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The equilibrium outcome of a strategic interaction may depend on the weight players place 

on other players’ payoffs or, more generally, on some social payoff that depends on 

everyone’s actions. A positive, negative or zero weight represents altruism, spite or 

complete selfishness, respectively. As it turns out, even in a symmetric interaction the 

equilibrium level of social payoff may be lower for a group of altruists than for selfish or 

spiteful groups. In particular, a concern for others’ payoffs may paradoxically lower these 

payoffs. However, this can only be so if the equilibrium strategies involved are unstable. If 

they are stable, the social payoff can only increase or remain unchanged with an increasing 

degree of altruism. In these results, ‘stability’ stands for a general notion of static stability, 

which includes a number of established ones, such as evolutionarily stable strategy, as 

special cases. JEL Classification: C62, C72, D64. 
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1 Introduction 
Altruism and spite represent deviations in opposite directions from complete selfishness, or 

total disregard  to the effect of one’s actions on others’ welfare. A person is altruistic or 

spiteful towards another if he is willing to bear a cost in order to benefit or harm the other 

person, respectively. This paper considers the question of the welfare consequences of such 

preferences. Is social welfare in a group in which everyone is equally altruistic or spiteful 

towards the others necessarily higher or lower, respectively, than in a group in which 

everyone is only concerned with his own good? Unlike much of the related literature (e.g., 

Frank, 1988; Ridley, 1997) this question only involves the consequences of deviations from 

complete selfishness, not their origin or evolution. The common degree of altruism or spite 𝑟 

is viewed as an exogenous parameter, representing, for example, a shared moral value or 

social attribute. The parameter quantifies the extent to which each individual 𝑖 internalizes 

social welfare, for example, the ratio between the weight 𝑖 attaches to the payoff of every 

other individual 𝑗 and the weight of his own, personal payoff. It thus determines the 

individuals’ preferences over action profiles and in particular their best responses to the 

others’ actions. Comparative statics examines the resulting effect on the actual, material 

payoffs. 

                                                            

† Department of Economics, Bar-Ilan University, Ramat Gan 5290002, Israel 

  igal.milchtaich@biu.ac.il  https://sites.google.com/view/milchtaich/ 

mailto:igal.milchtaich@biu.ac.il
https://doi.org/10.1016/j.geb.2012.02.015
https://sites.google.com/view/milchtaich/


 

2 

The propensity for acting altruistically or spitefully may have a biological basis. In particular, 

with family members it may be the result of kin selection. According to Hamilton’s rule 

(Hamilton, 1963, 1964; Frank, 1998), natural selection favors acts that maximize the actor’s 

inclusive fitness, which is his own fitness augmented by 𝑟 times that of each of the other 

affected individuals, where 𝑟 is their coefficient of relatedness. This stems from the fact that 

helping a relative assists the propagation of the actor’s own genes; as the coefficient of 

relatedness increases, so does the number of shared genes. The inclusive fitness has the 

functional form described above. The fitness of each individual enters linearly, and the 

weight attached to it, which is the corresponding coefficient of relatedness 𝑟, is exogenous, 

specifically, determined by the family tree. Thus, comparative statics analysis might reveal, 

for example, how the expected consequences of a particular interaction involving two or 

more individuals depends on their relatedness, e.g., whether they are full or half-siblings. 

The simple, linear model of interdependent preferences assumed in this paper excludes a 

number of more sophisticated models suggested in the literature (e.g., Fehr and Schmidt, 

1999; Bolton and Ockenfels, 2000), which might better predict people’s behavior in certain 

experimental settings. In particular, it does not cover “psychological games” (Geanakoplos et 

al., 1989; Rabin, 1993), where preferences for physical outcomes are affected by a person’s 

beliefs about the other’s actions and discrepancies between these beliefs and the actual 

actions. However, a noteworthy aspect of the theoretical phenomena described in this 

paper is that they are evident already for values of 𝑟 arbitrarily close to 0. This suggests that 

similar phenomena might also be exhibited by more complicated models where a person’s 

utility has a first-order approximation, linear in the individuals’ material payoffs, that is valid 

in the limit of weak altruism or spite (Levine, 1998). In this linear approximation, the 

coefficient 𝑟 expresses the ratio between the marginal contributions to the person’s utility 

of (i) the material payoff of each of the other individuals and (ii) the person’s own material 

payoff.  

The flip side of the limitations described above is that the simple linear model is readily 

extendible to internalization of any kind of social payoff, be it an index of social welfare, 

which depends only on the personal payoffs, a determinant of social welfare, such as the 

level of some public good, or any other variable that is determined by the individuals’ 

actions. In this general setting, the common altruism coefficient 𝑟 is the weight everyone 

attaches to the social payoff, and the weight attached to the personal payoffs is 1 − 𝑟. 

Comparative statics examines the effect of changing preferences, in the form of increasing 

or decreasing 𝑟, on the actual level of social payoff.  

As this paper shows, the question of whether altruism has a positive effect on the social 

payoff and spite a negative effect has a simple, affirmative answer only in the case of non-

strategic interactions, in which the optimal action for each individual does not depend on 

the others’ actions. In strategic interactions, or games, altruism and spite do not necessarily 

have the effects one would expect. For example, even in a symmetric two-player game with 

a unique, symmetric equilibrium, the players’ personal payoff at equilibrium may be higher if 

they are both selfish rather than mildly caring, and even higher if they resent one another. 
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Thus, altruism in a strategic interaction may paradoxically result in real, material losses for 

all parties.1  

A central finding in this paper is that a crucial factor affecting the nature of comparative 

statics is the stability or instability of the strategies involved. In particular, in a symmetric 

setting, continuously increasing the weight that players place on each other’s payoff can 

only increase the payoffs or leave them unchanged if the strategies involved are stable, but 

has the opposite effect if the strategies are definitely unstable (this term is defined below.) 

This finding is akin to Samuelson’s (1983) “correspondence principle”, which maintains that 

conditions for stability often coincide with those under which comparative statics analysis 

leads to what are usually regarded as “normal” conclusions, such as the conclusion that an 

increase in demand for a commodity results in a rise in its equilibrium price (Lindbeck, 1992). 

Since comparative statics considers equilibria in different games, whereas stability is a 

property of equilibrium strategies in a  specific game, the finding that the latter conveys 

information about the former is not all that obvious.2  

In the works of Samuelson and others, ‘stability’ refers to dynamic, asymptotic stability. It 

therefore depends on the dynamical system used to model the evolution of the players’ off-

equilibrium behavior. By contrast, in this paper, ‘stability’ means static stability. This 

arguably more fundamental concept only considers the players’ off-equilibrium incentives, 

and does not involve any assumptions about the translation of these incentives into 

concrete changes of actions. One example of a static notion of stability, applicable to 

symmetric 𝑛 × 𝑛 games, is evolutionarily stable strategy, or ESS. Another example, 

applicable to symmetric games with a unidimensional set of strategies, is continuously stable 

strategy, or CSS, which is essentially equivalent to the requirement that, at the equilibrium 

point, the graph of the best-response function, or reaction curve, intersects the forty-five 

degree line from above. If the intersection is from below, the symmetric equilibrium strategy 

is definitely unstable. These two examples of static stability are in fact essentially special 

cases of a general notion of static stability, proposed in Milchtaich (2012), which is 

applicable to any symmetric 𝑁-player game or population game with a non-discrete strategy 

space. The effects of altruism and spite on the social payoff turn out to be related to this 

general notion of static stability rather than to any special dynamic one.  

The layout of the paper is as follows. The next section defines the modified game, which is 

the tool used in this paper to model internalization of a social payoff. The modified game has 

a single parameter, the altruism coefficient 𝑟, which expresses the degree of internalization. 

Section  3 presents the distinction between local comparative statics, which concern small, 

continuous changes to the altruism coefficient and the corresponding equilibria, and global 

comparative statics, which allow for large, discrete changes. Examples of the former are 

                                                            
1 That altruism may theoretically lead to socially inefficient outcomes in asymmetric two-player 

strategic interactions, even if both individuals are equally altruistic towards each other, has long been 

recognized (Lindbeck and Weibull, 1988; Corts, 2006). That the same is true for symmetric games 

seems to be less well known (but see the remarks in Stark, 1989).  
2 Note that this refers to the stability of the equilibrium, and not to that of altruism itself, e.g., in the 

sense of Bester and Güth (1998). 
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presented, which show that altruism can increase or decrease the social payoff, and the 

effect correlates with the stability or instability of the corresponding equilibrium strategies. 

A general definition of static stability of strategies in symmetric and population games is 

presented in Section  4. Section  5 gives a number of results that connect this notion of 

stability with comparative statics, first in a general setting and then for specific classes of 

games such as symmetric 𝑛 × 𝑛 games. It also identifies the special form that static stability 

takes in each of these classes. Section  6 lays out a comparable analysis for global 

comparative statics. Section  7 considers both local and global comparative statics in 

asymmetric games. The relation between the static stability notion used here and dynamic 

stability is discussed in Section  8. This relation bears on the likeliness of “paradoxical” 

comparative statics. In particular, it is shown that stability with respect to the replicator 

dynamics does not prevent altruism from making everyone worse off. The Appendix 

presents a useful connection, which has an implication for comparative statics, between 

static stability in symmetric 𝑛 × 𝑛 games and stability with respect to perturbations of the 

game parameters.  

2 Internalization of Social Payoff 
Individuals in an interacting group may be unified in a desire to maximize some common 

social payoff that is determined by their choice of strategies, may only care about their own 

payoffs, or may give some weight to both goals. If the weights are the same for all 

individuals, each individual 𝑖 may be viewed as seeking to maximize his modified payoff  

ℎ𝑖
𝑟 = (1 − 𝑟)ℎ𝑖 + 𝑟𝑓, 

where ℎ𝑖 is 𝑖’s own, personal payoff, 𝑓 is the social payoff, and 𝑟 ≤ 1 is the altruism 

coefficient (Levine, 1998) or coefficient of effective sympathy (Edgeworth, 1881), which 

quantifies the degree of internalization of the social payoff.3  

The social payoff 𝑓 in (1) can in general be any function of the players’ strategies. An 

important special case is when 𝑓 is expressible as a function of the personal payoffs. This is 

so in particular in the following simple and rather standard model of linearly interdependent 

preferences in a one-shot strategic interaction. The model is less general than, e.g., Levine’s 

(1998) model, in which different individuals can be more or less altruistic and their attitudes 

are reflected in the ways others treat them. Here the players’ preferences are all 

interdependent in the same manner. Specifically, the dependencies are expressible by a 

single parameter 𝑟 ≤ 1, which specifies the weight that each player 𝑖 attaches to the payoff 

ℎ𝑗 of each of the other players 𝑗 relative to the weight he attaches to his own payoff ℎ𝑖. A 

positive 𝑟 expresses concern for others’ welfare, zero expresses total selfishness, and a 

negative 𝑟 expresses envy or spite (Morgan et al., 2003). Thus, the expression player 𝑖 seeks 

to maximize is 

                                                            
3 The upper limit of 1 means that the weight attached to the personal payoff is nonnegative. In some 

contexts, it may be natural or necessary to limit the altruism coefficient also from below, in particular 

by requiring 𝑟 > −1. See footnote 12 and Section  6. 

(1) 
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ℎ𝑖
𝑟 = ℎ𝑖 + 𝑟∑ℎ𝑗

𝑗≠𝑖

. 

Comparison with (1) shows that the social payoff 𝑓 in this case is the aggregate payoff ∑ ℎ𝑗𝑗 .  

In this paper, the altruism coefficient is viewed as exogenously given, for example, a shared 

moral standard. Different values of 𝑟 represent different groups rather than different kinds 

of individuals within a group, and varying the coefficient corresponds to a cross-group or 

cross-society comparison.4  

An example of an interacting group as above is a (human or non-human) family. In the 

biological theory of kin selection, an expression similar to (2) gives the inclusive fitness of an 

individual interacting with relatives. In this case, the altruism coefficient 𝑟 is the coefficient 

of relatedness between 𝑖 and 𝑗, which is, for example, 0.5 for full siblings and 0.25 for half-

siblings (Crow and Kimura, 1970). Thus, (2) expresses the inclusive fitness when the 

interaction involves only equally related individuals, e.g., siblings. In small populations, the 

coefficient of relatedness may also take on negative values, which represent less-than-

average relatedness. In this case, the possibility of spiteful behavior arises (Hamilton, 1970). 

The rest of this section concerns the internalization of social payoff in the special case of 

symmetric and population games. The general case of asymmetric games is not studied in 

detail in this paper. However, a partial analysis is presented in Section  7. 

2.1 Symmetric and population games 
In a symmetric N-player game, all players share the same strategy space 𝑋 and their payoffs 

are specified by a single function 𝑔: 𝑋𝑁 → ℝ that is invariant to permutations of its second 

through 𝑁th arguments. If one player uses strategy 𝑥 and the others use 𝑦, 𝑧, … , 𝑤, in any 

order, the first player’s payoff is 𝑔(𝑥, 𝑦, 𝑧, … , 𝑤). A strategy 𝑦 is a (symmetric Nash) 

equilibrium strategy in 𝑔, with the equilibrium payoff 𝑔(𝑦, 𝑦, … , 𝑦), if it is a best response to 

itself: for every strategy 𝑥, 

𝑔(𝑦, 𝑦, … , 𝑦) ≥ 𝑔(𝑥, 𝑦, … , 𝑦). 

In the context of symmetric games, social payoffs 𝑓: 𝑋𝑁 → ℝ are assumed symmetric 

functions, that is, invariant to permutations of their 𝑁 variables. With an altruism coefficient 

𝑟 ≤ 1, the modified payoff function is  

𝑔𝑟 = (1 − 𝑟)𝑔 + 𝑟𝑓. 

If the strategy profile is symmetric, that is, all players use the same strategy, they 

necessarily also receive identical personal and modified payoffs. If in addition the social 

payoff 𝑓 is the aggregate payoff, then it is simply 𝑁 times the personal payoff.  

                                                            
4 The evolution and origin of altruism and spite are outside the scope of this paper. The model is not 

an evolutionary one, and it is not suitable for studying the effects that different individuals’ attitudes 

towards others have on their own success. The model and corresponding comparative statics analysis 

may however have relevance for group selection. See Section  8. 

(2) 

(3) 

(4) 
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A population game, as defined in this paper, is formally a symmetric two-player game such 

that 𝑋 is a convex set in a (Hausdorff real) linear topological space (for example, the unit 

simplex in a Euclidean space) and 𝑔(𝑥, 𝑦) is continuous in 𝑦 for all 𝑥 ∈ 𝑋. However, the 

game is interpreted not as representing an interaction between two specific players but as 

one involving an (effectively) infinite population of individuals who are “playing the field”. 

