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Agnostic sequential equilibrium (ASE) is a refinement of sequential equilibrium that does not 

force on the players a single, arbitrary belief system. In addition, whereas sequential 

equilibrium assumes the players’ beliefs to be fully consistent (a notion that is based on 

perturbations of strategies), ASE employs a novel, simpler and local concept of strong 

consistency between strategy profiles and off-equilibrium beliefs, which is applicable to a 

large class of dynamic games, including games with a continuum of actions. In the last 

respect, the new solution concept is similar to perfect Bayesian equilibrium. It is shown that 

a strategy profile in an imperfect-information extensive-form game with perfect recall is an 

ASE precisely when it is a sequential equilibrium with every fully consistent belief system. 

ASE is generalized by the set-valued solution concept of agnostic sequential polyequilibrium, 

which allows leaving the players’ actions in some information sets partially or completely 

unspecified. JEL Classification: C72, C73. 

Keywords: Agnostic sequential equilibrium, agnostic sequential polyequilibrium, strong 

consistency, perfect Bayesian equilibrium.   

1 Introduction  
In dynamic games with perfect information, the idea that the players’ choices of strategies 

should be rational also off-equilibrium, that is, at decision nodes that are not actually 

reached, is captured by the notion of subgame perfect equilibrium. In particular, this 

refinement of Nash equilibrium excludes non-credible threats: actions that are detrimental 

to the actor and a rational player would therefore not carry out. In games with imperfect 

information, an action taken at a particular information set 𝑈 may be beneficial or 

detrimental depending on the specific node at which it is carried out. However, by definition 

of information set, the player does not know which of the nodes in 𝑈 was reached. 

Therefore, the wisdom of choosing a particular action can be assessed only with respect to 

particular beliefs about the history of play, which are expressed by a probability distribution 

over the nodes in 𝑈. An obvious problem is that if 𝑈 is an off-equilibrium information set, 

then the prior probability of every sequence of actions leading to it is zero, and so the beliefs 

in question cannot be derived from Bayes’ rule as they refer to an event (namely, reaching 

𝑈) that should not have happened if the players adhered to their equilibrium strategies.  

A standard solution to this indeterminacy problem is to provide the beliefs as part of the 

solution concept. Thus, a solution is a pair (𝜇, 𝑥), called an assessment, where 𝑥 is a strategy 

profile and 𝜇 is a belief system that specifies a probability distribution over the nodes in 

every information set 𝑈 of every player. The probability assigned to a set of nodes 𝑉 ⊆ 𝑈 is 

denoted 𝜇(𝑉) (and so 𝜇(𝑈) = 1). This approach is employed by the sequential equilibrium 

solution concept (Kreps and Wilson 1982) as well as by the more general, but somewhat 

nebulous, notion of perfect Bayesian equilibrium (a precise version of which, albeit in a 
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special setting, is given by Fudenberg and Tirole 1991). (The terminology can be naturally 

extended by referring to a strategy profile 𝑥 as a sequential or perfect Bayesian equilibrium 

when there is some belief system 𝜇 such that the assessment (𝜇, 𝑥) is so.) These and similar 

solution concepts require the players’ strategies in 𝑥 to be sequentially rational under 𝜇, in 

the sense that the strategy 𝑥𝑖 of each player 𝑖 is optimal in the continuation game starting at 

each of the player’s information sets 𝑈, given the other players’ strategies and 𝑖’s beliefs at 

𝑈 about the events that preceded the arrival there, which are specified by 𝜇. They also 

require these hypotheses, or conjectures, about the history of play to be reasonable. 

Different solution concepts have different definitions of “reasonable” hypotheses and 

different requirements as to how they should reflect the players’ equilibrium strategies. 

However, they all leave at least some leeway when off-equilibrium information sets are 

concerned, which means that beliefs are often effectively chosen much like strategies are 

chosen. However, unlike the choice of strategies, which needs to be justified in the sense of 

satisfying sequential rationality, off-equilibrium beliefs may be largely arbitrary. This is a 

divergence from the common view that equilibrium represents a self-enforcing convention, 

as the beliefs at off-equilibrium information sets are neither self-enforcing nor can they be 

described as a convention, as these sets are actually never reached in equilibrium. It may 

also be difficult to reconcile with the prescriptive view of equilibrium the administration of 

actions that are justifiable only by the beliefs they are bundled with.   

Consider the equilibrium shown in Figure 1a. This is a sequential (and perfect Bayesian) 

equilibrium, because player 2’s choice of 𝑟 rather than 𝑙 is justified by some belief, namely, 

that if player 1 deviated from his equilibrium strategy of 𝑂𝑢𝑡, it was to 𝑅 rather than 𝐿. 

However, all alternative beliefs of player 2 at his (off-equilibrium) information set 𝑈 are 

Figure 1. Non-agnostic sequential equilibria (black lines). a Player 2’s choice of 𝒓 is justified by the belief 𝒑 = 𝟎 

but not by 𝒑 = 𝟏. b Player 3’s choice of 𝒓 is justified by 𝒑 = 𝟎 but not by 𝒑 = 𝟏. In this game, the players have 

identical payoffs. c Player 2’s choice of 𝑷 is justified only if 𝟏/𝟑 ≤ 𝒑 ≤ 𝟐/𝟑. In this game, 𝑪 is a chance move 

determining whether the players play in the order 1-2-3 or 3-2-1 (and the players do not know the order). 
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arguably as reasonable as this one. But if these beliefs, in particular, a belief that 1 played 𝐿, 

are not excluded, then player 2’s choice of 𝑙 also cannot be excluded, which, depending on 

the value of the parameter 𝛼, may call into question player 1’s choice of 𝑂𝑢𝑡.  

The concept of agnostic sequential equilibrium proposed in this paper differs from 

sequential and perfect Bayesian equilibrium in that it does not allow specifying actions in 

off-equilibrium information sets that are justifiable only under particular, arbitrary beliefs 

about the history of play. The choice of such actions (for example, 𝑟 in Figure 1a) entails the 

exclusion of one or more alternative actions that under different but equally reasonable 

beliefs are actually better. The concept is based on the idea that an action may be excluded 

only if some other action at the same informtion set 𝑈 gives the acting player the same or 

higher payoff under all beliefs in 𝑈 that are consistent with the strategy profile. Key for 

implementing this idea is pinning down the appropriate meaning of consistency in this 

context.   

Section 2 introduces the notion of strongly consistent beliefs. This concept reflects the idea 

that an explanation for the arrival at an off-path information set 𝑈 should invoke a minimal 

(with respect to inclusion) set of deviations from the players’ strategy profile – a 

parsimonious explanation. The collection of all strongly consistent beliefs is shown to be a 

subset of the fully consistent beliefs, which are those used in sequential equilibrium and 

arise from the very different idea of completely mixed trembles. At the same time, all fully 

consistent beliefs are convex combinations of strongly consistent ones. A conceptual 

advantage of strongly consistent beliefs over those used in sequential and perfect Bayesian 

equilibrium is that only the former beliefs are guaranteed to be structurally consistent 

(Kreps and Ramey 1987). That is, they are always consistent with the assumption that, after 

𝑈, there will be no more deviations from the original strategy profile. This assumption is 

implicit in the definition of sequential rationally but cannot always be upheld in a sequential 

equilibrium.   

The formal definition of agnostic sequential equilibrium presented in Section 3 is somewhat 

unusual in that beliefs are not even mentioned. Instead, strongly consistent beliefs are 

implicit in the definition’s reference to all strategy profiles that arise from modifying the 

original profile only at a set of actions that is minimally sufficient for reaching the 

information set under consideration. The relations pointed to above between strongly and 

fully consistent beliefs imply a very sharp relation between the corresponding solution 

concepts. Namely, a strategy profile is an agnostic sequential equilibrium if and only if it is a 

sequential equilibrium with respect to all fully consistent beliefs. This strong requirement 

entails that such an equilibrium does not always exist. (More on this below.)   

Because agnostic sequential equilibrium is not based on trembles, it can be applied without 

any modification to games with a continuum of actions, which makes it comparable also to 

perfect Bayesian equilibrium. Agnostic sequential rationality does not however overcome 

certain known conceptual difficulties that may arise when dealing with this kind of games 

(Myerson and Reny 2015). As explained in Section 4, the difficulties stem from the fact that, 

with a continuum of available moves, arrival at a zero-probability information set may be 

possible, or even guaranteed, without anyone deviating. 

The principle of parsimony underlying strong consistency of beliefs is simple but crude. It 

may – and should – be refined to better reflect how players can be expected to reason under 

particular circumstances. As for sequential and perfect Bayesian equilibria, it is difficult to 
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point to a refinement that would make sense in all settings. However, it is possible to 

identify certain broad desiderata. An obvious one is the requirement that beliefs about 

other players’ past deviations from their strategies should be congruent with the strategic 

interests of those players. (In agnostic sequential equilibrium, as in sequential equilibrium, 

the beliefs considered only reflect the structure of the game tree.) As shown in Section 5, 

adopting this requirement may have two different outcomes. One possible outcome is 

invalidation. The strongly consistent beliefs may have to be discarded because, for example, 

they imply that a strictly dominated strategy was used while other beliefs do not imply this. 

