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Players in a congestion game may differ from one another in their intrinsic preferences (e.g., 

the benefit they get from using a specific resource), their contribution to congestion, or 

both. In many cases of interest, intrinsic preferences and the negative effect of congestion 

are (additively or multiplicatively) separable. This paper considers the implications of 

separability for the existence of pure-strategy Nash equilibrium and the prospects of 

spontaneous convergence to equilibrium. It is shown that these properties may or may not 

be guaranteed, depending on the exact nature of player heterogeneity. JEL classification: 

C72. 

Keywords: Congestion games, separable preferences, pure equilibrium, finite improvement 

property, potential.  

1 Introduction 
Congestion games model the congestion externalities that arise when users compete for 

limited resources. The intensity of competition over resource 𝑗 is measured by the number 

𝑤𝑗  of standard users of 𝑗. The weight, or congestion impact, of each physical user 𝑖 of 

resource 𝑗 is expressed as a (positive, but not necessarily whole) number 𝑤𝑗
𝑖  of standard 

users. Thus,  

𝑤𝑗 = ∑ 𝑤𝑗
𝑖

𝑖∈𝐼𝑗

, 

where 𝐼𝑗  is the set of all users of resource 𝑗. The cost 𝑐𝑖 for each user 𝑖 is affected by the 

intrinsic characteristics of 𝑖 and the resource 𝑗 he uses, and the intensity of competition for 

that resource, which is expressed by 𝑤𝑗. The subject of this paper is games in which these 

two effects can be separated. Player 𝑖’s preferences may be multiplicatively separable, 

which means that the cost has the form  

𝑐𝑖 = 𝑎𝑗
𝑖𝑙(𝑤𝑗), 

where 𝑎𝑗
𝑖  is a positive constant that represents the base cost for 𝑖 of using 𝑗 and 𝑙: (0, ∞) →

(0, ∞) is a nondecreasing function that gives the crowding cost. Alternatively, the 

preferences may be additively separable (Konishi et al., 1997), which means that the cost 

has the form  

𝑐𝑖 = 𝑐(𝑤𝑗) + 𝑏𝑗
𝑖 , 

(1) 

(2) 

(3) 

mailto:igal.milchtaich@biu.ac.il
https://doi.org/10.1016/j.geb.2009.03.009


2 

where the constant 𝑏𝑗
𝑖 is the fixed cost for 𝑖 of using 𝑗 and the nondecreasing function 

𝑐: (0, ∞) → ℝ gives the corresponding variable cost. Both terms in (3) can be positive or 

negative (although 𝑐 > 0 could clearly be assumed without loss of generality). Negative 𝑏𝑗
𝑖 

may be interpreted as representing a gain for 𝑖 from using 𝑗. The multiplicative and additive 

formulations, (2) and (3), are interchangeable in that they represent the same ordinal 

utilities. It is possible to move from one formulation to the other by using the transformation  

𝑏𝑗
𝑖 = log 𝑎𝑗

𝑖  

𝑐(⋅) = log 𝑙(⋅). 

Therefore, as long as only pure strategies are considered, the choice between the two 

formulations is merely a matter of convenience (Mavronicolas et al., 2007).  

Definition 1. A weighted congestion game with separable preferences is a finite 

noncooperative game with 𝑛 players (numbered from 1 to 𝑛) and 𝑚 resources (numbered 

from 1 to 𝑚), such that each player 𝑖 has a certain nonempty subset of allowable resources, 

of which he has to choose one. The resource 𝑗 player 𝑖 chooses and the set 𝐼𝑗  of players who 

make the same choice together determine the cost (or the negative of the payoff) for the 

player. This cost 𝑐𝑖 is given either by (2), for all players 𝑖, or by (3), for all players 𝑖.1,2  

This kind of games is largely a special case of the weighted version of congestion games with 

player-specific payoff functions (Milchtaich, 1996), which however does not allow the 

weights to vary across resources. The main interest in games with separable preferences lies 

in the fact that many of the specific examples considered in the theoretical literature and in 

applications have this property, i.e., intrinsic preferences and the negative effects of 

congestion are separable. Three examples follow. 

Job balancing (See Even-Dar et al., 2003). The 𝑛 players represent independent, selfish jobs. 

