp > 0. Thus, if p > p� and xp > 0, the consumers’ strategy (37) prescribes
optimal actions for them. The same holds if xp = 0, or p � 1 � �

�
1
2 � s

�
, as this inequality

means that the right-hand side of (40) is nonpositive, and hence not buying the good at time
0 is an optimal action for all consumers.

It remains to show that the given p� is the profit-maximizing price for the first seller. If
the seller sets a price 0 < p � p�, his profit will be p (1� p), which is less than or equal to

p� (1� p�), as p� � 1
2 . By (37), the profit for any price p > p� is the maximum of p

�
1� 2

2�� (p� �s)
�

and zero. The former depends on p as a quadratic, concave function, with a maximum at
1
2 �

�
2

�
1
2 � s

�
. This maximum point lies to the left of p�, since

p� �
�
1

2
� �
2

�
1

2
� s
��

� �s+ (2� �)
p
s(1� s)�

�
1

2
� �
2

�
1

2
� s
��

= (2� �)
�p

s (1� s)� 1
4

�
+
1

2
�s

> 0:

Therefore, for any price p > p�, p
�
1� 2

2�� (p� �s)
�
� p�

�
1� 2

2�� (p
� � �s)

�
� p� (1� p�),

where the last inequality follows from (38). Thus, no such price gives the first seller a higher
profit than p� does.
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