The other, more constructive, outcome is pruning: the set of strongly consistent beliefs 

shrinks. Such shrinkage enlarges the set of agnostic sequential equilibria, which is the 

opposite of the effect that a similar refinement has on sequential and perfect Bayesian 

equilibria. Consequently, the gap between these solution concepts and agnostic sequential 

equilibrium may narrow. It is shown that, in the Beer-Quiche game for example, the gap may 

disappear altogether. 

The problem of the possible nonexistence of agnostic sequential equilibrium can be formally 

solved by extending this solution concept to a set-valued one. Section 6 introduces agnostic 

sequential polyequilibrium, a set-valued extension that is a special case of the general 

polyequilibrium concept (Milchtaich 2019). As a set-valued solution specifies a set of 

strategy profiles, the extension may seem to only shift the problem elsewhere: nonexistence 

is traded for the problem of assigning a predictive meaning to the set. However, a set of 

strategy profiles does have a clear predictive content, which is the collection of properties 

common to all its elements. Depending on the particular polyequilibrium examined, this 

content, called polyequilibrium results, may be rich or poor. An example of the former is 

provided by the game in Figure 1a, with 𝛼 > 2. This game has no agnostic sequential 

equilibrium but has a nontrivial agnostic sequential polyequilibrium that consists of all 

strategy profiles where player 1’s strategy is (the strictly dominant one) 𝑂𝑢𝑡. Although 

player 2’s strategy is not specified, the polyequilibrium has a real content. Indeed, it 

completely specifies an outcome for the game. 

Unless where otherwise stated, the discussion below assumes that the dynamic game under 

consideration is an extensive form game, that is, one that can be described by a finite game 

tree, possibly with chance nodes (where, without loss of generality, all outcomes are 

assumed to have positive probability). It also assumes perfect recall, which in particular 

means that each player’s collection of information sets is partially ordered by precedence. 

Throughout, ‘strategy’ may refer to either pure strategy, which prescribes a single action at 

each of the player’s information sets, or behavior strategy, which prescribes a probability 

distribution over actions in each information set. The former is a special case of the latter, 

where all probabilities are 0 or 1. Whether all behavior strategies or only pure ones can be 

used is viewed as part of the game’s specification. All the results in the paper hold for both 

cases, and any reference to (an unqualified) ‘strategy’ may be understood in either way. An 

additional notational convention (which involves no loss of generality) is that actions at 

different information sets are always labeled differently, so that an action’s label uniquely 

identifies the information set at which it is playable and the identity of the acting player. 

2 Consistent Beliefs 
A minimal consistency requirement for an assessment (𝜇, 𝑥) is weak consistency of the 

assessment (or of the belief system 𝜇 with the strategy profile 𝑥), which means that the 
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probabilities specified by 𝜇 coincide with those derived from 𝑥 using Bayes’ rule (in other 

words, with the conditional probabilities) whenever possible. Specifically, for an information 

set 𝑈 and a subset 𝑉 ⊆ 𝑈, denote by ℙ𝑥(𝑉) the (prior, unconditional) probability that, 

under 𝑥, one of the nodes in 𝑉 is reached. If 𝑈 itself is reached with positive probability (that 

is, ℙ𝑥(𝑈) > 0), then the conditional probability that 𝑉 is reached, given that 𝑈 is reached, is 

ℙ𝑥(𝑉 ∣ 𝑈) = ℙ𝑥(𝑉) /ℙ𝑥(𝑈). The weak consistency requirement is that, for every 

information set 𝑈, 

ifℙ𝑥(𝑈) > 0, then 𝜇(𝑉) = ℙ𝑥(𝑉 ∣ 𝑈) , 𝑉 ⊆ 𝑈. (1) 

A standard strengthening of (1), which may be dubbed augmented weak consistency at the 

information set 𝑈, is the requirement that, for every strategy 𝑥𝑖
′ of the player 𝑖 acting at 𝑈, a 

similar condition holds with 𝑥 replaced with the strategy profile 𝑥 ∣ 𝑥𝑖
′ obtained by replacing 

𝑖’s strategy 𝑥𝑖 with 𝑥𝑖
′. The additional requirement has a bite only if the information set 𝑈 is 

reachable for player 𝑖 under 𝑥, in the sense that ℙ𝑥∣𝑥𝑖
′(𝑈) > 0 for some strategy 𝑥𝑖

′. The 

reason the requirement is sensible is that, since player 𝑖 has a perfect recall of his actions, all 

nodes in 𝑈 are preceded by the same sequence of 𝑖’s actions and therefore the relative 

probabilities that the nodes are reached only depend on the probabilities of the other 

players’ actions. Thus, for all strategies 𝑥𝑖
′ and 𝑥𝑖

″ of player 𝑖,  

ifℙ𝑥∣𝑥𝑖
′(𝑈) , ℙ𝑥∣𝑥𝑖

″(𝑈) > 0, then ℙ𝑥∣𝑥𝑖
′(𝑉 ∣ 𝑈) = ℙ𝑥∣𝑥𝑖

″(𝑉 ∣ 𝑈) , 𝑉 ⊆ 𝑈. (2) 

Solution concepts that involve a single, specific belief system 𝜇 usually impose on it also 

certain internal consistency requirements, which express the idea that beliefs at different 

off-equilibrium information sets should not only reflect the players’ strategy profile but also 

represent a coherent hypothesis about their deviation from it. In particular, beliefs at an 

information set that follows another information set of the same player should be derived 

from the beliefs at the earlier set whenever possible. This requirement is formally expressed 

by the preconsistency condition (Hendon et al. 1996; Perea 2002), which is based on 

Fudenberg and Tirole’s (1991) notion of reasonable assessment. Internal consistency 

between beliefs at information sets belonging to different players is guaranteed by the 

stronger condition of full consistency of the assessment (𝜇, 𝑥) (or of the belief system 𝜇 with 

the strategy profile 𝑥). The condition requires the assessment to be the (pointwise) limit of 

some sequence of weakly consistent assessments (𝜇𝑘 , 𝑥𝑘)𝑘=1
∞  where each 𝑥𝑘 is a completely 

mixed strategy profile, in the sense that it assigns positive probability to every action at 

every information set (which entails that 𝜇𝑘  is uniquely determined by the weak consistency 

requirement). A sequential equilibrium (Kreps and Wilson 1982) is a fully consistent 

assessment (𝜇, 𝑥) such that 𝑥 is sequentially rational under 𝜇.  

Agnostic sequential equilibrium does not specify a single belief system, which renders the 

whole internal consistency requirement moot. This brings about a considerable 

simplification, since consistency is narrowed down to the “local” condition that beliefs are 

reconcilable with the strategy profile 𝑥 at each individual information set 𝑈. If, under 𝑥, the 

probability that 𝑈 is reached is positive, this local consistency requirement is simply the 

weak consistency condition expressed by (1). However, if the probability is zero, then weak 

consistency does not specify any beliefs at 𝑈. Nevertheless, the player 𝑖 acting at 𝑈 may 

actually know a great deal about the history of play there. In particular, he knows that at 

another information set the acting player 𝑗 took a particular action 𝑎 if all nodes in 𝑈 are 

preceded by (that information set and) action 𝑎. (By the perfect-recall assumption, this is so 
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in particular for 𝑗 = 𝑖 and any 𝑎 that is one of 𝑖’s own actions leading to 𝑈.) This means that 

for the set 𝒜 of all actions 𝑎 as above for which the probability specified by 𝑥 is 0, the 

specification was evidently not followed; the action was taken. Therefore, it only remains for 

player 𝑖 to speculate about the other players’ behavior at information sets that do not 

involve actions in 𝒜. The simplest hypothesis is that they adhere to 𝑥 there. In other words, 

the hypothesis effectively replaces 𝑥 with the strategy profile 𝑥𝒜 obtained from 𝑥 by 

specifying that every action in 𝒜 is taken with probability 1 rather than 0.1 

If, under 𝑥𝒜, the information set 𝑈 is reached with positive probability, then this hypothesis 

yields a unique probability distribution on 𝑈, namely, the conditional distribution ℙ𝑥𝒜(⋅∣ 𝑈). 

