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Abstract

It is shown that in a diploid population at a genetic equilibrium with an uneven
sex ratio the distribution of all (inertial) autosomal genes is symmetric between the
two sexes. If several allelic genes occur in the population then the sex ratios of the
various genotypes uniquely determine the uneven population sex ratio.
The equilibrium is unstable to invasion by new genes which are relatively more

frequent among the less numerous sex. A new proof is given to the fact that if
genotype sex ratios do not change then, following an invasion by a new allele, a
new stable polymorphic equilibrium can only correspond to a sex ratio which is
more even than the old one. Application of these general results to a model of
offspring sex determination by parents' autosomal genes shows the equilibrium
to be unstable to invasion by new genes which tend to increase the production of
offspring of the minority sex, as proposed by Fisher. The relevance of the Shaw�
Mohler formula in this context is shown to derive from its role in describing the
dynamics of autosomal genes in general.
In connection with a model for offspring sex determination by one parent, a

new proof is given to the fact that, following an invasion by a new allele, a new
stable polymorphic equilibrium can only correspond to a sex ratio which is more
even than the old one.

1 Introduction
Fisher (1930) proposed that in populations where the sex ratio is uneven natural se-
lection would favour those parents capable of producing more offspring of the less
numerous sex, without affecting their total number of offspring as a result [this is a
special case of what is known as the Fisher's principle; see Maynard Smith (1978)].
Suppose, for example, that the proportionM of males is greater than the proportion

F = 1�M of females. The mating prospects for a female are then better than for a male
and the number of offspring of a typical male, which is proportional to 1=M, is therefore
less than that of a typical female, which is proportional to 1=F . The �reproductive
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value� of every son produced is therefore smaller than that of every daughter produced.
Parents that produce more daughters thus tend to have a greater number of grand-
offspring.
Analytically, while a typical parent, producing sons and daughters in a ratio of

M : F , can expect to have a number of grand-offspring proportional to M � 1=M+F �
1=F = 2, a parent that produces average number of offspring but with a different ratio
m : f of sons to daughters can expect to have a number of grand-offspring proportional
to m �1=M+ f �1=F , that is

1
2

�
m
M
+
f
F

�
(1)

times the typical number of grand-offspring. Expression (1), which except for the
numerical factor is known as the Shaw�Mohler formula [Shaw & Mohler (1953)], is
easily seen to be greater than unity when M > F and f > F�in agreement with the
conclusion of the previous paragraph�and, symmetrically, whenM < F and m>M.
Fisher concluded that the tendency toward producing more offspring of the less

numerous sex would spread in the population. It was, however, pointed out by Hamil-
ton (1967) that Fisher's argument does not apply in situations where, for example,
males are the heterogametic sex and the gene for producing more daughters is Y-linked;
grand-offspring through daughters are then irrelevant to the transmission of the gene.
Indeed, in the situation described the frequency of the gene would decrease in every
generation by the factor m=M < 1, as the gene is transmitted only from fathers to sons.
In the following such dif�culties are avoided by restricting the discussion to au-

tosomal genes. It is further assumed that the frequency by which parents of each sex
transmit the gene to their offspring is equal to the relative frequency of the gene in that
sex. Genes for which these conditions hold may be named inertial genes.
The action of the gene need not be limited to parents only. The concept of offspring

sex ratio should thus be replaced by a more general one which serves to describe the
correlation existing between the occurrence of the gene and sex in the general context.
The marginal sex ratio of the gene is such a concept: it is the sex ratio (proportion
of males) of the individuals which develop from gene-carrying gametes. It is also the
weighted average sex ratio of gene-carrying individuals, double weight is ascribed to
homozygotes. The occurrence of the gene is correlated with sex if the marginal sex
ratio is different from the general one, the sex ratio of the whole population.
Without assuming any particular causal relation between the occurrence of the gene

and sex to exist, it is shown in section 2 that the frequency of the gene increases if its
occurrence is correlated with sex in such a way that it is relatively more frequent among
the less numerous sex and decreases if it is less frequent there.
Fisher's conclusion (for autosomal genes) is shown in section 3 to follow from this

fact.