Each job 𝑖 can run on each of several parallel machines. The cost of using machine 𝑗 is the 

machine’s total running time, which is given by  

1

𝑆𝑗
𝑤𝑗 , 

where 𝑆𝑗 is the speed of machine 𝑗 and 𝑤𝑗  is the total weight of the jobs assigned to it. The 

contribution of each job to the total weight can be the same for every machine it is assigned 

to or it can vary across machines. If the former holds for all jobs (i.e., the weights are 

machine-independent), the machines are said to be related; otherwise they are unrelated. 

Either way, the cost 𝑐𝑖 is the same for all jobs 𝑖 that use a particular machine 𝑗, and it is given 

by (5). Comparison with (2) shows that, in this example, the base cost is machine-specific but 

player-independent, and the crowding cost is given by the identity function. 

 
1 Since the additive and multiplicative formulations are connected by (4), whenever one is explicitly given the 

other is implicitly so. 
2 An alternative to ‘separable preferences’ might be ‘separable costs’. However, using the latter term would be 

potentially confusing, since the literature on congestion games (e.g., Milchtaich, 2006a; Correa et al., 2008) 

already assigns it several meanings that are substantially different from the meaning of separability in this paper 

and others. 

(4) 

(5) 
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M/M/1 queuing (See Libman and Orda, 2001). Each of 𝑛 users can send jobs to each of 𝑚 

servers. However, users have to make their choices of server once and for all; they cannot 

send different jobs to different servers. All jobs are identical, but the rates at which they are 

sent are player-specific and the service times are server-specific. Specifically, jobs from user 

𝑖 arrive at 𝑖‘s chosen server as a Poisson process with parameter 𝜆𝑖 (which means that the 

time from one job to the next is an exponentially distributed random variable), and the 

service time in each server 𝑗 is an exponentially distributed random variable with parameter 

𝜇𝑗. Jobs are serviced on a first-in-first-out basis. The waiting time for each job is the time it 

waits in queue plus the service time. The goal of each user 𝑖 is to minimize the expected 

waiting time for his jobs, 𝑇𝑖, which depends on the server 𝑗 he chooses and the set of users 

𝐼𝑗  who choose 𝑗. It follows from above assumptions that  

𝑇𝑖 =
1

𝜇𝑗 − 𝜆𝑗
 , 

where 𝜆𝑗 = ∑ 𝜆𝑖′

𝑖′∈𝐼𝑗
. Therefore, minimizing 𝑇𝑖 is equivalent to minimizing  

𝜆𝑗 − 𝜇𝑗 , 

the negative of the residual capacity of server 𝑗.3 The additively separable expression (6) may 

be viewed as the cost of choosing server 𝑗.  

Habitat selection (See Brown, 1998). Several species of competing animals forage in an 

environment divided into 𝑚 habitats. Habitat selection is cost-free. The fitness of each 

individual 𝑖 is determined by the rate at which it harvests food items from the habitat 𝑗 it 

chooses. In the absence of any competitors, the harvest rate would depend only on the 

habitat productivity 𝑅𝑗 and the degree to which 𝑖’s species is adapted to foraging at 𝑗, which 

can be expressed by the (small) probability 𝑤𝑗
𝑖  that 𝑖 will be able to locate and consume a 

specified food item in 𝑗 within a specified period of time. Competition (both intra- and inter-

specific) affects this rate in two ways. As more individuals forage within 𝑗, the probability 

that any single food item will be harvested increases, but 𝑖’s chance of being the finder 

decreases. The Poisson approximation (Feller, 1968, p. 282) gives 1 − ℯ−𝑤𝑗  for the former 

probability, where 𝑤𝑗 = ∑ 𝑤𝑗
𝑖′

𝑖′∈𝐼𝑗
 and 𝐼𝑗  is the set of all individuals (of all species) that 

forage within 𝑗. It follows that, if there are many competitors, 𝑖’s approximate harvest rate 

𝐻𝑖  is given by   

𝐻𝑖 = 𝑤𝑗
𝑖𝑅𝑗

1 − ℯ−𝑤𝑗

𝑤𝑗
.  