This distribution, which arguably represents the only beliefs at 𝑈 that are consistent with 𝑥, 

(1) will be said to be strongly consistent with the strategy profile 𝑥. However, the probability 

that 𝑈 is reached may be zero even under 𝑥𝒜, and in this case, reaching 𝑈 indicates that 

there is at least one action 𝑎 not in 𝒜 that is precluded (i.e., assigned probability zero) by 𝑥 

but was nevertheless taken. A natural approach in this case is to enlarge the set 𝒜 by adding 

to it one or more precluded actions 𝑎, each playable at a different information set, in such a 

way that 𝒜 becomes minimally sufficient for reaching 𝑈 under 𝑥, in the sense that 

ℙ𝑥𝒜(𝑈) > 0 but ℙ𝑥ℬ(𝑈) = 0 for all ℬ ⊊ 𝒜. Such an enlargement is not unique. There are 

several sets of actions 𝒜 that are minimally sufficient for reaching 𝑈, which yield different 

(indeed, mutually singular; see (ii) in Lemma 1 below) conditional distributions ℙ𝑥𝒜(⋅∣ 𝑈). 

These distributions, which represent alternative hypotheses about the actions that preceded 

the arrival at 𝑈, will all be referred to as strongly consistent with the strategy profile 𝑥.  

Definition 1  For a strategy profile 𝑥 and an information set 𝑈, a set of actions 𝒜, each 

playable at a different information set (that may or may not belong to the player at 𝑈), is 

minimally sufficient for reaching 𝑈 under 𝑥 if the modified strategy profile 𝑥𝒜 obtained by 

specifying that every action in 𝒜 is taken with probability 1 reaches 𝑈 with positive 

probability, and no proper subset of 𝒜 has a similar property. A probability distribution over 

the nodes in 𝑈 is strongly consistent with 𝑥 if it coincides with the conditional distribution 

ℙ𝑥𝒜(⋅∣ 𝑈) for some 𝒜 as above. 

Note that if 𝑥 in Definition 1 is a pure-strategy profile and there are no chance moves in the 

game, then all strongly consistent beliefs are degenerate: each of them assigns probability 1 

to some node in 𝑈. For example, in the game in Figure 1a, the two strongly consistent beliefs 

for player 2 are 𝑝 = 1 and 𝑝 = 0, corresponding to 𝒜 = {𝐿} and = {𝑅}. The same is true for 

player 3 in the game in Figure 1b, where both {𝑃} and {𝑅, 𝑃′} are minimally sufficient for 

reaching the information set 𝑈.2 

Strong consistency at an information set implies weak consistency there, because if an 

information set 𝑈 is reached with positive probability under a strategy profile 𝑥, then the 

unique minimally sufficient set of actions for reaching 𝑈 is 𝒜 = ∅, for which 𝑥𝒜 = 𝑥. It also 

implies augmented weak consistency, because if 𝑈 is reachable for the player 𝑖 acting there, 

 
1 Probability 1 here means that the action was in fact taken, not that the acting player 𝑗 meant it to be 
played for sure. However, 1 could be replaced by any other positive probability, as doing so for one or 
more actions in 𝒜 has no effect on the beliefs at 𝑈.  
2 A hypothesis involving prior deviations by two players may intuitively seem more strained than one 
involving a single deviation (or, perhaps, even multiple deviations) by a single player. However, the 
minimality condition presented above does not take a stand on this issue. It represents a conservative 
approach, and only precludes patently unnecessary assumptions.   
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then the unique minimally sufficient set 𝒜 consists of all actions of 𝑖 that are assigned 

probability zero by 𝑥𝑖 and precede (all the nodes in) 𝑈, so that 𝑥𝒜 = 𝑥 ∣ 𝑥𝑖
′ for some 

strategy 𝑥𝑖
′. A less obvious fact is that strong consistency furthermore implies the local 

version of full consistency. This fact is established by the following lemma, which moreover 

shows that, at every information set 𝑈, 

𝔅S ⊆ 𝔅F ⊆ conv𝔅S , (3) 

where 𝔅S is the set of all strongly consistent beliefs, conv 𝔅S is the convex hull of this set, 

and 𝔅F is the set of all beliefs at 𝑈 arising from belief systems that are fully consistent with 

𝑥. One corollary of (3) is that a degenerate belief is an element of 𝔅S if and only if it is in 𝔅F. 

Additional corollaries are that a sufficient condition for 𝔅S and 𝔅F to coincide is that either 

set is a singleton, and a necessary and sufficient condition for 𝔅F and conv𝔅S to coincide is 

that the former is a convex set. In general, the inclusions in (3) may both be proper.3 

Lemma 1  For a strategy profile 𝑥 and an information set 𝑈, the collection 𝔄 of all sets of 

actions that are minimally sufficient for reaching 𝑈 under 𝑥 has the following properties: 

(i) For each 𝒜 ∈ 𝔄 there is some node 𝑢 ∈ 𝑈 such that 𝒜 consists of all actions that 

precede 𝑢 and are assigned probability 0 by 𝑥. 

(ii) The conditional distributions {ℙ𝑥𝒜(⋅∣ 𝑈)}𝒜∈𝔄 have pairwise disjoint supports. 

(iii) For each 𝒜 ∈ 𝔄, the corresponding conditional distribution coincides with the 

distribution on 𝑈 specified by some belief system 𝜇 that is fully consistent with 𝑥: 

ℙ𝑥𝒜( 𝑉 ∣ 𝑈 ) = 𝜇(𝑉), 𝑉 ⊆ 𝑈. (4) 

(iv) For every belief system 𝜇 that is fully consistent with 𝑥, the distribution on 𝑈 specified 

by 𝜇 is a convex combination of the distributions {ℙ𝑥𝒜(⋅∣ 𝑈)}𝒜∈𝔄:  

𝜇(𝑉) = ∑ 𝜆𝒜 ℙ𝑥𝒜(𝑉 ∣ 𝑈)

𝒜∈𝔄

, 𝑉 ⊆ 𝑈 (5) 

for some (unique, in view of (ii)) nonnegative coefficients {𝜆𝒜}𝒜∈𝔄 that sum up to 1. 

Proof. For 𝒜 ∈ 𝔄, with cardinality |𝒜| (≥ 0), consider any node 𝑢 ∈ 𝑈 with ℙ𝑥𝒜({𝑢}) > 0.  

Every action that precedes 𝑢 and is assigned probability 0 by 𝑥 must clearly be in the set 𝒜. 

By the minimal sufficiency condition, 𝒜 cannot include any other actions. This proves 

assertion (i). To establish (ii), it has to be shown that every 𝒜′ ≠ 𝒜 in 𝔄 satisfies 

ℙ
𝑥𝒜

′({𝑢}) = 0. For this, it suffices to note that the actions in 𝒜 ∖𝒜′ are assigned 

probability zero by 𝑥𝒜
′
. 

 
3 Consider, for example, a game where player 5 acts after players 1 through 4 choose 𝐿 or 𝑅, but he 
only knows how many of these players chose each action. Suppose that 𝑥 specifies that everyone 
chooses 𝑅, and consider the off-path information set 𝑈 where player 5 is informed that only two of 

his predecessors actually did so. The set 𝔅S consists of the six degenerate distributions: those that 
assign the value 1 to the probability 𝑝𝑖𝑗  that players 𝑖 and 𝑗 played 𝐿, for particular 1 ≤ 𝑖 < 𝑗 ≤ 4. 

Therefore, conv𝔅S includes all possible beliefs at 𝑈. 𝔅F differs from both sets, since (i) it includes the 
uniform distribution on the nodes in 𝑈, and (ii) all its elements satisfy 𝑝12𝑝34 = 𝑝13𝑝24 = 𝑝14𝑝23, 
because similar equalities hold under every completely mixed strategy profile.   
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To prove (iii), let 𝑧 be some fixed completely mixed strategy profile and, for 0 < 𝜖 < 1/2, let 

𝑥𝜖 be the strategy profile that, at each information set, assigns the following probability 

𝑥𝜖(𝑎) to each action 𝑎: 

𝑥𝜖(𝑎) = (1 − 𝜖 − 𝜖|𝒜|+1)𝑥(𝑎) + 𝜖𝑥𝒜(𝑎) + 𝜖|𝒜|+1𝑧(𝑎), (6) 

where 𝑥(𝑎), 𝑥𝒜(𝑎) and 𝑧(𝑎) are the probabilities specified for 𝑎 by 𝑥, 𝑥𝒜 and 𝑧. In this 

context, possible outcomes of chance moves are also viewed as “actions,” whose (positive, 

by assumption) probabilities are fixed and are the same in all strategy profiles. The unique 

belief system 𝜇𝜖 that is weakly consistent with the completely mixed strategy profile 𝑥𝜖 

satisfies  

𝜇𝜖(𝑉) = ℙ𝑥𝜖(𝑉 ∣ 𝑈) =
ℙ𝑥𝜖(𝑉)

ℙ𝑥𝜖(𝑈)
, 𝑉 ⊆ 𝑈. (7) 

For every node 𝑣 ∈ 𝑈, ℙ𝑥𝜖({𝑣}) = ∏ 𝑥𝜖(𝑎𝑙)𝑙 , where the 𝑎𝑙’s are all the actions preceding 

node 𝑣. In view of (6), this product can be expressed as a polynomial in 𝜖, ∑ 𝛽𝑗𝜖
𝑗

𝑗≥0 . For 𝑗 <

|𝒜|, the coefficient 𝛽𝑗 is zero, because a positive coefficient would mean that ℙ𝑥ℬ({𝑣}) > 0 

for some ℬ ⊊ 𝒜, which contradicts the minimal-sufficiency assumption concerning 𝒜. By a 

similar argument, 𝛽|𝒜| = ℙ𝑥𝒜({𝑣}). It follows that, for 𝑉 ⊆ 𝑈, (1/𝜖|𝒜|)ℙ𝑥𝜖(𝑉) → ℙ𝑥𝒜(𝑉) 

as 𝜖 → 0, which implies that the quotient in (7) converges to ℙ𝑥𝒜(𝑉) /ℙ𝑥𝒜(𝑈). Therefore, 

if (𝜖𝑘)𝑘=1
∞  is any sequence of positive numbers converging to 0 such that (𝜇𝜖𝑘)𝑘=1

∞  

converges to some limit 𝜇, then the belief system 𝜇, which is clearly fully consistent with 𝑥, 

satisfies (4). The existence of such a sequence follows from the obvious compactness of the 

set of all belief systems.   

