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Rooted potential is a generalization of (exact) potential that exists in every game. In a 

potential game, it coincided with the potential. In general games, it varies according to the 

choice of root, which is any strategy (in symmetric and population games) or strategy profile 

(in asymmetric games). Roots that are local maxima of the rooted potential have interesting 

stability features. Depending on the class of games considered, the set of equilibrium roots 

with this property may coincide with the evolutionarily stable strategies, ESS (in symmetric 

𝑛 × 𝑛 games); with the continuously stable strategies, CSS (in symmetric games with a 

unidimensional strategy space); with the risk dominant equilibria (in finite symmetric 2 × 2 

games); or with the strict equilibria (in bimatrix games). Local maximization of the rooted 

potential may thus be viewed as a general, unifying notion of static stability. Like the earlier 

notions of static stability it generalizes, it is formulated solely in terms of the players’ 

incentives to change their strategies close to the point in question. This differs from dynamic 

stability, which is specific to an extraneous law of motion that dictates the players’ reactions 

to the incentives. Depending on the choice of the latter, dynamic stability may be weaker 

than static stability or the two may be incomparable. Static stability is also connected with 

comparative statics of altruism. In general, internalization of the aggregate payoff or some 

other measure of social payoff by all players may paradoxically result in a decrease of that 

payoff. But this is never so if the equilibria involved satisfy static stability. 

Keywords: Static stability, evolutionarily stable strategy, continuously stable strategy, risk 

dominance, potential games, comparative statics, altruism. 

1 Introduction 
Common-payoff games are 𝑁-player games where the players’ payoff functions are 

identical: they always get equal payoffs. The maximum points of the common payoff 

function are (Nash) equilibria, as they Pareto dominate all other strategy profiles. However, 

some other strategy profiles may also be equilibria. Which raises the question of whether 

there is any general sense in which such equilibria are less reasonable, compelling or stable 

than the payoff-maximizing ones.1 A similar question arises in the more general setting of 

potential games (Monderer and Shapley 1996). In these games, each player’s payoff can be 

presented as the sum of a common payoff function 𝑃, referred to as the potential, and a 

 
1 A simple example of the two kinds of equilibria is provided by the two pure equilibria in the game 

  𝐿       𝑅  
𝑇
𝐵

(
3,3 0,0
0,0 1,1

)
. 

When discussing their notion of strategic stability, Kohlberg and Mertens (1986) state that they have 
nothing to say about the distinction between these equilibria, which they maintain has to do with the 
pre-play bargaining game, and hence with cooperative theory, rather than with the game itself.  
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second function that only depends on the other players’ strategies. It is still true that the 

maxima of 𝑃 are equilibria. Whether there is anything substantially special about these 

equilibria is even less clear than in the common-payoff case. Consider, for example, the pair 

of two-player games (often referred to as stag-hunt games)   

  𝐿       𝑅  
𝑇
𝐵

(
3,3 −1,0
0,−1 0,0

)
     and     

𝐿      𝑅  
𝑇
𝐵

(
0,0 0,−3
−3,0 1,1

)
. 

In the left game, the equilibrium (𝑇, 𝐿) is Pareto dominant and the equilibrium (𝐵, 𝑅) is 

“safe”. For the right game, it is the other way around. Yet the two games have the same 

potential 𝑃, which is the common payoff in the game in footnote 1. 

One way to look at the above questions is to consider unilateral deviations. When a single 

player switches strategy, the change in that player’s payoff is equal to the change in the 

potential 𝑃. When several players do so one after the other, the sum of the payoff changes 

is given by the difference 𝑃(𝑦) − 𝑃(𝑥), where 𝑥 is the initial strategy profile and 𝑦 is the 

terminal one. This difference can be described as the overall incentive to move from 𝑥 to 𝑦. 

It is the negative of the overall incentive to move along the reverse path, from 𝑦 to 𝑥, and 

can also be considered the “work” done along the latter path, with incentives viewed as 

forces acting on the players. (The path reversal represents the convention that the work is 

positive when there is an opposing force. Correspondingly, it is −𝑃 here that would be 

considered the potential in physics.) The strategy profile 𝑦 is a strict maximum point of 𝑃 if 

and only if this work is positive for all 𝑥 ≠ 𝑦. Such 𝑦 will be referred to as globally stable. 

This property of a strategy profile distinguishes between the two equilibria in the above 

examples. If one player deviates from the equilibrium (𝐵, 𝑅) by playing 𝑇 or 𝐿, that player’s 

incentive to return is weaker than the other player’s incentive to also deviate. Put 

differently, the players’ overall incentive to move to the opposite equilibrium (𝑇, 𝐿) is 

positive. Thus, the two equilibria differ in that only the latter is globally stable, a distinction 

that applies to all games above.2 

Most games do not admit a potential, which means that the work done when moving 

between strategy profiles may depend on the path taken, that is, on the order of moves. 

(Similar path dependence occurs in non-conservative force fields, which do not have a 

potential function.) The notion of the overall incentive to move from 𝑦 to 𝑥 can be naturally 

extended to the general setting by averaging the sum of the payoff changes over all possible 

orderings of the players. Viewed as a function of 𝑥, this average defines the rooted potential, 

with 𝑦 as the root. Global stability of 𝑦 is generalized to the condition that the rooted 

potential is negative for all 𝑥 ≠ 𝑦. A weaker, local condition, referred to simply as stability, is 

that this is so in a vicinity of the root, that is, for all 𝑥 ≠ 𝑦 in some neighborhood of 𝑦. This 

local version applies when a system of neighborhoods, or a topology, is defined for the 

strategies in the game.     

Stability is a fundamentally different concept than equilibrium. A body is at equilibrium 

when it experiences no net force. A strategy profile is an equilibrium if there is no incentive 

for any unilateral deviation. Stability differs in taking into consideration forces, or incentives, 

at other, nearby points, which are reached after small displacements. Thus, an object 

perched at the top of a rock is at equilibrium, but this equilibrium is unstable. The aim of this 

paper is to explore the meaning and implications of stability, as defined above, in games. As 

 
2 It is no coincidence that (𝑇, 𝐿) is also the risk dominant equilibrium. See below. 
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shown below, this concept justifies its name in that it is a very broad generalization of a 

number of earlier, more special, concepts that may be viewed as conveying stability in 

specific classes of games. These concepts, like the one introduced here, concern static 

stability, in the sense that they are formulated entirely in terms of incentives. As the players 

incentives are specified by the payoff functions, all forms of static stability are intrinsic to the 

game. They can be determined without referring to, and without requiring, additional 

assumptions concerning dynamics, or the fashion by which incentives lead to changes in the 

players’ behavior.       

The notions of rooted potential and stability proposed here are formalized in Section 2. 

These concepts are universal in that they are applicable to any game, and do not require the 

strategy spaces or the payoff functions to have any specific form or structure. Moreover, 

variants of them are applicable to symmetric games and to population games, where 

stability refers to strategies rather than strategy profiles. A formal connection, established in 

Section 2.1.1, between stability of strategy profiles in asymmetric games (as described 

above) and stability of strategies in symmetric games is that the former can be reduced to 

the latter by symmetrizing the game. In addition, the two concepts are directly comparable 

in asymmetric games that are essentially symmetric in the sense that the players are 

interchangeable (Section 2.2). This comparison and several other facts indicate that, in a 

sense, stability is a weaker requirement in symmetric games than in asymmetric ones.  

The exact connections between potential and rooted potential are laid out in Section 3. In 

particular, it is shown that the rooted potential in an asymmetric game is a potential if and 

only if it only changes by an additive constant whenever the roots changes. A Similar result 

holds in population games that admit a potential (Section 3.2). This result relies on a novel 

definition of potential for such games which significantly extends and generalizes the 

standard one.   

Section 4 is the heart of the paper. It looks at several earlier notions that are also formulated 

entirely in terms of the players’ incentives and can thus be categorized under the heading of 

static stability, and examines whether they are comparable with (that is, weaker, stronger, 

or equivalent to) stability. Each comparison is restricted to the class(es) of games where the 

notion under examination is well defined or most meaningful.  

The simplest kind of games for which static stability of any sort is applicable are finite 

symmetric two-player games with only two strategies, 𝑎 and 𝑏 (Section 4.1). If both 

strategies are equilibrium strategies, then normally exactly one of the two symmetric 

equilibria, (𝑎, 𝑎) or (𝑏, 𝑏), is risk dominant. Risk dominance is easily seen to be equivalent to 

global stability of the corresponding strategy, 𝑎 or 𝑏. 

The second existing concept examined is local superiority (Section 4.2). In a symmetric 

game, a strategy 𝑦 is locally superior if, when all the players use any nearby strategy 𝑥, a 

unilateral deviation to 𝑦 is beneficial. An extension to strategy profiles in an asymmetric 

game can be obtained by symmetrizing the game. In general, local superiority in asymmetric 

games is a stronger property than stability: the former implies the latter but not the other 

way around. The two properties are equivalent in the special case of asymmetric 𝑁-player 

games that are the mixed extensions of finite games.3 (For 𝑁 = 2, these are the bimatrix, or 

 
3 In a finite game, by definition only pure strategies are considered. The mixed extension is obtained 

by allowing mixed strategies. 
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𝑚 × 𝑛, games.) However, the only strategy profiles in these games with either property are 

the strict equilibria. In symmetric games, local superiority is in general incomparable with 

stability; neither property implies the other. Two special cases where local superiority is 

stronger than stability are equilibrium strategies in symmetric two-player games, and a large 

class of population games. An even more special case, in which local superiority and stability 

are equivalent, is symmetric two-player and population games that are the mixed extensions 

of finite games, that is, symmetric 𝑛 × 𝑛 games.   

Stability in symmetric 𝑛 × 𝑛 games is also equivalent to another kind of static stability: 

evolutionary stability (Section 4.3). Thus, a strategy in such a game is stable if and only if it is 

locally superior if and only if it is an evolutionarily stable strategy, ESS. Interestingly, 

however, the same is not true in the multiplayer case, that is, for the mixed extensions of 

finite symmetric 𝑁-player games (Section 4.3.1). For general 𝑁, stability of a strategy is a 

sufficient condition for ESS and is a necessary condition for local superiority, but in both 

cases the reverse implication does not hold.  

In games where a player’s strategy space is a convex set in a Euclidean space, to that 

strategies are real numbers (in the unidimensional case) or vectors, it may be possible to 

present stability of equilibria or equilibrium strategies in a differential form, that is, as a 

condition involving partial derivatives of the payoff function(s). In symmetric two-player and 

population games with a unidimensional strategy space (Section 4.4), this differential 

condition coincides with that of yet another kind of static stability: continuous stability 

(Eshel and Motro 1981). Thus, an essentially necessary and sufficient condition for an 

equilibrium strategy to be stable is that it is a CSS. Geometrically, the differential condition 

means that, at the equilibrium point, the reaction (or best-response) curve intersects the 

forty-five degree line from above rather than below. In asymmetric games (Section 5), the 

differential condition for stability of an equilibrium 𝑦 is negative definiteness of a particular 

square matrix 𝐻(𝑦) whose entries are second-order partial derivatives of the payoff 

functions. If the negative definiteness condition also holds for every other strategy profile, 

then the equilibrium is moreover unique. 

In asymmetric games with unidimensional strategy spaces, static stability can be directly 

compared with certain kinds of dynamic stability, each of which corresponds to a particular 

law of motion, which specifies how the players’ behavior changes in response to incentives 

to move (Section 6). In particular, for the dynamics where the rate of change of each player’s 

strategy is proportional to the marginal payoff, the condition for asymptotic stability of an 

equilibrium 𝑦 is D-stability of the same matrix 𝐻(𝑦) mentioned above. As D-stability of a 

square matrix is implied by negative definiteness but not conversely, this kind of dynamic 

stability is a weaker requirement than static stability. The same is not true for the dynamics 

where two players alternate in best responding to each other’s strategy. Asymptotic stability 

with respect to these dynamics is not implied by static stability or vice versa. The conclusion, 

then, is that even in this simple kind of games, the comparison between static and dynamic 

stability is specific to the particular variety of the latter examined. This, of course, is hardly 

surprising. Unlike static stability, which only depends on intrinsic properties of the game, 

specifically, the players’ incentives (which are expressed by their payoff functions), dynamic 

stability is defined with respect to an extraneous factor, the selected law of motion.      

The reliance of static stability wholly on incentives makes it particularly suitable for 

comparative statics analysis, in particular, study of the welfare effects of altruism and spite 

(Section 7). Whether people in a group where everyone shares such sentiments are likely to 
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fare better or worse than where people are indifferent to the others’ payoffs strongly 

depends on the static stability or instability of the corresponding equilibria or equilibrium 

strategies (Milchtaich 2012 ,2021). If these are stable, then social welfare is likely to increase 

with increasing altruism or decreasing spite, but if they are (definitely) unstable, the effect 

goes in the opposite direction. Thus, Samuelson’s (1983) “correspondence principle”, which 

maintains that conditions for stability often coincide with those under which comparative 

statics analysis leads to what are usually regarded as “normal” conclusions, holds. However, 

this is so only if ‘stability’ refers to the particular notion of static stability presented in this 

paper. The principle may not hold for other kinds of stability. In particular, asymptotic 

stability with respect to the continuous-time replicator dynamics does not preclude a 

negative relation between altruism and social welfare, and instability does not preclude a 

positive relation.  

2 Definitions and essential properties 
In an 𝑁-player game ℎ, each player 𝑖 has a strategy space 𝑋𝑖  and a payoff function ℎ𝑖: 𝑋 ⟶

ℝ, where 𝑋 = ∏ 𝑋𝑖𝑖  is the space of all strategy profiles. Given two strategy profiles, 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑁) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑁), and a permutation 𝜋 of (1,2,… ,𝑁), consider the 

path from 𝑦 to 𝑥 in which the players change their strategies in the order specified by 𝜋: 

player 𝜋(1) moves first, from 𝑦𝜋(1) to 𝑥𝜋(1) (which may also be the same strategy), then 

player 𝜋(2) moves, and so on. Summation of the movers’ changes of payoff and averaging 

over the set Π of all permutations give the expression  

𝑃𝑦(𝑥) ≔ 
1

𝑁!
∑∑(ℎ𝜋(𝑗)(𝑦 ∣ 𝑥{𝜋(1),𝜋(2),…,𝜋(𝑗)}) − ℎ𝜋(𝑗)(𝑥 ∣ 𝑦{𝜋(𝑗),𝜋(𝑗+1),…,𝜋(𝑁)}))

𝑁

𝑗=1𝜋∈Π

, 

where 𝑦 ∣ 𝑥𝑆 denotes the strategy profile where the players in the set 𝑆 play according to 

the strategy profile 𝑥 and those outside 𝑆 play according to 𝑦. (In 𝑥 ∣ 𝑦𝑆, the strategy profiles 

are interchanged.) Expression (1) may be interpreted as the overall incentive to move from 𝑦 

to 𝑥.   