At equilibrium, the habitat choice of each individual 𝑖 maximizes the multiplicatively 

separable expression (7). Equivalently, 𝑗 minimizes 1/𝐻𝑖, which is the typical time between 

finding one food item and finding the next one. Note that  

1

𝐻𝑖
=  

1

𝑤𝑗
𝑖𝑅𝑗

𝑙(𝑤𝑗), 

 
3 The residual capacity is normally positive at equilibrium; otherwise the expected waiting time is infinite.  

(6) 

(7) 
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where the function 𝑙 is defined by 𝑙(𝑥) = 𝑥/(1 − ℯ−𝑥). Therefore, this increasing function 

may be viewed as expressing the crowding cost. 

The main questions this paper addresses are the existence of pure-strategy Nash equilibria 

in the class of weighted congestion games with separable preferences, and whether myopic 

adjustments by individual players necessarily lead to such an equilibrium. For some 

subclasses of these games, the existing literature provides answers to these questions, and 

for others it does not. Section 2 below summaries the known positive results and presents a 

new negative result that completes the large-picture analysis. It also presents an open 

problem that concerns a special, but important, case. The reason such a case-by-case 

analysis is warranted is that, as the above examples illustrate, many applications only involve 

games with separable preferences that have certain additional properties. 

1.1 Resource-specific variable costs 
Separability, as defined above, means that the variable costs (equivalently, the crowding 

costs) have the same functional form for all resource–player pairs. This model is seemingly 

less general than one with a different variable-cost function 𝑐𝑗 for each resource 𝑗. However, 

the following proposition shows that this is in fact not the case: the former model subsumes 

the latter. Thus, allowing resource-specific variable costs would not make the model any 

more general.  

Proposition 1. Every weighted congestion game with resource-specific variable-cost 

functions 𝑐1, 𝑐2, … , 𝑐𝑚 can also be presented using a single variable-cost function 𝑐. 

The proof of the proposition, which is given in the Appendix, is based on the following 

simple argument. Even if the functions 𝑐1, 𝑐2, … , 𝑐𝑚 are not identical, they can be “stitched” 

together into a single function 𝑐, which can effectively replace each of them, if the values 

that the corresponding arguments 𝑤1, 𝑤2, … , 𝑤𝑚 take lie in nonoverlapping intervals in the 

real line. Such separation can always be achieved by multiplying each weight 𝑤𝑗
𝑖  by the 𝑗th 

power of a sufficiently large constant 𝛽, and countering these rescalings by applying the 

opposite operations to the arguments of the functions 𝑐1, 𝑐2, … , 𝑐𝑚.  

Note that this argument depends critically on the possibility of resource-specific weights. 

Therefore, it would not apply if only the subclass of games described in Section 2.3 below 

were considered. On the other hand, as the proof of Proposition 1 shows, the move to a 

single variable-cost function does not require—or create—player-specific fixed costs. 

2 Existence of Equilibrium and Convergence 
As detailed below, weighted congestion games with separable preferences do not always 

have pure-strategy Nash equilibria. However, such equilibria always exist in certain 

subclasses of these games, in which, moreover, any sufficiently long sequence of myopic 

unilateral moves by players is bound to lead to an equilibrium. To precisely describe these 

results, the following definitions are required. 

An improvement path (Monderer and Shapley, 1996) in a noncooperative game is any finite 

or infinite sequence of strategy profiles, each differing from the preceding one only in the 



5 

strategy of a single player 𝑖, such that the change of strategy makes 𝑖 better off. A best-

(reply) improvement path has the additional property that each change of strategy 

represents a best reply against the other players’ strategies, so that player 𝑖 could not gain 

more by choosing another strategy instead. A game has the finite improvement property 

(FIP) or the finite best-(reply) improvement property if every improvement path or best-

improvement path, respectively, is finite. The former property implies the latter, which in 

turn implies that the game has a pure-strategy Nash equilibrium (‘an equilibrium’, for short). 

In general, the reverse implications do not hold. A finite game has the FIP if and only if it 

admits a (generalized ordinal) potential, which is any function 𝑃 over strategy profiles that 

strictly increases along every improvement path.4 An exact potential 𝑃 is defined by the 

stronger property that any unilateral change of strategy is beneficial to the player 𝑖 changing 

strategy if and only if it increases 𝑃, and in this case, the change in 𝑃 exactly equals 𝑖’s gain. 