This means that an individual’s payoff 𝑔(𝑥, 𝑦) depends only on his own strategy 𝑥 and on 

the population strategy 𝑦. The latter may be, for example, the population’s mean strategy 

with respect to some nonatomic measure, which attaches zero weight to each individual. In 

this case, the equilibrium condition,  

𝑔(𝑦, 𝑦) = max
𝑥∈𝑋

𝑔(𝑥, 𝑦), 

means that, in a monomorphic population, where everyone plays 𝑦, single individuals cannot 

increase their payoff by choosing any other strategy. Alternatively, a population game 𝑔 may 

describe a dependence of an individual’s payoff on the distribution of strategies in the 

population (Bomze and Pötscher, 1989), with the latter expressed by the population strategy 

𝑦. In this case, 𝑋 consists of mixed strategies, that is, probability measures on some 

underlying space of allowable actions or (pure) strategies, and 𝑔(𝑥, 𝑦) is linear in 𝑥 and 

expresses the expected payoff for an individual whose choice of strategy is random with 

distribution 𝑥. Provided the space 𝑋 is rich enough, the equilibrium condition (5) now means 

that the population strategy 𝑦 is supported in the collection of all best response pure 

strategies. In other words, the (possibly) polymorphic population is in an equilibrium state. 

Since players in a population game are individually insignificant in that they cannot affect the 

population strategy, internalization of a social payoff that only depends on the latter would 

be inconsequential if it meant, literally, consideration for the effect of ones’ choice of 

strategy on the social payoff. However, internalization may change the players’ behavior if it 

means consideration for the marginal effect on the social payoff (Chen and Kempe, 2008). 

To formalize this idea, suppose that the social payoff is given by a continuous function 

𝜙: 𝑋̂ → ℝ whose domain 𝑋̂ is the cone of the strategy space 𝑋, which consists of all 

elements of the form 𝑡𝑥, with 𝑥 ∈ 𝑋 and 𝑡 > 0. Suppose also that 𝜙 has a directional 

derivative in every direction 𝑥̂ ∈ 𝑋̂ and that the derivative depends continuously on the 

point 𝑦̂ ∈ 𝑋̂ at which it is computed. In other words, the differential 𝑑𝜙: 𝑋̂2 → ℝ exists, 

where  

𝑑𝜙(𝑥̂, 𝑦̂) =
𝑑

𝑑𝑡
|
𝑡=0+

𝜙(𝑡𝑥̂ + 𝑦̂), 

and 𝑑𝜙 is continuous in the second argument. The modified payoff can then be defined by 

setting  

𝑓 = 𝑑𝜙 

in (4). Note that in the present context the social payoff is 𝜙, not 𝑓, and that the latter is in 

general not a symmetric function.  

An important example of a social payoff in a population game with a payoff function 𝑔 (that 

satisfies the required technical conditions) is 𝜙(𝑦) = 𝑔(𝑦, 𝑦), which represents the 

population’s mean payoff (see Example 4 below). Another example is the production level of 

some public good (see Example 2).  

(5) 

(6) 
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3 Comparative Statics 
An increase or decrease in the altruism coefficient 𝑟 means a change in the weight players 

attach to the social payoff relative to their personal payoff. This may result in a change of 

equilibrium strategies, and hence also of the social payoff. In the case of a symmetric game 

and a social payoff that is the aggregate payoff, changes in the latter precisely mirror 

changes in the players’ personal payoffs.   

The comparative statics of altruism in a symmetric or population game 𝑔 may be examined 

either globally or locally. Global comparative statics compare the social payoff at the 

equilibria in the modified and unmodified games, 𝑔𝑟  and 𝑔, or more generally, the equilibria 

in 𝑔𝑟  and 𝑔𝑠, with 𝑟 ≠ 𝑠. The comparison is global in that it is not restricted to equilibria in 

𝑔𝑟  that are close to particular equilibria in 𝑔𝑠 or to small changes in the altruism coefficient, 

that is, 𝑟 close to 𝑠. The unrestricted nature of global comparative statics means that 

significant results can be obtained only in some cases. This paper considers such 

comparative statics mainly in the context of two-player games (Section  6). The paper’s focus 

is on local comparative statics, which concern the way the social payoff at a given 

equilibrium in a given modified game 𝑔𝑠 (or, in the special case 𝑠 = 0, the unmodified game 

𝑔) changes when the altruism coefficient continuously increases or decreases from 𝑠. For 

this comparison to be meaningful, a continuous function has to exist that assigns to every 

altruism coefficient 𝑟 close to 𝑠 an equilibrium in 𝑔𝑟, which coincides with the given 

equilibrium for 𝑟 = 𝑠. This effectively rules out games with discrete strategy spaces, since if 

strategies are isolated, such a continuous function is necessarily constant. Assuming that the 

strategy spaces are non-discrete and that a function as above exists,5 the question is 

whether the social payoff increases or decreases with increasing (or decreasing) 𝑟. As the 

following example shows, even in a single game both possibilities may occur.  

Example 1. Symmetric Cournot competition. Firms 1 and 2 produce an identical good at zero 

cost. They simultaneously decide on their respective output levels 𝑞1 and 𝑞2 and face a 

downward sloping, convex demand curve given by the price (or inverse demand) function 

𝑃(𝑄) = [(𝑄 + 0.4) ln(𝑄 + 1.4)]−
3
2, 

where 𝑄 = 𝑞1 + 𝑞2 is the total output. The profit of each firm 𝑖 is its revenue 𝑞𝑖𝑃(𝑄). The 

social payoff is defined as the total revenue 𝑄𝑃(𝑄). Thus, with an altruism coefficient 𝑟, firm 

𝑖’s modified payoff is  

(𝑞𝑖 + 𝑟𝑞𝑗)𝑃(𝑄), 

where 𝑗 is the other firm. If the altruism coefficient 𝑟 increases from 0 all the way to 1, the 

duopoly effectively becomes a monopoly and the firms’ profits increase. However, this is not 

necessarily so for a small increase in 𝑟. For every output level of a firm, there is a unique, 

nonzero output level for its competitor that maximizes the latter’s profit. The same is true 

for the modified payoff, for every 𝑟 less than about 0.5 (see Figure 1a). For 𝑟 close to 0, 

there are precisely two equilibria, which are both symmetric, i.e., the firms’ output levels, 

and hence also their profits, are equal. In one equilibrium, the output level is below 2, and in 

                                                            
5 For a sufficient condition for existence in the special case of symmetric 𝑛 × 𝑛 games, see Section  5.1. 



 

8 

the other, it is above 2. The first equilibrium output level continuously decreases with 

increasing altruism coefficient, and consequently the profits increase. However, at the 

second equilibrium, increasing altruism has the opposite effects on the output and profit 

(Figure 1b).   

The modified payoffs of two competing firms may conceivably represent real profits for 

owners, e.g., if they own stock in both companies. However, in Example 1 and elsewhere in 

this paper, the modified payoffs are not assumed real entities. The question asked is how 

internalization of the social payoff affects it. The above example shows that the effect may 

go in both directions. The comparative statics seen in this example can be understood by 

examining the geometry of the reaction curve (Figure 1a), which is the graph of the best-

response function. Increasing the altruism coefficient 𝑟 lowers the curve, since it amplifies 

the negative effect that a firm’s output level, which adversely affects the competitor’s profit, 

has on the firm’s modified payoff. At the lower-output equilibrium, where the upward-

sloping reaction curve is less steep than the forty-five degree line, lowering the curve moves 

the equilibrium point downwards and to the left. Thus, the equilibrium output decreases. At 

the higher-output equilibrium, where the reaction curve is steeper than the forty-five degree 

line, its shift has the opposite effect on the equilibrium output level.  

Significantly, the same geometrical property of the reaction curve also determines whether 

the equilibrium output level is stable. It is stable if the reaction curve is less steep than the 

forty-five degree line and unstable (even definitely unstable, in a sense defined below) if the 

curve is steeper than the line. Thus, stable or definitely unstable equilibrium strategies entail 

“positive” or “negative” local comparative statics, respectively, in the sense of the effect of a 

continuously increasing altruism coefficient on the social payoff. A similar phenomenon 

occurs in the next two examples.  

 

Figure 1. The Cournot duopoly game in Example 1. a. The reaction curve. For every output level for firm 1, the 
unique output level for firm 2 that maximizes the latter’s modified payoff is shown for the altruism coefficient 
𝒓 = 𝟎. 𝟎𝟓 (black curve). The two points, marked by short vertical lines, at which the curve intersects the forty-
five degree line (grey) are the (symmetric) equilibria. The lower-left and upper-right points represent stable 
and unstable equilibrium output levels, respectively. When the altruism coefficient 𝒓 changes, the two points 
move in opposite directions. b. The equilibrium profits. The firms’ equilibrium profit depends on the altruism 
coefficient 𝒓. It also depends on whether the equilibrium output level is stable or unstable. For the former 
(black, upper curve), the profit increases with increasing 𝒓, and for the latter (grey, lower curve), it decreases. 
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Example 2. Public good game. An infinite population of identical players, represented by the 

unit interval [0,1], face the decision of what part 0 ≤ 𝑥 ≤ 1 of their unit endowment of 

private good they contribute for the production of some public good. The amount of public 

good produced is 𝜙(𝑦), where 𝑦 is the aggregate contribution, which is the integral of the 

players’ individual contributions (assuming they constitute an integrable function on [0,1]) 

and 𝜙: [0,∞) → ℝ is the twice continuously differentiable production function. The payoff 

of a player contributing 𝑥 is given by 

𝑔(𝑥, 𝑦) = 𝜙(𝑦) − 𝑥. 

Suppose that contribution of public good is socially desirable, that is, 𝜙′ > 1. This means 

that players might have an incentive to contribute if they cared enough about the effect on 

the other players. However, since individual players cannot possibly affect the population 

strategy (that is, the aggregate contribution) 𝑦, for a modification of the personal payoff (7) 

to be effective it should involve the marginal product 

𝑑𝜙(𝑥, 𝑦) =
𝑑

𝑑𝑡
|
𝑡=0+

𝜙(𝑡𝑥 + 𝑦) = 𝑥𝜙′(𝑦). 

Thus, with an altruism coefficient 0 < 𝑟 < 1, the modified payoff is 

𝑔𝑟(𝑥, 𝑦) = (1 − 𝑟)(𝜙(𝑦) − 𝑥) + 𝑟𝑥𝜙′(𝑦). 

Since this expression is linear in the player’s own contribution 𝑥, if 𝜙′(0) ≤ 1/𝑟 − 1 or 

𝜙′(1) ≥ 1/𝑟 − 1 then contributing 0 or 1, respectively, is an equilibrium strategy. An 

intermediate value 0 < 𝑦𝑟 < 1 is an equilibrium strategy if and only if 𝑥 = 𝑦𝑟  is a solution of   

𝜙′(𝑥) =
1

𝑟
− 1. 

Assuming 𝜙″(𝑦𝑟) ≠ 0, there is in this case a unique solution in a neighborhood of 𝑦𝑟  of an 

equation similar to (10) in which 𝑟 is replaced by any close altruism coefficient, and the 

relation between the altruism coefficient and the corresponding equilibrium strategy 

satisfies  

𝑑𝑦𝑟

𝑑𝑟
= −

1

𝑟2𝜙″(𝑦𝑟)
 . 

Hence,  

𝑑

𝑑𝑟
𝜙(𝑦𝑟) = −

1 − 𝑟

𝑟3𝜙″(𝑦𝑟)
. 

This shows that whether internalization of the (positive) social effect of contribution of 

private good actually results in higher aggregate contribution and level of public good 

depends on whether the production function is concave (𝜙″ < 0) or convex (𝜙″ > 0) in a 

neighborhood of the equilibrium strategy 𝑦. In the former case, internalization has the 

above effect, but in the latter, it paradoxically has the opposite, negative effect on the 

production of public good and hence on social welfare.  

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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Significantly, concavity or convexity of the production function also determines the effect of 

small changes in the population strategy on the players’ incentives. If, for example, the 

aggregate contribution 𝑦 slightly increases above the equilibrium level 𝑦𝑟  (which is the 

solution of (10)), then the coefficient of 𝑥 in (9) becomes negative or positive if 𝜙″(𝑦𝑟) has 

that sign. In the former case, this creates an incentive for players to cut down their 

contribution of private good, and in the latter, the incentive is to (further) increase it. Thus, 

concavity or convexity of 𝜙 may be interpreted as entailing stability or instability, 

respectively, of the equilibrium strategy. 

Example 3. Generalized rock–scissors–paper games. A symmetric 3 × 3 game 𝑔 has the 

following payoff matrix 𝐴: 

(
0 −3 2
6 0 −2
−1 3 0

). 

The social payoff 𝑓 is the aggregate payoff, which is given by the payoff matrix 𝐴 + 𝐴T. For 

−1 < 𝑟 < 0.5, the modified game 𝑔𝑟  has a unique equilibrium, which is symmetric and 

completely mixed. The corresponding personal payoff (which is half the social payoff) is 

equal to (30(1 − 𝑟)2 + 3𝑟)/(73(1 − 𝑟)2 + 3𝑟), which is a positive and continuously 

increasing function of 𝑟 in the above interval. The same is true with 𝐴 replaced by –𝐴, 

except that in this case the equilibrium payoff has the opposite sign and it hence decreases 

with increasing 𝑟. Thus, altruism, or internalization of the other player’s payoff, has the 

opposite effect on the player’s personal payoffs in these two games. As in the previous two 

examples, comparative statics align with stability. It can be shown (see Section  5.1) that with 

the payoff matrix 𝐴 all the equilibrium strategies involved are evolutionarily stable (ESSs), 

and with –𝐴, they are unstable (indeed, definitely evolutionarily unstable; see below).  

As this paper shows, the connection seen in these examples between stability and 

comparative statics is in fact a very general phenomenon. This connection is laid out in 

several steps in the following sections. The first step is presentation of a suitable general 

notion of static stability in symmetric and population games. This notion, introduced in 

Milchtaich (2012), unifies and generalizes several well-established stability notions that are 

specific to particular classes of games, such as evolutionary stability and the geometrical 

criterion for stability used in Example 1.  

4 Stability in Symmetric and Population Games 
Inequality (3) in the equilibrium condition expresses a player’s lack of incentive to be the 

first to move from strategy 𝑦 to an alternative strategy 𝑥. Stability, as defined below, adopts 

a broader perspective: it takes into consideration the incentive to be the 𝑗th player to move 

from 𝑦 to 𝑥, for all 𝑗 between 1 and 𝑁, the number of players in the game. These incentives 

are all given the same weight. Thus, stability requires that, when the players move one-by-

one from 𝑦 to 𝑥, the corresponding changes of payoff are negative on average.  

Definition 1. A strategy 𝑦 in a symmetric 𝑁-player game 𝑔: 𝑋𝑁 → ℝ is stable, weakly stable 

or definitely unstable if it has a neighborhood where, for every strategy 𝑥 ≠ 𝑦, the inequality  

(13) 
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1

𝑁
∑(𝑔(𝑥, 𝑥, … , 𝑥⏟  ,

𝑗−1 times

𝑦, … , 𝑦⏟  
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

))

𝑁

𝑗=1

< 0, 

a similar weak inequality or the reverse (strict) inequality, respectively, holds.  