Definition 1  For a strategy profile 𝑦 in a game ℎ, the 𝑦-rooted potential is the function 

𝑃𝑦: 𝑋 ⟶ ℝ defined by (1).  

The somewhat unwieldy expression (1) can be put into simpler forms. For 𝑁 = 2, it can be 

rearranged to read 

𝑃𝑦(𝑥) =
1

2
((ℎ1(𝑥1, 𝑥2) − ℎ1(𝑦1, 𝑥2) + ℎ1(𝑥1, 𝑦2) − ℎ1(𝑦1, 𝑦2))

+ (ℎ2(𝑥1, 𝑥2) − ℎ2(𝑥1, 𝑦2) + ℎ2(𝑦1, 𝑥2) − ℎ2(𝑦1, 𝑦2))). 

A general alternative form, which also suggests an alternative interpretation of rooted 

potential, can be obtained as follows. For strategy profiles 𝑥 and 𝑦, define the payoff of 𝑥-

players when playing against 𝑦-players as the quantity 

ℋ(𝑥, 𝑦) ≔∑[
1

(𝑁𝑗)
∑ ℎ̅𝑆( 𝑦 ∣∣ 𝑥𝑆 )
𝑆

|𝑆|=𝑗

]

𝑁

𝑗=1

=∑
1

(𝑁|𝑆|)
ℎ̅𝑆( 𝑦 ∣∣ 𝑥𝑆 )

𝑆

=∑
1

(𝑁|𝑆|)
ℎ̅𝑆∁( 𝑥 ∣∣ 𝑦𝑆 )

𝑆

, 

where |𝑆| denotes the number of players in a set 𝑆 and ℎ̅𝑆 = (1/|𝑆|) ∑ ℎ𝑖𝑖∈𝑆  is their average 

(1) 

(2) 
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payoff, which is defined as 0 if 𝑆 = ∅. (The third equality in (2) is obtained by replacing the 

summation variable 𝑆 with the complementary set 𝑆∁ and using the identity 𝑥 ∣ 𝑦𝑆 = 𝑦 ∣

𝑥𝑆∁.) Note that the expression in square brackets is the average of ℎ̅𝑆( 𝑦 ∣∣ 𝑥𝑆 ) over all sets of 

players 𝑆 of size 𝑗. Thus, ℋ(𝑥, 𝑦) is equal to 𝑁 times the expected payoff for an 𝑥-player, 

when the size of the set of 𝑥-players, the actual set, and the particular member examined 

are chosen at random one after the other, with uniform distributions. The proof of the next 

lemma shows that this expression is equal to the “positive part” of the 𝑦-rooted potential, 

while the “negative part” is obtained by interchanging 𝑥 and 𝑦. Thus, the overall incentive to 

move from 𝑦 to 𝑥 is equal to the difference between the payoff of 𝑥-players when playing 

against 𝑦-players and the payoff of 𝑦-players when playing against 𝑥-players. 

Lemma 1  For strategy profiles 𝑥 and 𝑦, 𝑃𝑦(𝑥) = ℋ(𝑥, 𝑦) −ℋ(𝑦, 𝑥).  

Proof. ℋ(𝑥, 𝑦) and ℋ(𝑦, 𝑥) are equal, respectively, to the “positive part” of (1), which is 

obtained by only considering the minuend in the parentheses, and to the “negative part”, 

which only considers the subtrahend. To see this, note that in each part all payoffs have the 

form ℎ𝑖( 𝑦 ∣∣ 𝑥𝑆 ) or ℎ𝑖( 𝑥 ∣ 𝑦𝑆 ), with 𝑖 ∈ 𝑆. Specifically, 𝑖 is given by the equation 𝑖 = 𝜋(𝑗), 

and 𝑆 is given by the equation 𝑆 = {𝜋(1), 𝜋(2), … , 𝜋(𝑗)} in the positive part and by 𝑆 =

{𝜋(𝑗), 𝜋(𝑗 + 1),… , 𝜋(𝑁)} in the negative part. In both parts, for every pair (𝑆, 𝑖) with 𝑖 ∈ 𝑆 

there are precisely (|𝑆| − 1)! (𝑁 − |𝑆|)! pairs (𝜋, 𝑗) satisfying the two equations (as 𝑗 is 

uniquely determined by |𝑆|). Therefore, the positive part of (1) is equal to 

∑∑
(|𝑆| − 1)! (𝑁 − |𝑆|)! 

𝑁!
ℎ𝑖( 𝑦 ∣∣ 𝑥𝑆 )

𝑖∈𝑆𝑆≠∅

= ℋ(𝑥, 𝑦) 

and the negative part is given by a similar expression where 𝑥 and 𝑦 are interchanged.  ∎ 

Of particular interest are strategy profiles 𝑦 such that the overall incentive to move to any 

nearby strategy profile 𝑥 is negative. That is, when the players move one-by-one to 𝑥, their 

moves on average harm them. This property is referred to as stability of 𝑦. In view of Lemma 

1, stability also means that, when players only play according to 𝑥 or according to 𝑦, those 

doing the former tend to fare worse. 

Definition 2  A strategy profile 𝑦 in an 𝑁-player game ℎ is stable, weakly stable or definitely 

unstable if the 𝑦-rooted potential 𝑃𝑦(𝑥) is negative, nonpositive or positive, respectively, for 

all 𝑥 ≠ 𝑦 in some neighborhood of 𝑦. If a similar condition holds for all 𝑥 ≠ 𝑦, then 𝑦 is 

globally stable, weakly stable or definitely unstable, respectively.  

Stability is a local concept. It refers to neighborhood systems of strategy profiles, in other 

words, to a topology on 𝑋.4 That topology is the product topology: the product of the 

topologies on the players’ strategy spaces. In principle, these topologies need to be explicitly 

specified, but in practice, they can often be understood from the context. This is so when 

there is a unique natural topology on each strategy space 𝑋𝑖.
5 In a game with a finite number 

of strategies, it may seem natural to consider the discrete topology on each strategy space, 

 
4 A subset of 𝑋 is a neighborhood of a point 𝑥 if its interior includes 𝑥. 
5 In particular, the latter applies when it is natural to view 𝑋𝑖  as a subspace of a Euclidean space or 
some other standard topological space, so that its topology is the relative one. For example, if the 
strategy space is an interval in the real line ℝ, so that strategies are simply (real) numbers, a set of 
strategies is a neighborhood of a strategy 𝑦𝑖  if and only if, for some 𝜀 > 0, every 𝑥𝑖 ∈ 𝑋𝑖  with |𝑥𝑖 −
𝑦𝑖| < 𝜀 is in the set.  
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that is, to view strategies as isolated. However, a more useful choice of topology in a finite 

game is the trivial, or indiscrete, topology. This choice effectively puts topology out of the 

way, since it means that the only neighborhood of any strategy is the entire strategy space. 

The trivial topology may be used also with an infinite 𝑋. Stability, weak stability or definite 

instability of a strategy profile 𝑦 with respect to the trivial topology automatically implies it 

with respect to any topology, as it coincides with the global version of the property.  

It follows immediately from the definition (by considering in (1) only strategy profiles that 

differ from 𝑦 in a single coordinate) that every globally weakly stable strategy profile is a 

(Nash) equilibrium and every globally stable strategy profile is a strict equilibrium. (Note that 

there can be at most one globally stable strategy profile.) A strategy profile 𝑦 that is stable 

but not globally so is still a strict local equilibrium in the sense that it has a neighborhood 

where for every 𝑥 ≠ 𝑦 the inequality   

ℎ𝑖(𝑦) − ℎ𝑖( 𝑦 ∣∣ 𝑥𝑖 ) > 0 

holds for every player 𝑖, where 𝑦 ∣ 𝑥𝑖 denotes the strategy profile that differs from 𝑦 only 

in that player 𝑖 uses strategy 𝑥𝑖. However, a stable 𝑦 is not necessarily a strict equilibrium or 

even an equilibrium. The reverse implications also do not hold. As the next example shows, 

even in a two-player game, a strict equilibrium is not necessarily even weakly stable.  

Example 1  Games in the plane. Players 1 and 2 have the same strategy space, the real line ℝ 

(with the standard topology). Their payoff functions are   

ℎ1(𝑥1, 𝑥2) = −𝑥1
2 + 3𝑥1𝑥2  and  ℎ2(𝑥1, 𝑥2) = −

1

2
𝑥2
2 − 𝑥1𝑥2. 

It is not difficult to see that the origin is the unique equilibrium, and it is moreover a strict 

equilibrium. When the players move from (0,0) to any other strategy profile (𝑥1, 𝑥2), player 

1 may be the first to change his strategy, and in this case, the sum of the movers’ payoff 

increments is −𝑥1
2 − 𝑥2

2/2 − 𝑥1𝑥2. If player 2 move first, the sum is −𝑥2
2/2 − 𝑥1

2 + 3𝑥1𝑥2. 

Averaging the two sums gives 𝑃(0,0)(𝑥1, 𝑥2) = −𝑥1
2 + 𝑥1𝑥2 − 𝑥2

2/2 = −(𝑥1 − 𝑥2/2)
2 −

𝑥2
2/4. As the last expression is negative for all (𝑥1, 𝑥2) ≠ (0,0), the equilibrium is globally 

stable. However, in the game obtained by dropping the second term in ℎ2, where the payoff 

functions are   

ℎ1(𝑥1, 𝑥2) = −𝑥1
2 + 3𝑥1𝑥2  and  ℎ2(𝑥1, 𝑥2) = −

1

2
𝑥2
2, 

𝑃(0,0)(𝑥1, 𝑥2) = −𝑥1
2 + 3𝑥1𝑥2/2 − 𝑥2

2/2. This expression is positive for every (𝑥1, 𝑥2) ≠

(0,0) that is a multiple of (2,3), and so the strict equilibrium (0,0) is not even weakly stable. 

2.1 Symmetric games 
Symmetric 𝑁-player games differ from the asymmetric games considered above is that the 

players share a single strategy space 𝑋 and a single payoff function 𝑔:𝑋𝑁 ⟶ℝ that is 

invariant to permutations of its second through 𝑁th arguments. If one player uses strategy 𝑥 

and the other players use 𝑦, 𝑧, … ,𝑤, in any order, the first player’s payoff is 𝑔(𝑥, 𝑦, 𝑧, … ,𝑤). 

A strategy 𝑦 is a (symmetric Nash) equilibrium strategy if it is a best response to itself, that 

is,  

𝑔(𝑦, 𝑦, … , 𝑦) ≥ 𝑔(𝑥, 𝑦, … , 𝑦) 

for every strategy 𝑥 ≠ 𝑦. It is a strict equilibrium strategy if these inequalities are all strict.  

(3) 

(4) 

(5) 

(6) 
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The definition of rooted potential in symmetric games is conceptually similar to that in 

asymmetric games; it is the overall incentive to move from the root 𝑦 to an alternative point 

𝑥. However, 𝑥 and 𝑦 here are strategies rather than strategy profiles. The initial and finite 

strategies profiles are the symmetric ones in which everyone uses 𝑥 or 𝑦, and so the overall 

incentive to move is given by  

𝐹𝑦(𝑥) ≔∑(𝑔(𝑥, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦, … , 𝑦⏟  
𝑁−𝑗 times

))

𝑁

𝑗=1

. 

Definition 3  For a strategy 𝑦 in a symmetric game (with payoff function6) 𝑔, the 𝑦-rooted 

potential is the function 𝐹𝑦: 𝑋 ⟶ ℝ defined by (7).  

As in asymmetric games, the rooted potential in symmetric games can be put into an 

alternative form, which also suggests a somewhat different interpretation of this concept. 

For strategies 𝑥 and 𝑦, define the payoff of 𝑥-players when playing against 𝑦-players as the 

quantity  

𝒢(𝑥, 𝑦) ≔ ∑𝑔(𝑥,… , 𝑥⏟  ,
𝑗 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

)

𝑁

𝑗=1

, 

which is 𝑁 times the expected payoff for an 𝑥-player, when the size of the (nonempty) set of 

𝑥-players is chosen at random, with uniform distribution. 

Lemma 2  For strategies 𝑥 and 𝑦, 𝐹𝑦(𝑥) = 𝒢(𝑥, 𝑦) − 𝒢(𝑦, 𝑥). 

Proof. 𝒢(𝑥, 𝑦) is equal to (7) with only the minuend in the parentheses considered. 

Considering instead only the subtrahend, changing the summation variable from 𝑗 to 𝑁 −

𝑗 + 1, and using the invariance of 𝑔 to permutations of its second through 𝑁th arguments 

give 𝒢(𝑦, 𝑥). ∎ 

The definition of stability in symmetric games is a straightforward adaptation of Definition 2. 

A strategy 𝑦 is stable if, when the players move one-by-one to any nearby strategy 𝑥, their 

moves on average harm them. In view of Lemma 2, stability can also be interpreted as the 

condition that, if players only choose either 𝑥 or 𝑦, those doing the former tend to fare 

worse .   

Definition 4  A strategy 𝑦 in a symmetric 𝑁-player game 𝑔 is stable, weakly stable or 

definitely unstable if the 𝑦-rooted potential 𝐹𝑦(𝑥) is negative, nonpositive or positive, 

respectively, for all 𝑥 ≠ 𝑦 in some neighborhood of 𝑦. If a similar condition holds for all  

𝑥 ≠ 𝑦, then 𝑦 is globally stable, weakly stable or definitely unstable, respectively. 