To prove (iv), consider any belief system 𝜇 that is fully consistent with 𝑥 and some sequence 

(𝜇𝑘 , 𝑥𝑘)𝑘=1
∞  as in the definition of full consistency. For each 𝒜 ∈ 𝔄, let 𝑢 ∈ 𝑈 be as in (i). For 

every 𝑘, ℙ𝑥𝑘({𝑢}) = ∏ 𝑥𝑘(𝑎𝑙)𝑙 , where the 𝑎𝑙’s are all the actions (and outcomes of chance 

moves) preceding 𝑢, and so 

1

∏ 𝑥𝑘(𝑎)𝑎∈𝒜
 ℙ𝑥𝑘({𝑢}) = ∏ 𝑥𝑘(𝑎𝑙)

𝑙
𝑎𝑙∉𝒜

 
𝑘→∞
→    ℙ𝑥𝒜({𝑢}) . (8)

 

A result similar to (8) holds with 𝑢 replaced by any other node 𝑣 ∈ 𝑈 that is preceded by all 

the actions in 𝒜. Therefore, for such 𝑣, 

ℙ𝑥𝒜({𝑣} ∣ 𝑈)

ℙ𝑥𝒜({𝑢} ∣ 𝑈)
=
ℙ𝑥𝒜({𝑣})

ℙ𝑥𝒜({𝑢})
= lim
𝑘→∞

ℙ𝑥𝑘({𝑣})

ℙ𝑥𝑘({𝑢})
= lim
𝑘→∞

𝜇𝑘({𝑣})

𝜇𝑘({𝑢})
=
𝜇({𝑣})

𝜇({𝑢})
 

if 𝜇({𝑢}) > 0, and if 𝜇({𝑢}) = 0, then 𝜇({𝑣}) = 0 (for otherwise the second limit above 

would not exist). It follows that 𝜇({𝑣}) = 𝜆𝒜 ℙ𝑥𝒜({𝑣} ∣ 𝑈), where 𝜆𝒜 = 𝜇({𝑢})/

ℙ𝑥𝒜({𝑢} ∣ 𝑈). For all 𝒜′ ≠ 𝒜 in 𝔄, ℙ
𝑥𝒜

′({𝑣} ∣ 𝑈) = 0 (because 𝑥𝒜
′
 assigns probability zero 

to the actions in 𝒜 ∖𝒜′), and so the equality in (5) holds for 𝑉 = {𝑣}. To prove that the 

equality holds generally, it remains to note that every 𝑣 ∈ 𝑈 is preceded by all the actions in 

some element of 𝔄, because the set of actions that precede 𝑣 and are assigned probability 

zero by 𝑥 necessarily has a subset that is minimally sufficient for reaching 𝑈 under 𝑥. Setting 

𝑉 = 𝑈 in (5) proves that the coefficients sum up to 1. ∎ 
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2.1 Structural Consistency  
Reaching an off-path information set 𝑈 may also be explainable by deviations from the 

players’ strategy profile 𝑥 that involve a non-minimally sufficient set of actions. However, 

such an explanation represents a non-parsimonious hypothesis as to why 𝑈 was reached; it 

assumes more than it has to. Moreover, the explanation may have the troubling aspect that 

it implies a future deviation from 𝑥. This can happen if some players’ information sets 

include both nodes that precede 𝑈 and nodes that follow it. 

Example 1 (Kreps and Ramey 1987) In the game in Figure 1c, the players’ order of moves is 

uncertain – the player moving before player 2 is either 1 or 3 – and is unknown to them. It is 

not difficult to see that the only Nash equilibrium outcome is that players 1 and 3 play 𝑄′ 

and 𝑄″ – i.e., they “quit” – for sure, so that player 2’s information set is not reached. The 

choice to quit reflects the fact that, in every Nash equilibrium, the probabilities that player 

2’s strategy assigns to playing 𝐿 and 𝑅 are not greater than 1/3. In particular, neither 

probability is 1. Such a strategy of player 2 can be justified only by beliefs that attach 

positive probability to both nodes in the player’s information set, and such beliefs are 

induced only by strategy profiles in which both player 1 and player 3 deviate from their 

equilibrium strategies by “proceeding” (playing 𝑃′ and 𝑃″) with positive probability. 

However, such simultaneous deviations are inconsistent with an assumption that the player 

acting after player 2 will be using his equilibrium strategy.  

Example 1 shows that a non-parsimonious hypothesis about the past may project onto the 

future. With a parsimonious hypothesis about the deviations that led to an information set 

being reached, this cannot happen.  

Proposition 1  If a set of actions 𝒜 is minimally sufficient for reaching an information set 𝑈 

of a player 𝑖 under a strategy profile 𝑥, then (i) under 𝑥𝒜, the probability that 𝑈 is reached is 

positive, and (ii) 𝑥 and 𝑥𝒜 agree at 𝑈 and at every information set that, under 𝑥𝒜 or any 

strategy profile that differs from it only in 𝑖’s strategy, has positive probability of being 

reached after 𝑈 is reached.  

Proof. Assertion (i) holds by definition. To prove (ii), consider any strategy profile that differs 

from 𝑥𝒜, if at all, only in the strategy of player 𝑖. Any path that has positive probability 

under that strategy profile and reaches 𝑈 must, by the minimal-sufficiency assumption, first 

go through all the actions in 𝒜. By the perfect-recall assumption, the path cannot revisit any 

of the information sets where these actions were taken. ∎ 

Kreps and Ramey (1987) call a belief system 𝜇 structurally consistent4 with a strategy profile 

𝑥 if the beliefs specified by 𝜇 at every information set 𝑈 satisfy augmented weak consistency 

and coincide with ℙ𝑥′(⋅∣ 𝑈) (i.e., with the beliefs obtained using Bayes’ rule) for some 

strategy profile 𝑥′ (which may depend on 𝑈) that has the two properties, (i) and (ii), 

specified for 𝑥𝒜 in Proposition 1. The proposition thus shows that strongly consistent beliefs 

satisfy structural consistency. A belief system 𝜇 is convex structurally consistent with 𝑥 if 

there is a finite set of structurally consistent belief systems such that the beliefs specified by 

𝜇 at every information set 𝑈 are a convex combination of those specified by these belief 

systems (with weights that may depend on 𝑈). The Proposition in Kreps and Ramey (1987) 

asserts that every fully consistent assessment (hence every sequential equilibrium) satisfies 

 
4 Note that theirs is a stronger concept than Kreps and Wilson’s (1982) earlier notion of structural 
consistency of beliefs, for which the strategy profile is irrelevant. 
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convex structural consistency. Proposition 1 and part (iv) of Lemma 1 (𝔅F ⊆ conv 𝔅S) 

strengthen this result. They show that, for every fully consistent assessment, the beliefs at 

every information set are in fact a convex combination of the strongly consistent beliefs. 

The beliefs that justify any sequential (or perfect Bayesian) equilibrium strategy for player 2 

in Example 1 are only convex structurally consistent. They can be obtained only as convex 

combinations of the two structurally (and strongly) consistent beliefs, which are those that 

assign probability 1 to one of player 2’s nodes and reflect a hypothesized deviation by only 

one, particular other player. The example thus demonstrates the unavoidability of dealing 

with structurally inconsistent beliefs in sequential and perfect Bayesian equilibria. Agnostic 

sequential equilibrium, by contrast, evokes only structurally consistent beliefs at every 

information set 𝑈. The significance of this fact is that, as shown, such beliefs about past 

actions do not “taint” the continuation game starting at 𝑈. That is, they never imply that 

some players’ strategies in this game are necessarily different from those induced by the 

original strategies in the whole game. 