(Note that the notion of exact potential is a cardinal, rather than ordinal, one.)  

Monderer and Shapley (1996) showed that the only kind of finite games that admit an exact 

potential are the congestion games introduced by Rosenthal (1973). These games differ 

from those in Definition 1 in several significant respects. On the one hand, they are more 

general in that players may be allowed to choose combinations of resources rather than 

single ones, and congestion does not necessarily increase the costs. On the other hand, they 

are less general than the games considered here is that they are unweighted in the sense 

that all weights are 1, and the costs are player-independent (but may be resource-specific). 

Applying similar limitations to the games in Definition 1 gives the three subclasses of games 

described below. 

2.1 Games with player-independent costs 
The costs are player-independent if for every resource 𝑗 the base costs satisfy 

𝑎𝑗
1 = 𝑎𝑗

2 = ⋯ = 𝑎𝑗
𝑛, 

or equivalently, if the fixed costs in (3) satisfy a similar condition. The job balancing example 

presented above has this form. Games with resource-independent costs are essentially a 

special case. Specifically, if 𝑎1
𝑖 = 𝑎2

𝑖 = ⋯ = 𝑎𝑚
𝑖  for every player 𝑖, then these constants can 

all be normalized to 1 without affecting the players’ preferences as a result.  

Even-Dar et al. (2003) and Fabrikant et al. (2004) proved the following result. 

Theorem 1 (Even-Dar et al., Fabrikant et al.). Every weighted congestion game with 

separable preferences and player-independent costs has a pure-strategy Nash equilibrium, 

and moreover has the finite improvement property. 

The proof of Theorem 1 is based on the following observation, which is actually valid for 

more general settings than the present one. If only a single player 𝑖 changes his choice of 

strategy, from some resource 𝑘 to another resource 𝑗, then the cost after the move for every 

player who was negatively affected by it (which necessarily means that the player also uses 

 
4 One example of a potential for a finite game that has the FIP is the function that assigns to each strategy profile 

the number of improvement paths that terminate at it. 
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𝑗) is equal to the cost 𝑐𝑖 for 𝑖. This implies that the multiset of costs {𝑐1, 𝑐2, … , 𝑐𝑛} after the 

move is lexicographically smaller than before it. (A multiset of 𝑛 real numbers 𝐴 is 

lexicographically smaller than another such multiset 𝐵 if there is some real number 𝑟 such 

that the number of elements of 𝐴 that are equal to 𝑟 is less than the corresponding number 

for 𝐵, and for every 𝑟′ > 𝑟 the two numbers are equal. This binary relation is clearly 

asymmetric and transitive.) It follows that any improvement path must be finite.  

2.2 Games with player-independent weights 
The weights are player-independent if for every resource 𝑗 

𝑤𝑗
1 = 𝑤𝑗

2 = ⋯ = 𝑤𝑗
𝑛, 

so that  

𝑤𝑗 = 𝑤𝑗
1𝑛𝑗 , 

where 𝑛𝑗  is the number of players who use resource 𝑗. A weighted congestion game with 

separable preferences that has this property can be presented as an unweighted game with 

a distinct variable-cost function 𝑐𝑗 for each resource 𝑗 (see Section 1.1). That function is 

defined by  

𝑐𝑗(𝑥) = 𝑐(𝑤𝑗
1𝑥), 

so that the right-hand side of (3) can be written as  

𝑐𝑗(𝑛𝑗) + 𝑏𝑗
𝑖 . 

Therefore, a straightforward generalization of Rosenthal’s (1973) argument (see Facchini et 

al., 1997; Konishi et al., 1997; Hollard, 2000) gives the following. 

Theorem 2 (Facchini et al., Konishi et al.). Every weighted congestion game with separable 

preferences and player-independent weights has a pure-strategy Nash equilibrium, and 

moreover has the finite improvement property. 

For an explicit form of a potential for games as in Theorem 2, see Mavronicolas et al. (2007, 

Theorem 1). If preferences are additively separable, this potential is in fact an exact one 

(Facchini et al., 1997; Konishi et al., 1997). Moreover, this result holds for more general 

settings than the present one. In particular, it would hold also if the number of users had a 

positive, or ambiguous, effect on the costs.  