In some classes of symmetric games, stability of a strategy automatically implies that it is an 

equilibrium strategy. Specifically, Section 4.3 below shows that this is so for the mixed 

extensions of finite games, and in particular for symmetric 𝑛 × 𝑛 games (which is the two-

player case). In some other kinds of games, the reverse implication holds. In particular, an 

equilibrium strategy is automatically globally stable in every symmetric game with 𝑁 ≥ 2 

players that satisfies the symmetric substitutability condition (see Milchtaich 2012, Section 

6): for all strategies 𝑥, 𝑦, 𝑧, … ,𝑤 with 𝑥 ≠ 𝑦, 

 
6 Here and below, the same symbol is used for the payoff function in a symmetric game and for the 

game itself. 

(7) 



9 

𝑔(𝑥, 𝑥, 𝑧, … , 𝑤) − 𝑔(𝑦, 𝑥, 𝑧, … ,𝑤) < 𝑔(𝑥, 𝑦, 𝑧, … ,𝑤) − 𝑔(𝑦, 𝑦, 𝑧, … ,𝑤). 

The condition implies that the summand in (7) strictly decreases as 𝑗 increases from 1 to 

𝑁, and so if 𝑦 is an equilibrium strategy, which by (6) means that the summand is 

nonpositive for 𝑗 = 1, then the whole sum is negative, which means that 𝑦 is globally stable. 

Weak symmetric substitutability, which differs in that the strict inequality in (8) is replaced 

by a weak inequality, similarly implies that every equilibrium strategy is globally weakly 

stable.  

In general, however, the equilibrium condition and the stability condition are incomparable: 

neither of them implies the other. An equilibrium strategy is not necessarily even weakly 

stable, and even a globally stable strategy is not necessarily an equilibrium (or even local 

equilibrium7) strategy. A stable equilibrium strategy is a strategy that satisfies both 

conditions. It is not difficult to see that in the special case of symmetric two-player games, 

where the equilibrium condition is the bivariate version of (6) and the stability condition 

𝐹𝑦(𝑥) < 0 can be rearranged to read  

𝑔(𝑥, 𝑥) − 𝑔(𝑦, 𝑥) + 𝑔(𝑥, 𝑦) − 𝑔(𝑦, 𝑦) < 0, 

a strategy 𝑦 is a stable equilibrium strategy if and only if it has a neighborhood where for 

every 𝑥 ≠ 𝑦 the inequality 

𝑝𝑔(𝑥, 𝑥) + (1 − 𝑝)𝑔(𝑥, 𝑦) < 𝑝𝑔(𝑦, 𝑥) + (1 − 𝑝)𝑔(𝑦, 𝑦) 

holds for all 0 < 𝑝 ≤ 1/2. This condition means that the alternative strategy 𝑥 affords a 

lower expected payoff than 𝑦 against an uncertain strategy that may be 𝑥 or 𝑦, with the 

former no more likely than the latter.  

2.1.1 Symmetrization  
Definitions 3 and 4 differ from 1 and 2 in that they apply to symmetric rather than 

asymmetric games and concern strategies rather than strategy profiles. Nevertheless, the 

two pairs of definitions are conceptually very similar and, as shown below, the latter can be 

formally derived from the former. The link between them is provided by the (standard) 

notion of symmetrization of an asymmetric game (Milchtaich 2012).  

An asymmetric 𝑁-player game ℎ is symmetrized by letting the players switch roles, with all 

possible permutations considered. This gives a symmetric 𝑁-player game 𝑔 where the 

players’ common strategy space is the space 𝑋 of all strategy profiles in ℎ. For a player in 𝑔, 

a strategy 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁) ∈ 𝑋 specifies the strategy 𝑥𝑖 the player will use when called to 

assume the role of any player 𝑖 in ℎ. In that role, the payoff is according to 𝑖’s payoff 

function ℎ𝑖. The player’s payoff in 𝑔 is the average of his payoff over all 𝑁! possible 

assignments of players in 𝑔 to roles in ℎ. Thus, for any 𝑁 strategies in 𝑋, 𝑥1 =

(𝑥1
1, 𝑥2

1, … , 𝑥𝑁
1 ), 𝑥2 = (𝑥1

2, 𝑥2
2, … , 𝑥𝑁

2), … , 𝑥𝑁 = (𝑥1
𝑁 , 𝑥2

𝑁, … , 𝑥𝑁
𝑁), 

𝑔(𝑥1, 𝑥2, … , 𝑥𝑁) =
1

𝑁!
∑ ℎ𝜋(1)(𝑥1

𝜋−1(1) , 𝑥2
𝜋−1(2) , … , 𝑥𝑁

𝜋−1(𝑁) )

𝜋∈Π

 

 
7 A strategy 𝑦 is a local equilibrium strategy if it has a neighborhood where every strategy 𝑥 satisfies 
(6). In the symmetric two-player game where the strategy space is [0,1] and the payoff function is 
𝑔(𝑥, 𝑦) = 𝑥2 − 3𝑥𝑦, the origin 0 is globally stable but is not a local equilibrium strategy as 𝑔(0,0) <
𝑔(𝑥, 0) for all 𝑥 ≠ 0. 

(8) 

(9) 

(10) 

(11) 



10 

=
1

𝑁!
∑ ℎ𝜌−1(1)(𝑥1

𝜌(1) 
, 𝑥2
𝜌(2) 

, … , 𝑥𝑁
𝜌(𝑁) )

𝜌∈Π

 

(where Π is the set of all permutation of (1,2, … ,𝑁)). For 𝜋 ∈ Π, player 𝑗 in 𝑔 is assigned to 

role 𝜋(𝑗) in ℎ, and so the player 𝜌(𝑖) assigned to role 𝑖 is 𝜋−1(𝑖). Note that superscripts in 

(11) index players’ strategies in the symmetric game 𝑔 while subscripts refer to roles in the 

asymmetric game ℎ. 

Symmetrization preserves the game’s equilibria. That is, a strategy profile is an equilibrium 

in ℎ if and only if it is an equilibrium strategy in 𝑔, and in this case, the equilibrium payoff in 

𝑔 is equal to the players’ average equilibrium payoff in ℎ. To see this, note first that a 

strategy profile 𝑦 is an equilibrium strategy in 𝑔 if and only if setting 𝑥2 = 𝑥3 = ⋯ = 𝑥𝑁 = 𝑦 

in (11) gives an expression that is maximized by also choosing 𝑥1 = 𝑦. An alternative, 

simpler form of that expression is obtained by partitioning the set of permutations Π into 𝑁 

parts, each with cardinality (𝑁 − 1)!, according to the value 𝑖 of 𝜋(1), which gives 

1

𝑁
∑ℎ𝑖( 𝑦 ∣ 𝑥𝑖

1 )

𝑁

𝑖=1

. 

Clearly, choosing 𝑥1 = 𝑦 maximizes the last expression if and only if, for each 𝑖, the 𝑖th term 

in the sum is maximized by choosing 𝑥𝑖
1 = 𝑦𝑖. The latter is also the condition for 𝑦 to be an 

equilibrium in ℎ. If the condition holds, then the maximum (obtained by setting 𝑥1 = 𝑦) is 

both the equilibrium payoff in 𝑔 and the players’ average equilibrium payoff in ℎ. 

The next proposition shows that symmetrization also preserves the rooted potential. An 

immediate corollary is that it provides a means for expressing the stability of a strategy 

profile in an asymmetric game as stability in a symmetric game.  

Proposition 1  The rooted potential in an asymmetric 𝑁-player game ℎ is equal to the rooted 

potential in the symmetric game 𝑔 obtained by symmetrizing ℎ, that is, 

𝑃𝑦(𝑥) = 𝐹𝑦(𝑥), 𝑥, 𝑦 ∈ 𝑋. 

Proof. If follows from (7) and (11) that the rooted potential in 𝑔 is given by 

𝐹𝑦(𝑥) =∑
1

𝑁!
∑ (ℎ𝜋(1)(𝑦 ∣ 𝑥{𝜋(1),𝜋(2),…,𝜋(𝑗)}) − ℎ𝜋(1)(𝑥 ∣ 𝑦{𝜋(1),𝜋(𝑗+1),𝜋(𝑗+𝑛),…,𝜋(𝑁)}))

𝜋∈Π

𝑁

𝑗=1

. 

Since the inner sum is over the set of all permutations, it is left unchanged by replacing the 

summation variable 𝜋 with 𝜋 ∘ 𝜋𝑗, for any (𝑗-specific) permutation 𝜋𝑗. For 𝜋𝑗 that is the 

transposition switching 1 and 𝑗, this replacement transforms the expression on the right-

hand side of (12) into that in (1). ∎ 

Theorem 1  A strategy profile 𝑦 in an asymmetric 𝑁-player game ℎ is stable, weakly stable or 

definitely unstable if and only if 𝑦 has the same property as a strategy in the game 𝑔 

obtained by symmetrizing ℎ.  

2.2 Essentially symmetric games  
In symmetric games, a stable strategy is not always a local equilibrium strategy (see footnote 

7). This contrasts with the situation for asymmetric games, where, as indicated, a stable 

(12) 
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strategy profile is always a strict local equilibrium. The difference suggests that, in some 

sense, stability is a weaker requirement in symmetric games than in asymmetric games.  

A direct comparison between the concepts of rooted potential and stability in symmetric 

and in asymmetric games is provided by the essentially symmetric games. An asymmetric 𝑁-

player game ℎ is essentially symmetric if the players share a common strategy space 𝑋 and 

for every strategy profile (𝑥1, 𝑥2, … , 𝑥𝑁) ∈ 𝑋
𝑁  and permutation 𝜋 of (1,2, … ,𝑁) 

ℎ𝑖(𝑥𝜋(1), 𝑥𝜋(2), … , 𝑥𝜋(𝑁)) = ℎ𝜋(𝑖)(𝑥1, 𝑥2, … , 𝑥𝑁), 𝑖 = 1,2, … ,𝑁. 

Thus, if the players’ strategies are shuffled, such that each player 𝑖 takes the strategy of 

some player 𝜋(𝑖), then the latter’s old payoff becomes player 𝑖’s new payoff. In other words, 

the rules of the game are indifferent to the players’ identities and are therefore completely 

specified by the payoff function of any single player, and in particular by ℎ1. The latter may 

be viewed as the payoff function in a symmetric game. In fact, for fixed strategy space 𝑋 and 

number of players 𝑁, the mapping ℎ ↦ ℎ1 is a one-to-one correspondence between the set 

of essentially symmetric games and the set of symmetric games. This fact may suggest that 

there is little difference between the two concepts other than that, in the former, the 

players are distinguished as player 1, player 2, etc. And, indeed, essentially symmetric games 

are usually referred to simply as symmetric games (von Neumann and Morgenstern 1953). 

However, there is in fact a substantive, non-technical difference between describing a 

strategic situation as a symmetric game and describing it as an essentially symmetric game, 

with each alternative corresponding to a different interpretation of the situation. This fact is 

well recognized in the biological game theory literature, where essential symmetry is 

referred to by other names such as uncorrelated asymmetry (Maynard Smith and Parker 

1976; the correlation referred to is that between the players’ traits and their payoff 

functions) and inessential asymmetry (Eshel 2005). A symmetric pairwise contest with 

identical contestants, such as two equal-size males seeking to obtain a newly vacated 

territory, is best modeled as a symmetric game such as Chicken, or the Hawk–Dove game. 

Precedence or other perceivable asymmetries between the contestants, which do not by 

themselves change the payoffs (i.e., the stakes or the opponents’ fighting abilities), make the 

contest an essentially symmetric one and, in reality, may significantly affect the contestants’ 

behavior (Maynard Smith 1982; Riechert 1998). 

The difference between an essentially symmetric game and the corresponding symmetric 

game is reflected by the different notions of stability: stability of a strategy profile in the first 

case and stability of a strategy in the second case. The first notion is more general, in that it 

is applicable both to symmetric strategy profiles, in which all players use the same strategy, 

and to asymmetric ones. However, even in the case of a symmetric strategy profile 𝑦⃗ =

(𝑦, 𝑦, … , 𝑦), stability of 𝑦⃗ in the essentially symmetric game and stability of strategy 𝑦 in the 

symmetric game are not the same thing. As the next proposition shows, the first 

requirement is stronger.8 The reason is that it takes into consideration a larger set of 

alternatives than the second requirement does. An alternative to 𝑦 is another (nearby) 

strategy 𝑥, to which all the players switch. The alternatives to 𝑦⃗ include (nearby) strategy 

profiles that are not symmetric, which means that only some of the players may move to 𝑥 

while the others may move to other strategies or stick with 𝑦.  

 
8 For essentially symmetric bimatrix games, a related difference holds for the index and degree of a 
symmetric equilibrium, which may depend on whether it is viewed as an equilibrium in an asymmetric 
game or in the corresponding symmetric 𝑛 × 𝑛 one (Demichelis and Germano 2000). 

(13) 
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Proposition 2  The rooted potential in an essentially symmetric 𝑁-player game ℎ relates to 

the rooted potential in the corresponding symmetric game 𝑔 (= ℎ1) by 

𝑃𝑦⃗⃗(𝑥⃗) = 𝐹𝑦(𝑥), 𝑥, 𝑦 ∈ 𝑋, 

where 𝑥⃗ = (𝑥, 𝑥, … , 𝑥) and 𝑦⃗ = (𝑦, 𝑦, … , 𝑦). Stability of a symmetric strategy profile 𝑦⃗ in ℎ 

implies stability of strategy 𝑦 in 𝑔 but the reverse implication does not hold even if 𝑦 is an 

equilibrium strategy and 𝑁 = 2.  

Note that 𝑦 is an equilibrium strategy in 𝑔 if and only if 𝑦⃗ is an equilibrium in ℎ . This is 

because, in a symmetric strategy profile in an essentially symmetric game, a player may gain 

from a unilateral change of strategy if and only if player 1 would gain from making the same 

move.  

Proof of Proposition 2. For a player 𝑖 and a set of players 𝑆 with 𝑖 ∈ 𝑆, let 𝜋 be a permutation 

of (1,2,… ,𝑁) that maps 1,2,3,… , |𝑆| to the elements of 𝑆 and, in particular, maps 1 to 𝑖 

(that is, 𝜋(1) = 𝑖). By the essential symmetry condition (13),     

ℎ𝑖( 𝑦⃗ ∣ 𝑥⃗𝑆) = ℎ1(𝑥, … , 𝑥⏟  ,
|𝑆| times

𝑦,… , 𝑦⏟  
|𝑆∁| times

), 𝑥, 𝑦 ∈ 𝑋. 