Inequality (14) may also be written, more symmetrically, as  

1

𝑁
∑(𝑔(𝑥,… , 𝑥⏟  

𝑗 times

, 𝑦, … , 𝑦) − 𝑔(𝑦,… , 𝑦⏟  
𝑗 times

, 𝑥, … , 𝑥))

𝑁

𝑗=1

< 0. 

Stability, as defined here, is a local concept. It refers to neighborhood systems of strategies 

or equivalently to a topology on the strategy space 𝑋. The topology may be explicitly 

specified or it may be understood from the context. The latter applies when 𝑋 may be 

naturally viewed as a subset of a Euclidean space, e.g., a simplex or an interval in the real 

line. In this case, the default topology on 𝑋 is the relative one, so that proximity between 

strategies is measured by the Euclidean distance between them.  

In some classes of games (see Sections  5.1 and  5.3), stability of a strategy automatically 

implies that it is an equilibrium strategy. However, in general, neither of these conditions 

implies the other. The difference is partially due to equilibrium being a global condition: all 

alternative strategies, not only neighboring ones, are considered. However, it persists if 

‘equilibrium’ is replaced by ‘local equilibrium’, with the obvious meaning. A stable 

equilibrium strategy is a strategy that satisfies both conditions. In a symmetric two-player 

game, where (14) can be written as  

1

2
(𝑔(𝑥, 𝑥) − 𝑔(𝑦, 𝑥) + 𝑔(𝑥, 𝑦) − 𝑔(𝑦, 𝑦)) < 0, 

a strategy 𝑦 is a stable equilibrium strategy if and only if it has a neighborhood where for 

every 𝑥 ≠ 𝑦 the inequality 

𝑝𝑔(𝑥, 𝑥) + (1 − 𝑝)𝑔(𝑥, 𝑦) < 𝑝𝑔(𝑦, 𝑥) + (1 − 𝑝)𝑔(𝑦, 𝑦) 

holds for all 0 < 𝑝 ≤ 1/2. This condition means that 𝑥 affords a lower expected payoff than 

𝑦 against an uncertain strategy that may be 𝑥 or 𝑦, with the former no more likely than the 

latter.  

Stability in population games may be defined by a variant of Definition 1 that replaces the 

number of players using strategy 𝑥 or 𝑦 with the size of the subpopulation to which the 

strategy applies, 𝑝 or 1 − 𝑝 respectively. Correspondingly, the sum in (14) is replaced with 

an integral. 

Definition 2. A strategy 𝑦 in a population game 𝑔: 𝑋2 → ℝ is stable, weakly stable or 

definitely unstable if it has a neighborhood where, for every strategy 𝑥 ≠ 𝑦, the inequality  

∫ (𝑔(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦)) 𝑑𝑝
1

0

< 0, 

a similar weak inequality or the reverse (strict) inequality, respectively, holds.  

(14) 

(15) 

(16) 

(17) 
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For some games, Definitions 1 and 2 are both potentially applicable, depending on whether 

the game is viewed as a symmetric or as a population game. An important example of this is 

symmetric 𝑛 × 𝑛 games (Section  5.1). However, it is not difficult to see that, in this particular 

example (and similar ones; see Milchtaich, 2012), the point of view is immaterial: the two 

definitions are equivalent.  

5 Stability and Local Comparative Statics 
The following theorem is the basic local comparative statics result for symmetric games, for 

which stability is given by Definition 1. Both the definition and the theorem refer to a 

topology on the strategy space 𝑋, which has to be the same one. As indicated, in many 

games only one topology is natural or interesting. However, the result holds for any 

topology on 𝑋.   

Theorem 1. For a symmetric 𝑁-player game 𝑔: 𝑋𝑁 → ℝ and a social payoff function 

𝑓: 𝑋𝑁 → ℝ that are both Borel measurable,6 and altruism coefficients 𝑟0 and 𝑟1 with 

𝑟0 < 𝑟1 ≤ 1, suppose that there is a continuous and finitely-many-to-one7 function that 

assigns a strategy 𝑦𝑟  to each 𝑟0 ≤ 𝑟 ≤ 𝑟1 such that the function 𝜋: [𝑟0, 𝑟1] → ℝ defined by  

𝜋(𝑟) =
1

𝑁
𝑓(𝑦𝑟 , 𝑦𝑟 , … , 𝑦𝑟) 

is absolutely continuous.8 If, for every 𝑟0 < 𝑟 < 𝑟1, 𝑦𝑟  is a stable, weakly stable or definitely 

unstable strategy in the modified game 𝑔𝑟, then 𝜋 is strictly increasing, nondecreasing or 

strictly decreasing, respectively. 

Proof. The proof uses the following identity, which holds for all 𝑟, 𝑠 and strategies 𝑥 and 𝑦:  

(𝑟 − 𝑠)
1

𝑁
(𝑓(𝑥, 𝑥, … , 𝑥) − 𝑓(𝑦, 𝑦, … , 𝑦))

= (1 − 𝑠)
1

𝑁
∑(𝑔𝑟(𝑥, … , 𝑥⏟  

𝑗 times

, 𝑦, … , 𝑦) − 𝑔𝑟(𝑦, … , 𝑦⏟  
𝑗 times

, 𝑥, … , 𝑥))

𝑁

𝑗=1

+ (1 − 𝑟)
1

𝑁
∑(𝑔𝑠(𝑦, … , 𝑦⏟  

𝑗 times

, 𝑥, … , 𝑥) − 𝑔𝑠(𝑥, … , 𝑥⏟  
𝑗 times

, 𝑦, … , 𝑦))

𝑁

𝑗=1

. 

For −(𝑟1 − 𝑟0)/2 < 𝜖 < (𝑟1 − 𝑟0)/2, consider the (Borel) set 𝑈𝜖 ⊆ [𝑟0, 𝑟1] defined by 

𝑈𝜖

= { 𝑟0 + |𝜖| ≤ 𝑟 ≤ 𝑟1 − |𝜖|
∣
∣
∣
∣
∣
∑(𝑔𝑟(𝑦𝑟+𝜖 , … , 𝑦𝑟+𝜖⏟        

𝑗 times

, 𝑦𝑟 , … , 𝑦𝑟) − 𝑔𝑟(𝑦𝑟 , … , 𝑦𝑟⏟      
𝑗 times

, 𝑦𝑟+𝜖 , … , 𝑦𝑟+𝜖))

𝑁

𝑗=1

< 0 }. 

                                                            
6 Borel measurability of a function means that the inverse image of every open set is a Borel set 

(Rana, 2002, Ex. 7.3.13). Every continuous function is Borel measurable.   
7 A function is finitely-many-to-one if the inverse image of every point is a finite set. 
8 A sufficient condition for absolute continuity is that the function is continuously differentiable. 

(18) 

 (19) 

(20) 
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Suppose that, for every 𝑟0 < 𝑟 < 𝑟1, 𝑦𝑟  is a stable strategy in 𝑔𝑟. Since the function 𝑟 ↦ 𝑦𝑟  

is finitely-many-to-one, for every 𝑟0 < 𝑟 < 𝑟1 the inequality 𝑦𝑠 ≠ 𝑦𝑟 holds for all 𝑠 ≠ 𝑟 in 

some neighborhood of 𝑟. Hence, for 𝜖 ≠ 0 sufficiently close to 0 (including negative 𝜖), 

𝑟 ∈ 𝑈𝜖 (cf. (15)). It follows that the Lebesgue measure of 𝑈𝜖 tends to 𝑟1 − 𝑟0 as 𝜖 tends to 0. 

The same clearly holds for the set 𝑈−𝜖, hence also for 𝑈−𝜖 − 𝜖 = {𝑟 − 𝜖|𝑟 ∈ 𝑈−𝜖} ⊆ [𝑟0, 𝑟1] 

(which is obtained from 𝑈−𝜖 by translation, and thus has the same measure), and therefore 

also for the set  

𝑉𝜖 = 𝑈𝜖 ∩ (𝑈−𝜖 − 𝜖). 

Therefore, for (Lebesgue-)almost every 𝑟0 < 𝑟 < 𝑟1, the relation 𝑟 ∈ 𝑉1 𝑘⁄  holds for infinitely 

many positive integers 𝑘. For each 𝑟 and 𝑘 satisfying this relation, the strict inequality in (20) 

holds for 𝜖 = 1/𝑘 (since 𝑟 ∈ 𝑈1 𝑘⁄ ), and a similar inequality holds for 𝜖 = −1/𝑘 with 𝑟 

replaced by 𝑟 + 1/𝑘 (since 𝑟 + 1/𝑘 ∈ 𝑈−1 𝑘⁄ ). If 𝑘 is sufficiently large (specifically, greater 

than 1/(1 − 𝑟)), the two inequalities together imply that 

(1 − 𝑟 −
1

𝑘
)∑(𝑔𝑟(𝑦𝑟+

1
𝑘 , … , 𝑦𝑟+

1
𝑘⏟        

𝑗 times

, 𝑦𝑟 , … , 𝑦𝑟) − 𝑔𝑟(𝑦𝑟 , … , 𝑦𝑟⏟      
𝑗 times

, 𝑦𝑟+
1
𝑘 , … , 𝑦𝑟+

1
𝑘))

𝑁

𝑗=1

+ (1 − 𝑟)∑(𝑔𝑟+
1
𝑘(𝑦𝑟 , … , 𝑦𝑟⏟      

𝑗 times

, 𝑦𝑟+
1
𝑘 , … , 𝑦𝑟+

1
𝑘) − 𝑔𝑟+

1
𝑘(𝑦𝑟+

1
𝑘 , … , 𝑦𝑟+

1
𝑘⏟        

𝑗 times

, 𝑦𝑟 , … , 𝑦𝑟))

𝑁

𝑗=1

< 0. 

It follows from (18) and the identity  (19), applied to 𝑠 = 𝑟 + 1/𝑘, 𝑦 = 𝑦𝑟 and 𝑥 = 𝑦𝑟+1/𝑘, 

that the expression on the left-hand side of (21) is equal to −(1/𝑘)(𝜋(𝑟 + 1/𝑘) − 𝜋(𝑟)). 

Thus, (21) gives   

𝜋(𝑟 +
1

𝑘
) > 𝜋(𝑟). 

If 𝜋 is differentiable at 𝑟 and (22) holds for infinitely many 𝑘’s, then 𝜋′(𝑟) ≥ 0. Since 𝜋, 

being an absolutely continuous function, is differentiable almost everywhere in [𝑟0, 𝑟1] and 

satisfies  

𝜋(𝑠) = 𝜋(𝑟0) + ∫ 𝜋′(𝑟) 𝑑𝑟
𝑠

𝑟0

, 𝑟0 ≤ 𝑠 ≤ 𝑟1 

(Yeh, 2006, Theorem 13.17), this proves that 𝜋 is nondecreasing. To prove that it is in fact 

strictly increasing it suffices to show that (𝑟0, 𝑟1) has no open subinterval where 𝜋 is 

constant. Any point 𝑟 lying in such a subinterval satisfies 𝜋(𝑟 + 1/𝑘) − 𝜋(𝑟) = 0 for all large 

enough 𝑘, which implies that 𝑟 ∉ 𝑉1 𝑘⁄  for all such 𝑘. Since it is proved above that the latter 

does not hold for almost all 𝑟 ∈ (𝑟0, 𝑟1), this proves that a subinterval as above does not 

exist. 

If, for every 𝑟0 < 𝑟 < 𝑟1, 𝑦𝑟  is a weakly stable strategy in 𝑔𝑟, then the conclusion that 𝜋 is 

nondecreasing still holds, and the only change required in the above proof is changing the 

strict inequalities in (20), (21) and (22) to weak ones. If each 𝑦𝑟  is definitely unstable, then a 

proof very similar to that above shows that 𝜋 is strictly decreasing. The only change required 

here is reversing the strict inequalities in (20), (21) and (22). ∎ 

(21) 

(22) 
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If each of the strategies 𝑦𝑟  in Theorem 1 is an equilibrium strategy in the corresponding 

modified game 𝑔𝑟  (which the theorem does not require) and the social payoff 𝑓 is the 

aggregate payoff, then, by (18), 𝜋(𝑟) gives the players’ personal payoff at the equilibrium of 

the modified game. Thus, in this case, an increase in 𝜋(𝑟) spells (uniform) Pareto 

improvement. Theorem 1 can therefore be interpreted as saying that, under certain 

technical assumptions, stability of the equilibrium strategies guarantees that all players 

benefit from gradually becoming more altruistic, if the change in preferences is 

simultaneous and to the same degree for all players and it affects the equilibrium strategy. If 

the equilibrium strategies are definitely unstable, altruism has the opposite effect on the 

players’ personal payoff.  

Changes in the altruism coefficient may also leave the social payoff unchanged. A trivial 

example of this is when there are no personal payoffs, 𝑔 = 0. In Theorem 1, ineffective 

change of the altruism coefficient is excluded by the assumption that the assignment of an 

equilibrium strategy 𝑦𝑟  to each 𝑟 is finitely-many-one-to-one. The assignment is also 

assumed to be continuous, which means that (unlike for global comparative statics; see 

below) two equilibrium strategies can be compared only if they are connected in the 

strategy space by a curve whose points are equilibrium strategies for intermediate values of 

the altruism coefficient. In the case of multiple equilibria, this guarantees that an equilibrium 

in one modified game is compared with the “right”, or corresponding, equilibrium in the 

other game. Even with all of these assumptions, stability or definite instability are not 

necessary conditions for the social payoff to increase or decrease, respectively, with 

increasing altruism. It is shown in Section  5.1 that, if the equilibrium strategies are neither 

stable nor definitely unstable, both kinds of comparative statics are possible.  

A similar result to Theorem 1 holds for population games, for which the meaning of stability 

is given by Definition 2. The choice of topology is restricted in this case by the definition of 

population game, which requires 𝑋 to be a (convex) set in a linear topological space such 

that the continuity conditions spelled out in Section  2.1 hold for the game and the social 

payoff.    

Theorem 2. For a population game 𝑔: 𝑋 × 𝑋 → ℝ and a social payoff 𝜙: 𝑋̂ → ℝ such that 

both 𝑔 and 𝑑𝜙 are Borel measurable, and altruism coefficients 𝑟0 and 𝑟1 with 𝑟0 < 𝑟1 ≤ 1, 

suppose that there is a continuous and finitely-many-to-one function that assigns a strategy 

𝑦𝑟  to each 𝑟0 ≤ 𝑟 ≤ 𝑟1 such that the function 𝜋: [𝑟0, 𝑟1] → ℝ defined by 

𝜋(𝑟) = 𝜙(𝑦𝑟) 

is absolutely continuous. If, for every 𝑟0 < 𝑟 < 𝑟1, 𝑦𝑟  is a stable, weakly stable or 

definitely unstable strategy in the modified game 𝑔𝑟, then 𝜋 is strictly increasing, 

nondecreasing or strictly decreasing, respectively. 