2 Analysis of Gene Frequencies
The total frequency Z of a gene A in a diploid population is a weighted average of
the frequency X of A in the male population and the frequency Y of A in the female
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population:
Z =M X+F Y: (2)

Furthermore,
M X = m Z and F Y = f Z; (3)

where m is the proportion of the male phenotype of A and f = 1�m is the proportion
of the female phenotype of A in the population under consideration. m is also the
probability that the individual which develop from an A-carrying gamete would be a
male; it is thus the marginal sex ratio of A.
Assuming A to be inertial, X and Y are also the frequencies by which male and

female parents, respectively, transmit A to their offspring. The frequency Z0 of A among
the offspring is then

Z0 =
1
2
X+

1
2
Y (4)

=
Z
2

�
m
M
+
f
F

�
: (5)

Since the factor on the right-hand side of (5) is similar to the Shaw�Mohler formula�
and is referred to as such in the following�we may deduce at once that Z0 > Z if
m < M and females are the less numerous sex or if m > M and males are the less
numerous sex. Thus the frequency of A increases if the relevant inequality between m
and M holds and decreases if the converse inequality holds. At an uneven equilibrium,
an equilibrium with an uneven sex ratio, the marginal sex ratio m of A is therefore
necessarily equal to the general sex ratio M. Hence [by (3)], an uneven equilibrium is
symmetric: X = Y = Z.
Thus: For a diploid population to be in an uneven genetic equilibrium it is neces-

sary that the occurrence of every inertial gene be uncorrelated with sex.
If the frequency of A is low and the population is otherwise in a genetic equilibrium

and if the marginal sex ratio�which in this case is practically the sex ratio of the
heterozygotes�is only little affected by changes in the frequency of A, then the Shaw�
Mohler formula is nearly constant.
Hence: An uneven equilibrium is evolutionary unstable: if males predominate then

it is unstable to invasion by inertial genes whose marginal sex ratio is lower than the
general sex ratio, and if females predominate�to invasion by inertial genes whose
marginal sex ratio is higher than the general one.
Since this evolutionary instability is common to all uneven genetic equilibria, re-

gardless of the particular mechanism which determine the sex ratio, it may, to some
degree, account for the paucity of heavily biased sex ratios in dioecious diploid popu-
lations.

3 Autosomal Genes Affecting Offspring Sex Ratio
Consider an inertial gene that acts only on parents and affects only the sex ratio of the
offspring produced. The fate of the individual gene-carrying gamete is assumed not to
be affected by the occurrence of the gene. Then the chance of an individual developing
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from a gene-carrying gamete to be a male, say, is equal to the proportion of males in
the progeny of the parent who produced the gamete. Hence, the marginal sex ratio
of the gene is in the present situation the same as the offspring sex ratio it induces in
parents. In particular, a gene that tends to increase the production of offspring of one
sex is more common among that sex, as indicated by Nur (1974).
Therefore it follows from the argument of section 2 that the gene would spread

in the population if it tends to increase the production of offspring of the less numer-
ous sex. This is essentially Fisher's conclusion. The models studied by Shaw (1958)
demonstrate this result.
Furthermore, by (5), the rate with which the frequency of the gene increases is

characterized by the Shaw�Mohler formula. In the present situation the interpretations
of m and f in (5) coincide with those in (1). Thus, the latter expression, which in
the introduction is shown to be related to selection arguments, is shown here to derive
from a general genetical principle [eqn (5)] governing the dynamics of inertial genes in
a population with an uneven sex ratio. Another aspect of the relationship between (1)
and the underlying genetics is described by Uyenoyama & Bengtsson (1979).