3 Agnostic Sequential Equilibrium 
The discussion in the previous sections leads to the following formal definition, where 

strongly consistent beliefs are expressed as appropriately modified strategy profiles (see 

Definition 1). The payoff function of a player 𝑖 is denoted 𝑢𝑖. 

Definition 2  A strategy profile 𝑥 is an agnostic sequential equilibrium (ASE) if for every 

player 𝑖 and action 𝑎 of that player the inequality  

𝑢𝑖(𝑥
𝒜) ≥ 𝑢𝑖(𝑥

𝒜∪{𝑎}) (9) 

holds for every set of actions 𝒜 that, under 𝑥, is minimally sufficient for reaching the 

information set where 𝑎 is playable.  

Definition 2 requires that, under any strongly consistent beliefs at any information set 𝑈, the 

player 𝑖 acting at 𝑈 cannot increase his payoff in the continuation game by choosing a 

different action at 𝑈 than that specified by his strategy 𝑥𝑖. This may seem to leave open the 

possibility that the payoff can be increased by also changing the action at some later 

information set(s). However, the next theorem shows that Definition 2 actually excludes this 

possibility. The theorem uses the following notation. For a strategy profile 𝑥, and for an 

information set 𝑈 and a strategy 𝑥𝑖
′ of a player 𝑖, 𝑥 ∣𝑈 𝑥𝑖

′ denotes the strategy profile that 

differs from 𝑥 only in that, at 𝑈 and all the information sets that follow it, player 𝑖 plays 

according to 𝑥𝑖
′.5   

Theorem 1  A strategy profile 𝑥 is an agnostic sequential equilibrium if and only if for every 

player 𝑖 and strategy 𝑥𝑖
′ of that player the inequality 

𝑢𝑖(𝑥
𝒜) ≥ 𝑢𝑖(𝑥

𝒜 ∣𝑈 𝑥𝑖
′) (10) 

holds for every information set 𝑈 of player 𝑖 and every set of actions 𝒜 that is minimally 

sufficient for reaching 𝑈 under 𝑥. 

 
5 The characterization in Theorem 1 could alternatively be taken as the definition of ASE. The 
equivalence with Definition 2 would then mean that ASE, like sequential equilibrium and similar 
solution concepts, has the one-deviation property (Hendon et al. 1996; Perea 2002).  
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Proof. The sufficiency of the condition is obvious, as (9) is a special case of (10), with 𝑥𝑖
′ that 

differs from 𝑥𝑖 only in specifying that 𝑖 takes the action 𝑎 at 𝑈. To prove necessity, suppose 

that the condition does not hold: for some 𝑖, 𝑥𝑖
′, 𝑈 and 𝒜 as above, 𝑢𝑖(𝑥

𝒜 ∣𝑈 𝑥𝑖
′) > 𝑢𝑖(𝑥

𝒜). 

Without loss of generality, it can be assumed that 𝑥𝑖
′ is a pure strategy and so the left-hand 

side of the last inequality can be written as 𝑢𝑖(𝑥
𝒜∪ℬ), where ℬ is a set whose elements are 

actions of player 𝑖 at 𝑈 or later information sets. Also without loss of generality, ℬ is 

minimal, that is, 𝑢𝑖(𝑥
𝒜∪ℬ′) ≤ 𝑢𝑖(𝑥

𝒜) for all ℬ′ ⊊ ℬ. In particular, for every 𝑎 ∈ ℬ that is 

playable at an information set 𝑈′ that does not precede any other information set where an 

element of ℬ is playable, 𝑢𝑖(𝑥
𝒜∪ℬ′) ≤ 𝑢𝑖(𝑥

𝒜) < 𝑢𝑖(𝑥
𝒜∪ℬ) holds for ℬ′ = ℬ ∖ {𝑎}. These 

two inequalities imply that 𝑈′ is reached with positive probability under 𝑥𝒜∪ℬ
′
 and that 

deviating by playing 𝑎 there increases player 𝑖’s payoff in the continuation game (with the 

beliefs at 𝑈′ given by Bayes’ rule). The same is true with 𝒜 ∪ ℬ′ replaced with any set 𝒜′ 

that is minimally sufficient for reaching 𝑈′ under 𝑥 and satisfies 𝒜 ⊆ 𝒜′ ⊆ 𝒜 ∪ ℬ′ (such a 

set necessarily exists, because 𝑈′ either coincides with or follows 𝑈 and therefore any 

subset of 𝒜 ∪ ℬ′ that is minimally sufficient for reaching 𝑈′ must contain 𝒜), as changing 

from 𝑥𝒜∪ℬ
′
 to 𝑥𝒜

′
 does not change the beliefs at 𝑈′ (see (2)). Thus, 𝑢𝑖(𝑥

𝒜′) < 𝑢𝑖(𝑥
𝒜′∪{𝑎}), 

which shows that 𝑥 is not an ASE. ∎ 

3.1 ASE and Sequential Equilibrium  
If the notion of strong consistency of beliefs and a strategy profile implicit in Definition 2 

were replaced with an even stronger, less inclusive kind of consistency, the result would be a 

weaker definition of agnostic sequential equilibrium. That is, the set of qualifying strategy 

profiles would expand or remain unchanged. The opposite is true for any weaker notion, 

such as weak or augmented weak consistency. As indicated, the notion of local consistency 

corresponding to full consistency is also weaker than strong consistency (that is, at every 

information set, 𝔅S ⊆ 𝔅F). However, replacing the latter with the former would actually not 

change the meaning of ASE. This conclusion follows from the second inclusion in (3), 𝔅F ⊆ 

conv 𝔅S, because if each element in a particular set of beliefs at an information set 𝑈 

justifies the choice (or the exclusion) of a particular strategy in the continuation game, then 

any convex combination of these beliefs automatically justifies it too. The conclusion shows 

that, fundamentally, the difference between sequential equilibrium and ASE does not stem 

from the different notions of consistency they employ but is wholly due to the logical 

difference between requiring sequential rationality with respect to some consistent beliefs 

and all such beliefs, respectively.  

Theorem 2  A strategy profile 𝑥 is an agnostic sequential equilibrium if and only if the 

assessment (𝜇, 𝑥) is a sequential equilibrium for every belief system 𝜇 that is fully consistent 

with 𝑥.   

Proof. Inequality (10) requires player 𝑖’s expected payoff in the game to be the same or 

higher under 𝑥𝒜 than under 𝑥𝒜 ∣𝑈 𝑥𝑖
′. Clearly, an equivalent condition is that a similar 

inequality holds for the conditional expectation of the payoff, given that the information set 

𝑈 was reached. Both conditional expectations are the expected payoffs in the continuation 

game starting at 𝑈, with the (strongly consistent) beliefs there induced under 𝑥 by the 

minimally sufficient set of actions 𝒜. In view of Proposition 1, the first expected payoff is 

obtained when the strategy profile in the continuation game is (that induced by) 𝑥 and the 

second one is obtained with 𝑥 ∣ 𝑥𝑖
′. It therefore follows from (iii) in Lemma 1 (𝔅S ⊆ 𝔅F) that 

if (𝜇, 𝑥) is a sequential equilibrium for every belief system 𝜇 that is fully consistent with 𝑥, 
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then the condition in Theorem 1 holds. It follows from (iv) in that lemma (𝔅F ⊆ conv 𝔅S) 

that, conversely, if the latter condition holds, then the former holds. ∎ 

Example 2  As indicated, for the strategy profiles shown in Figure 1a and b, both 𝑝 = 0 

and 𝑝 = 1 are strongly, hence fully, consistent beliefs. Together with the former belief (𝑝 =

0), these strategy profiles constitute sequential equilibria, but this is not so for the latter. 

Therefore, the two strategy profiles are not agnostic sequential equilibria. Moreover, no ASE 

exists in the game in Figure 1a if 𝛼 > 2. 

The two sequential equilibria in Example 2 are furthermore perfect equilibria (Selten 1975) 

and quasi-perfect equilibria (Van Damme 1984).6 The example therefore shows that these 

solution concepts, which are both stronger than sequential equilibrium, do not imply 

agnostic sequential equilibrium.7 The reverse implications also do not hold. In particular, it 

follows immediately from the definition that any Nash equilibrium where all information 

sets are reached with positive probability is an ASE, but such an equilibrium is not 

necessarily perfect or quasi-perfect. For example, with 𝛼 = 2 in the game in Figure 1a, the 

strategy profile (𝐿, 𝑙) is an ASE but it is not a perfect or quasi-perfect equilibrium. The 

underlying reason is that both flavors of perfectness are based on the idea that players 

expect other players to make mistakes (albeit with very small probability), which in particular 

entails that a weakly dominated strategy such as 𝐿 should not be chosen. In sequential 

equilibrium and ASE, by contrast, possible mistakes are considered only at off-equilibrium 

information sets, where it is evident that a deviation has actually occurred.   