As shown below, the assumption in Theorem 2 that the players’ weights are identical is 

crucial for the equilibrium existence result. This is not so for the separability assumption, 

which is only required for the FIP result. In fact, a pure-strategy Nash equilibrium exists in 

every unweighted congestion game with player-specific payoff functions (Milchtaich, 1996, 

Theorem 2). In other words, an equilibrium would exist even if for each 𝑖 and 𝑗 (8) were 

replaced by any (player- as well as resource-specific) nondecreasing function of the number 

of users 𝑛𝑗. However, the game would not then necessarily have the finite improvement, or 

even best-improvement, property (Milchtaich, 1996, Fig. 1). 

(8) 
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2.3 Games with resource-independent weights 
The case of resource-independent weights, in which, for every player 𝑖, 

𝑤1
𝑖 = 𝑤2

𝑖 = ⋯ = 𝑤𝑚
𝑖 , 

does not fall under any general category for which the existence of equilibrium is 

guaranteed. The only known positive result for games of this kind concerns the special case 

of three or fewer players. Mavronicolas et al. (2007, Corollary 3) showed that an equilibrium 

always exists in this case. On the other hand, they presented an example of a three-player 

weighted congestion game with separable preferences and resource-independent weights 

that does not have the finite best-improvement property, i.e., it admits a best-improvement 

cycle.5 The question of the existence of equilibrium for games with more than three players 

was left open. 

The following theorem shows that, in fact, with an arbitrary number of players an 

equilibrium does not always exist. 

Theorem 3. There is a weighted congestion game with separable preferences and resource-

independent weights, with eight players and five resources and a strictly increasing and 

strictly concave variable-cost function 𝑐, in which a pure-strategy Nash equilibrium does not 

exist. 

Proof. Let 𝑐 be any strictly increasing and strictly concave real-valued function on the 

positive ray that returns the values in the following table: 

𝑥 3 3.9 4 5 6 7 8 8.9 9 9.9 10 12 
𝑐(𝑥) 1 9.5 10.3 12 13.2 14.3 15.2 15.95 16 16.23 16.25 16.26 

 

(Since for these values the marginal costs, or more precisely first-order divided differences, 

are positive and decreasing, a function as above exists.) The players’ weights are given by 

𝑤𝑗
1 = 6, 𝑤𝑗

2 =  𝑤𝑗
3 = 𝑤𝑗

4 = 3, 𝑤𝑗
5 = 2.9, 𝑤𝑗

6 = 2 and 𝑤𝑗
7 = 𝑤𝑗

8 = 1 (for all 𝑗). The fixed cost 

of each of the five resources for each player is either prohibitively high, and effectively 

excludes the player from that resource,6 or it is given in the following table:  

 

Thus, three players are effectively confined to a single resource, and for five players there 

are two resources that they can potentially use. It is not difficult to check that, in view of 

these limitations, in any pure-strategy Nash equilibrium:   

• player 4 uses resource 4 if player 6 does not use it, and uses resource 5 otherwise, 

• player 8 uses resource 4 if player 4 does not use it, and uses resource 2 otherwise, 

 
5 More precisely, the three-player example in Mavronicolas et al. (2007, Theorem 2) involves resource-specific 

variable-cost functions, so that it does not strictly belong to the class of games considered here. However, 

Theorem 3 below renders this point largely moot.  
6 Alternatively, it can simply be assumed that each player is not allowed to use certain resources.  

Player 1 2 3 4 5 6 7 8 

Fixed 
costs 

𝑏1
1 = 0 𝑏1

2 = 0 𝑏1
3 = 0 𝑏4

4 = 0 𝑏2
5 = 0 𝑏3

6 = 0 𝑏3
7 = 0 𝑏2

8 = 0 

𝑏2
1 = 0.04 𝑏3

2 = 3 𝑏5
4 = 10 𝑏4

6 = 1 𝑏4
8 = 8 
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• player 1 uses resource 2 if player 8 does not use it, and uses resource 1 otherwise, 

• player 2 uses resource 1 if player 1 does not use it, and uses resource 3 otherwise. 