Proof. A key difference between population games and symmetric two-player games is that, 

for the former, stability and instability in 𝑔𝑟  are defined by the sign of the expression 

obtained by substituting 𝑔𝑟  for 𝑔 in the left-hand side of (17) rather than (16). However, the 

first expression can be given a form similar to the second one, namely,  

(23) 
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1

2
(𝑔̃𝑟(𝑥, 𝑥) − 𝑔̃𝑟(𝑦, 𝑥) + 𝑔̃𝑟(𝑥, 𝑦) − 𝑔̃𝑟(𝑦, 𝑦)), 

by defining the function 𝑔̃𝑟 as 

𝑔̃𝑟 (𝑥, 𝑦) = 2∫ 𝑔𝑟(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) 𝑑𝑝
1

0

− 𝑔𝑟(𝑥, 𝑥). 

This formal similarity means that almost the entire proof of Theorem 1 can be reused. The 

only missing part is a proof of an identity similar to  (19), with 𝑔̃ substituted for 𝑔 on the 

right-hand side (where 𝑁 = 2) and the left-hand side replaced by (𝑟 − 𝑠)(𝜙(𝑥) − 𝜙(𝑦)). By 

(24), the above substitution of 𝑔̃ for 𝑔 gives 

(1 − 𝑠)∫ (𝑔𝑟(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔𝑟(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦)) 𝑑𝑝
1

0

+ (1 − 𝑟)∫ (𝑔𝑠(𝑦, 𝑝𝑦 + (1 − 𝑝)𝑥) − 𝑔𝑠(𝑥, 𝑝𝑦 + (1 − 𝑝)𝑥)) 𝑑𝑝
1

0

. 

Since 𝑔𝑟 = (1 − 𝑟)𝑔 + 𝑟𝑑𝜙 and a similar equation holds for 𝑠, this expression simplifies to  

(𝑟 − 𝑠)∫ (𝑑𝜙(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑑𝜙(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦)) 𝑑𝑝
1

0

. 

For all 0 < 𝑝 < 1, the integrand in (25) is equal to  

𝑑

𝑑𝑝
𝜙(𝑝𝑥 + (1 − 𝑝)𝑦) 

(Milchtaich, 2012). Therefore, (25) is equal to (𝑟 − 𝑠)(𝜙(𝑥) − 𝜙(𝑦)). ∎ 

When considering particular classes of symmetric and population games, more special 

versions of Theorems 1 and 2 can be obtained by replacing the general stability or definite 

instability condition with a condition that is equivalent to, or at least implies, that property 

in the class under consideration. Unlike Definitions 1 and 2, these “native” notions of 

stability or instability may depend on structures and special properties of the game that are 

not necessarily present in other classes. Some of the better-known classes of games are 

considered in the following subsections. 

5.1 Symmetric 𝒏 × 𝒏 games  
An important class of symmetric two-player games, which may also be viewed as population 

games, is symmetric 𝑛 × 𝑛 games. In these games, both players share a common finite set of 

𝑛 actions, and a (mixed) strategy 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) specifies the probability 𝑥𝑖  with which a 

player chooses the 𝑖th action, for 𝑖 = 1,2, … , 𝑛. The set of all actions 𝑖 with 𝑥𝑖 > 0 is the 

support of 𝑥. A strategy is pure or completely mixed, respectively, if its support contains only 

a single action 𝑖 (in which case the strategy itself may also be denoted by 𝑖) or all 𝑛 actions. 

The payoff function 𝑔 in a symmetric 𝑛 × 𝑛 game is bilinear and is hence completely 

specified by the 𝑛 × 𝑛 payoff matrix 𝐴 = (𝑔(𝑖, 𝑗))
𝑖,𝑗=1

𝑛
. With strategies viewed as column 

vectors (and superscript T denoting transpose), 

(24) 

(25) 
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𝑔(𝑥, 𝑦) = 𝑥T𝐴𝑦. 

A standard notion of stability in a symmetric 𝑛 × 𝑛 game 𝑔 is evolutionary stability (Maynard 

Smith, 1982). A strategy 𝑦 is an evolutionarily stable strategy (ESS) or a neutrally stable 

strategy (NSS) if, for every strategy 𝑥 ≠ 𝑦, for sufficiently small 𝜖 > 0 the inequality  

𝑔(𝑦, 𝜖𝑥 + (1 −  𝜖)𝑦) > 𝑔(𝑥, 𝜖𝑥 + (1 −  𝜖)𝑦) 

or a similar weak inequality, respectively, holds. A completely mixed equilibrium strategy 𝑦 is 

definitely evolutionarily unstable (Weissing, 1991) if 𝑔(𝑦, 𝑥) < 𝑔(𝑥, 𝑥) for all 𝑥 ≠ 𝑦. As the 

following theorem shows, evolutionary stability and instability are equivalent to the 

corresponding notions in Definitions 1 and 2 (which, as indicated, are equivalent for 

symmetric 𝑛 × 𝑛 games).  

Theorem 3 (Milchtaich, 2012). A strategy in a symmetric 𝑛 × 𝑛 game 𝑔 is stable or weakly 

stable if and only if it is an ESS or an NSS, respectively. A completely mixed equilibrium 

strategy is definitely unstable if and only if it is definitely evolutionarily unstable.  

A characterization of stability and weak stability in the modified game is obtained from 

Theorem 3 by replacing 𝑔 with 𝑔𝑟. Alternatively, stability in 𝑔𝑟  may be expressible directly in 

terms of the unmodified payoffs. Such an expression is given by the following proposition, 

which concerns a positive level of altruism when the social payoff 𝑓 is the aggregate payoff. 

As it shows, a stable strategy 𝑦 in the modified game is characterized by the property that it 

affords a higher expected personal payoff than any other strategy close to it for a player 

whose opponent either mimics him and uses whatever (mixed) strategy 𝑥 he uses, or uses 

strategy 𝑦; the former with probability 𝑟 and the latter with probability 1 − 𝑟. This 

characterization is somewhat similar to Myerson et al.’s (1991) notion of 𝛿-viscous 

equilibrium. The main difference is that the latter only takes into consideration alternative 

pure strategies. In particular, if 𝑦 itself is pure, and inequality (26) below holds for every pure 

strategy 𝑥 ≠ 𝑦, then 𝑦 is a 𝛿-viscous equilibrium for 𝛿 = 𝑟, but it is not necessarily even an 

equilibrium strategy in 𝑔𝑟.  

Proposition 1 (Milchtaich, 2006). For a symmetric 𝑛 × 𝑛 game 𝑔, a social payoff that is the 

aggregate payoff, and an altruism coefficient 0 < 𝑟 ≤ 1, a strategy 𝑦 is an ESS or an NSS in 

the modified game 𝑔𝑟  if and only if the inequality 

𝑔(𝑦, 𝑦) > 𝑔(𝑥, 𝑟𝑥 + (1 − 𝑟)𝑦) 

or a similar weak inequality, respectively, holds for all strategies 𝑥 ≠ 𝑦 in some 

neighborhood of 𝑦.  

Theorem 3 and Proposition 1 give the stability condition in Theorem 1 a concrete, special 

meaning. (For another, somewhat simpler, special version of that theorem, see Milchtaich, 

2006.) As indicated (see Section  3), local comparative statics as in Theorem 1 are meaningful 

only if it is possible to continuously map altruism coefficients to equilibrium strategies in the 

corresponding modified games. As it turns out, for symmetric 𝑛 × 𝑛 games the existence of 

such a mapping is automatically guaranteed by an only slightly stronger stability condition. 

An ESS 𝑦 is said to be a regular ESS if every action that is a best response to 𝑦 is in its 

(26) 
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support, in other words, if (𝑦, 𝑦) is a quasi-strict equilibrium (van Damme, 1991). Proposition 

A.1 in the Appendix immediately gives the following. 

Corollary 1. Let 𝑔 be a symmetric 𝑛 × 𝑛 game, 𝑓 a bilinear social payoff (for example, the 

aggregate payoff) and 𝑠 an altruism coefficient. For every regular ESS 𝑦𝑠 in 𝑔𝑠 there is a 

continuous function that assigns to each altruism coefficient 𝑟 in a neighborhood of 𝑠 a 

regular ESS 𝑦𝑟  in the game 𝑔𝑟, which is moreover the unique equilibrium strategy in 𝑔𝑟  with 

the same support as 𝑦𝑠. 

As an example of the application of Theorem 1 to symmetric 𝑛 × 𝑛 games, consider the 

game 𝑔 with the payoff matrix 𝐴 given by (13). With 𝑓 that is the aggregate payoff and 

−1 < 𝑟 < 0.5, the modified game 𝑔𝑟  is a generalized rock–scissors–paper game (that is, its 

payoff matrix has the same sign pattern as in the familiar, simple game). It hence has a 

unique equilibrium, which is symmetric and completely mixed (Hofbauer and Sigmund, 

1998). Straightforward computation shows that the three coordinates of the equilibrium 

strategy 𝑦𝑟  are determined by the altruism coefficient 𝑟 as non-constant rational functions. 

Replacing 𝐴 by –𝐴 clearly does not change the equilibrium strategy but only reverses the 

sign of the equilibrium payoff. As indicated, this replacement also turns the equilibrium 

personal payoff from an increasing function of 𝑟 to a decreasing function. This finding is 

accounted for by Theorem 1. The unique equilibrium strategy in a generalized rock–scissors–

paper game with payoff matrix 𝐵 =  (𝑏𝑖𝑗)𝑖,𝑗=1
3  is evolutionarily stable or definitely 

evolutionarily unstable if and only if (i) the sum 𝑐𝑖𝑗 = 𝑏𝑖𝑗 + 𝑏𝑗𝑖 is positive or negative, 

respectively, for all 1 ≤ 𝑖 < 𝑗 ≤ 3 and (ii) the three numbers √|𝑐12|, √|𝑐13|, √|𝑐23| 

correspond to the lengths of the sides of a triangle (Weissing, 1991, Theorem 4.6). The 

condition for stability clearly holds for the game with the payoff matrix (13) and for the 

corresponding modified games, and the condition for definite instability holds when the 

matrix is replaced by its negative. 

Similar examples show that stability or definite instability are not necessary conditions for 

positive or negative comparative statics, respectively.9 With the payoff matrix 𝐴 given by  

(
0 3 −2
−2 0 2
1 −1 0

)  or (
0 3 −2
−2 0 2
1 −3 0

), 

and with 𝑓 defined as the aggregate payoff, the modified game 𝑔𝑟  is again a generalized 

rock–scissors–paper game for all −1 < 𝑟 < 0.5. For the left payoff matrix, at equilibrium the 

personal payoff is equal to (2(1 − 𝑟)2 − 𝑟)/(29(1 − 𝑟)2 − 5𝑟), and it is hence determined 

by 𝑟 as a (positive and) decreasing function. For the right matrix, the corresponding payoff is 

−(6(1 − 𝑟)2 − 𝑟)/(41(1 − 𝑟)2 − 5𝑟), and it is hence (negative and) increasing. However, 

since for both matrices 𝑎12 + 𝑎21 > 0 but 𝑎13 + 𝑎31 < 0, none of the (completely mixed) 

equilibrium strategies involved is stable or definitely unstable.  

                                                            
9 However, these conditions are close to being necessary in the special case of symmetric 2 × 2 

games. See Section  6.1. 

(27) 
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These examples raise the question of whether, for symmetric 𝑛 × 𝑛 games, with the social 

payoff defined as the aggregate payoff, and with −1 < 𝑟 ≤ 1, the personal (equivalently, 

social) payoff at the completely mixed equilibrium in the modified game is always a 

monotonic (either nondecreasing or nonincreasing) function of the altruism coefficient. For 

2 × 2 games, 3 × 3 games with a non-singular payoff matrix, and symmetric 𝑛 × 𝑛 games 

that are potential games (see Section  5.3), it can be shown that the answer is affirmative. 

However, this is not so in general. For example, in the 4 × 4 game 𝑔 with the (non-singular) 

payoff matrix 

(

2 5 1 0
−7 −2 9 8
−3 7 9 −9
9 2 −4 −5

) , 

for which the modified game 𝑔𝑟  has a unique completely mixed equilibrium strategy for 

every 0 ≤ 𝑟 ≤ 1, the personal payoff at equilibrium decreases for 0 < 𝑟 < 0.584 but 

increases for 0.584 < 𝑟 < 1.  

5.2 Games with a unidimensional strategy space  
In a symmetric two-player game or population game 𝑔 in which the strategy space is an 

interval in the real line ℝ, stability or instability of an equilibrium strategy, in the sense of 

either Definition 1 or 2, has a simple, familiar meaning. If 𝑔 is twice continuously 

differentiable, and with the possible exception of certain borderline cases, an equilibrium 

strategy is stable or definitely unstable if, at the (symmetric) equilibrium point, the reaction 

curve intersects the forty-five degree line from above or below, respectively. Stability is also 

essentially equivalent to the notion of continuously stable strategy, or CSS (Eshel and Motro, 

1981; Eshel, 1983).   

Theorem 4 (Milchtaich, 2012). Let 𝑔 be a symmetric two-player game or population game 

with a strategy space 𝑋 that is a (finite or infinite) interval in the real line, and 𝑦 an 

equilibrium strategy lying in the interior of 𝑋 such that 𝑔 has continuous second-order 

partial derivatives10 in a neighborhood of the equilibrium point (𝑦, 𝑦). If 

 𝑔11(𝑦, 𝑦) + 𝑔12(𝑦, 𝑦) < 0, 

then 𝑦 is stable and a CSS. If the reverse inequality holds, then 𝑦 is definitely unstable 

and not a CSS.  

The reaction curve is the collection of all strategy profiles (𝑥, 𝑦) such that 𝑦 is a best 

response to 𝑥. If (𝑦, 𝑦) is an interior equilibrium as in Theorem 4, then (the second-order 

maximization condition) 𝑔11(𝑦, 𝑦) ≤ 0 holds, since 𝑦 is a best response to itself. If the 

inequality is strict, then (28) can be written as  

−
𝑔12(𝑦, 𝑦)

𝑔11(𝑦, 𝑦)
< 1. 

                                                            
10 Partial derivatives are denoted by subscripts. For example, 𝑔12 is the mixed second-order partial 

derivative of 𝑔. 

(28) 
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This inequality or the reverse one, respectively, says that at the equilibrium point the slope 

of the reaction curve is less or greater than the slope of the forty-five degree line (which 

equals 1). The former and the latter, respectively, holds for the low- and the high-output 

equilibria of the modified games in Example 1 (see Figure 1a). Therefore, the comparative 

statics in that example are accounted for by Theorem 1.  

In Example 2, Eq. (9) gives 𝑔11
𝑟 = 0 and 𝑔12

𝑟 (𝑥, 𝑦) = 𝑟𝜙″(𝑦). Therefore, the inequality 

obtained by substituting 𝑔𝑟  for 𝑔 in (28) or the reverse inequality holds if the production 

function 𝜙 is concave or convex, respectively. This shows that the comparative statics in 

Example 2 are accounted for by Theorem 2.  