By this identity, Lemmas 1 and 2, Eq. (2), and the fact that ℎ1 = 𝑔,  

𝑃𝑦⃗⃗(𝑥⃗) = ℋ(𝑥⃗, 𝑦⃗) −ℋ(𝑦⃗, 𝑥⃗) =∑(ℎ1(𝑥, … , 𝑥⏟  ,
𝑗 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

) − ℎ1(𝑦,… , 𝑦⏟  ,
𝑗 times

𝑥,… , 𝑥⏟  
𝑁−𝑗 times

))

𝑁

𝑗=1

 

= 𝒢(𝑥, 𝑦) − 𝒢(𝑦, 𝑥) = 𝐹𝑦(𝑥). 

If 𝑦⃗ is stable in ℎ, then in particular 𝑃𝑦⃗⃗(𝑥⃗) is negative for every 𝑥 ≠ 𝑦 in some neighborhood 

of 𝑦, which, by the above equalities, implies the same for 𝐹𝑦(𝑥). 

The fact that the reverse implication does not hold is proved, for example, by the (unique) 

equilibrium strategy in the symmetric 2 × 2 game 𝑔 with payoff matrix (for the row player) 

(
0 1
3 0

). 

The equilibrium strategy 𝑦 attaches to the first action probability 1/4. Any other strategy 𝑥 

attaches to it a different probability, say 1/4 + 𝜖. It is easy to see that 𝐹𝑦(𝑥) = −2𝜖
2, which 

shows that 𝑦 is globally stable. But in the corresponding essentially symmetric bimatrix game  

(
0 1,3
3,1 0

), 

the completely mixed symmetric equilibrium (𝑦, 𝑦) is not stable, as it is not a strict local 

equilibrium: any unilateral deviation leaves the deviator’s payoff unchanged. ∎ 

The counterexample used in the proof of Proposition 2 is but one instance of a general 

difference between symmetric 𝑛 × 𝑛 games and their asymmetric counterparts, the bimatrix 

games. As shown in Section 4.2 below, the stable strategy profiles in a bimatrix game are 

precisely the strict equilibria. By contrast, it is shown in Section 4.3 that the stable strategies 

in a symmetric 𝑛 × 𝑛 game are the evolutionarily stable strategies. All strict (hence, pure) 

equilibrium strategies are ESSs, but so are also some strategies that are not pure (such as 𝑦 

in the above example). This is another facet of the weaker meaning of stability in symmetric 

games than in asymmetric games. 
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2.3 λ-stability 
Stability of a strategy 𝑦 in a symmetric game 𝑔 may be interpreted as associated with a 

particular belief of a player moving from 𝑦 to an alternative strategy 𝑥 about the total 

number of players who will be using 𝑥 after he switches to it, with the rest using the original 

strategy 𝑦. Namely, the probabilities 𝜆1, 𝜆2, … , 𝜆𝑁 that this number is 1,2,… ,𝑁 are all equal. 

This interpretation suggests the natural generalization of considering other beliefs. The 

corresponding extension of the definition of rooted potential is that the equal coefficients in 

(7) are replaced by possibly unequal coefficients. Thus, for an 𝑁-tuple 𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑁) >

0 (whose entries are nonnegative numbers that are not all zero), define the 𝑦-rooted 

𝜆-potential as the function 𝐹𝑦
𝜆: 𝑋 ⟶ ℝ given by  

𝐹𝑦
𝜆(𝑥) ≔∑𝜆𝑗 (𝑔(𝑥, 𝑥, … , 𝑥⏟  ,

𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

))

𝑁

𝑗=1

. 

Definition 5  For an 𝑁-tuple 𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑁) > 0, a strategy 𝑦 in a symmetric 𝑁-player 

game 𝑔 is 𝜆-stable, weakly 𝜆-stable or definitely 𝜆-unstable if the 𝑦-rooted 𝜆-potential 𝐹𝑦
𝜆(𝑥) 

is negative, nonpositive or positive, respectively, for all 𝑥 ≠ 𝑦 in some neighborhood of 𝑦.  

The special case of 𝜆-stability where only the first coordinate 𝜆1 is not zero coincides with 

the condition that 𝑦 is a strict local equilibrium strategy: any unilateral deviation to a nearby 

strategy 𝑥 would lower the payoff. The diametrically opposite case where only 𝜆𝑁 is not zero 

coincides with the notion of local superiority of 𝑦 discussed in Section 4.2 below. In an 

intermediate case, each of the other players switches to 𝑥 with probability 0 < 𝑝 < 1 and 

stays with 𝑦 with probability 1 − 𝑝. Depending on whether the players’ choices are perfectly 

correlated (i.e., identical) or independent, the 𝜆’s are given, respectively, by 

𝜆𝑗 = {

1 − 𝑝,  𝑗 = 1
0 ,  1 < 𝑗 < 𝑁
𝑝 ,  𝑗 = 𝑁

 

or  

𝜆𝑗 = 𝐵𝑗−1,𝑁−1(𝑝) ≔ (
𝑁−1

𝑗−1
)𝑝𝑗−1(1 − 𝑝)𝑁−𝑗, 𝑗 = 1,2,… ,𝑁, 

the Bernstein polynomials of degree 𝑁 − 1. In the “mid-point” case 𝑝 = 1/2, for both (15) 

and (16) 

𝜆𝑗 = 𝜆𝑁−𝑗+1, 𝑗 = 1,2, … ,𝑁. 

These equalities express a belief that the number of other players using strategy 𝑥 and the 

number using 𝑦 have the same distribution. Put differently, the joint distribution of the two 

numbers is symmetric. A strategy 𝑦 is dependently- or independently-stable if it is 𝜆-stable 

with 𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑁) given by (15) or (16), respectively, for all 0 < 𝑝 < 1, and it is 

symmetrically-stable if it is 𝜆-stable for all 𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑁) > 0 satisfying (17). The last 

requirement obviously implies stability.  

For single-player games (𝑁 = 1), stability and 𝜆-stability of a strategy 𝑦 mean the same 

thing, namely, strict local optimality. For 𝑁 = 2, stability does not generally imply 𝜆-stability 

(or vice versa) but the implication does partially hold (specifically, holds whenever 𝜆1 ≥

𝜆2 > 0) if 𝑦 is an equilibrium strategy (see (10)). A full appreciation of the differences 

between stability in the sense of Definition 4 and the varieties based on 𝜆-stability requires 

looking at multiplayer games. An important class of such games is examined in Section 4.3.1.  

(14) 

(15) 

(16) 

(17) 
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2.4 Population games  
A (symmetric) population game, as defined in this paper, is formally a symmetric two-player 

game such that the strategy space 𝑋 is a convex set in a (Hausdorff real) linear topological 

space (for example, the unit simplex in a Euclidean space ℝ𝑛) and the payoff function 

𝑔(𝑥, 𝑦) is continuous in the second argument 𝑦 for all 𝑥 ∈ 𝑋. However, a population game is 

interpreted not as representing an interaction between two specific players but as one 

involving an (effectively) infinite population of identical individuals who are “playing the 

field”.9 This means that an individual’s payoff 𝑔(𝑥, 𝑦) depends only on his own strategy 𝑥 

and on the suitably defined population strategy 𝑦. The latter may be, for example, the 

population’s mean strategy with respect to some nonatomic (population) measure, which 

attaches zero mass to every individual. Alternatively, it may describe the distribution of 

strategies in the population (Bomze and Pötscher 1989), and in this case, 𝑋 consists of mixed 

strategies, that is, probability measures on some underlying space of allowable actions or 

(pure10) strategies, and 𝑔(𝑥, 𝑦) is linear in 𝑥 and expresses the expected payoff for an 

individual whose choice of action is random with distribution 𝑥.11  

In a population game, the equilibrium condition  

𝑔(𝑦, 𝑦) = max
𝑥∈𝑋

𝑔(𝑥, 𝑦), 

which is formally obtained from (6) for 𝑁 = 2, also admits more than one interpretation. It 

may mean that, in a monomorphic population where everyone plays strategy 𝑦, single 

individuals cannot increase their payoff by choosing any other strategy 𝑥. Alternatively, for 𝑦 

that describes the population’s mean strategy or distribution of strategies, and a payoff 

function 𝑔 that is linear in the first argument, Eq. (18) may express the condition that 

(almost) everyone in the population is using a strategy that is a best response to the 

population strategy 𝑦. In other words, the possibly polymorphic population is in an 

equilibrium state. 

Examples of population games are nonatomic congestion games with a continuum of 

identical users, and public good games with an infinite population of identical agents who 

have to decide whether to contribute their private good for the production of some public 

good (Milchtaich 2012, 2021). Another important example is the following one (Bomze and 

Weibull 1995; Broom et al. 1997). 

Example 2  Random matching in a symmetric 𝑁-player game with a multilinear payoff 

function. 𝑁 players are picked up independently and according to the same distribution 

(i.i.d.) from an infinite population of potential players, whose individual probability of being 

selected is zero. The strategy space 𝑋 is a convex set in a linear topological space, and the 

payoff function 𝑔 is continuous and is linear in each of the 𝑁 arguments. (This assumption 

 
9 An infinite population may represent the limiting case of an increasingly large population, with the 
effect of each player’s action on each of the other players correspondingly decreasing. Alternatively, it 
may represent all possible characteristics of players, or potential players, when the number of actual 
players is finite. 
10 “Pure” and “mixed” are relative terms. In particular, a pure strategy may itself be a probability 
vector. 
11 The special case of this interpretation in which the set of pure strategies is finite is the one often 
referred to as ‘population game’ (Sandholm 2015). The meaning of the term in this paper is more 
general, both in terms of the formal setup and in the variety of possible interpretations.   

(18) 
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may be relaxed by dropping the linearity requirement for the first argument.) Because of the 

multilinearity of 𝑔, a player’s expected payoff only depends on his own strategy 𝑥 and on the 

population’s mean strategy 𝑦. Specifically, the expected payoff is given by 

𝑔̅(𝑥, 𝑦) ≔ 𝑔(𝑥, 𝑦, … , 𝑦). 

This equation defines a population game 𝑔̅ with the strategy space 𝑋. It is easy to see 

that a strategy 𝑦 is an equilibrium strategy in 𝑔̅ if and only if it is an equilibrium strategy in 

the underlying symmetric 𝑁-player game 𝑔.  

Rooted potential in population games is defined by a variant of Definition 3 that replaces the 

numbers of players using strategies 𝑥 and 𝑦 with the sizes of the subpopulations to which 

each strategy applies, 𝑝 and 1 − 𝑝 respectively. Correspondingly, the sum in (7) is replaced 

by the integral:  

𝛷𝑦(𝑥) ≔ ∫ (𝑔(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦)) ⅆ𝑝
1

0

. 

Definition 6  For a strategy 𝑦 in a population game 𝑔, the 𝑦-rooted potential is the function 

𝛷𝑦: 𝑋 ⟶ ℝ defined by (20).  

Stability is defined similarly to stability in symmetric games (Definition 4). 

Definition 7  A strategy 𝑦 in a population game 𝑔 is stable, weakly stable or definitely 

unstable if the 𝑦-rooted potential 𝛷𝑦(𝑥) is negative, nonpositive or positive, respectively, for 

all 𝑥 ≠ 𝑦 in some neighborhood of 𝑦. If a similar condition holds for all strategies 𝑥 ≠ 𝑦, 

then 𝑦 is globally stable, weakly stable or definitely unstable, respectively.  

For a payoff function 𝑔 that is linear in the second argument, the integral in (20) is equal to 

1/2 times the sum in (7) (with 𝑁 = 2). The equality means that rooted potential and 

stability have essentially the same meanings whether 𝑔 is viewed as a two-player symmetric 

game or as a population game. The example in Footnote 7 thus shows that, even in this 

special kind of population games, a stable, and even globally stable, strategy need not be an 

equilibrium strategy. 

In a population game 𝑔̅ that is derived from a symmetric 𝑁-player game 𝑔 as in Example 2, 

the payoff function is not linear in the second argument if 𝑁 ≥ 3. Nevertheless, the next 

proposition shows that in this case, too, expressions (20) and (7) differ only by a positive 

multiplicative constant, which means that the stability of a strategy 𝑦 does not depend on 

whether it is viewed as a strategy in 𝑔 or in 𝑔̅.  

Proposition 3  The rooted potential in a symmetric 𝑁-player game 𝑔 where a the strategy 

space 𝑋 is a convex set in a linear topological space and the payoff function is continuous 

and multilinear is equal to 𝑁 times the rooted potential in the population game 𝑔̅ defined by 

Eq. (19), that is, 

𝐹𝑦(𝑥) = 𝑁 𝛷𝑦(𝑥), 𝑥, 𝑦 ∈ 𝑋. 

Proof. It follows from the invariance of the payoff function 𝑔 to permutations of its second 

through 𝑁th arguments and its linearity in these arguments that, for every pair of strategies 

𝑥 and 𝑦 and every 0 ≤ 𝑝 ≤ 1, the strategy 𝑥𝑝 = 𝑝𝑥 + (1 − 𝑝)𝑦 satisfies 

 

(19) 

(20) 
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𝑔̅(𝑥, 𝑥𝑝) − 𝑔̅(𝑦, 𝑥𝑝) = 𝑔(𝑥, 𝑥𝑝, … , 𝑥𝑝) − 𝑔(𝑦, 𝑥𝑝, … , 𝑥𝑝)

=∑𝐵𝑗−1,𝑁−1(𝑝)(𝑔(𝑥, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

))

𝑁

𝑗=1

, 

where the coefficients in the last sum are the Bernstein polynomials defined in (16). These 

polynomials satisfy the equalities 

∫ 𝐵𝑗−1,𝑁−1(𝑝)ⅆ𝑝 
1

0

=
1

𝑁
, 𝑗 = 1,2,… , 𝑁. 

It therefore follows from (21) by integration that the expression obtained from (20) by 

replacing 𝑔 with 𝑔̅ is equal to 1/𝑁 times the sum in (7). ∎ 

3 Potential games 
An asymmetric 𝑁-player game ℎ is a potential game (Monderer and Shapley 1996) if it has 

an (exact) potential: a real-valued function 𝑃:𝑋 ⟶ ℝ, defined on the set of strategy profiles, 

such that whenever a single player 𝑖 changes his strategy, the resulting change in 𝑖’s payoff is 

equal to the change in 𝑃. Thus, for all 𝑖, 

ℎ𝑖(𝑥) − ℎ𝑖( 𝑥 ∣∣ 𝑥𝑖
′ ) = 𝑃(𝑥) − 𝑃( 𝑥 ∣∣ 𝑥𝑖

′ ), 𝑥 ∈ 𝑋, 𝑥𝑖
′ ∈ 𝑋𝑖 . 