It follows from these propositions that, if player 6 uses resource 4, then player 8 also uses 

that resource and only player 7 uses resource 3; and if player 6 uses resource 3, then player 

2 also uses that resource and only player 4 uses resource 4. In both cases, the resource 

player 6 uses is not optimal for him: switching from 4 to 3 or vice versa would decrease the 

cost. This proves that an equilibrium does not exist. ∎ 

Theorem 3 shows that, for the kind of games considered in this subsection, existence of 

equilibrium is not guaranteed for general (or even concave) variable-cost functions 

(equivalently, general crowding costs). However, since many applications involve specific 

such functions, it might be interesting to find functional forms of 𝑐 that do guarantee 

existence. The little that is known about this issue is summarized below.  

2.3.1 Linear variable cost 

Particularly important among the games with resource-independent weights are those with 

a linear variable-cost function. Without loss of generality, linearity means that, in the 

additive formulation of the cost, 𝑐 is the identity function: 

𝑐(𝑥) = 𝑥. 

The M/M/1 queuing example presented above has this property. Unlike the general case, 

for linear costs the existence of equilibrium is guaranteed. This follows as a special case from 

a result of Mavronicolas et al. (2007, Theorem 6), which is a straightforward extension of an 

earlier result of Fotakis at al. (2005, Theorem 1). Both results hold for more general settings 

than the present one. 

Theorem 4 (Mavronicolas et al.). Every weighted congestion game with separable 

preferences and resource-independent weights in which the variable-cost function 𝑐 is linear 

has a pure-strategy Nash equilibrium, and moreover has the finite improvement property. 

The proof of Theorem 4 is based on the fact that the additive formulation of every game as 

in the theorem admits a weighted potential 𝑃. A weighted potential (Monderer and Shapley, 

1996) is a cardinal concept quite similar to an exact potential. It is defined by the 

requirement that any unilateral change of strategy is beneficial to the player 𝑖 changing 

strategy if and only if it increases 𝑃, and in this case, the change in 𝑃 is equal to 𝑖’s gain 

times his (resource-independent) weight.  

2.3.2 Homogeneous crowding cost 

The crowding cost is homogeneous if for some 𝑘 > 0 

𝑙(𝑥) = 𝑥𝑘 . 

Replacing the cost (2) with its 𝑘th root turns 𝑙 into the identify function. Since this 

transformation does not affect the players’ ordinal preferences, there is no loss of generality 

in assuming that 𝑙 is the identity, i.e., 𝑘 = 1. Thus, unlike the previous case, the identity 

function appears in the multiplicative rather than additive formulation of the costs (cf. (9)). 

(9) 
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Gairing et al. (2006) called games of this kind weighted congestion games with player-

specific capacities. In the additive formulation of the costs (3) these games are characterized 

by  

𝑐(𝑥) = log 𝑥. 

Georgiou et al. (2006) conjectured that all weighted congestion games with player-specific 

capacities have pure-strategy Nash equilibria. However, they were only able to establish that 

three-player games always have such equilibria, and moreover have the finite best-

improvement property. Part of the difficulty is that, even with only three players, weighted 

congestion games with player-specific capacities do not always have the finite improvement 

property (Gairing et al., 2006, Theorem 3). Thus, the question of the existence of equilibrium 

in games with more than three players is still open. 

3 Network Congestion Games 
A noteworthy property of weighted congestion games with separable preferences is that 

each such game is isomorphic to a weighted network congestion game in which the players 

have identical cost functions and differ from one another only in their weights and the paths 

they are allowed to take in a specified network, with all the paths connecting specified origin 

and destination vertices 𝑜 and 𝑑. An example of an applicable network is shown in Fig. 1. 

A player 𝑖 can take an 𝑜–𝑑 path 𝑟 if and only if 𝑟’s first edge is marked 𝑏𝑗
𝑖, for some allowable 

resource 𝑗 for 𝑖 in the game with separable preferences. In this case, the cost 𝑐𝑖 for 𝑖 of 

taking 𝑟 is given by (3) and (1), where 𝐼𝑗  is the set of all players whose paths include the 

second edge in 𝑟. This defines an isomorphism (Monderer and Shapley, 1996) between the 

weighted congestion game with separable preferences and the weighted network 

congestion game.  