The following proposition, while much more special than Theorems 1 and 2, goes beyond 

them by pointing to a direct quantitative connection between comparative statics and an 

expression similar to that on the left-hand side of (28). In particular, in Example 2, in 

conjunction with (11) the proposition gives (12).  

Proposition 2. For a symmetric two-player game or population game 𝑔 with a strategy space 

𝑋 that is an interval (of real numbers), a corresponding social payoff function, and altruism 

coefficients 𝑟0 and 𝑟1 with 𝑟0 < 𝑟1, suppose that there is a continuously differentiable 

function that assigns an equilibrium strategy 𝑦𝑟  in the modified game 𝑔𝑟  to each 𝑟0 < 𝑟 < 𝑟1 

such that 𝑦𝑟  lies in the interior of 𝑋 and both 𝑔 and 𝑓 have continuous second-order partial 

derivatives in a neighborhood of (𝑦𝑟 , 𝑦𝑟). Then, at each point 𝑟0 < 𝑟 < 𝑟1, 

 
𝑑𝜋

𝑑𝑟
= −(1 − 𝑟)(𝑔11

𝑟 (𝑦𝑟 , 𝑦𝑟) + 𝑔12
𝑟 (𝑦𝑟 , 𝑦𝑟)

 

 
) (
𝑑𝑦𝑟

𝑑𝑟
)

2

, 

where 𝜋 is defined by (18) if 𝑔 is a symmetric two-player game and by (23) if it is a 

population game.  

Proof. Since 𝑦𝑟  is an interior equilibrium strategy in 𝑔𝑟  for every 𝑟0 < 𝑟 < 𝑟1, it satisfies the 

first-order maximization condition 

𝑔1
𝑟(𝑦𝑟 , 𝑦𝑟) = 0. 

Since 

𝑔1
𝑟 = (1 − 𝑟)𝑔1 + 𝑟𝑓1, 

differentiation of both sides of (30) with respect to 𝑟 and multiplication by (1 − 𝑟) 𝑑𝑦𝑟/

𝑑𝑟 give 

(1 − 𝑟)(−𝑔1(𝑦
𝑟 , 𝑦𝑟) + 𝑓1(𝑦

𝑟 , 𝑦𝑟))
𝑑𝑦𝑟

𝑑𝑟

+ (1 − 𝑟)(𝑔11
𝑟 (𝑦𝑟 , 𝑦𝑟) + 𝑔12

𝑟 (𝑦𝑟 , 𝑦𝑟)) (
𝑑𝑦𝑟

𝑑𝑟
)

2

= 0. 

By (30) and (31), the first term in (32) is equal to 𝑓1(𝑦
𝑟 , 𝑦𝑟) 𝑑𝑦𝑟/𝑑𝑟. If 𝑔 is a symmetric two-

player game, then the social payoff 𝑓 is by definition symmetric, and therefore the last 

expression is equal to (1/2) 𝑑/𝑑𝑟 𝑓(𝑦𝑟 , 𝑦𝑟). If 𝑔 is a population game, then 𝑓 is connected 

(29) 

(30) 

(31) 

(32) 
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with the social payoff 𝜙 by (6), which by (8) gives  

𝑓(𝑥, 𝑦) = 𝑥𝜙′(𝑦), 𝑥, 𝑦 ∈ 𝑋. 

This equality implies that 𝑓1(𝑦
𝑟 , 𝑦𝑟) 𝑑𝑦𝑟/ 𝑑𝑟 = 𝜙′(𝑦𝑟) 𝑑𝑦𝑟/ 𝑑𝑟 = 𝑑/ 𝑑𝑟  𝜙(𝑦𝑟). Therefore, 

for both kinds of games, (32) gives (29). ∎ 

5.3 Potential games 
A symmetric 𝑁-player game 𝑔: 𝑋𝑁 → ℝ is called an (exact) potential game if it has an (exact) 

potential, which is a symmetric function 𝐹: 𝑋𝑁 → ℝ such that, whenever a single player 

changes his strategy, the change in the player’s payoff is equal to the change in 𝐹. Thus, for 

any 𝑁 + 1 (not necessarily distinct) strategies 𝑥, 𝑦, 𝑧, … , 𝑤, 

𝐹(𝑥, 𝑧, … , 𝑤) − 𝐹(𝑦, 𝑧, … , 𝑤) = 𝑔(𝑥, 𝑧, … , 𝑤) − 𝑔(𝑦, 𝑧, … , 𝑤). 

The potential 𝐹 may itself be viewed as a symmetric 𝑁-player game, indeed, a doubly 

symmetric one.11 It follows immediately from (33) that 𝐹 and 𝑔 have exactly the same 

equilibrium strategies, stable and weakly stable strategies, and definitely unstable strategies. 

Stability and instability have in this case a strikingly simple characterization, which follows 

immediately from the observation that the sum in (14) is equal to the difference 

𝐹(𝑥, 𝑥, … , 𝑥) − 𝐹(𝑦, 𝑦, … , 𝑦) divided by 𝑁. 

Theorem 5. In a symmetric 𝑁-player game with a potential 𝐹, a strategy 𝑦 is stable, weakly 

stable or definitely unstable if and only if it is a strict local maximum point, a local maximum 

point or a strict local minimum point, respectively, of the function 𝑥 ↦ 𝐹(𝑥, 𝑥, … , 𝑥). If 

(𝑦, 𝑦, … , 𝑦) is a global maximum point of 𝐹 itself, then 𝑦 is in addition an equilibrium 

strategy. 

For population games, which represent interactions involving many players whose individual 

actions have negligible effects on the other players, the definition of potential may be 

naturally adapted by replacing the difference on the left-hand side of (33) with a derivative.  

Definition 3. For a population game 𝑔: 𝑋2 → ℝ, a continuous function 𝛷:𝑋 → ℝ is a 

potential if for all 𝑥, 𝑦 ∈ 𝑋 and 0 < 𝑝 < 1 the following derivative exists and satisfies the 

equality: 

𝑑

𝑑𝑝
𝛷(𝑝𝑥 + (1 − 𝑝)𝑦) = 𝑔(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦). 

As for symmetric games, stability and instability (here, in the sense of Definition 2) of a 

strategy 𝑦 in a population game with a potential 𝛷 is related to 𝑦 being a local extremum 

point of the potential.  

Theorem 6 (Milchtaich, 2012). In a population game 𝑔 with a potential 𝛷, a strategy 𝑦 is 

stable, weakly stable or definitely unstable if and only if it is a strict local maximum point of 

𝛷, a local maximum point of 𝛷 or a strict local minimum point of 𝛷, respectively. In the first 

                                                            
11 A symmetric game is doubly symmetric if it has a symmetric payoff function, which means that the 

players’ payoffs are always equal. 
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two cases, 𝑦 is in addition an equilibrium strategy. If the potential 𝛷 is strictly concave, an 

equilibrium strategy is a strict global maximum point of 𝛷, and necessarily the game’s 

unique stable strategy.  

A sufficient condition for a continuous function 𝛷 to be a potential for a population game 𝑔 

is that its differential (see Section  2.1) is equal to 𝑔. More precisely, this condition is relevant 

if 𝛷 is defined on (or is extendable to) 𝑋̂, the cone of the strategy space 𝑋.  

Proposition 3 (Milchtaich, 2012). Let 𝑔: 𝑋2 → ℝ be a population game and 𝛷: 𝑋̂ → ℝ a 

continuous function (on the cone of the strategy space) such that 𝑑𝛷: 𝑋̂2 → ℝ exists, is 

continuous in the second argument and satisfies 

𝑔(𝑥, 𝑦) = 𝑑𝛷(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑋. 

Then the restriction of 𝛷 to 𝑋 is a potential for 𝑔. 

Any social payoff 𝑓 in a symmetric 𝑁-player game or social payoff 𝜙 in a population game is 

(trivially) a potential for some (other) game in the same class, namely, the modified game 

corresponding to 𝑟 = 1. Thus, complete altruism turns any symmetric or population game 

into a potential game. Theorems 5 and 6 therefore have the following corollary, which 

extends a result of Hofbauer and Sigmund (1988; see also Weibull, 1995, pp. 56–57) 

concerning doubly symmetric games.  

Corollary 2. For any symmetric 𝑁-player game 𝑔 and social payoff 𝑓, a strategy 𝑦 is stable, 

weakly stable or definitely unstable in the modified game 𝑔1 (= 𝑓) if and only if it has a 

neighborhood where for every strategy 𝑥 ≠ 𝑦 the inequality 

𝑓(𝑦, 𝑦, … , 𝑦) > 𝑓(𝑥, 𝑥, … , 𝑥), 

a similar weak inequality or the reverse inequality, respectively, holds. The same is true 

for any population game 𝑔 and social payoff 𝜙, except that in this case (where 𝑔1 = 𝑑𝜙) 

(34) is replaced by  

𝜙(𝑦) > 𝜙(𝑥). 

If 𝜙 is strictly concave, a strategy is stable in 𝑔1 if and only if it is an equilibrium strategy. 

For population games, Corollary 2 generalizes a well-known result pertaining to nonatomic 

congestion games (Milchtaich, 2004).  

Example 4. Nonatomic congestion game. An infinite population of identical users, modeled 

as the unit interval [0,1], shares a finite number 𝑛 of common resources (for example, road 

segments). The cost of using each resource 𝑗 (for example, the time it takes to traverse the 

road) depends on the size of the set of its users and it is specified by a continuously 

differentiable and strictly increasing cost function 𝑐𝑗: [0,∞) → [0,∞). Each user 𝑡 has to 

choose a subset of resources (for example, a route, comprising several road segments), 

which can be expressed as a binary vector 𝜎(𝑡) = (𝜎1(𝑡), 𝜎2(𝑡), … , 𝜎𝑛(𝑡)), where 𝜎𝑗(𝑡) = 1 

or 0 indicates that resource 𝑗 is included or is not included in 𝑡’s choice, respectively. The 

vector must belong to a specified finite collection 𝑋̌ ⊆ {0,1}𝑛, which describes the allowable 

(34) 
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subsets of resources (for example, all routes from town 𝐴 to town 𝐵). The population 

strategy 𝑦 is the users’ mean choice:  

𝑦 = ∫ 𝜎(𝑡) 𝑑𝑡
1

0

. 

It lies in the convex hull of 𝑋̌, 

𝑋 ≝ co 𝑋̌ ⊆ ℝ𝑛, 

and it is well-defined if for each 𝑗 the set { 0 ≤ 𝑡 ≤ 1 ∣∣ 𝜎𝑗(𝑡) = 1 } is measurable. The 

population strategy 𝑦 determines the cost of each allowable subset of resources, and more 

generally, the cost of each (mixed) strategy 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑋. Specifically, the 

negative of the latter, which is the payoff 𝑔(𝑥, 𝑦), is given by 

𝑔(𝑥, 𝑦) = −∑𝑥𝑗𝑐𝑗(𝑦𝑗)

𝑛

𝑗=1

. 

A social payoff for the population game 𝑔: 𝑋2 → ℝ is the mean payoff 𝜙, defined by 

𝜙(𝑦) = 𝑔(𝑦, 𝑦) = −∑𝑦𝑗𝑐𝑗(𝑦𝑗)

𝑛

𝑗=1

. 

The modified payoff is given by 

𝑔𝑟(𝑥, 𝑦) = (1 − 𝑟)𝑔(𝑥, 𝑦) + 𝑟 𝑑𝜙(𝑥, 𝑦) = −∑𝑥𝑗 (𝑐𝑗(𝑦𝑗) + 𝑟 𝑦𝑗𝑐𝑗
′(𝑦𝑗))

𝑛

𝑗=1

. 

In particular, setting 𝑟 = 1 means replacing the resources’ costs (the 𝑐𝑗(𝑦𝑗)’s) with the 

corresponding marginal social costs (𝑑/ 𝑑𝑦𝑗(𝑦𝑗𝑐𝑗(𝑦𝑗))). If the latter are all strictly increasing 

functions, 𝜙 is strictly concave. In this case, it follows from Corollary 2 that the unique 

maximum point in 𝑋 of the mean payoff 𝜙 is the unique equilibrium (as well as the unique 

stable) strategy in the game 𝑔1. 

Corollary 2 may be viewed as a rudimentary comparative statics result. As it shows, every 

stable strategy in the “extreme” modified game 𝑔1, where the players’ only concern is the 

effect or marginal effect of their choice of strategies on the social payoff, is, in a sense, a 

local maximizer of the social payoff, and every local (and, in particular, global) maximizer is a 

weakly stable strategy in 𝑔1. (For symmetric 𝑛 × 𝑛 games, ‘strategy’ means mixed strategy. 

A similar assertion does not hold for pure strategies.) This result may be interpreted as 

entailing that complete altruism maximizes social welfare. (For a somewhat similar result, 

see Bernheim and Stark, 1988.) Corollary 2 is however much more limited than Theorems 1 

and 2. In particular, it says nothing about comparative statics with low levels of altruism, 

indeed, about any modified game 𝑔𝑟  with 𝑟 < 1.  

The stability conditions in Theorems 1 and 2 take a particularly simple form if the symmetric 

𝑁-player game or population game 𝑔 is itself a potential game, with a potential 𝐹 or 𝛷, 

respectively. In this case, for any altruism coefficient 𝑟, the modified game 𝑔𝑟  is also a 
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potential game, with the potential 

𝐹𝑟 = (1 − 𝑟)𝐹 + 𝑟𝑓  or  𝛷𝑟 = (1 − 𝑟)𝛷 + 𝑟𝜙. 

By Theorems 5 and 6, a strategy 𝑦𝑟  in 𝑔𝑟  is stable if and only if it is a strict local 

maximum point of the function 𝑥 ↦ 𝐹𝑟(𝑥, 𝑥, … , 𝑥) or of the function 𝛷𝑟. As 𝑟 increases, so 

does the weight attached to the social payoff 𝑓 or 𝜙 in (35). It is hence not very surprising 

that 𝜋(𝑟), defined by (18) or (23), also increases. Similar intuition applies to weakly stable 

and to definitely unstable strategies. 

In the special case of a symmetric two-player game 𝑔 that is an 𝑛 × 𝑛 game, it can be shown 

that a necessary and sufficient condition for 𝑔 to be a potential game is that the (𝑛 − 1) ×

(𝑛 − 1) matrix defining the quadratic form 𝑄 in (43) below is symmetric. (The potential itself 

is given by a symmetric 𝑛 × 𝑛 matrix.) This condition holds trivially if 𝑛 = 2, which proves 

that all symmetric 2 × 2 games are potential games. The following proposition shows that 

for symmetric 𝑛 × 𝑛 potential games, and with the social payoff defined as the aggregate 

payoff, completely mixed equilibrium strategies corresponding to different values of the 

altruism coefficient lie side-by-side along a straight line in the strategy space. In other words, 

the line segment connecting any pair of such strategies consists of equilibrium strategies 

corresponding to intermediate values of the altruism coefficient. Along that line, the players’ 

personal payoff either does not change or changes monotonically (cf. the remarks at the end 

of Section  5.1).  