4 Beyond Finite Trees 
As stated in Section 1, the formal setting of the above discussion is that of extensive-form 

games. However, the actual definition of agnostic sequential equilibrium is also applicable to 

dynamic games that cannot be described by a finite game tree, in particular, games with a 

continuum of actions.8 In this respect, ASE is more similar to perfect Bayesian equilibrium 

than to sequential equilibrium.  

Definition 2 is formally meaningful even if minimally sufficient sets are not guaranteed to 

exist, which can happen with a continuum of outcomes to chance moves. However, in games 

with a continuum of actions, agnostic sequential rationality may run into conceptual 

problems similar to those plaguing more traditional forms of sequential rationality, as 

described by Myerson and Reny (2015). These problems stem from the fact that reaching a 

zero-probability information set may actually be expected and does not necessarily indicate 

a deviation. 

 
6 They are moreover proper equilibria (Myerson 1978) in both the normal form and the agent normal 
form of the respective games. To see that the strategy profile (𝐿, 𝑄𝑄′, 𝑟) is a proper equilibrium in the 
normal form of the game in Figure 1b, note that it is the limit as 𝜖 → 0 of the strategy profile where 𝑅 
is chosen with probability 2𝜖, strategies 𝑄𝑃′, 𝑃𝑄′ and 𝑃𝑃′ are chosen with probability 𝜖, 𝜖2 and 𝜖3, 
respectively, and 𝑙 is chosen with probability 𝜖. For 0 < 𝜖 < 1/6, 𝐿 is a dominant strategy, the 
strategies 𝑄𝑄′, 𝑄𝑃′, 𝑃𝑄′ and 𝑃𝑃′ yield progressively lower payoffs, and 𝑟 yields 2𝜖3 + 6𝜖4 more than 
𝑙 does. It follows that the probability assigned to every strategy is less than 3𝜖 times the probability 
assigned to any better strategy, which by definition means that the limit is a proper equilibrium.  
7 This conclusion also follows from the fact that every normal form game has a proper equilibrium. 
8 Definition 2 is, in addition, meaningful without perfect recall. That property, however, is assumed in 
Theorem 1. 
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Example 3 (Myerson and Reny 2015) Player 1 can play 𝐿 or 𝑅. If he chooses 𝐿, then there is a 

chance move in which a number is drawn uniformly from the unit interval ሾ0,1ሿ. If he 

chooses 𝑅, then the player himself has to choose a number in ሾ0,1ሿ. Player 2 is told the 

number 𝑠 selected, but not whether it resulted from a chance move or was chosen by player 

1. His possible actions are also 𝐿 and 𝑅, and the payoffs are as in the battle of the sexes 

game. In particular, only (𝐿, 𝐿) and (𝑅, 𝑅) yield positive payoffs. In BoS, both strategy 

profiles are equilibria. Here, however, (𝑅, 𝑅) is played with probability 1 in any agnostic 

sequential equilibrium. To see this, consider the information set of player 2 where he is 

informed that a particular 𝑠 ∈ ሾ0,1ሿ was selected. The probability that a chance move yields 

𝑠 is zero. Therefore, regardless of player 1’s actual strategy (and whether or not it involves 

randomization), there is a unique set of actions that is minimally sufficient for reaching 

player 2’s information set, which corresponds to the belief that player 1 played 𝑅 and then 

chose 𝑠. Player 2 should therefore play 𝑅 regardless of 𝑠, and player 1’s best response to this 

is also playing 𝑅. Thus, the strategy profile where player 1 plays 𝐿 and player 2 also plays 𝐿 

regardless of 𝑠 is not an ASE, even though the actions best respond to one another and, 

intuitively, because all outcomes of the change move are equally likely, no value of 𝑠 should 

raise a suspicion of deviation by player 1.  

One wonders whether the problem illustrated by Example 3 is but a modeling artifact. An 

implicit premise here is that it is possible for a player or a randomization device to select an 

arbitrary real number and transmit it to the relevant parties. However, it may be argued that 

this task is feasible only if the selected number has a “name”. This is so for any integer, any 

algebraic (in particular, rational) number and any number that can be generated using the 

algebraic and the few named transcendental numbers, such as 𝜋 or ⅇ. An arbitrary real 

number can be specified and transmitted bit-by-bit, using its binary expansion. However, 

this requires infinite time, and so there are only finitely many possible outcomes in any finite 

time period. In principle, randomization that results in an arbitrary real number can be 

performed using a physical device such as a roulette wheel. However, reading the outcome 

can be performed only with finite precision, and while this limitation may be of little 

practical concern, it is another conceptual problem with a continuum of possible outcomes. 

The problem with generating and transmitting the outcome does not arise when the choice 

is from a closed list, either finite or countably infinite. A continuum of outcomes may 

represent the limiting case in which the resolution provided by the list approaches infinity. 

However, a continuum is hardly an ideal approximation if it gives rise to difficulties that are 

not shared by the finite or countably infinite cases. The difficulty here is of this nature. With 

at most countably infinitely many possible outcomes, each with a specified probability, a 

zero-probability outcome may be expected not to be obtained, and so the observation of 

such an outcome can and should be interpreted as indicating a deviation. For the 

continuum, the same is not true.  

5 Beliefs Based on Strategic Reasoning  
Strong consistency is based on the principle of parsimony: a particular deviation from the 

players’ strategies is assumed to have occurred only if this assumption is needed for 

explaining the arrival at an off-path information set. However, the simplest explanation is 

not always the most convincing one. In particular, forward induction arguments (Kohlberg 

and Mertens 1986) may lend credence to inconsistent beliefs. That is, a detected past 

deviation of another player from his strategy may hint at an additional, unobservable 
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deviation. Unlike strong consistency, which is a notion based wholly on the form of the game 

tree, forward induction also involves examination of the strategic interests of the deviating 

players. Such an examination may suggest an intentional deviation (Van Damme 1991, 

Section 10.5). For example, in Figure 2a, player 2’s choice of 𝑟 in the agnostic sequential 

equilibrium Black is supported by the unique strongly (and unique fully) consistent belief, 

which is that player 1 would follow his strategy in the proper subgame and choose 𝑅 there. 

However, if 2’s information set is actually reached, which indicates that player 1 deviated 

from his strategy in the whole game by playing 𝐼𝑛, player 2 may reason that the most likely 

explanation for the deviation is that player 1 is aiming for the better equilibrium Gray, and 

thus also deviated by playing 𝐿 rather than 𝑅. Such a belief makes 𝑙 the better choice for 

player 2.  

Past deviations may also be taken as indicators of intended future ones. This possibility is 

illustrated by the game the differs from that in Figure 2a only in the order of moves in the 

subgame: player 2 chooses his action before player 1 does so. As the two moves are actually 

effectively simultaneous, this game is essentially identical to the one considered above, so 

that the same argument applies: if player 1 deviated once, strategic considerations suggest 

he intends to deviate again. 

One reasonable general criterion that takes the players’ incentives into consideration is that 

an explanation for reaching an off-equilibrium information set that does not involve some 

player taking a strictly dominated action or strategy should be favored over an explanation 

that does so. In games with multiple sequential or perfect Bayesian equilibria, a restriction of 

this kind on off-equilibrium beliefs may eliminate some of the equilibria. For example, an 

extension of the idea that beliefs at an information set should assign positive probability 

only to those nodes that are reached with the smallest number of strictly dominated actions 

leads to the notions of justifiable beliefs and justifiable equilibrium, the latter being any 

sequential equilibrium with justifiable beliefs (McLennan 1985). As pointed out by 

McLennan, Black in Figure 2a actually is a justifiable equilibrium, as none of the actions in 

the game is dominated. Nevertheless, adopting the above general criterion does eliminate 

Figure 2. The destructive and constructive potential of beliefs reflecting strategic reasoning. a Both Black and 

Gray (indicated by lines of the same color) are agnostic sequential equilibria, in which player 1’s designated 

action in the proper subgame induces unique strongly consistent beliefs for player 2. However, Black is put into 

question by the fact that a deviation of player 1 from his strategy that leads to the subgame being reached may 

suggest an additional deviation there – an attempt to get a positive payoff. b The Beer-Quiche game. Black and 

Gray are sequential equilibria, but only the former satisfies the intuitive criterion. Both equilibria are not 

agnostic sequential equilibria. However, adopting the restriction on off-equilibrium beliefs underlying the 

intuitive criterion would make Black an ASE.  
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this agnostic sequential equilibrium, because it renders player 2’s belief that player 1 played 

the strictly dominated strategy 𝐼𝑛 𝑅 unreasonable. Although the alternative belief that 1 

played 𝐼𝑛 𝐿 is not strongly consistent with the player’s equilibrium strategy 𝑂𝑢𝑡 𝑅, it is 

deemed more compelling because 𝐼𝑛 𝐿 is undominated.  