Fixing 𝑥𝑖
′ and rearranging (23) to read 

ℎ𝑖(𝑥) = 𝑃(𝑥) + (ℎ𝑖( 𝑥 ∣∣ 𝑥𝑖
′ ) − 𝑃( 𝑥 ∣∣ 𝑥𝑖

′ )), 𝑥 ∈ 𝑋 

gives that, in a potential game, the payoff of each player 𝑖 is equal to the sum of the 

potential and some function of the other players’ strategies. An immediate corollary is that 

the potential is unique up to an additive constant. 

The potential can also be characterized in terms of the rooted potential, and vice versa.  

Proposition 4. For an asymmetric 𝑁-player game ℎ, a function 𝑃: 𝑋 ⟶ ℝ is a potential if and 

only if 

𝑃𝑦(𝑥) = 𝑃(𝑥) − 𝑃(𝑦), 𝑥, 𝑦 ∈ 𝑋. 

A necessarily and sufficient condition for the rooted potential to be a potential is that it 

changes only by an additive constant whenever the root changes. 

Proof. The sufficiency of condition (24) follows from (23) being the special case 𝑦 = 𝑥 ∣ 𝑥𝑖
′. 

Necessity follows from (1) and the definition of potential, which give  

𝑃𝑦(𝑥) =
1

𝑁!
∑∑(𝑃(𝑦 ∣ 𝑥{𝜋(1),𝜋(2),…,𝜋(𝑗)}) − 𝑃(𝑥 ∣ 𝑦{𝜋(𝑗),𝜋(𝑗+1),…,𝜋(𝑁)}))

𝑁

𝑗=1𝜋∈Π

=  𝑃(𝑥) − 𝑃(𝑦). 

If the rooted potential only changes by an additive constant whenever the root changes, 

then, for any fixed root 𝑧, the identify (24) holds with 𝑃 = 𝑃𝑧 .   ∎ 

Proposition 4 shows that, in potential games, the potential and rooted potential essentially 

coincide. This finding immediate gives the following result, which characterizes stability and 

definite instability in such games in terms of the extremum points of the potential.  

(21) 

(22) 

(23) 

(24) 
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Theorem 2  A strategy profile 𝑦 in an asymmetric game with a potential 𝑃 is stable, weakly 

stable or definitely unstable if and only if 𝑦 is, respectively, a strict local maximum, local 

maximum or strict local minimum point of 𝑃. A global maximum point of 𝑃 is both globally 

weakly stable (and if it is a strict global maximum point, globally stable) and an equilibrium.  

3.1 Potential in symmetric games  
Potential in symmetric 𝑁-player games has essentially the same meaning as in asymmetric 

games. The only difference is that, here, the potential is necessarily a symmetric function 

(meaning that it is invariant under permutations of its 𝑁 arguments). Thus, for a symmetric 

game 𝑔 with strategy space 𝑋, a symmetric function 𝐹:𝑋𝑁 ⟶ℝ is a potential if, for any 

𝑁 + 1 strategies 𝑥, 𝑥′, 𝑦, 𝑧, … ,𝑤, 

𝑔(𝑥, 𝑦, 𝑧, … , 𝑤) − 𝑔(𝑥′, 𝑦, 𝑧, … ,𝑤) = 𝐹(𝑥, 𝑦, 𝑧, … ,𝑤) − 𝐹(𝑥′, 𝑦, 𝑧, … , 𝑤). 

The potential 𝐹 of a symmetric 𝑁-player potential game 𝑔 may itself be viewed as the payoff 

function in a symmetric 𝑁-player game, with the same strategy space 𝑋. This symmetric 

game is moreover doubly symmetric in the sense that its payoff function is symmetric. In 

other words, it is a symmetric common-payoff game. Its set of equilibria coincides with that 

of 𝑔.  

It follows immediately from the definition that a necessary condition for the existence of a 

potential in a symmetric game 𝑔 is that the total change of payoff of any two players who 

change their strategies one after the other does not depend on the order of their moves. 

That is, for any 𝑁 + 2 strategies 𝑥, 𝑥′, 𝑦, 𝑦′, 𝑧, … ,𝑤, 

𝑔(𝑥, 𝑦, 𝑧, … , 𝑤) − 𝑔(𝑥′, 𝑦, 𝑧, … ,𝑤) + 𝑔(𝑦, 𝑥′, 𝑧, … ,𝑤) − 𝑔(𝑦′, 𝑥′, 𝑧, … ,𝑤)

= 𝑔(𝑦, 𝑥, 𝑧, … ,𝑤) − 𝑔(𝑦′, 𝑥, 𝑧, … , 𝑤) + 𝑔(𝑥, 𝑦′, 𝑧, … ,𝑤) − 𝑔(𝑥′, 𝑦′, 𝑧, … ,𝑤). 

It is not difficult to show that this condition is also sufficient (see Monderer and Shapley 

1996, Theorem 2.8, which however refers to asymmetric games). Moreover, if a symmetric 

𝑁-player game is the mixed extension of a finite game, then it is a potential game if and only 

if the above condition holds for all 𝑁 + 2 pure strategies. In this case, the potential, like the 

payoff function, is multilinear (see Monderer and Shapley 1996, Lemma 2.10).  

Example 3  Symmetric 2 × 2 games. Every symmetric 2 × 2 game 𝑔, with pure strategies 1 

and 2, is a potential game, since it is easy to see that it satisfies the above condition for pure 

strategies. It is moreover not difficult to check that the following bilinear function (whose 

arguments are mixed strategies 𝑥 = (𝑥1, 𝑥2) and 𝑦 = (𝑦1, 𝑦2), with 𝑥1 + 𝑥2 = 𝑦1 + 𝑦2 = 1) 

is a potential: 

𝐹(𝑥, 𝑦) = (𝑔(1,1) − 𝑔(2,1))𝑥1𝑦1 + (𝑔(2,2) − 𝑔(1,2))𝑥2𝑦2. 

As in asymmetric games, the rooted potential in symmetric potential games is closely related 

to the potential. Indeed, as the following proposition shows, it is essentially equal to the 

potential “along the diagonal”. This, again, gives a very simple characterization of stability 

and instability in terms of the potential.  

Proposition 5. For a symmetric 𝑁-player game 𝑔 with a potential 𝐹, 

𝐹𝑦(𝑥) = 𝐹(𝑥, 𝑥, … 𝑥) − 𝐹(𝑦, 𝑦, …𝑦), 𝑥, 𝑦 ∈ 𝑋. 

Proof. By (7) and the definition of potential,   

(25) 
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𝐹𝑦(𝑥) =∑(𝐹(𝑥, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

) − 𝐹(𝑦, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

))

𝑁

𝑗=1

 

=∑(𝐹(𝑥,… , 𝑥⏟  ,
𝑗 times

𝑦,… , 𝑦) − 𝐹(𝑥,… , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦))

𝑁

𝑗=1

= 𝐹(𝑥, 𝑥, … 𝑥) − 𝐹(𝑦, 𝑦, …𝑦), 

where the second equality uses the symmetry of 𝐹. ∎ 

Theorem 3  A strategy 𝑦 in a symmetric 𝑁-player game with a potential 𝐹 is stable, weakly 

stable or definitely unstable if and only if 𝑦 is, respectively, a strict local maximum, local 

maximum or strict local minimum point of the function 𝑥 ↦ 𝐹(𝑥, 𝑥, … 𝑥). If (𝑦, 𝑦, … , 𝑦) is a 

global maximum point of 𝐹 itself, then 𝑦 is in addition an equilibrium strategy.  

The similarity between Theorem 3 and Theorem 2 is related to the fact, established by the 

next proposition, that symmetrization (Section 2.1.1) maps asymmetric potential games to 

symmetric potential games. Indeed, it essentially maps potentials to potentials. 

Proposition 6  An asymmetric 𝑁-player game ℎ has a potential if and only if the symmetric 

game 𝑔 obtained by symmetrizing ℎ has a potential. 

Proof. If the game ℎ, where the set of all strategy profiles is 𝑋, has a potential 𝑃, then the 

symmetric function 𝐹: 𝑋𝑁 ⟶ℝ defined by 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑁) =
1

𝑁!
∑ 𝑃(𝑥1

𝜌(1) 
, 𝑥2
𝜌(2) 

, … , 𝑥𝑁
𝜌(𝑁) )

𝜌∈Π

 

is a potential for the game 𝑔 (where 𝑋 is the strategy space). This is because, by (11), for 

𝑥1, 𝑥2, … , 𝑥𝑁 and 𝑦 in 𝑋, 

𝑔(𝑥1, 𝑥2, … , 𝑥𝑁) − 𝑔(𝑦, 𝑥2, … , 𝑥𝑁) = 

=
1

𝑁!
∑ (ℎ𝜌−1(1)(𝑥1

𝜌(1) 
, … , 𝑥𝜌−1(1)

1 , … , 𝑥𝑁
𝜌(𝑁) ) − ℎ𝜌−1(1)(𝑥1

𝜌(1) 
, … , 𝑦𝜌−1(1), … , 𝑥𝑁

𝜌(𝑁) ))

𝜌∈Π

 

=
1

𝑁!
∑ (𝑃(𝑥1

𝜌(1) 
, … , 𝑥𝜌−1(1)

1 , … , 𝑥𝑁
𝜌(𝑁) ) − 𝑃(𝑥1

𝜌(1) 
, … , 𝑦𝜌−1(1), … , 𝑥𝑁

𝜌(𝑁) ))

𝜌∈Π

 

= 𝐹(𝑥1, 𝑥2, … , 𝑥𝑁) − 𝐹(𝑦, 𝑥2, … , 𝑥𝑁). 

Conversely, if 𝑔 has a potential 𝐹, then it follows from Propositions 1, 4 and 5 that the 

function 𝑃 defined by 

𝑃(𝑥) = 𝐹(𝑥, 𝑥, … , 𝑥) 

is a potential for ℎ.  ∎ 

3.2 Potential in population games 
For population games, which represent interactions involving many identical players whose 

individual actions have negligible effects on the other players, the definition of potential 

may be naturally adapted by replacing the increment of the potential with a derivative.  

Definition 8  For a population game 𝑔 with strategy space 𝑋, a continuous function 𝛷:𝑋 ⟶

ℝ is a potential if, for all 𝑥, 𝑦 ∈ 𝑋 and 0 < 𝑝 < 1, the derivative on the left-hand side of the 

following equality exists and the equality holds: 
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ⅆ

ⅆ𝑝
𝛷(𝑝𝑥 + (1 − 𝑝)𝑦) = 𝑔(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦). 

It is easy to see that the potential is unique up to an additive constant. 

Example 4  Symmetric 2 × 2 games, viewed as population games. It is easy to check that, for 

every such game, with pure strategies 1 and 2, the function 𝛷 defined (for a mixed strategy 

𝑥 = (𝑥1, 𝑥2), with 𝑥1 + 𝑥2 = 1) by 

𝛷(𝑥) =
1

2
(𝑔(1,1) − 𝑔(2,1))𝑥1

2 +
1

2
(𝑔(2,2) − 𝑔(1,2))𝑥2

2 

satisfies (26) and is thus a potential. Note that, unlike the bivariate function 𝐹 defined in 

(25), 𝛷 has a single strategy as an argument. The two functions are however connected by 

the identity 𝛷(𝑥) = 1/2  𝐹(𝑥, 𝑥). 

The term potential is borrowed from physics, where it refers to a scalar field whose gradient 

gives the force field. Force is analogous to incentive here. The analogy can be taken one step 

further by presenting the payoff function 𝑔 as the differential of the potential 𝛷. This 

requires 𝛷 to be defined not only on the strategy space 𝑋 (which by definition is a convex 

set in a linear topological space) but on its cone 𝑋̂, which is the collection of all space 

elements that can be written as a strategy 𝑥 multiplied by a positive number 𝑡. For example, 

if strategies are probability measures, 𝛷 needs to be defined for (or extended to) all positive, 

non-zero finite measures. The differential of the potential is then defined as its directional 

derivative, that is, as the function ⅆ𝛷: 𝑋̂2 ⟶ℝ given by  

ⅆ𝛷(𝑥, 𝑦̂) =
ⅆ

ⅆ𝑡
|
𝑡=0+

𝛷(𝑡𝑥 + 𝑦̂) 

(where the direction is specified by the first argument 𝑥). The differential exists if the (right) 

derivative in (28) exists for all 𝑥, 𝑦̂ ∈ 𝑋̂. 

Lemma 3  Let 𝛷: 𝑋̂ ⟶ ℝ be a continuous function on the cone of a convex set 𝑋 in a linear 

topological space. If the differential ⅆ𝛷: 𝑋̂2 ⟶ℝ exists and is continuous in the second 

argument, then it is necessarily linear in the first argument and satisfies 

ⅆ

ⅆ𝑝
𝛷(𝑝𝑥 + (1 − 𝑝)𝑦) = ⅆ𝛷(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − ⅆ𝛷(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦), 

𝑥, 𝑦 ∈ 𝑋, 0 < 𝑝 < 1. 

Proof (an outline). Using elementary arguments, the following can be established. 

FACT. A continuous real-valued function defined on an open real interval is continuously 

differentiable if and only if it has a continuous right derivative.  

Suppose that ⅆ𝛷 satisfies the condition specified by the lemma. Replacing 𝑦̂ in (28) with 

𝑝𝑥 + 𝑦̂ gives 

ⅆ𝛷(𝑥, 𝑝𝑥 + 𝑦̂) =
ⅆ

ⅆ𝑡
|
𝑡=𝑝+

𝛷(𝑡𝑥 + 𝑦̂), 𝑥, 𝑦̂ ∈ 𝑋̂, 𝑝 ≥ 0. 

By the above Fact and the continuity properties of 𝛷 and ⅆ𝛷, for 0 < 𝑝 < 1 the right 

derivative in (30) is actually a two-sided derivative and it depends continuously on 𝑦̂. 