Proposition 4. For a symmetric 𝑛 × 𝑛 potential game 𝑔, the aggregate payoff as the social 

payoff, and altruism coefficients 𝑟0 and 𝑟1 with −1 < 𝑟0 < 𝑟1 ≤ 1, define for 𝑟0 ≤ 𝑟 ≤ 𝑟1 

𝜎 =
1 − 𝑟

1 + 𝑟
, 

and denote the values corresponding to 𝑟0 and 𝑟1 by 𝜎0 and 𝜎1.12 If the modified games 𝑔𝑟0  

and 𝑔𝑟1  have completely mixed equilibrium strategies 𝑦𝑟0  and 𝑦𝑟1 , respectively, then for 

every 𝑟0 ≤ 𝑟 ≤ 𝑟1 the convex combination  

𝑦𝑟 =
𝜎 − 𝜎1
𝜎0 − 𝜎1

𝑦𝑟0 +
𝜎0 − 𝜎

𝜎0 − 𝜎1
𝑦𝑟1  

is a completely mixed equilibrium strategy in 𝑔𝑟. The corresponding personal payoff is given 

by 

𝑔(𝑦𝑟 , 𝑦𝑟) = 𝑔(𝑦𝑟0 , 𝑦𝑟0) +
𝜎0
2 − 𝜎2

𝜎0
2 − 𝜎1

2 (𝑔(𝑦
𝑟1 , 𝑦𝑟1) − 𝑔(𝑦𝑟0 , 𝑦𝑟0)), 

and it is thus determined by 𝑟 as a monotonic function in the interval [𝑟0, 𝑟1].  

                                                            
12 The definition may be viewed as an alternative parameterization of altruism in symmetric two-

player games, for −1 < 𝑟 ≤ 1. It is not difficult to see that, since the social payoff here is twice the 

average payoff 𝑔̅, the modified payoff can be written as a positive multiple of 𝜎𝑔 + (1 − 𝜎)𝑔̅. Since in 

the last expression the nonnegative parameter 𝜎 is the weight attached to the player’s own payoff 𝑔, 

it may be called the selfishness coefficient. The coefficient is negatively related to the altruism 

coefficient 𝑟: it increases as the latter decreases.  

(35) 

(36) 

(37) 

(38) 
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Proof. The potential game 𝑔 can be written as 

𝑔 = 𝐹 + 𝑔̑, 

where 𝐹 is a potential and 𝑔̑ is a function that is constant in the first argument: for an 

arbitrary, fixed strategy 𝑧, 𝑔̑(𝑥, 𝑦) = 𝑔̑(𝑧, 𝑦) for all strategies 𝑥 and 𝑦. Since the social payoff 

is the aggregate payoff and 𝐹 is symmetric, for an altruism coefficient 𝑟 and strategies 𝑥 

and 𝑦  

𝑔𝑟(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) + 𝑟𝑔(𝑦, 𝑥) = (1 + 𝑟)𝑔(𝑥, 𝑦) + 𝑟(𝑔̑(𝑧, 𝑥) − 𝑔̑(𝑧, 𝑦)). 

A completely mixed strategy 𝑦 is an equilibrium strategy in 𝑔𝑟  if and only if the value of 

𝑔𝑟(𝑥, 𝑦) does not depend on the strategy 𝑥, which is the case if and only if the function  

𝑐𝑟,𝑦(⋅) = 𝑔(⋅, 𝑦) +
𝑟

1 + 𝑟
 𝑔̑(𝑧,⋅) 

is constant. It follows from (36) and (37) after some algebra that  

𝑐𝑟,𝑦𝑟(⋅) =
𝜎 − 𝜎1
𝜎0 − 𝜎1

𝑐𝑟0,𝑦𝑟0(⋅) +
𝜎0 − 𝜎

𝜎0 − 𝜎1
𝑐𝑟1,𝑦𝑟1(⋅). 

If 𝑦𝑟0  and 𝑦𝑟1  are equilibrium strategies in the respective modified games, this identity 

proves that the same is true for 𝑦𝑟. The corresponding personal payoff 𝑔(𝑦𝑟 , 𝑦𝑟) can then 

be computed by replacing 𝑦𝑟  with the expression in (37). After some algebra, this 

substitution gives the expression on the right-hand side of (38) plus a third term that can be 

written as  

(𝜎0 − 𝜎)(𝜎 − 𝜎1)

(𝜎0 + 𝜎1)(𝜎0 − 𝜎1)
2
(𝜎1(1 + 𝜎0)(𝑔

𝑟0(𝑦𝑟1 , 𝑦𝑟0) − 𝑔𝑟0(𝑦𝑟0 , 𝑦𝑟0))

+ 𝜎0(1 + 𝜎1)(𝑔
𝑟1(𝑦𝑟0 , 𝑦𝑟1) − 𝑔𝑟1(𝑦𝑟1 , 𝑦𝑟1))). 

Since 𝑦𝑟0  and 𝑦𝑟1  are completely mixed equilibrium strategies, the last expression is equal to 

zero. ∎ 

6 Global Comparative Statics 
Global comparative statics differ from local comparative statics in not being limited to 

continuous changes in the altruism coefficient or in the corresponding strategies. This makes 

the analysis applicable also to games with finite strategy spaces, which is not the case for 

local comparative statics (see Section  3). Formally, the topology on the strategy space 𝑋 is 

put out of the way, so to speak, by taking it to be the trivial topology: the only neighborhood 

of any strategy is the entire space. Stability, weak stability or definite instability of a strategy 

with respect to this topology automatically implies the same with respect to any other 

topology on 𝑋, and is referred to as global stability, weak stability or definitely instability, 

respectively. The previous sections demonstrate a strong association between stability and 

positive local comparative statics. As might be expected, a similar association exists between 

global stability and positive global comparative statics.  
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Theorem 7. For a symmetric two-player game 𝑔, a social payoff 𝑓, and altruism coefficients 

𝑟 and 𝑠 with 𝑟 < 𝑠 ≤ 1, if two distinct strategies 𝑦𝑟  and 𝑦𝑠 are globally stable in 𝑔𝑟  and 𝑔𝑠, 

respectively, then 

𝑓(𝑦𝑠 , 𝑦𝑠) > 𝑓(𝑦𝑟 , 𝑦𝑟). 

If the strategies are globally weakly stable, then 

𝑓(𝑦𝑠 , 𝑦𝑠) ≥ 𝑓(𝑦𝑟 , 𝑦𝑟). 

If they are globally definitely unstable, then 

𝑓(𝑦𝑠 , 𝑦𝑠) < 𝑓(𝑦𝑟 , 𝑦𝑟). 

Proof. The proof uses the following identity, which holds for all (𝑟, 𝑠 and) 𝑥 and 𝑦: 

(𝑟 − 𝑠)(𝑓(𝑥, 𝑥) − 𝑓(𝑦, 𝑦)) = (1 − 𝑠)(𝑔𝑟(𝑥, 𝑥) − 𝑔𝑟(𝑦, 𝑥) + 𝑔𝑟(𝑥, 𝑦) − 𝑔𝑟(𝑦, 𝑦))

+ (1 − 𝑟)(𝑔𝑠(𝑦, 𝑦) − 𝑔𝑠(𝑥, 𝑦) + 𝑔𝑠(𝑦, 𝑥) − 𝑔𝑠(𝑥, 𝑥)). 

For 𝑥 = 𝑦𝑠 and 𝑦 = 𝑦𝑟, the right-hand side is negative, nonpositive or positive if these 

strategies are globally stable, globally weakly stable or globally definitely unstable, 

respectively, in the corresponding modified games. ∎ 

Global stability or weak stability holds automatically for all equilibrium strategies in every 

symmetric two-player game that satisfies the corresponding condition in the following 

proposition. Since there can obviously be at most one globally stable strategy, in the former 

case the game also has at most one equilibrium strategy. 

Proposition 5. If a symmetric two-player game 𝑔 satisfies the symmetric substitutability 

condition that, for every pair of distinct strategies 𝑥 and 𝑦,  

𝑔(𝑥, 𝑥) − 𝑔(𝑦, 𝑥) < 𝑔(𝑥, 𝑦) − 𝑔(𝑦, 𝑦), 

then every equilibrium strategy in 𝑔 is globally stable. If 𝑔 satisfies the weak symmetric 

substitutability condition, in which the strict inequality (42) is replaced by a weak one, then 

every equilibrium strategy in 𝑔 is globally weakly stable. 

Proof. An equilibrium strategy 𝑦 by definition satisfies the two-player version of (3) for every 

strategy 𝑥. That inequality and (42) or its weak version together imply (16) or its weak 

version, respectively. ∎ 

The term symmetric substitutability (Bergstrom, 1995) reflects the following interpretation 

of (42): switching from strategy 𝑦 to strategy 𝑥 increases a player’s payoff less (or decreases 

it more) if the opponent uses 𝑥 than if he uses 𝑦. An alternative, related interpretation of 

the symmetric substitutability condition is that coordination decreases the players’ payoffs. 

This interpretation is based on the fact that the difference between the left- and right-hand 

sides of (42) is equal to four times the difference between (i) each player’s expected payoff if 

the two players jointly randomize 50–50 between 𝑥 and 𝑦, and so always choose the same 

strategy, and (ii) the expected payoff if the players independently randomize 50–50 between 

𝑥 and 𝑦. More generally, suppose that for some finite list of distinct strategies 𝑥1, 𝑥2, … both 

(39) 

(40) 

(41) 

(42) 
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players use each strategy 𝑥𝑖  with the same (marginal) probability 𝑝𝑖 > 0 (with ∑ 𝑝𝑖𝑖 = 1). 

Then, the difference between each player’s expected payoff if the strategy choices of the 

two players are perfectly correlated and the expected payoff if the choices are independent 

is given by ∑ 𝑝𝑖𝑝𝑗(𝑔(𝑥
𝑖 , 𝑥𝑖) − 𝑔(𝑥𝑗 , 𝑥𝑖) − 𝑔(𝑥𝑖 , 𝑥𝑗) + 𝑔(𝑥𝑗 , 𝑥𝑗))𝑖<𝑗 . A sufficient condition 

for this expression to be negative or nonpositive is that (42) or its weak version, respectively, 

holds whenever 𝑥 ≠ 𝑦.  

When applied to the modified game, Proposition 5 shows that a sufficient condition for 

global stability of an equilibrium strategy in 𝑔𝑟  is that this game satisfies the symmetric 

substitutability condition. Clearly, if the set of all 𝑟 values for which this condition holds is 

not empty, then it is a (finite or infinite) interval. In the special case where 𝑓 is the aggregate 

payoff, the symmetric substitutability condition holds for 𝑟 = 0 (that is, for the unmodified 

game) if and only if it holds for all −1 < 𝑟 ≤ 1. This is because the inequality obtained from 

(42) by replacing 𝑔 with 𝑔𝑟  is equivalent to that obtained by multiplying both sides by 1 + 𝑟.  

6.1 Symmetric 𝒏 × 𝒏 games 
One class of symmetric two-player games for which Theorem 7 can be given a more 

concrete form is symmetric 𝑛 × 𝑛 games.  

Definition 4. For a symmetric 𝑛 × 𝑛 game 𝑔, altruism globally increases payoffs, globally 

weakly increases payoffs or globally decreases payoffs for completely mixed equilibria if, 

with the social payoff 𝑓 defined as the aggregate payoff, for every pair of altruism 

coefficients 𝑟 and 𝑠 with −1 < 𝑟 < 𝑠 ≤ 1 and distinct equilibrium strategies 𝑦𝑟  and 𝑦𝑠 in 𝑔𝑟  

and 𝑔𝑠, (39) holds, (40) holds, or (41) holds provided 𝑦𝑟  and 𝑦𝑠 are completely mixed, 

respectively.  

Proposition 6. For a symmetric 𝑛 × 𝑛 game 𝑔, consider the quadratic form 𝑄:ℝ𝑛−1 → ℝ 

defined by

 𝑄(𝜁1, 𝜁2, … , 𝜁𝑛−1) = ∑ (𝑔(𝑖, 𝑗) − 𝑔(𝑛, 𝑗) − 𝑔(𝑖, 𝑛) + 𝑔(𝑛, 𝑛))𝜁𝑖𝜁𝑗

𝑛−1

𝑖,𝑗=1

.  

1. If 𝑄 is negative definite, then altruism globally increases payoffs, and for every 

−1 < 𝑟 ≤ 1, the modified game 𝑔𝑟  has a unique equilibrium strategy, which is globally 

stable (hence, an ESS).  

2. If 𝑄 is negative semidefinite, then altruism globally weakly increases payoffs, and for 

every −1 < 𝑟 ≤ 1, every equilibrium strategy in 𝑔𝑟  is globally weakly stable (hence, an 

NSS).  

3. If 𝑄 is positive definite, then altruism globally decreases payoffs for completely mixed 

equilibria, and for every −1 < 𝑟 ≤ 1, the modified game 𝑔𝑟  has at most one completely 

mixed equilibrium strategy, which is definitely (evolutionarily) unstable.   

Proof. For (mixed) strategies 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛), the difference 

between the left- and right-hand sides of (42) is equal to ∑ 𝑔(𝑖, 𝑗)𝜁𝑖𝜁𝑗
𝑛
𝑖,𝑗=1 , where 

𝜁𝑖 = 𝑥𝑖 − 𝑦𝑖. This sum is equal to that in (43), since ∑ 𝜁𝑖
𝑛
𝑖=1 = 0. Therefore, Assertions 1 and 

2 follow from Theorem 7, Proposition 5, the comment that immediately precedes this 

subsection and the fact that every symmetric 𝑛 × 𝑛 game has a symmetric equilibrium. If 𝑄 

(43) 
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is positive definite, then −𝑄 is negative definite, and therefore the conclusion in Assertion 1 

holds for the game −𝑔. It only remains to note that −𝑔 and 𝑔 share the same completely 

mixed equilibrium strategies, and that stability of a strategy in the former is equivalent to 

definite instability in the latter. ∎ 

The quadratic form 𝑄 defined by (43) is particularly simple if 𝑛 = 2. In this case, 𝑄 is 

negative definite, negative semidefinite or positive definite if and only if 𝑔(1,1) − 𝑔(2,1) −

𝑔(1,2) + 𝑔(2,2) is negative, nonpositive or positive, respectively. The last expression is the 

difference between the sum of the two diagonal entries of the payoff matrix and the sum of 

the two off-diagonal entries. A negative or positive difference expresses strategic 

substitutability or complementarity, respectively (Bulow et al., 1985), in the sense that the 

profitability of switching from one pure strategy 𝑖 to the other 𝑗 decreases or increases, 

respectively, as the probability that the other player uses 𝑗 increases (cf. (42)). Symmetric 

2 × 2 games with strategic substitutability include Chicken and the battle-of-the-sexes 

game, in its symmetric form. By Proposition 6, in such games a higher altruism coefficient 

entails a weakly higher personal payoff at (the symmetric) equilibrium. By contrast, in games 

with strategic complementarity, if the equilibria are completely mixed, the personal payoff 

can only decrease or remain unchanged when 𝑟 increases. In the prisoner’s dilemma, both 

strategic substitutability and complementarity are possible, and in addition there is a 

borderline case in which the personal equilibrium payoff abruptly increases at some critical 𝑟 

(Milchtaich, 2006, Fig. 2).  