A different potential outcome of strategic reasoning is selection among beliefs that are 

consistent with the players’ strategies. Consider, for example, the Spence education model 

with two types of worker, where a restriction on off-equilibrium beliefs can eliminate all 

pooling perfect Bayesian equilibria (Cho and Kreps 1987; Mas-Colell et al. 1995). For agnostic 

sequential equilibrium, restrictions on off-equilibrium beliefs may be particularly called for in 

this model, because none of the pooling equilibria is an ASE to begin with. The reason is that 

the choice of any off-equilibrium education level cannot be excluded, as the requirement of 

strong consistency does not preclude a belief by an employer that such a choice indicates a 

high quality worker.9 However, the effect of selection among beliefs on the ASE solution 

concept is in a sense the diametric opposite of the effect on sequential and perfect Bayesian 

equilibria. As any such selection effectively entails a stronger notion of consistency than 

strong consistency, it cannot eliminate ASEs but can only add new ones (see the remark at 

the beginning of Section 3.1). Thus, the set of agnostic sequential equilibria, which is 

typically contained in the sets of perfect Bayesian and sequential equilibria (see Theorem 2), 

expands while the latter contract, which means that the gap between the corresponding 

sets of results may narrow. The following example illustrates this possibility. 

Example 4  Consider the Beer-Quiche game shown in Figure 2b, where for simplicity only 

pure strategies are allowed. There are two Nash equilibria, Black and Gray, which are both 

pooling sequential equilibria. In Black, types 𝑡𝑤 and 𝑡𝑠 of player 1 both choose 𝐵ⅇⅇ𝑟, and in 

Gray, they choose 𝑄𝑢𝑖𝑐ℎⅇ. The second equilibrium is eliminated by the intuitive criterion 

(Cho and Kreps 1987). The criterion is based on a restriction of player 2’s possible beliefs 

regarding player 1’s type, which in particular precludes beliefs that, following a choice of 

𝐵ⅇⅇ𝑟, attach a positive probability to 𝑡𝑤. The reason such beliefs are deemed unreasonable 

is that this type’s equilibrium payoff of 3 is higher than anything he may get by choosing 

𝐵ⅇⅇ𝑟. The same problem does not arise in Black, where both types of player 1 choose 𝐵ⅇⅇ𝑟 

and player 2 would choose 𝐷𝑢ⅇ𝑙 only as a response to 𝑄𝑢𝑖𝑐ℎⅇ. This response is justified by 

the unique reasonable belief following a choice of 𝑄𝑢𝑖𝑐ℎⅇ by player 1, which is that his type 

is 𝑡𝑤 (because 𝑡𝑠 would necessarily be harmed by such a choice). The same argument also 

shows that a restriction to reasonable beliefs would make Black an agnostic sequential 

equilibrium, as the strongly consistent off-equilibrium belief that it was 𝑡𝑠 who chose 

𝑄𝑢𝑖𝑐ℎⅇ is discarded. Thus, the logic underlying the intuitive criterion singles out the same 

equilibrium for both solution concepts, sequential and agnostic sequential equilibrium. This 

coincidence contrasts with the situation for the original, unmodified definitions, according to 

which both equilibria are sequential equilibria but neither of them is an ASE. It is, however, a 

rather special outcome, which is due to the fact that the additional reasonableness 

requirement on off-equilibrium beliefs pins them down uniquely.  

 
9 More generally, in an agnostic sequential equilibrium a player would not know what to make of a 
signal that the sender’s strategy never specifies; such a signal may mean anything. In this, ASE differs 
from perfect Bayesian equilibrium, which requires a ready interpretation for every physically possible 
signal.  
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6 Polyequilibrium 
In an off-path information set, where there may be multiple strongly consistent beliefs, 

there may be no action that is optimal under all these beliefs. This fact raises the possibility 

that the action at such an information set may have to be left (at least partially) unspecified. 

Doing so leads to a set-valued solution concept. Instead of a single strategy profile 𝑥, the 

solution is a set of strategy profiles 𝑋.    

An example of such a solution concept is essentially perfect Bayesian equilibrium (Blume and 

Heidhues 2006). In an incomplete-information game with perfect recall, an EPBE is a set 𝑋 

that is obtained from a specified strategy profile 𝑥 by declaring certain information sets 

relevant and the remaining ones irrelevant. The collection of irrelevant information sets 

must (i) have zero probability of being reached when 𝑥 is played, and (ii) include every 

information set that follows any irrelevant information set of the same player. The set 𝑋 is 

then defined as the collection of all strategy profiles that agree with 𝑥 at each of the 

relevant information sets. By requirement (i), any belief system 𝜇 that is weakly consistent 

with 𝑥 is also weakly consistent with every other element of 𝑋. The definition of EPBE is 

completed by the requirement that there is some weakly consistent belief system 𝜇 as 

above (which may be considered part of the EPBE) such that, for every relevant information 

set 𝑈 of every player 𝑖, strategy 𝑥𝑖 is a best response to all strategy profiles in 𝑋 in the 

continuation game starting at 𝑈 with the beliefs there specified by 𝜇.  

Essentially perfect Bayesian equilibrium extends perfect Bayesian equilibrium in being a set-

valued solution concept. However, it is still based on a single, possibly arbitrary, belief 

system. Thus, it is not in the spirit of, and it does not extend, agnostic sequential 

equilibrium. To extend the latter, a more general set-valued solution concept is needed. 

Polyequilibrium (Milchtaich 2019) is such a concept.10 

In a simultaneous-move (that is, normal form) or a dynamic game, a polystrategy for a 

player 𝑖, who has strategy set 𝑆𝑖 and payoff function 𝑢𝑖, is any nonempty set of strategies, 

∅ ≠ 𝑋𝑖 ⊆ 𝑆𝑖. A polystrategy profile 𝑋 is a Cartesian product of polystrategies, one 

polystrategy 𝑋𝑖  for each player 𝑖. In other words, it is a nonempty rectangular set of strategy 

profiles. 𝑋 is a polyequilibrium if for every player 𝑖 and strategy 𝑥𝑖
′ ∉ 𝑋𝑖  there is some 𝑥𝑖

″ ∈

𝑋𝑖  that responds to 𝑋 at least as well as 𝑥𝑖
′ does, in the sense that 

𝑢𝑖(𝑥 ∣ 𝑥𝑖
″) ≥ 𝑢𝑖(𝑥 ∣ 𝑥𝑖

′), 𝑥 ∈ 𝑋. 

Thus, the polyequilibrium condition is that for every strategy 𝑥𝑖
′ excluded by player 𝑖’s 

polystrategy 𝑋𝑖  there is a non-excluded strategy 𝑥𝑖
″ that is an adequate substitute against all 

strategy profiles in 𝑋. In a dynamic context, this condition may be naturally strengthened by 

adding agnostic sequential rationality, that is, requiring 𝑥𝑖
″ to be an adequate substitute also 

in the continuation game starting at each of player 𝑖’s information sets 𝑈, for every strategy 

profile 𝑥 ∈ 𝑋 and every probability distribution over the nodes in 𝑈 that is strongly 

consistent with 𝑥. This idea leads to the following definition. 

 
10 EPBE is a special kind of polyequilibrium, indeed of simple polyequilibrium. A simple polyequilibrium 
always includes at least one Nash equilibrium, whereas in a general polyequilibrium it is possible that 
none of the elements is an equilibrium. This possibility makes polyequilibrium substantially different 
from set-valued solution concepts like strategic stability (Kohlberg and Mertens 1986) where the set 
includes only equilibria. 
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Definition 3  A polystrategy profile 𝑋 is an agnostic sequential polyequilibrium (ASPE) if for 

every player 𝑖 and strategy 𝑥𝑖
′ ∉ 𝑋𝑖  there is some 𝑥𝑖

″ ∈ 𝑋𝑖  such that the inequality  

𝑢𝑖(𝑥
𝒜 ∣𝑈 𝑥𝑖

″) ≥ 𝑢𝑖(𝑥
𝒜 ∣𝑈 𝑥𝑖

′) (11) 

holds for every strategy profile 𝑥 ∈ 𝑋, every information set 𝑈 of player 𝑖 and every set of 

actions 𝒜 that is minimally sufficient for reaching 𝑈 under 𝑥. 

Polyequilibrium is an “excluding” solution concept. It requires justification for the exclusion 

of the strategies not in a player’s polystrategy rather than the inclusion of those in it, which 

may or may not justifiable (in whatever sense). The refinement of polyequilibrium presented 

here, in the context of dynamic games, extends this idea to beliefs. Beliefs that are not 

strongly consistent are (implicitly) excluded, but this should not be interpreted as an 

assertion that all the remaining, consistent ones are necessarily justifiable (see Section 5).  

Agnostic sequential polyequilibrium is a generalization of agnostic sequential equilibrium. 