Therefore, the right-hand side of (29) is equal to the expression 

(26) 

(27) 

(28) 

(29) 

(30) 
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ⅆ

ⅆ𝑡
|
𝑡=𝑝

𝛷(𝑡𝑥 + (1 − 𝑝)𝑦) −
ⅆ

ⅆ𝑡
|
𝑡=1−𝑝

𝛷(𝑝𝑥 + 𝑡𝑦), 

which by the chain rule is equal to the derivative on the left-hand side. Hence, (29) holds. 

The fact that the right derivative in (30) is actually a two-sided derivative also implies that, 

for 𝑡 ≥ 0,  

∫ ⅆ𝛷(𝑥, 𝑝𝑥 + 𝑦̂) ⅆ𝑝
𝑡

0

= 𝛷(𝑡𝑥 + 𝑦̂) − 𝛷(𝑦̂), 𝑥, 𝑦̂ ∈ 𝑋̂. 

This result, used twice, gives that for 𝜆, 𝑡 > 0 

∫ (ⅆ𝛷(𝑧̂, 𝑝𝑧̂ + 𝜆𝑡𝑥 + 𝑦̂) + ⅆ𝛷(𝑥, 𝑝𝑥 + 𝑦̂)) ⅆ𝑝
𝜆𝑡

0

 

= 𝛷(𝜆𝑡𝑧̂ + 𝜆𝑡𝑥 + 𝑦̂) − 𝛷(𝜆𝑡𝑥 + 𝑦̂) + 𝛷(𝜆𝑡𝑥 + 𝑦̂) − 𝛷(𝑦̂) 

= 𝛷(𝑡(𝜆𝑧̂ + 𝜆𝑥) + 𝑦̂) − 𝛷(𝑦̂), 𝑥, 𝑦̂, 𝑧̂ ∈ 𝑋̂. 

Dividing the right- and left-hand sides by 𝑡 and taking the limit 𝑡 → 0 gives the identity 

𝜆 ⅆ𝛷(𝑧̂, 𝑦̂) + 𝜆 ⅆ𝛷(𝑥, 𝑦̂) = ⅆ𝛷(𝜆𝑧̂ + 𝜆𝑥, 𝑦̂), 𝑥, 𝑦̂, 𝑧̂ ∈ 𝑋̂. 

Since the identity holds for all 𝜆 > 0, it proves that ⅆ𝛷 is linear in the first argument. ∎ 

Lemma 3 immediately gives the following proposition, which may also be interpreted as an 

alternative definition of potential in population games.12 While this definition is not as 

general as Definition 8, it is more familiar. In particular, the definition of potential in 

Sandholm (2015) is a special case, pertaining to games where the strategies are mixed 

strategies over a finite set of actions, so that the strategy space 𝑋 is the unit simplex in a 

Euclidean space. 

Proposition 7  For a population game 𝑔, let 𝛷: 𝑋̂ ⟶ ℝ be a continuous function on the cone 

of the strategy space 𝑋 such that the differential ⅆ𝛷: 𝑋̂2 ⟶ℝ exists and is continuous in 

the second argument. If  

ⅆ𝛷(𝑥, 𝑦) = 𝑔(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑋, 

then the restriction of 𝛷 to 𝑋 is a potential for 𝑔.  

As for symmetric and asymmetric potential games, potential in population games is closely 

linked with the rooted potential. In fact, the next proposition shows that the two are 

essentially equal. This coincidence means that stability and instability (here, in the sense of 

Definition 7) of a strategy 𝑦 are equivalent to 𝑦 being a local extremum point of the 

potential.  

Proposition 8. For a population game 𝑔 with a potential 𝛷, 

𝛷𝑦(𝑥) = 𝛷(𝑥) − 𝛷(𝑦), 𝑥, 𝑦 ∈ 𝑋. 

Proof. Follows from (20) and (26) by integration. ∎ 

 
12 The proposition may also be looked at from the opposite perspective. As it shows, any suitable real-

valued function 𝛷 on a suitable set 𝑋 is a potential for some population game. The payoff function in 

that game is the restriction of ⅆ𝛷 to 𝑋2. By Lemma 3, it is necessarily linear in the first argument. 
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Theorem 4  A strategy 𝑦 in a population game with a potential 𝛷 is stable, weakly stable or 

definitely unstable if and only if 𝑦 is, respectively, a strict local maximum, local maximum or 

strict local minimum point of 𝛷. In the first two cases, 𝑦 is in addition an equilibrium 

strategy. If the potential 𝛷 is strictly concave, then an equilibrium strategy is necessarily a 

strict global maximum point of 𝛷, is globally stable, and is therefore the game’s unique 

stable strategy.  

Proof. The first part of the theorem follows immediately from Proposition 8.  

It follows from (26), in the limit 𝑝 → 0, that the payoff function 𝑔 satisfies 

ⅆ

ⅆ𝑝
|
𝑝=0+

𝛷(𝑝𝑥 + (1 − 𝑝)𝑦) = 𝑔(𝑥, 𝑦) − 𝑔(𝑦, 𝑦) 

for all 𝑥 and 𝑦. If 𝑦 is a local maximum point of 𝛷, then the left-hand side of (31) is 

nonpositive for all 𝑥, which proves that 𝑦 is an equilibrium strategy.  

To prove the last part of the theorem, consider an equilibrium strategy 𝑦 and any other 

strategy 𝑥. The right-, and therefore also the left-, hand side of (31) is nonpositive. If 𝛷 is 

strictly concave, this conclusion implies that the left-hand side of (26) is negative for all 0 <

𝑝 < 1, which proves that 𝑦 is a strict global maximum point of 𝛷. It then follows from the 

first part of the theorem that 𝑦 is globally stable. ∎ 

Since a potential is by definition a continuous function, an immediate corollary of Theorem 4 

is the following result, which concerns the existence of strategies that are at least weakly 

stable.  

Corollary 1  If a population game with a potential 𝛷 has a compact strategy space, then it 

has at least one weakly stable strategy. If in addition the number of such strategies is finite, 

they are all stable.  

4 Comparison with earlier notions of static stability 
The analogy between incentives and physical forces alluded to in the last subsection can be 

extended to a general perspective on rooted potential and stability. Incentives in a game are 

specified by the payoff functions, which at every strategy profile 𝑦 tell how the payoff of 

each player 𝑖 would change as a result of a unilateral deviation: from 𝑥𝑖 to any alternative 

strategy 𝑥𝑖
′. In the special case of a potential game, Eq. (23) expresses these incentives as 

corresponding changes in a single function, the potential 𝑃. This is analogous to a 

conservative force, whose field can be written as the (negative) gradient of a potential. 

Rooted potential corresponds to the general case of a possibly non-conservative force, 

where the work done by the force may be path dependent. This generalization of potential 

still provides useful information about the players’ incentives at and around the root. The 

root is defined as stable if the incentives to move away from it tend to be negative. This kind 

of stability is static in the sense that it does not involve any assumptions about the players’ 

reactions to the incentives. These reactions are not specified by the game itself and would 

therefore require extraneous assumptions concerning dynamics. The physical analog is the 

static stability of a system that is at an equilibrium state. Being at equilibrium means that 

there is no (net) force pushing the system towards a different state. Stability differs in also 

considering the forces acting at states that are (usually, only slightly) different from the one 

under consideration and, roughly speaking, requiring that these forces push the system in 

(31) 
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the direction of that state. For example, a ball at the bottom of a pit is stable but one at the 

top of a hill is not. In both cases, the net force acting on the ball vanishes, but any 

displacement would result in a non-zero force that is directed towards the equilibrium point 

in the first case and away from it in the second case. This description is static rather than 

kinetic and therefore does not require invoking such concepts as inertia and Newton’s 

second law, which concern dynamics.    

Static stability in games may be novel as a general concept but is hardly new in content. In 

fact, as shown below, a number of well-established concepts in game theory fall into this 

category. These concepts are not all as generally applicable as stability in the sense of this 

paper is, in that they refer to structures on strategy spaces or payoff functions that exist only 

in certain classes of games. This raises the question of the relations between these “native” 

notion of static stability and the general one proposed here. Specifically, the question is 

whether the former are equivalent to the stability concept obtained by restricting to the 

class of games under consideration the general Definition 2, 4 or 7 (for asymmetric, 

symmetric or population games, respectively). To the extent that they exist, such 

equivalences allow viewing these earlier notions of static stability as special cases of this 

paper’s stability, thus elevating the later to the status of a unifying notion which turns static 

stability from a general idea to a concrete universal concept.   

4.1 Risk dominance 
In every symmetric or population game, every isolated strategy is trivially stable. Therefore, 

if the strategy space 𝑋 has the discrete topology, that is, all singletons are open sets, then all 

strategies are stable. The definition of stability is therefore of interest only for games with 

non-discrete strategy spaces. This category includes games with a finite number of strategies 

where the topology on 𝑋 is the trivial one, so that stability and definite instability mean 

global stability and definite instability. The simplest nontrivial such game is a finite 

symmetric two-player game with only two strategies, for example, the game with payoff 

matrix  
 𝑎 𝑏
𝑎
𝑏

(
3 4
1 5

)
 . 

Here, both strategies are equilibrium strategies. Strategy 𝑎 is globally stable and strategy 𝑏 is 

globally definitely unstable, because (using the form (9) of the stability condition) 

5 − 4 + 1 − 3 < 0 < 3 − 1 + 4 − 5. 

The two inequalities, which are obviously just rearrangements of one another, have an 

additional meaning. Namely, they express the fact that (𝑎, 𝑎) is the risk dominant 

equilibrium (Harsanyi and Selten 1988). It is not difficult to see that this coincidence of 

global stability and risk dominance holds in general – it is not a special property of the 

payoffs in this example.   

Proposition 9. In a finite symmetric two-player game with two strategies, an equilibrium 

strategy 𝑦 is globally stable if and only if the equilibrium (𝑦, 𝑦) is risk dominant.  

The risk dominant equilibrium strategy is the (unique) globally stable strategy not only in the 

finite game itself but also in its mixed extension, where mixed strategies are allowed. This is 

because the necessary and sufficient condition for a pure strategy 𝑦 to be a globally stable 

equilibrium strategy is the same in both games. The condition is that inequality (10) holds for 
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all 𝑥 ≠ 𝑦 and 0 < 𝑝 ≤ 1/2 (with 𝑔 denoting both the payoff function in the finite game and 

that in the mixed extension, which is the bilinear extension of the first function). In the finite 

game, the only strategy 𝑥 ≠ 𝑦 is the other pure strategy, 𝑧. In the mixed extension, 𝑥 can be 

any convex combination of 𝑦 and 𝑧 other than 𝑧 itself. However, it follows easily from the 

bilinearity of 𝑔 that such a convex combination satisfies (10) for all 0 < 𝑝 ≤ 1/2 if and only 

if 𝑧 does so.   

Where a finite symmetric two-player game differ from its the mixed extension is in the 

natural topology on the strategy space 𝑋. In the mixed extension, 𝑋 is in effect the unit 

interval, for which the natural topology is the standard topology, not the trivial one. Stability 

with respect to the standard topology is a weaker condition than global stability. In 

particular, it follows from Theorem 6 below that if the two pure strategies are strict 

equilibrium strategies (as they are in the above example), then in the mixed extension they 

are both stable.  

4.2 Local superiority 
Another notion of static stability in symmetric and population games, which is similar to 

stability in being a local condition, is local superiority (or strong uninvadability; Bomze 1991).  

Definition 9  A strategy 𝑦 in a symmetric 𝑁-player game or population game 𝑔 is locally 

superior if it has a neighborhood where for every strategy 𝑥 ≠ 𝑦 

𝑔(𝑦, 𝑥, … , 𝑥) > 𝑔(𝑥, 𝑥, … , 𝑥). 

Local superiority differs from the strict equilibrium condition is that, whereas the strict 

version of inequality (6) expresses a disincentive to be the first player to switch from 𝑦 to an 

alternative strategy 𝑥, inequality (32) expresses a player’s disincentive to be the last to do 

so. In the former case, all the other players are using 𝑦, and in the latter, they all use 𝑥. 

Stability differs from both concepts in also considering all the intermediate cases, in which 

some of the other players play 𝑥 and some play 𝑦. This difference means that even a locally 

superior strict equilibrium strategy is not necessarily stable. Consider, for example, the finite 

symmetric three-player game where the players have to choose between playing 𝐿, which 

gives 1, and playing 𝑅, which gives 2 or −2 if the number of players choosing it is odd or 

even, respectively. Strategy 𝑅 is a strict equilibrium strategy and is locally superior, yet it is 

definitely unstable because 𝐹𝑅(𝐿) = (−1) + 3 + (−1) > 0.  

The general rule that local superiority does not imply stability have some notable 

exceptions. For equilibrium strategies in symmetric two-player games, the implication does 

hold, because summing the bivariate versions of inequalities (6) and (32) gives (9). Local 

superiority implies stability also in a large class of population games, which includes the 

“classical” population games mentioned in Footnote 11. 

Proposition 10  In a population game where the payoff function 𝑔 is linear in the first 

argument, every locally superior strategy 𝑦 is stable.  

Proof. Let 𝑈 be any neighborhood of a strategy 𝑦. By basic properties of linear topological 

space, the mapping (𝑝, 𝑥) ↦ 𝑝𝑥 + (1 − 𝑝)𝑦 is continuous. For any 0 ≤ 𝑝0 ≤ 1, it maps 

(𝑝0, 𝑦) to an element of 𝑈 (namely, 𝑦). Therefore, there is a neighborhood 𝑉(𝑝0) of 𝑝0 in 

[0,1] and a neighborhood 𝑊(𝑝0) of 𝑦 in the strategy space such that 𝑝𝑥 + (1 − 𝑝)𝑦 ∈ 𝑈 for 

all 𝑝 ∈ 𝑉(𝑝0) and 𝑥 ∈ 𝑊(𝑝0). As [0,1] is compact, there is a finite set of points in this 

interval such that the corresponding 𝑉’s cover the interval. The intersection of the 

(32) 
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corresponding 𝑊’s is a sub-neighborhood of 𝑈 where every 𝑥 satisfies 𝑝𝑥 + (1 − 𝑝)𝑦 ∈ 𝑈 

for all 0 ≤ 𝑝 ≤ 1. It follows from this finding that, if 𝑦 is locally superior, then it has a 

neighborhood where for every 𝑥 ≠ 𝑦   

1

𝑝
(𝑔(𝑝𝑥 + (1 − 𝑝)𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦)) < 0 

for all 0 < 𝑝 ≤ 1. If 𝑔 is linear in the first argument, then the expression on the left-hand 

side of the inequality is equal to the integrand in (20), and therefore the integral is negative, 

that is, 𝛷𝑦(𝑥) < 0.  ∎ 

In both exceptions mentioned above, where local superiority does imply stability, the 

converse does not generally hold. Indeed, it is shown in Section 4.4 below (Example 6 and 

the paragraph following it) that, in symmetric two-player games and in population games 

with bilinear payoff functions, even a globally stable strict equilibrium strategy is not 

necessarily locally superior.  