4 Multiple Alleles
The sex ratio of the homozygotes may be different from that of the heterozygotes. Gen-
eralizing, consider a single locus with an arbitrary number of inertial alleles A1;A2;A3; : : :
having non-vanishing frequencies Z1;Z2;Z3; : : : in a population at an uneven equilib-
rium. Let mi j be the sex ratio of genotype AiA j in that population. Random mating
between males and females is assumed.
Since at an uneven equilibrium the occurrence of the various alleles is uncorrelated

with sex the genotypes are in Hardy�Weinberg proportions. Therefore the marginal
sex ratio of the allele Ai is

mi =∑
j
mi jZ j: (6)

At an uneven equilibrium the marginal sex ratios of all the alleles are equal to the
general sex ratio, i.e.

mi =M; i= 1;2; : : : : (7)

These equalities imply the inequalities

min
i
mi(ζ )�M �max

i
mi(ζ ); (8)

wheremi(ζ ) corresponds to an arbitrary frequencies vector ζ =(ζ 1;ζ 2; : : :) (∑i ζ i= 1)
which is substituted for Z = (Z1;Z2; : : :) in (6). For by mi j = m ji,

min
i ∑

j
mi jζ j �∑

i
Zi∑

j
mi jζ j =∑

i
ζ i∑

j
mi jZ j =M;

which proves the left-hand inequality of (8). The other inequality is similarly proven.
Note that these two weak inequalities can only simultaneously be equalities.
Formula (8) shows, in particular, that M is unique: only one uneven equilibrium

sex ratio is consistent with the given genotype sex ratios. For if the frequencies vector
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ζ corresponds to some other uneven equilibrium sex ratio M(ζ ), then applying (7) to
that equilibrium shows the left-hand side and the right-hand side of (8) to be equal to
M(ζ ).
If the matrix

mi j is regular, then the equilibrium allele frequencies are unique
too.
These uniqueness properties critically depend on the assumption that the equilibria

considered are polymorphic, i.e. the corresponding allele frequencies are different from
zero.

4.1 INVASION BY A NEW INERTIAL ALLELE

Suppose that males are the less numerous sex. This assumption causes no real loss
of generality since the roles of the two sexes are interchangeable. Then, by section 2,
the equilibrium is unstable to invasion by a new low-frequency allele A0 if m0 > M,
where m0 is given by (6). This condition for instability was found by Eshel & Feldman
(1982). Note that the validity of (6) for i= 0 follows from the fact that the presence of
A1;A2; : : : is uncorrelated with sex. A formal proof would follow the line of thought of
eqns (10�14) below.
Suppose that a new uneven polymorphic equilibrium is ultimately established, in-

volving all the alleles A0;A1;A2; : : : . If the sex ratios of the various genotypes are rigid
then applying (8) to the old frequencies ζ 0 = 0;ζ 1 = Z1;ζ 2 = Z2; : : : and to the new
sex ratioM =Mnew yields the inequalities

Mold <Mnew < m0: (9)

Thus, if
mi j does not change then the new sex ratio is intermediate between the

old one and the initial marginal sex ratio of the invading allele. Karlin & Lessard (1986)
proved that, under certain conditions, a new stable polymorphic equilibrium can in fact
only correspond to a sex ratio which is intermediate between the old one and the one-
to-one sex ratio. This may be interpreted as an evolutionary tendency towards an even
sex ratio. An alternative proof is given in Appendix A.

5 Offspring Sex Ratio Determined by Mother's Auto-
somal Genes

As a special case of the situation considered in section 3 consider a model in which the
alleles A1;A2;A3; : : : of an autosomal locus affect only one of the two parents, say the
female. mi j is the proportion of males in the progeny of an AiA j mother.
Let Y 0i j be the frequency of genotype AiA j among female offspring when i= j and

half the frequency when i 6= j. If random mating is assumed then

Y 0i j = (XiQ j+QiX j)=2; (10)

where Xi is the frequency of Ai in the male population and Qi is the frequency by which
mothers transmit Ai to their daughters. The frequency of Ai among female offspring is