A singleton {𝑥} is an ASPE if and only if the strategy profile 𝑥 is an ASE. Of these two solution 

concepts, the former should be viewed as the principal one and the latter as a mere 

appendage. For ASPE, unlike ASE, existence is not an issue. Indeed, the set of all strategy 

profiles is an agnostic sequential polyequilibrium, called the trivial ASPE. With respect to the 

inclusion order, the trivial ASPE is the largest element and the ASEs (being singletons) are 

among the minimal ones. Restricting attention to minimal ASPEs may seem like a natural, 

standard approach. However, as argued in Milchtaich (2019), doing so would actually be 

counter-productive. The indeterminacy allowed by the polyequilibrium concept is an asset, 

not a liability – especially in the dynamic-game context.  

The game in Figure 1a, which as indicated has no ASE if 𝛼 > 2, does have an obvious non-

trivial ASPE, which is the one presented in the Introduction. In this polyequilibrium, player 1 

plays 𝑂𝑢𝑡. This is an example of a polyequilibrium result (Milchtaich 2019), specifically, a 

polyequilibrium strategy. In any game, a result 𝑅 is any set of strategy profiles. It holds in a 

polystrategy profile 𝑋 if 𝑋 ⊆ 𝑅, and it is a polyequilibrium result if it holds in some 

polyequilibrium in the game. A result may also be specified implicitly, as a particular 

property or consequence of strategy profiles (for example, “player 1’s payoff is higher than 

2’s payoff”). In this case, 𝑅 is the collection of all strategy profiles that have the specified 

property, so that the result holds in a polyequilibrium 𝑋 if and only if all strategy profiles in 𝑋 

have the property. In particular, a real number 𝑣𝑖 is a polyequilibrium payoff for a player 𝑖 if 

there is some polyequilibrium 𝑋 with 𝑢𝑖(𝑥) = 𝑣𝑖  for all 𝑥 ∈ 𝑋, and a strategy 𝑥𝑖 is a 

polyequilibrium strategy if there is some polyequilibrium 𝑋 with 𝑋𝑖 = {𝑥𝑖}. The concept of 

result may be applied also to special kinds of polyequilibria, and in particular to equilibria (or 

special kinds thereof) and ASPEs.   

Example 5  There is a $1 bill in either the blue or the yellow box, and the two cases, 𝐵 and 𝑌, 

are equally likely. The actual location of the money is private information of player 1, but 

only player 2 is allowed to open a (single) box and take the money if it is there. Player 1 has 

to choose the price 𝑝 ≥ 0 at which he offers to sell the information to player 2. The latter 

can then pay the price and open the correct box, reject the offer and open the blue box, 

reject it and open the yellow box, or reject and flip a coin to choose a box. For simplicity, 

(other) mixed strategies are not allowed.  

Every sum 0 ≤ 𝑣1 ≤ 1/2 is a perfect Bayesian equilibrium payoff for player 1. It is obtained 

in an equilibrium where player 1’s price is 𝑣1 and player 2 is willing to pay this price but 
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would reject the offer and open the blue box if player 1 asked a different price. This reaction 

is supported by a belief that a price different from 𝑣1 indicates that the money is in the blue 

box. By contrast, the only agnostic sequential polyequilibrium payoff for player 1 is 1/2. To 

see this, suppose that there is an ASPE 𝑋 where the payoff is 𝑣1 < 1/2, and consider some 

strategy 𝑥1 ∈ 𝑋1 and some price 𝑣1 < 𝑝 < 1/2 that is different from the two prices that 𝑥1 

specifies for the two cases 𝐵 and 𝑌 (which in principle may be different). Player 2’s 

polystrategy 𝑋2 necessarily excludes acceptance of price 𝑝, for if it included a strategy 

prescribing acceptance, it would not be possible to exclude player 1’s strategy of asking 𝑝. If 

player 1 uses 𝑥1, player 2’s information set where he is asked to pay 𝑝 is not reached. 

However, at that information set, there is no action of player 2 that under all strongly 

consistent beliefs does at least as well as the excluded action of acceptance. The alternative 

of rejecting the offer and opening the blue box, say, and the alternative of rejecting it and 

tossing a coin are both worse than accepting the offer under the belief that, if player 1 asks 

𝑝, then the money is in the yellow box. (This belief is strongly consistent with 𝑥1, and reflects 

a hypothesis that player 1 deviated by asking 𝑝 only in case 𝑌.) This conclusion contradicts 

the assumption that 𝑋 is an agnostic sequential polyequilibrium. The contradiction leaves 

1/2 as the only possible ASPE payoff. This payoff is obtained in the ASPE where player 1 asks 

1/2 (in both cases, 𝐵 and 𝑌) and player 2 is willing to pay this price but would reject any 

higher price.  

Note that the indicated polystrategy of player 2 does not specify a reaction to 𝑝 < 1/2, and 

does so only partially for 𝑝 > 1/2 by excluding acceptance. Put differently, the polystrategy 

excludes any strategy that instructs player 2 to (i) reject 𝑝 = 1/2 (and then open the blue 

box, open the yellow box, or flip a coin), or (ii) accept at least one 𝑝 > 1/2. Given such an 

excluded strategy 𝑥2
′ , let 𝑥2

″ be the strategy that differs from 𝑥2
′  only in that it instructs 

player 2 to (i) accept 𝑝 = 1/2, and (ii) reject any price 𝑝 > 1/2 acceptable by 𝑥2
′  and then 

flip a coin. For player 1’s strategy 𝑥1 of (always) asking 1/2, if 𝑈 is player 2’s information set 

where the price 𝑝 asked was indeed 1/2, then the unique minimally sufficient set of actions 

is 𝒜 = ∅, and inequality (11) holds as an equality for 𝑖 = 2 as both sides are equal to 1/2. If 

𝑈 is an information set where 𝑝 > 1/2 and 𝑥2
′  and 𝑥2

″ specify different reactions 

(respectively, acceptance and rejection followed by a coin flip), then a minimally sufficient 

set 𝒜 consists of a single action, which is either asking price 𝑝 in case 𝐵 or doing so in case 

𝑌. With the former, 𝑈 is reached in case 𝐵 only, and in this case, strategy 𝑥2
′  yields player 2 

the payoff 1 − 𝑝 while 𝑥2
″ yields the higher (expected) payoff 1/2. Therefore, (11) holds as a 

strict inequality. The same is true for the second case, which proves that the polystrategy 

profile indicated at the end of the previous paragraph is indeed an ASPE. 

References 
Blume, A., Heidhues, P. (2006). Private monitoring in auctions. Journal of Economic Theory 

131, 179–211. 

Cho, I.-K., Kreps, D.M. (1987). Signaling games and stable equilibria. The Quarterly Journal of 

Economics 102, 179–221. 

Fudenberg, D., Tirole, J. (1991). Perfect Bayesian equilibrium and sequential equilibrium. 

Journal of Economic Theory 53, 236–260. 



19 

Hendon, E., Jacobsen, J., Sloth, B. (1996). The one-shot-deviation principle for sequential 

rationality. Games and Economic Behavior 12, 274–282.  

Kohlberg, E., Mertens, J.-F. (1986). On the strategic stability of equilibria. Econometrica 54, 

1003–1037. 

Kreps, D.M., Ramey, G. (1987). Structural consistency, consistency, and sequential 

rationality. Econometrica 55, 1331–1348. 

Kreps, D.M., Wilson, R. (1982). Sequential equilibria. Econometrica 50, 863–894. 

Mas-Colell, A., Whinston, M.D., Green, J.R. (1995). Microeconomic Theory. Oxford University 

Press, Oxford, UK. 

McLennan, A. (1985). Justifiable beliefs in sequential equilibrium. Econometrica 53, 889–904. 

Milchtaich, I. (2019). Polyequilibrium. Games and Economic Behavior 113, 339–355.    

Myerson, R.B. (1978). Refinements of the Nash equilibrium concept. International Journal of 

Game Theory 7, 73–80.  

Myerson, R.B., Reny, P.J. (2015). Sequential equilibria of multi-stage games with infinite sets 

of types and actions. Mimeo.  

Perea, A. (2002). A note on the one-deviation property in extensive form games. Games and 

Economic Behavior 40, 322–338. 

Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in 

extensive games. International Journal of Game Theory 4, 25–55. 

Van Damme, E. (1984). A relation between perfect equilibria in extensive form games and 

proper equilibria in normal form games. International Journal of Game Theory 13, 1–13. 

Van Damme, E. (1991). Stability and Perfection of Nash Equilibria, Second Edition. Springer-

Verlag, Berlin.

https://econ.biu.ac.il/sites/econ/files/shared/staff/u36/papers/polyequilibrium.pdf

	Agnostic Sequential Rationality
	1 Introduction
	2 Consistent Beliefs
	2.1 Structural Consistency

	3 Agnostic Sequential Equilibrium
	3.1 ASE and Sequential Equilibrium

	4 Beyond Finite Trees
	5 Beliefs Based on Strategic Reasoning
	6 Polyequilibrium
	References