Another class of games where local superiority implies stability is the mixed extensions of 

finite symmetric 𝑁-player games. Here, too, the converse does not generally hold. However, 

it does hold, and the two conditions are therefore equivalent, in the two-player case (𝑁 =

2), which is the symmetric 𝑛 × 𝑛 games. (Note that these games are also a special case of 

the two previous exceptions.) These results are proved in Section 4.3. 

Local superiority can be naturally extended to the asymmetric case by defining a strategy 

profile 𝑦 in an asymmetric game ℎ as locally superior when it has that property as a strategy 

in the game obtained by symmetrizing ℎ. It is, however, not difficult to see that this 

definition has a simple direct formulation. It is equivalent to the condition that, when the 

players move one-by-one from 𝑦 to any nearby strategy profile 𝑥, the last mover on average 

loses.  

Definition 10  A strategy profile 𝑦 in an asymmetric 𝑁-player game ℎ is locally superior if it 

has a neighborhood where for every strategy profile 𝑥 ≠ 𝑦 

1

𝑁
∑(ℎ𝑖(𝑥) − ℎ𝑖( 𝑥 ∣∣ 𝑦𝑖 ))

𝑁

𝑖=1

< 0. 

As indicated (see Section 2), a stable strategy profile in an asymmetric game is necessarily a 

strict local equilibrium but not conversely. Thus, the condition that the first mover to any 

nearby strategy profile is harmed by the move is weaker than stability. As it turns out, local 

superiority, which concerns the last mover, is a stronger condition than stability.  

Proposition 11  In asymmetric 𝑁-player games, every locally superior strategy profile is 

stable but not conversely. 

Proof. A locally superior strategy profile 𝑦 has a rectangular neighborhood where inequality 

(33) holds for all 𝑥 ≠ 𝑦. In that neighborhood, a similar inequality holds with 𝑥 replaced by 

𝑦 ∣ 𝑥𝑆, for any set of players 𝑆 such that the strategy profile 𝑦 ∣ 𝑥𝑆 is different from 𝑦. 

Division by (𝑁−1|𝑆|−1
) and summation over all nonempty sets 𝑆 give 

0 > ∑
1

(𝑁−1|𝑆|−1)

1

𝑁
∑(ℎ𝑖( 𝑦 ∣∣ 𝑥𝑆 ) − ℎ𝑖( 𝑦 ∣ 𝑥𝑆∖{𝑖} ))

𝑖∈𝑆𝑆≠∅

 

(33) 
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=∑
1

(𝑁|𝑆|)

1

|𝑆|
∑ℎ𝑖( 𝑦 ∣∣ 𝑥𝑆 )

𝑖∈𝑆𝑆≠∅

−∑∑
1

( 𝑁−1|𝑆∖{𝑖}|)

1

𝑁
ℎ𝑖( 𝑦 ∣ 𝑥𝑆∖{𝑖} )

𝑆
𝑖∈𝑆

𝑖

 

=∑
1

(𝑁|𝑆|)
ℎ̅𝑆( 𝑦 ∣∣ 𝑥𝑆 )

𝑆

−∑∑
1

(𝑁−1|𝑆| )

1

𝑁
ℎ𝑖( 𝑦 ∣∣ 𝑥𝑆 )

𝑆
𝑖∉𝑆

𝑖

= ℋ(𝑥, 𝑦) −∑
1

(𝑁|𝑆|)
ℎ̅𝑆∁( 𝑦 ∣∣ 𝑥𝑆 )

𝑆

 

= ℋ(𝑥, 𝑦) −ℋ(𝑦, 𝑥), 

which by Lemma 1 proves that 𝑦 is stable.  

Example 1 shows that even global stability is not a sufficient condition for local superiority. 

In the two-player game with payoff functions (4), the strict equilibrium 𝑦 = (0,0) is globally 

stable but it is not locally superior because the left-hand side of (33) is equal to the 

expression −𝑥1
2/2 + 𝑥1𝑥2 − 𝑥2

2/4, which is positive if 𝑥1 = 𝑥2 ≠ 0. ∎ 

An important class of games in which the converse in Proposition 11 does hold is mixed 

extensions of finite asymmetric games. These asymmetric 𝑁-player games are the 

multiplayer generalizations of bimatrix games. The strategy space 𝑋𝑖  of each player 𝑖 is the 

unit simplex in a Euclidean space ℝ𝑛𝑖 and the payoff function ℎ𝑖 is multilinear. Strategies are 

interpreted as mixed strategies, that is, as probability vectors that assign probabilities to the 

player’s possible actions in the underlying finite game. The set of all actions that are 

assigned positive probability is the support of the strategy, and a strategy is pure or 

completely mixed if its support contains only one action or all actions, respectively. 

Theorem 5  In an asymmetric 𝑁-player game ℎ that is the mixed extension of a finite game, 

the following properties of a strategy profile are equivalent: 

(i) The strategy profile is stable.  

(ii) The strategy profile is locally superior. 

(iii) The strategy profile is a strict equilibrium. 

Proof. (i) ⟹ (iii). If a strategy profile 𝑦 is stable, then for every player 𝑖 inequality (3) holds 

for every strategy 𝑥𝑖 ≠ 𝑦𝑖  in some neighborhood of 𝑦𝑖. Therefore, for all 𝑥𝑖 ≠ 𝑦𝑖 , a similar 

inequality in which 𝑥𝑖 is replaced with 𝜖𝑥𝑖 + (1 − 𝜖)𝑦𝑖  holds for sufficiently small 𝜖 > 0.13 

However, by the linearity of ℎ𝑖 in player 𝑖’s own strategy, that inequality is actually 

equivalent to (3), which proves that 𝑦 is a strict equilibrium.  

(iii) ⟹ (ii). Suppose that 𝑦 is a strict equilibrium, so that (3) holds for all 𝑖 and 𝑥𝑖 ≠ 𝑦𝑖. For 

each player 𝑖, let 𝑍𝑖  be the collection of all strategies whose support does not include that of 

𝑦𝑖  (in other words, strategies that have at least one zero component that is nonzero in 𝑦𝑖). 

This is a compact subset of 𝑋𝑖  that does not include 𝑦𝑖, and therefore the expression on the 

left-hand side of (3) is bounded away from zero for 𝑥𝑖 ∈ 𝑍𝑖. Thus, there is some 𝛿𝑖 > 0 such 

that 

ℎ𝑖(𝑦) − ℎ𝑖( 𝑦 ∣∣ 𝑧𝑖 ) ≥ 𝛿𝑖 , 𝑧𝑖 ∈ 𝑍𝑖 . 

It follows, since 𝑍𝑖  is compact, that there is a neighborhood of 𝑦 where for every strategy 

profile 𝑥 

ℎ𝑖(𝑥) − ℎ𝑖( 𝑥 ∣∣ 𝑧𝑖 ) ≥ 𝛿𝑖/2, 𝑧𝑖 ∈ 𝑍𝑖 . 

 
13 A condition holds for “sufficiently small” 𝜖 > 0 if there is some 𝛿 > 0 such that the condition holds 
for all 0 < 𝜖 < 𝛿.  

(34) 
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For every strategy 𝑥𝑖 ≠ 𝑦𝑖  there is a unique 0 < ϵ𝑖 ≤ 1 (which depends on 𝑥𝑖) such that for 

some (indeed, a unique) 𝑧𝑖 ∈ 𝑍𝑖  

𝑥𝑖 = (1 − ϵ𝑖)𝑦𝑖 + ϵ𝑖𝑧𝑖. 

By the linearly of ℎ𝑖 in the 𝑖th coordinate, this equation and (34) imply that  

(1 − ϵ𝑖)(ℎ𝑖(𝑥) − ℎ𝑖( 𝑥 ∣∣ 𝑦𝑖 )) = ϵ𝑖(ℎ𝑖( 𝑥 ∣∣ 𝑧𝑖 ) − ℎ𝑖(𝑥)) < 0. The conclusion proves that 

there is a neighborhood of 𝑦 where (33) holds for every 𝑥 ≠ 𝑦. 

(ii) ⟹ (i). A special case of Proposition 11. ∎ 

4.3 Evolutionary stability 
In symmetric two-player games and population games, by far the best-known kind of static 

stability is evolutionary stability (Maynard Smith 1982). The following formulation is 

applicable to games where the strategy space is endowed with a linear structure, so that 

convex combinations of strategies are well defined.  

Definition 11  A strategy 𝑦 in a symmetric two-player game or population game 𝑔 is an 

evolutionarily stable strategy (ESS) or a neutrally stable strategy (NSS) if, for every strategy 

𝑥 ≠ 𝑦, for sufficiently small 𝜖 > 0 the inequality   

𝑔(𝑦, 𝜖𝑥 + (1 −  𝜖)𝑦) > 𝑔(𝑥, 𝜖𝑥 + (1 −  𝜖)𝑦) 

or a similar weak inequality, respectively, holds. An ESS or NSS with uniform invasion 

barrier satisfies the stronger condition obtained by interchanging the two logical quantifiers: 

for sufficiently small 𝜖 > 0 (which cannot vary with 𝑥), (35) or a similar weak inequality, 

respectively, holds for all 𝑥 ≠ 𝑦. 

In population games, the difference between stability in the sense of ESS and in the sense of 

Definition 7 boils down to a different meaning of proximity between population strategies. 

The definition of ESS may be interpreted as reflecting the view that a population strategy is 

close to 𝑦 when another strategy 𝑥 replaces 𝑦 in a small subpopulation, of size 𝜖. In 

Definition 7, by contrast, the subpopulation to which 𝑥 applies need not be small but 𝑥 itself 

is assumed close to 𝑦.   

The kind of games to which the concept of evolutionary stability is most often applied is 

symmetric 𝑛 × 𝑛 games, in which the payoff function 𝑔 can be expressed by a square 

(payoff) matrix 𝐴 of these dimensions. With strategies written as column vectors, 

𝑔(𝑥, 𝑦) = 𝑥T𝐴𝑦. 

The game may be viewed either as a symmetric two-player game or as a population game. In 

the former case, the relevant definition of stability is Definition 4, and in the latter, 

Definition 7. However, as shown in Section 2.4, the linearity of 𝑔 in the second argument 

means that the two definitions of stability actually coincide, and similarly for weak stability 

and definite instability. Moreover, as the next two results show, stability is also equivalent to 

evolutionary stability and to local superiority. It also follows from these results that, in 

symmetric 𝑛 × 𝑛 games, every (even weakly) stable strategy is an equilibrium strategy and 

every strict equilibrium strategy is stable.  

The first result is rather well known (Bomze and Pötscher 1989; van Damme 1991, Theorem 

9.2.8; Weibull 1995, Propositions 2.6 and 2.7; Bomze and Weibull 1995).  

(35) 
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Proposition 12  For a strategy 𝑦 in a symmetric 𝑛 × 𝑛 game 𝑔, the following conditions are 

equivalent: 

(i) Strategy 𝑦 is an ESS. 

(ii) Strategy 𝑦 is an ESS with uniform invasion barrier. 

(iii) Local superiority: for every strategy 𝑥 ≠ 𝑦 in some neighborhood of 𝑦,  

𝑔(𝑦, 𝑥) > 𝑔(𝑥, 𝑥). 

(iv) For every 𝑥 ≠ 𝑦, the (weak) inequality 𝑔(𝑦, 𝑦) ≥ 𝑔(𝑥, 𝑦) holds (which means 

that 𝑦 is an equilibrium strategy), and if it holds as equality, then (36) also holds. 

An NSS is characterized by similar equivalent conditions in which the strict inequality (36) is 

replaced by a weak inequality.  

A completely mixed equilibrium strategy 𝑦 in a symmetric 𝑛 × 𝑛 game 𝑔 is said to be 

definitely evolutionarily unstable (Weissing 1991) if the reverse of inequality (36) holds for all 

𝑥 ≠ 𝑦.  

Theorem 6  A strategy in a symmetric 𝑛 × 𝑛 game 𝑔 is stable or weakly stable if and only if it 

is an ESS or an NSS, respectively. A completely mixed equilibrium strategy is definitely 

unstable if and only if it is definitely evolutionarily unstable. 

Proof. The inequality in condition (iv) in Proposition 12 and inequality (36) in condition (iii) 

together imply (9), and the same is true with the strict inequalities (36) and (9) both replaced 

by their weak versions. This proves that a sufficient condition for stability or weak stability of 

a strategy 𝑦 is that it is an ESS or an NSS, respectively. For a completely mixed equilibrium 

strategy 𝑦, the inequality in (iv) automatically holds as equality for all 𝑥, and therefore a 

similar argument proves that a sufficient condition for definite instability of 𝑦 is that it is 

definitely evolutionarily unstable. 

In remains to prove necessity. For a stable strategy 𝑦, inequality (9) holds for all nearby 

strategies 𝑥 ≠ 𝑦. Therefore, 𝑦 has the property that, for every strategy 𝑥 ≠ 𝑦, for sufficiently 

small 𝜀 > 0 

 𝑔(𝜀𝑥 + (1 − 𝜀)𝑦, 𝜀𝑥 + (1 − 𝜀)𝑦) − 𝑔(𝑦, 𝜀𝑥 + (1 − 𝜀)𝑦)

+ 𝑔(𝜀𝑥 + (1 − 𝜀)𝑦, 𝑦) − 𝑔(𝑦, 𝑦) < 0. 