This observation points to a link between the questions discussed in this paper and the 

equilibrium existence problem in network congestion games (Milchtaich, 2006b, 2009). 

However, the latter is a quite different problem in that the network topology figures 

prominently in it.  
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Fig. 1. A weighted network congestion game isomorphic to a (general) weighted congestion game with 

separable preferences. The cost of each edge is either constant and equal to 𝒃𝒋
𝒊, for some 𝒊 and 𝒋, or it is given 

by the variable-cost function 𝒄. A player 𝒊 can use an edge with cost 𝒃𝒋
𝒊 if and only if 𝒋 is an allowable resource 

for 𝒊. 

Appendix 
Proof of Proposition 1. Let a weighted congestion game with resource-specific variable-cost 

functions 𝑐1, 𝑐2, … , 𝑐𝑚 be given. Choose 𝑤̲ and 𝑤̅ in such a way that 0 < 𝑤̲ < 𝑤𝑗
𝑖 < 𝑤̅ for all 

𝑖 and 𝑗, and define 𝛽 = 𝑛 𝑤̅/𝑤̲. For every 𝑖 and 𝑗, define 

𝑤̃𝑗
𝑖 = 𝛽𝑗𝑤𝑗

𝑖 . 

These definitions imply that, for every player 𝑖 and resource 𝑗,  

𝛽𝑗+1𝑤̲ > 𝛽𝑗 ∑ 𝑤𝑗
𝑖′

𝑛

𝑖′=1

= ∑ 𝑤̃𝑗
𝑖′

𝑛

𝑖′=1

≥ 𝑤̃𝑗
𝑖 > 𝛽𝑗𝑤̲. 

The function 𝑐: (0, ∞) → ℝ will be defined as follows. Given 𝑥 > 0, consider the resource 

with the highest index 𝑗 such that 𝑥 > 𝛽𝑗𝑤̲ (and choose 𝑗 = 1 if 𝑥 ≤ 𝛽𝑤̲). Define 

𝑐(𝑥) = 𝑐𝑗(
𝑥

𝛽𝑗
) − 𝑏𝑗 , 

where 𝑏𝑗 = ∑ (𝑐𝑘(𝑤̲) − 𝑐𝑘−1(𝑛𝑤̅))
𝑗
𝑘=2  (and 𝑏1 = 0). The resource-specific constants 

𝑏1, 𝑏2, … , 𝑏𝑚 are required to guarantee the monotonicity of 𝑐. Finally, for every player 𝑖 and 

resource 𝑗, define 

𝑏̃𝑗
𝑖 = 𝑏𝑗

𝑖 + 𝑏𝑗 . 

The weighted crowding game defined by the function 𝑐 in (12) and the modified weights and 

constants in (10) and (13) is identical to the original game. To see this, suppose that resource 

𝑗 is chosen by a nonempty subset of players 𝐼. In the original game, the cost for each of 

(10) 

(11) 

(12) 

(13) 

 

𝑑 

𝑜 

𝑏1
1 

𝑏1
2 

𝑏1
𝑛 

⋱ 
⋯ 

𝑏𝑚
1  

𝑏𝑚
2  

⋰ 

𝑏𝑚
𝑛  

𝑏2
1 

𝑏2
2 

𝑏2
𝑛 

⋱ 

𝑐(𝑥) 𝑐(𝑥) 𝑐(𝑥) 
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these players 𝑖 is given by (3), where 𝑤𝑗 = ∑ 𝑤𝑗
𝑖′

𝑖′∈𝐼 . In the modified game defined above, 𝑤𝑗  

is replaced by 𝑤̃𝑗 = ∑ 𝑤̃𝑗
𝑖′

𝑖′∈𝐼 . However, it follows from (11) and (12) that 

𝑐(𝑤̃𝑗) = 𝑐𝑗(
𝑤̃𝑗

𝛽𝑗
) − 𝑏𝑗 , 

so that 𝑐(𝑤̃𝑗) + 𝑏̃𝑗
𝑖 = 𝑐𝑗(𝑤𝑗) + 𝑏𝑗

𝑖 by (10) and (13). ∎ 
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