6.2 Games with a unidimensional strategy space  
In a symmetric two-player game 𝑔 with a unidimensional strategy space, a sufficient 

condition for symmetric substitutability is that 𝑔 is strictly submodular, that is,  

𝑔(𝑥, 𝑥′) − 𝑔(𝑦, 𝑥′) < 𝑔(𝑥, 𝑦′) − 𝑔(𝑦, 𝑦′) 

whenever 𝑥 > 𝑦 and 𝑥′ > 𝑦′. A sufficient condition for weak symmetric substitutability 

is that 𝑔 is submodular, that is, satisfies a similar condition with the strict inequality in (44) 

replaced by a weak one. If the strategy space is a (finite or infinite) interval and 𝑔 has 

continuous second-order partial derivatives, submodularity is equivalent to 𝑔12 ≤ 0 

(everywhere) and a sufficient condition for strict submodularity is 𝑔12 < 0 (everywhere). 

Thus, if the latter condition holds, and 𝑓 is the aggregate payoff, then it follows from 

Proposition 5 that, for every altruism coefficient −1 < 𝑟 ≤ 1, an equilibrium strategy 𝑦 in 

the modified game 𝑔𝑟  is necessarily globally stable. This result may be viewed as a limited 

global version of Theorem 4. Note, however, that for an equilibrium strategy 𝑦 in 𝑔 the 

inequality 𝑔12(𝑦, 𝑦) < 0 (and, a fortiori, the requirement that 𝑔12 < 0 everywhere) is a 

stronger condition than (28) .  

In the special case of a symmetric Cournot duopoly game (see Example 1), symmetric 

substitutability is also implied by a simpler and somewhat weaker condition than strict 

submodularity. In such a game, the profit 𝑔(𝑥, 𝑦) of a producer with output level 𝑥 

competing against an identical producer with output level 𝑦 is 𝑥𝑃(𝑥 + 𝑦) − 𝐶(𝑥), where 𝑃 is 

the price (or inverse demand) function and 𝐶 is the cost function. Therefore, (42) can be 

written as 

(44) 
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1

2
(2𝑥𝑃(2𝑥) + 2𝑦𝑃(2𝑦)) < (𝑥 + 𝑦)𝑃(𝑥 + 𝑦). 

(Note that the inequality does not involve 𝐶. This is because the production cost is a function 

of the firm’s own output only.) A sufficient (and, if the price function is continuous, also 

necessary) condition for (45) to hold for every pair of distinct points 𝑥 and 𝑦 in the (finite or 

infinite) interval of possible output levels is that the total revenue is a strictly concave 

function of the total output. Similarly, if the total revenue is concave, the weak-inequality 

version of (42) always holds. It then follows from Proposition 5 and Theorem 7 that negative 

comparative statics (exemplified by the lower curve in Figure 1b) cannot occur, so that 

moving from duopoly towards (not necessarily all the way to) effective monopoly cannot 

decrease the firms’ profits. This proves the following.  

Corollary 3. In a symmetric Cournot duopoly game, each of the following two conditions, the 

latter being weaker than the former, implies that altruism (0 < 𝑟 ≤ 1) and spite (−1 < 𝑟 <

0) can only increase or decrease, respectively, the firms’ equilibrium profit or leave it 

unchanged, relative to the case in which each firm is only concerned with its own profit 

(𝑟 = 0): 

(i) A firm’s profit is given by a submodular function of the two firms’ output levels. 

(ii) The total revenue is a concave function of the total output. 

It is instructive to compare Corollary 3 with the results of Koçkesen et al. (2000). These 

authors show that, in a symmetric Cournot duopoly game that is strictly submodular, a firm 

with negatively interdependent preferences obtains a strictly higher profit than does a 

competitor with independent preferences in any equilibrium. The difference between the 

two firms’ preferences is that the latter is only concerned with its own profit while the 

former also seeks a high ratio 𝜌 between its own and the average profit. Complete 

selfishness, 𝑟 = 0, corresponds to independent preferences, whereas weak spite, i.e., 

negative 𝑟 close to 0, gives negatively interdependent preferences if the ratio 𝜌 is not too 

close to zero. Thus, with a strictly submodular profit, if only one firm is spiteful, it is likely to 

do better than its competitor does. However, by Corollary 3, if both firms have such 

preferences, they do not have higher profits than two firms with independent preferences.  

The result that mutual spite cannot be beneficial does not necessarily hold when the 

conditions in Corollary 3 are not met. As Figure 1b shows, in Example 1, where the total 

revenue is not concave (since it tends to zero when the total output increases), duopolists 

stuck at the inefficient (high-output, low-profit) equilibrium would actually benefit from a 

low level of mutual spite. The reason, as indicated, is that spite encourages increased 

production by emphasizing its negative effect on the competitor, and thus raises the 

reaction curve. Since at the inefficient, unstable equilibrium the slope of the reaction curve 

is greater than 1 (see Figure 1a), the result is actually lower equilibrium outputs and 

consequently a higher profit.  

(45) 
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7 Asymmetric Games 
An asymmetric game differs from a symmetric one in that each of the players 𝑖 has his own 

strategy space 𝑋𝑖 and payoff function ℎ𝑖. Correspondingly, for an asymmetric 𝑁-player game 

ℎ = (ℎ1, ℎ2, … , ℎ𝑁): 𝑋1 × 𝑋2 ×⋯× 𝑋𝑁 → ℝ𝑁, a social payoff function is any (rather than 

necessarily symmetric) function 𝑓: 𝑋1 × 𝑋2 ×⋯× 𝑋𝑁 → ℝ. For an altruism coefficient 𝑟 ≤

1, the modified game ℎ𝑟 = (ℎ1
𝑟 , ℎ2

𝑟 , … , ℎ𝑁
𝑟 ): 𝑋1 × 𝑋2 ×⋯× 𝑋𝑁 → ℝ𝑁 is defined by (1).  

A complete analysis of comparative statics in asymmetric 𝑁-player games is not yet 

attainable. This is mainly because of the unavailability of a suitable notion of (static) stability, 

which in the asymmetric context is a property of strategy profiles rather than strategies. A 

partial workaround is to view strategy profiles as strategies in another, symmetric 𝑁-player 

game, namely, the game obtained by symmetrizing the asymmetric one. In that game, the 

players’ roles are not fixed: all 𝑁! assignments of players to roles in the asymmetric game 

are possible. A player’s payoff is defined as the average of his payoff over the set Π of all 

assignments. Each assignment 𝜌 ∈ Π is a permutation of (1,2, … , 𝑁): 𝜌(𝑖) is the player 

assigned to role 𝑖 (= 1,2, … , 𝑁). A strategy for a player in the symmetric game is a strategy 

profile 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁) in the asymmetric game: it specifies the strategy 𝑥𝑖  the player 

would use in each role 𝑖. A more formal definition follows.  

Definition 5. Symmetrization of an asymmetric 𝑁-player game ℎ = (ℎ1, ℎ2, … , ℎ𝑁): 𝑋1 ×

𝑋2 ×⋯× 𝑋𝑁 → ℝ𝑁 gives the symmetric 𝑁-player game 𝑔: 𝑋𝑁 → ℝ in which the strategy 

space 𝑋 is the product space 𝑋1 × 𝑋2 ×⋯× 𝑋𝑁 and, for all 𝑥1 = (𝑥1
1, 𝑥2

1, … , 𝑥𝑁
1 ), 𝑥2 =

(𝑥1
2, 𝑥2

2, … , 𝑥𝑁
2 ), … , 𝑥𝑁 = (𝑥1

𝑁 , 𝑥2
𝑁 , … , 𝑥𝑁

𝑁) ∈ 𝑋,13 

𝑔(𝑥1, 𝑥2, … , 𝑥𝑁) =
1

𝑁!
∑ ℎ𝜌−1(1)(𝑥1

𝜌(1) 
, 𝑥2
𝜌(2) 

, … , 𝑥𝑁
𝜌(𝑁) )

𝜌∈Π

. 

Any choice of topologies for the strategy spaces 𝑋1, 𝑋2, … , 𝑋𝑁 specifies a topology for 𝑋, 

namely, the product topology.  

Symmetrization in a sense preserves the original game’s equilibria. It is not difficult to see 

that a strategy profile in an asymmetric 𝑁-player game ℎ is an equilibrium if and only if it is a 

(symmetric) equilibrium strategy in the symmetric game 𝑔 obtained by symmetrizing ℎ. In 

this case, the equilibrium payoff in 𝑔 equals the players’ average equilibrium payoff in ℎ.  

The following theorem links local comparative statics in an asymmetric game with stability in 

the symmetric game obtained from it by symmetrization. The theorem holds for any choice 

of topologies for the players’ strategy spaces in the asymmetric game; stability and 

instability in the corresponding symmetric game are with respect to the product topology.  

Theorem 8. For an asymmetric 𝑁-player game ℎ: 𝑋1 × 𝑋2 ×⋯× 𝑋𝑁 → ℝ𝑁 and a social 

payoff function 𝑓: 𝑋1 × 𝑋2 ×⋯× 𝑋𝑁 → ℝ that are both Borel measurable, and altruism 

coefficients 𝑟0 and 𝑟1 with 𝑟0 < 𝑟1 ≤ 1, suppose that there is a continuous and finitely-many-

to-one function that assigns a strategy profile 𝑦𝑟  to each 𝑟0 ≤ 𝑟 ≤ 𝑟1  such that the function 

                                                            
13 Note that superscripts here index strategies in the symmetric game while subscripts refer to roles in 

the asymmetric one.  

(46) 
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𝜋: [𝑟0, 𝑟1] → ℝ defined by 

𝜋(𝑟) = 𝑓(𝑦𝑟) 

is absolutely continuous. If, for every 𝑟0 < 𝑟 < 𝑟1, 𝑦𝑟  is stable, weakly stable or 

definitely unstable as a strategy in the game obtained from the modified game ℎ𝑟 by 

symmetrization, then 𝜋 is strictly increasing, nondecreasing or strictly decreasing, 

respectively. 

Proof. The modified game ℎ𝑟 is a linear combination of two games, ℎ and a game in which all 

players have the (same) payoff function 𝑓. Symmetrizing the latter gives a doubly symmetric 

game with a payoff function 𝑓,̅ which may be viewed as a social payoff for the game 𝑔 

obtained by symmetrizing ℎ. It is easy to see that both 𝑓 ̅and 𝑔 are Borel measurable. 

Eq. (46) shows symmetrization to be a linear operator. Therefore, the game obtained by 

symmetrizing ℎ𝑟 is (1 − 𝑟)𝑔 + 𝑟𝑓,̅ and it thus coincides with the modified game 𝑔𝑟.14 If, for 

every 𝑟0 < 𝑟 < 𝑟1, 𝑦𝑟  is a stable, weakly stable or definitely unstable strategy in 𝑔𝑟  and the 

function 𝑟 ↦ 𝑓(̅𝑦𝑟 , 𝑦𝑟 , … , 𝑦𝑟) is absolutely continuous, then by Theorem 1 this function is 

strictly increasing, nondecreasing or strictly decreasing, respectively. It only remains to note 

that, by Definition 5, 𝑓̅(𝑥, 𝑥, … , 𝑥) = 𝑓(𝑥) for all strategy profiles 𝑥 in ℎ. ∎ 

Theorem 8 is applicable both to asymmetric games and to asymmetric equilibria in 

symmetric games. The symmetric games need simply be viewed as (a special kind of) 

asymmetric games. However, the theorem does not give Theorem 1 as a special case. This is 

because the stability, weak stability and definite instability conditions in Theorem 8 are in a 

sense much more stringent than the corresponding conditions in Theorem 1. If a symmetric 

game 𝑔 is viewed as an asymmetric game ℎ, then symmetrization of the latter gives a 

second symmetric game 𝑔̅, in which each strategy 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁) is a strategy profile in 

𝑔 and vice versa. If the strategy profile is symmetric, that is, 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑁, then 

stability of 𝑥1 in 𝑔 is not a sufficient condition (but it is a necessary one) for stability of 𝑥 in 

𝑔̅. For example, if 𝑔 is a symmetric 𝑛 × 𝑛 game, 𝑥 may be stable in 𝑔̅ (which, parenthetically, 

is not an 𝑚 ×𝑚 game, for any 𝑚) only if 𝑥1 is a pure strategy. 

The last result holds more generally. For any bimatrix game ℎ, a strategy profile 𝑥 is a stable 

strategy in the game obtained from ℎ by symmetrization if and only if it is a strict equilibrium 

in ℎ (Selten, 1980). Since strict equilibria are pure, and there are only finitely many pure 

strategy profiles, for bimatrix games (and similar games with more than two players) 

Theorem 8 is inapplicable: the stability condition is inconsistent with the finitely-many-to-

one condition.  

One class of asymmetric games to which Theorem 8 is applicable is games with 

unidimensional strategy spaces. The differential condition for stability of equilibrium in these 

games is given by the following proposition, whose proof is omitted.  

Proposition 7. Let ℎ = (ℎ1, ℎ2, … , ℎ𝑁): 𝑋1 × 𝑋2 ×⋯× 𝑋𝑁 → ℝ𝑁  be an asymmetric 𝑁-player 

game in which the players’ strategy spaces are subsets of the real line, and 𝑥 =

                                                            
14 Thus, in a sense, the operations of modifying a game and symmetrization commute. 

(47) 
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(𝑥1, 𝑥2, … , 𝑥𝑁) an equilibrium lying in the interior of 𝑋1 × 𝑋2 ×⋯× 𝑋𝑁 with a neighborhood 

where ℎ1, ℎ2, … , ℎ𝑁 have continuous second-order derivatives. A sufficient condition for 

stability or definite instability of 𝑥 as a strategy in the game obtained from ℎ by 

symmetrization is that, at the point 𝑥, the Jacobian matrix of the marginal payoffs, 

𝐻 = (
(ℎ1)11 ⋯ (ℎ1)1𝑁
⋮ ⋱ ⋮

(ℎ𝑁)𝑁1 ⋯ (ℎ𝑁)𝑁𝑁 
), 

is negative definite or positive definite,15 respectively. A necessary condition for weak 

stability is that the matrix is negative semidefinite.  

Theorem 8 and Proposition 7 together point to a connection between local comparative 

statics in games with unidimensional strategy spaces and properties of the matrix 𝐻𝑟  

obtained from (48) by replacing ℎ with the modified game ℎ𝑟. An essentially stronger, 

quantitative connection between that matrix and comparative statics is given by the 

following proposition, whose proof is rather similar to that of Proposition 2. 