Y 0i = (Xi+Qi)=2: (11)
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If the occurrence of A j is uncorrelated with sex (X j = Yj = Z j) and its frequency does
not change over the generations then by (11):

Y 0j = X j = Q j: (12)

It follows from (10�12) that the various genotypes of females are in Hardy�Weinberg
proportions:

Y 0i j = Y 0i Y 0j : (13)
Hence, the proportion of males in the progeny of a female parent which is induced by
Ai is

mi =∑
j
mi jYj =∑

j
mi jZ j: (14)

By section 3, a necessary condition for an uneven equilibrium is that this proportion be
equal to the general sex ratio:

mi =M: (15)
Formally, these equations are similar to (6) and (7). Hence, in particular, the equi-

librium uneven sex ratio, if it exists, is uniquely determined by
mi j. Note that mi j

is in general different from the corresponding genotype sex ratio mi j: Since a formula
analogous to (13) holds for male genotypes, and since X j = Yj, each genotype has the
same relative frequency in males and in females. Thus, the sex ratios of all the geno-
types are equal toM and eqn (7) holds trivially. Thus it is only

mi j which determine
the uneven equilibrium sex ratio in the present model.

5.1 INVASION BY A NEW INERTIAL ALLELE

Let A0 be a new low-frequency allele invading the population. In deriving (14) no
assumptions are made regarding the distribution of the allele Ai. It therefore holds for
i = 0 as well. By section 3, A0 would spread in a population where males are the less
numerous sex if it tends to increase the production of sons�i.e. ifm0 >M, wherem0 is
given by (14). This condition was found by Eshel & Feldman (1982). In a population
where females are the less numerous sex A0 would spread if it tends to increase the
production of females.
As in section 4, it follows from inequalities similar to (8) that if a new uneven poly-

morphic equilibrium is ultimately established than the new sex ratio is intermediate
between the old one and m0. Moreover, as with the model of rigid genotype sex ratios
a new stable uneven sex ratio is necessarily intermediate between the old one and the
one-to-one sex ratio; see Karlin & Lessard (1986) and Appendix B.
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APPENDICES
For the model of rigid genotype sex ratios, and for the model of offspring sex determi-
nation by mother's autosomal genes the following is shown: An uneven polymorphic
equilibrium with sex ratio M > 1

2 is unstable if there exists another uneven equilibrium
with a lower sex ratio.
Interchanging the two sexes immediately yields the following corollary: An uneven

polymorphic equilibrium with sex ratio M< 1
2 is unstable if there exists another uneven

equilibrium with a higher sex ratio.
As shown in section 4, the latter equilibrium is necessarily not polymorphic.

APPENDIX A

Proof for the Model of Rigid Genotype Sex Ratios
By (5) and (7), at an uneven polymorphic equilibrium

dZ0i = dZi+
1
2

�
1
M
� 1
F

�
Zi dmi; (A.1)

where dZi (∑i dZi = 0) are small deviations from the equilibrium values Zi of the al-
lele frequencies and dmi are the corresponding deviations from M of the marginal sex
ratios. It is shown below that dM = 0.
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It formally follows from (6) that

dmi =∑
j
mi j dZ j; (A.2)

but, as (6) refers only to equilibrium, this equality has to be veri�ed.
The frequency of genotype AiA j among the offspring of the present generation is

Z0i j = (XiYj+YiX j)=2 (A.3)

if i= j, and twice that value if i 6= j. Hence by (4) and the symmetric nature of uneven
equilibria:

dZ0i j = (Xi dYj+Yi dX j+Yj dXi+X j dYi)=2 (A.4)

= Zi dZ0j+Z j dZ0i = d
�
Z0i Z0j

�
:

By (A.4) and the equality miZi = ∑ jmi j Zi j:

mi dZi+Zi dmi =∑
j
mi j (Zi dZ j+Z j dZi) ;

M dZi+Zi dmi = Zi∑
j
mi j dZ j+M dZi;

and thus (A.2) is veri�ed. By (A.4), (6) and (7), dM = ∑i; jmi j dZi j is equal to 0.
Since forM > 1

2 the factor [1=M�1=F ] is negative, it remains to show that the ma-
trix

Zimi j admits a negative characteristic value λ < 0. For if ε1;ε2; : : : are the com-
ponents of a corresponding characteristic vector then by de�nition ∑ j Zimi j ε j = λε i,
hence M∑ j ε j = ∑i; j Zimi j ε j = λ ∑i ε i, and therefore ∑i ε i = 0 and choosing dZi = ε i
yields [by (A.1) and (A.2)]:

dZ0i = dZi
�
1+

λ

2

�
1
M
� 1
F

��
: (A.5)

Since
Zimi j is similar to the symmetric matrix pZimi jpZ j, and the two matrices

hence share the same set of characteristic values, it suf�ces to show that the numeri-
cal range of the quadratic form Φ(ξ 1;ξ 2; : : :) = ∑i; jmi j ξ i ξ j contains negative num-
bers. Indeed, by applying (7) to both equilibria we �nd that Φ(Z1� ζ 1;Z2� ζ 2;Z3�
ζ 3; : : :) = M̄�M < 0, where ζ 1;ζ 2; : : : are the allele frequencies which correspond to
the uneven equilibrium with sex ratio M̄ <M.
Note that, since it is implied by (7) that the spectral radius of

Zimi j is M (Gant-
macher, 1959), jλ j �M. Moreover, since �λ is a characteristic value [with character-
istic vector (ε1;ε2; : : :)] of the matrix

Zi fi j, jλ j � F . It hence follows from (A.5)
that ��dZ0i��< 32 jdZij ; (A.6)

which puts an upper bound to the rate of change of Zi near uneven polymorphic equi-
libria.
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APPENDIX B

Proof for the Model of Offspring Sex Determination by Mother's
Autosomal Genes
The proof is similar to that for the �rst model. Equations (A.3) and (4) should be
replaced by (10) and (11), respectively, mi j should be replaced by mi j and, where ap-
propriate, frequencies in the whole population should be replaced by frequencies in the
female population.
The only dif�culty is that the analogue of eqn (A.2),

dmi =∑
j
mi j dYj; (B.1)

does not directly leads to an equation similar to (A.5). However, choosing dY1;dY2; : : :
to be the components of a characteristic vector of the matrix

Zimi jwith characteristic
value λ < 0 does lead, on the next generation, to the equality

Zi dm0i = λ dZ0i ; (B.2)

and hence, on the following generation, to the formula [derived from (A.1)]

dZ00i = dZ0i

�
1+

λ

2

�
1
M
� 1
F

��
; (B.3)

if the equalities
2 dm0i = dmi (B.4)

and
2λ dZ0i = λ dYi (B.5)

hold for some negative constant λ .
Equation (B.4) is derived from the equality F (Xi+Qi) = f 0i (Xi+Yi), which follows

from (3), (4) and (11), and the identity FQi = f iYi (where f i = 1�mi): differentiating
at equilibrium and canceling identical terms yields Zi d f i = 2Zi d f

0
i , hence (B.4).

Equation (B.5) is satis�ed on the �rst generation if dXi is properly chosen, accord-
ing to (4). Since, by (3) and (B.2),

F dY 0i = f 0i dZ0i +Z0i d f 0i = F dZ0i �λ dZ0i ; (B.6)

the validity of (B.5) on the second generation, and hence on all subsequent generations,
is implied by (B.3) and (B.6) if λ is chosen to be the unique negative root of the
quadratic equation

2+λ

�
1
M
� 1
F

�
= λ

�
1
λ
� 1
F

�
: (B.7)

Note that, since jλ j � F <M, λ satis�es the approximation λ < λ < λ=2. Hence,
by comparison of (B.3) with (A.5), the allele frequencies, with initial conditions as
indicated above, diverge more slowly from their unstable equilibrium values than in
the corresponding case with rigid genotype sex ratios.
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