Proposition 8. For an asymmetric 𝑁-player game ℎ = (ℎ1, ℎ2, … , ℎ𝑁): 𝑋1 × 𝑋2 ×⋯× 𝑋𝑁 →

ℝ𝑁 with strategy spaces that are subsets of the real line, a social payoff function 𝑓, and 

altruism coefficients 𝑟0 and 𝑟1 with 𝑟0 < 𝑟1, suppose that there is a continuously 

differentiable function that assigns an equilibrium 𝑦𝑟  in the modified game ℎ𝑟 to each 

𝑟0 < 𝑟 < 𝑟1 such that 𝑦𝑟  lies in the interior of 𝑋1 × 𝑋2 ×⋯× 𝑋𝑁 and has a neighborhood 

where ℎ1, ℎ2, … , ℎ𝑁 and 𝑓 have continuous second-order partial derivatives. Then, at each 

point 𝑟0 < 𝑟 < 𝑟1,  

 
𝑑𝜋

𝑑𝑟
= −(1 − 𝑟) (

𝑑𝑦𝑟

𝑑𝑟
)

T

𝐻𝑟 (
𝑑𝑦𝑟

𝑑𝑟
), 

where 𝜋 is defined by (47) and the matrix 𝐻𝑟  is evaluated at 𝑦𝑟. 

 

7.1 Global comparative statics in asymmetric games  
Global comparative statics are less relevant for asymmetric games than for symmetric ones. 

This is because a condition analogous to (even) weak symmetric substitutability does not 

hold for most asymmetric two-player games. A notable exception is games in which such a 

condition holds as equality:  

ℎ𝑖(𝑥1, 𝑥2) − ℎ𝑖(𝑦1, 𝑥2) = ℎ𝑖(𝑥1, 𝑦2) − ℎ𝑖(𝑦1, 𝑦2) for all 𝑥1, 𝑥2, 𝑦1, 𝑦2 and 𝑖 = 1,2. 

Games satisfying this condition are non-strategic in that the change in the payoff of a 

player switching strategies (from 𝑥1 to 𝑦1 in the case of player 1 or from 𝑥2 to 𝑦2 in the case 

of player 2) is independent of the opponent’s strategy. It is easy to see that, for any social 

payoff 𝑓 and altruism coefficient 𝑟, if (49) holds and a similar condition holds with ℎ𝑖 

                                                            
15 By definition, 𝐻 is negative or positive definite if the symmetric matrix (1/2)(𝐻 + 𝐻T) has the 

same property. Negative definiteness implies that 𝐻 is D-stable (but not conversely). The latter is 

often taken to be the criterion of stability in dynamic contexts (e.g., Dixit, 1986). 

(48) 

   

(49) 
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replaced by 𝑓, then the same is true with ℎ replaced by ℎ𝑟. If 𝑓 is the aggregate payoff 

ℎ1 + ℎ2, then the second condition is clearly redundant: if (49) holds, then a similar 

condition automatically holds for the modified game ℎ𝑟, for any altruism coefficient 𝑟.  

It is not difficult to show that, if an asymmetric game ℎ = (ℎ1, ℎ2) satisfies (49), then every 

equilibrium in ℎ is a weakly stable strategy in the game obtained by symmetrizing ℎ. The 

following proposition shows that, in such a game ℎ, altruism can only positively affect the 

social payoff or leave it unchanged. 

Proposition 9. Let ℎ = (ℎ1, ℎ2): 𝑋1 × 𝑋2 → ℝ2 be an asymmetric two-player game, 𝑓 a social 

payoff, and 𝑟 and 𝑠 altruism coefficients with 𝑟 < 𝑠 ≤ 1. If a condition similar to (49) holds 

for both modified games ℎ𝑟 and ℎ𝑠, then for any pair of corresponding equilibria 𝑦𝑟 =

(𝑦1
𝑟 , 𝑦2

𝑟) and 𝑦𝑠 = (𝑦1
𝑠 , 𝑦2

𝑠)  

𝑓(𝑦𝑠) ≥ 𝑓(𝑦𝑟). 

Proof. The proof uses the following identity, which holds for all (𝑟, 𝑠 and) strategy profiles 𝑥 

and 𝑦: 

2(𝑟 − 𝑠)(𝑓(𝑥1, 𝑥2) − 𝑓(𝑦1, 𝑦2))

= 2(1 − 𝑠)(ℎ1
𝑟(𝑥1, 𝑦2) − ℎ1

𝑟(𝑦1, 𝑦2)) + 2(1 − 𝑠)(ℎ2
𝑟(𝑦1, 𝑥2) − ℎ2

𝑟(𝑦1, 𝑦2))

+ 2(1 − 𝑟)(ℎ1
𝑠(𝑦1, 𝑥2) − ℎ1

𝑠(𝑥1, 𝑥2)) + 2(1 − 𝑟)(ℎ2
𝑠(𝑥1, 𝑦2) − ℎ2

𝑠(𝑥1, 𝑥2))

+ (1 − 𝑠)(ℎ1
𝑟(𝑥1, 𝑥2) − ℎ1

𝑟(𝑦1, 𝑥2) − ℎ1
𝑟(𝑥1, 𝑦2) + ℎ1

𝑟(𝑦1, 𝑦2))

+ (1 − 𝑠)(ℎ2
𝑟(𝑥1, 𝑥2) − ℎ2

𝑟(𝑦1, 𝑥2) − ℎ2
𝑟(𝑥1, 𝑦2) + ℎ2

𝑟(𝑦1, 𝑦2))

+ (1 − 𝑟)(ℎ1
𝑠(𝑥1, 𝑥2) − ℎ1

𝑠(𝑦1, 𝑥2) − ℎ1
𝑠(𝑥1, 𝑦2) + ℎ1

𝑠(𝑦1, 𝑦2))

+ (1 − 𝑟)(ℎ2
𝑠(𝑥1, 𝑥2) − ℎ2

𝑠(𝑦1, 𝑥2) − ℎ2
𝑠(𝑥1, 𝑦2) + ℎ2

𝑠(𝑦1, 𝑦2)). 

For the equilibria 𝑥 = 𝑦𝑠 and 𝑦 = 𝑦𝑟, the first four terms on the right-hand side are 

nonpositive. If the assumption concerning (49) holds, then the last four terms are equal to 

zero, so that the right-hand side is nonpositive. ∎  

A simple example illustrating the last result is non-strategic altruism, which is of 

considerable importance to the theory of kin selection (for references, see Milchtaich, 2006). 

An altruistic act confers a benefit 𝑏 on the recipient at a cost 𝑐 to the actor, with 𝑏 > 𝑐 > 0. 

Therefore, with 𝑓 that is the aggregate payoff, the act changes the actor’s modified payoff 

by −𝑐 + 𝑟𝑏. If the altruism coefficient 𝑟 is greater than 𝑐/𝑏, this means that the actor’s 

payoff in the modified game is maximized by acting altruistically. Increasing the altruism 

coefficient can therefore only increase the aggregate payoff of leave it unchanged.  

An increase in the aggregate payoff spells a gain for both individuals if the interaction 

between them is symmetric in that each has an equal chance to be in the position of a 

potential actor or receiver. Such a symmetric interaction is still non-strategic, since each 

player’s payoff is additively separable. Specifically, the payoff is the sum of a nonpositive 

term (cost) that is 0 or −𝑐, depending on the individual’s own decision of whether to act 

altruistically, and a nonnegative term (benefit) that is 0 or 𝑏, depending on the other 

individual’s decision; there is no interaction term. The game is thus a prisoner’s dilemma, 

specifically, the borderline case between strategic substitutability and complementarity 

mentioned at the end of Section  6.1.  
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8 Dynamic Stability and Comparative Statics 
The main finding of this paper is that negative comparative statics, whereby altruism 

paradoxically negatively affects the equilibrium social payoff, are unlikely if the equilibrium 

strategies involved are statically stable, that is, stable in the sense described in Section  4. 

A corollary of this finding is that, in groups or societies in which the dynamics of strategy 

choices tend to exclude statically unstable equilibrium strategies, so that dynamic stability 

implies static stability, altruism is only likely to make the group members better off. This 

result has particular relevance for groups that compete with each other, so that the effect of 

altruism on social welfare may affect the group’s probability of survival. In this case, the 

above finding suggests that altruism may be favored by group selection. Thus, dynamic 

stability, which refers to intragroup dynamics, may be consequential for intergroup 

dynamics.  

Whether or not dynamic stability implies static stability depends on the particular dynamics 

involved. This is illustrated by the case of symmetric 𝑛 × 𝑛 games, for which the notion of 

static stability considered in this paper coincides with evolutionary stability (Theorem 3). In 

an animal population in which such a game 𝑔 is played between pairs of related individuals 

with the same coefficient of relatedness 𝑟 (e.g., full siblings, with 𝑟 =  0.5; see Section  2), 

the dynamics are governed by mutation and natural selection. A strategy may be considered 

dynamically stable if it is uninvadable in the (population genetics) sense that, if all members 

of the population adopt it, no mutant strategy can invade. An uninvadable strategy is 

necessarily an ESS in the corresponding modified game 𝑔𝑟  (but not conversely; see Hines 

and Maynard Smith, 1979; Milchtaich, 2006). As explained above, this means that in games 

between relatives in nature, negative comparative statics are unlikely. That is, if in a 

different population the same game 𝑔 is played between somewhat more closely related 

individuals (which means a higher 𝑟), the outcome is likely to be either the same as or better 

than in the first population.  

An alternative notion of dynamic stability in symmetric 𝑛 × 𝑛 games, viewed as population 

games, which is weaker (rather than stronger) than the static notion of evolutionary 

stability, is asymptotic stability under the continuous-time replicator dynamics (Hofbauer 

and Sigmund, 1998). The replicator equation gives the rate of change of the coordinates of 

the population strategy 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛), which (in the simple version considered below) 

describes the frequency of use of each pure strategy in the population. Specifically, for a 

game with a payoff matrix 𝐴 = (𝑎𝑖𝑗), the rate of change 𝑦̇𝑖 (𝑖 = 1,2, … , 𝑛) depends on the 

difference between the expected payoff from using (the pure) strategy 𝑖 and the mean 

payoff: 

𝑦̇𝑖 = 𝑦𝑖 (∑𝑎𝑖𝑗𝑦𝑗

𝑛

𝑗=1

− ∑ 𝑎𝑗𝑘𝑦𝑗𝑦𝑘

𝑛

𝑗,𝑘=1

). 

Asymptotic stability with respect to the replicator dynamics does not preclude negative 

comparative statics and instability does not preclude positive comparative statics. For 

example, in a generalized rock–scissors–paper game, the equilibrium strategy is globally 

asymptotically stable under the continuous-time replicator dynamics if and only if the 
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equilibrium payoff is positive (Hofbauer and Sigmund, 1998, Theorem 7.7.2; Weissing, 1991, 

Theorem 5.6). In this case, the population converges to the equilibrium strategy from any 

initial interior point (i.e., a completely mixed population strategy). If the equilibrium payoff is 

negative, the equilibrium is unstable, and the population strategy converges to the boundary 

of the strategy space from any initial point other than the equilibrium strategy itself. For the 

left payoff matrix in (27), the equilibrium payoff in the modified game 𝑔𝑟  is positive for all 

−1 < 𝑟 < 0.5, and for the right matrix, it is negative. Hence, in the former case the 

corresponding equilibrium strategy is stable under the replicator dynamics (as well as under 

other natural dynamics; see Chamberland and Cressman, 2000), and in the latter, it is 

unstable. However, as shown in Section  5.1, the personal payoff decreases with increasing 

altruism coefficient for the left payoff matrix in (27) and increases for the right matrix. This 

demonstrates the point made above: depending on the dynamics, the notion of static 

stability used in Theorems 1 and 2 may or may not be implied by dynamic stability. If the 

implication does not hold, then paradoxical, negative comparative statics are not necessarily 

unlikely.  

Appendix: Strong Stability 
A stable equilibrium strategy in a symmetric 𝑛 × 𝑛 game is normally also “strongly” stable in 

the sense that a continuous deformation of the payoff matrix changes the equilibrium 

strategy in a continuous manner. Specifically, the following proposition, which is essentially 

due to Selten (1983), shows that every regular ESS has this property. An ESS is said to be 

regular if its support includes every action that is a best response to it (equivalently, if the 

corresponding symmetric equilibrium is quasi-strict; see van Damme, 1991). The proposition 

has a corollary for local comparative statics; see Section  5.1.  

Proposition A.1. Let 𝑦 be a regular ESS in a symmetric 𝑛 × 𝑛 game with a payoff matrix 𝐴. 

There is a neighborhood 𝑉 of 𝑦 in the strategy space and a neighborhood 𝑈 of 𝐴 in ℝ𝑛
2
 such 

that: 

(i) every symmetric 𝑛 × 𝑛 game 𝑔 with a payoff matrix in 𝑈 has a unique 

equilibrium strategy in 𝑉, 

(ii) that strategy 𝑥 is a regular ESS, its support is equal to that of 𝑦, and it is the only 

equilibrium strategy in 𝑔 with that support, and  

(iii) the mapping from 𝑈 to 𝑉 thus defined is continuous.  

Proof. According to the regularity assumption, every action 𝑖 that is not in the support of the 

ESS 𝑦 (i.e., 𝑦𝑖 = 0) is not a best response to 𝑦. Therefore, there are neighborhoods 𝑉′ and 𝑈′ 

of 𝑦 and 𝐴, respectively, such that every action 𝑖 as above is also not a best response to any 

strategy 𝑥 ∈ 𝑉′ in any symmetric 𝑛 × 𝑛 game with a payoff matrix 𝐵 ∈ 𝑈′. If 𝑥 is an 

equilibrium strategy for 𝐵, this means that its support is necessarily contained in that of 𝑦. 

Let 𝑉 ⊆ 𝑉′ be a closed neighborhood of 𝑦 that includes only strategies 𝑥 whose support 

contains that of 𝑦 (i.e., 𝑥𝑖 > 0 for every action 𝑖 with 𝑦𝑖 > 0).  

The regularity of 𝑦 implies that it is an essential ESS (van Damme, 1991, Theorem 9.3.6). That 

is, every symmetric 𝑛 × 𝑛 game with a payoff matrix close to 𝐴 has an ESS close to 𝑦. In 
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particular, there is a neighborhood 𝑈 ⊆ 𝑈′ of 𝐴 such that every symmetric 𝑛 × 𝑛 game with 

a payoff matrix 𝐵 ∈ 𝑈 has some ESS 𝑥 ∈ 𝑉. As shown above, the support of 𝑥 – indeed, of 

any equilibrium strategy for 𝐵 lying in 𝑉 – coincides with that of 𝑦. Since the support of an 

ESS cannot coincide with that of any other equilibrium strategy in the same game (van 

Damme, 1991, Lemma 9.2.4), conditions (i) and (ii) in the proposition hold. The mapping that 

assigns to each element of 𝑈 the set of its equilibrium strategies in 𝑉 is clearly upper 

semicontinuous. Since by (i) this mapping is singleton-valued, condition (iii) also holds. ∎ 
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