It follows from the bilinearity of the payoff function that (37) is equivalent to 

(2 − 𝜀)(𝑔(𝑦, 𝑦) − 𝑔(𝑥, 𝑦)) + 𝜀(𝑔(𝑦, 𝑥) − 𝑔(𝑥, 𝑥)) > 0. 

Therefore, the above property of 𝑦 is equivalent to condition (iv) in Proposition 12, which 

proves that 𝑦 is an ESS. Similar arguments show that a weakly stable strategy is an NSS and 

that a definitely unstable completely mixed equilibrium strategy is definitely evolutionarily 

unstable. In the first case, the proof needs to be modified only by replacing the strict 

inequalities in (36), (37) and (38) by weak inequalities, and in the second case (in which the 

first term in (38) vanishes for all 𝑥), they need to be replaced by the reverse inequalities. ∎ 

The theorem is illustrated by the following result. 

Corollary 2  In a symmetric 2 × 2 game 𝑔, with pure strategies 1 and 2, a (mixed) strategy 

𝑦 = (𝑦1, 𝑦2) is an ESS or an NSS if and only if it is, respectively, a strict local maximum or 

local maximum point of the quadratic function 𝛷 defined by (27). 

(36) 

(37) 

(38) 
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Proof. Example 4 shows that 𝛷 is a potential for 𝑔, when the latter is viewed as a population 

game. The corollary therefore follows from Theorems 4 and 6. An alternative proof uses 

Example 3, which presents the bivariate function 𝐹 defined by (25) as a potential for 𝑔, 

when viewed as a symmetric two-player game. As 𝐹(𝑥, 𝑥) = 2𝛷(𝑥), the corollary follows 

from Theorems 3 and 6. ∎ 

The corollary and its proof shed light on a qualitative difference between symmetric 2 × 2 

games, which are potential games, and 3 × 3 or larger games, which are not generally so. 

The former always have at least one NSS, as every global maximum point of 𝛷 is one (see 

also Corollary 1). For the latter, it is well known that this is not so. One counterexample is a 

variant of the rock–paper–scissors game where a draw yields a small positive payoff for both 

players (see Maynard Smith 1982, p. 20). 

Comparison of Theorem 6 with Theorem 5 shows a qualitative difference between 

symmetric 𝑛 × 𝑛 games and the corresponding asymmetric games, which are the bimatrix, 

or 𝑚 × 𝑛, games. In the former, the stable strategies are the evolutionarily stable strategies. 

In the latter, a strategy profile is stable if and only if it is a strict (hence, pure) equilibrium. By 

Theorem 1 in Section 2.1.1, the strict equilibria in a bimatrix game ℎ are also the stable 

strategies in the symmetric game 𝑔 obtained by symmetrizing ℎ. This conclusion is similar, 

and closely related, to the well-known fact that a strategy in 𝑔 is an ESS if and only if it is a 

strict equilibrium in ℎ (Selten 1980). The similarity reflects (indeed, it proves) the fact that, in 

the symmetric game obtained by symmetrizing a bimatrix game, a strategy is stable if and 

only if it is an ESS. Thus, in this respect such a game is similar to a symmetric 𝑛 × 𝑛 game, 

although it is generally not an 𝑛 × 𝑛 game, for any 𝑛.  

4.3.1 Multiplayer games 
Extending the results obtained in the two-player case (𝑛 × 𝑛 games) to the mixed extensions 

of finite symmetric 𝑁-player games requires a corresponding multiplayer generalization of 

ESS. That is, evolutionary stability needs to be defined for any symmetric 𝑁-player game 𝑔 

with a strategy space 𝑋 that is the unit simplex in a Euclidean space and a multilinear payoff 

function. By Proposition 3, stability of a strategy 𝑦 in such a game is equivalent to stability of 

𝑦 in the population game 𝑔̅ defined by (19), and the same is easily seen to be true for local 

superiority. Therefore, a natural way to define evolutionary stability is to require it to have a 

similar property. This requirement yields the following natural extension of Definition 11.  

Definition 12  A strategy 𝑦 in the mixed extension 𝑔 of a finite symmetric 𝑁-player game is 

an evolutionarily stable strategy (ESS) if, for every strategy 𝑥 ≠ 𝑦, for sufficiently small 𝜖 > 0 

the strategy 𝑥𝜖 =  𝜖𝑥 + (1 −  𝜖)𝑦 satisfies  

𝑔(𝑦, 𝑥𝜖 , … , 𝑥𝜖) > 𝑔(𝑥, 𝑥𝜖 , … , 𝑥𝜖). 

An ESS with uniform invasion barrier satisfies the stronger condition that, for sufficiently 

small 𝜖 > 0, inequality (39) holds for all 𝑥 ≠ 𝑦.  

Note that for the existence of a uniform invasion barrier it suffices that the last condition 

holds for some 0 < 𝜖 < 1, as this automatically implies the same for any smaller 𝜖.  

An equivalent definition of ESS is given by a generalization of condition (iv) in Proposition 12.  

Lemma 4 (Broom et al. 1997; see also the proof of Lemma 5 below) A strategy 𝑦 in the 

mixed extension 𝑔 of a finite symmetric 𝑁-player game is an ESS if and only if, for every  

𝑥 ≠ 𝑦, at least one of the 𝑁 terms in (7) is not zero and the first such term is negative. In 

(39) 
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particular, an ESS is necessarily an equilibrium strategy (as the first term in (7) must be 

nonpositive). 

Unlike in the special two-player case (Proposition 12), in the mixed extension of a finite 

symmetric multiplayer game not every ESS has a uniform invasion barrier. It is easy to see 

that a sufficient condition for the existence of such a barrier is that the ESS is locally 

superior, and this condition is in fact also necessary (Bomze and Weibull 1995, Theorem 3; 

Lemma 6 below). This raises the question of how stability (in the sense of Definition 4) 

compares with the two nonequivalent versions of ESS. As the following theorem shows, it is 

equivalent to neither of them, and instead occupies an intermediate position: weaker than 

one and stronger than the other. The two ESS conditions are also comparable with the 

stronger stability conditions derived from λ-stability (Section 2.3). In fact, two of the latter 

turn out to be equivalent to ESS with uniform invasion barrier.  

Theorem 7. In the mixed extension 𝑔 of a finite symmetric game with 𝑁 ≥ 2 players, the 

following implications and equivalences among the possible properties of a strategy 𝑦 hold:  

symmetrically-stable ⟹ dependently-stable ⟺ independently-stable 

⟺ locally superior ⟺ ESS with uniform invasion barrier ⟹ stable ⟹ ESS. 

Each of the three implications is actually an equivalence in the two-player case but not in 

general. All the properties imply that 𝑦 is an equilibrium strategy.  

The proof of Theorem 7 uses the next two lemmas, which hold for every game 𝑔 as in the 

theorem.  

Lemma  5  For a nonnegative vector 𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑁) with 𝜆𝑁 > 0, every 𝜆-stable strategy 

𝑦 is an ESS.  

Proof. For distinct strategies 𝑥 and 𝑦 and 0 < 𝜖 < 1, 

∑𝜆𝑘 (𝑔(𝑥𝜖 , 𝑥𝜖 , … , 𝑥𝜖⏟    ,
𝑘−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑘 times

) − 𝑔(𝑦, 𝑥𝜖 , … , 𝑥𝜖⏟    ,
𝑘−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑘 times

))

𝑁

𝑘=1

 

=∑𝜆𝑘  𝜖∑𝐵𝑗−1,𝑘−1(ϵ)(𝑔(𝑥, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

))

𝑘

𝑗=1

𝑁

𝑘=1

 

=∑(∑(
𝑘−1

𝑗−1
) (1 − ϵ)𝑘−𝑗𝜆𝑘

𝑁

𝑘=𝑗

)

𝑁

𝑗=1

(𝑔(𝑥, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

)) ϵ𝑗 . 

The last sum is negative for sufficiently small 𝜖 > 0 if and only if at least one of its 𝑁 terms is 

not zero and the first such term (that is, the nonzero term ending with the smallest power of 

𝜖) is negative. Observe that the sign of each term is completely determined by the sign of 

the second expression in parentheses (the difference). The first expression (the inner sum) is 

necessarily positive, as by assumption 𝜆𝑁 > 0. This observation proves that if 𝑦 is 𝜆-stable, 

then the condition in Lemma 4 holds. Parenthetically, note that in the special case 𝜆𝑁 = 1 

the observation also proves Lemma 4 itself. ∎ 

The next lemma uses the following terminology. A strategy 𝑦 is conditionally locally superior 

if it has a neighborhood where inequality (32) holds for every strategy 𝑥 ≠ 𝑦 that satisfies 

the reverse of inequality (6). 
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Lemma 6  For any 0 < 𝑝 < 1, the following properties of an equilibrium strategy 𝑦 are 

equivalent: 

(i) Strategy 𝑦 is locally superior. 

(ii) Strategy 𝑦 is conditional locally superior.  

(iii) Strategy 𝑦 is λ-stable with λ = (λ1, λ2, … , λ𝑁) given by (15). 

(iv) Strategy 𝑦 is λ- stable with λ = (λ1, λ2, … , λ𝑁) given by (16). 

(v) Strategy 𝑦 is an ESS with uniform invasion barrier. 

Proof. The implication (i) ⟹ (iii) follows from the fact that inequality (6) (from the 

equilibrium condition) and inequality (32) (local superiority) together imply that, for λ given 

by (15), 

𝐹𝑦
𝜆(𝑥) = (1 − 𝑝)(𝑔(𝑥, 𝑦, … , 𝑦) − 𝑔(𝑦, 𝑦, … , 𝑦)) + 𝑝(𝑔(𝑥, 𝑥, … , 𝑥) − 𝑔(𝑦, 𝑥, … , 𝑥)) < 0. 

The implication (iii) ⟹ (ii) follows from the fact that, if the last inequality holds and the first 

term on its left-hand side is nonnegative, then the second term must be negative.  

To prove that (ii) ⟹ (i), assume that this implication does not hold. The assumption means 

that strategy 𝑦 is not locally superior but is conditionally locally superior, which implies that 

there is a sequence (𝑥𝑘)𝑘≥1 of strategies converging to 𝑦 such that for all 𝑘  

𝑔(𝑦, 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑥𝑘 , 𝑥𝑘 , … , 𝑥𝑘) ≤ 0 

and 

𝑔(𝑦, 𝑦, … , 𝑦) − 𝑔(𝑥𝑘 , 𝑦, … , 𝑦) > 0. 

The last inequality means that, when all the other players use 𝑦, strategy 𝑥𝑘 is not a best 

response. Therefore, the strategy can be presented as  

𝑥𝑘 = 𝛼𝑘𝑧𝑘 + (1 − 𝛼𝑘)𝑤𝑘, 

where 0 < 𝛼𝑘 ≤ 1, 𝑧𝑘 is a strategy whose support includes only pure strategies that are 

not best responses when everyone else uses the equilibrium strategy 𝑦, and 𝑤𝑘 is a strategy 

that is a best response, i.e., 

𝑔(𝑦, 𝑦, … , 𝑦) − 𝑔(𝑤𝑘 , 𝑦, … , 𝑦) = 0. 

Since there are only finitely many pure strategies, there is some 𝛿 > 0 such that for all 𝑘 

𝑔(𝑦, 𝑦, … , 𝑦) − 𝑔(𝑧𝑘 , 𝑦, … , 𝑦) > 2𝛿. 

By (40), (41), (42) and (43), for all 𝑘 

(𝑔(𝑥𝑘 , 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑥𝑘 , 𝑦, … , 𝑦)) − (𝑔(𝑦, 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑦, 𝑦, … , 𝑦)) > 2𝛿𝛼𝑘 . 

As 𝑘 → ∞, the two expressions in parentheses tend to zero, since 𝑥𝑘 → 𝑦. Therefore, 𝛼𝑘 →

0, which by (41) implies that 𝑤𝑘 → 𝑦. Since 𝑦 is conditionally locally superior and (42) holds 

for all 𝑘, for almost all 𝑘 (that is, all 𝑘 > 𝐾, for some integer 𝐾)  

𝑔(𝑦,𝑤𝑘, … , 𝑤𝑘) − 𝑔(𝑤𝑘, 𝑤𝑘 , … , 𝑤𝑘) ≥ 0. 

Therefore, by (41), for almost all 𝑘  

1

𝛼𝑘
(𝑔(𝑤𝑘 , 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑦, 𝑥𝑘 , … , 𝑥𝑘)) 

(40) 

(41) 

(42) 

(43) 
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≤
1

𝛼𝑘
((𝑔(𝑤𝑘 , 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑦, 𝑥𝑘 , … , 𝑥𝑘)) + (1 − 𝛼𝑘)

𝑁−1(𝑔(𝑦,𝑤𝑘, … , 𝑤𝑘) − 𝑔(𝑤𝑘, 𝑤𝑘 , … , 𝑤𝑘))) 

=∑
𝐵𝑗−1,𝑁−1(𝛼𝑘)

𝛼𝑘
(𝑔(𝑤𝑘 , 𝑧𝑘 , … , 𝑧𝑘⏟    ,

𝑗−1 times

𝑤𝑘 , … , 𝑤𝑘⏟      
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑧𝑘 , … , 𝑧𝑘⏟    ,
𝑗−1 times

𝑤𝑘 , … , 𝑤𝑘⏟      
𝑁−𝑗 times

))

𝑁

𝑗=2

, 

where 𝐵𝑗−1,𝑁−1 is defined by (16). The last sum tends to zero as 𝑘 → ∞, since 𝑤𝑘 → 𝑦. 

Therefore, for almost all 𝑘 the expression on the left-hand side is less than 𝛿, so that 

𝑔(𝑤𝑘 , 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑦, 𝑥𝑘 , … , 𝑥𝑘) < 𝛼𝑘𝛿. 

On the other hand, by (43) and since 𝑥𝑘 → 𝑦, for almost all 𝑘 

𝛼𝑘 ((𝑔(𝑦, 𝑦, … , 𝑦) − 𝑔(𝑧𝑘 , 𝑦, … , 𝑦)) + (𝑔(𝑧𝑘 , 𝑦, … , 𝑦) − 𝑔(𝑧𝑘 , 𝑥𝑘 , … , 𝑥𝑘))

+ (𝑔(𝑤𝑘 , 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑤𝑘 , 𝑦, … , 𝑦))) > 𝛼𝑘𝛿. 

By (41) and (42), the left-hand side of the inequality is equal to 𝑔(𝑤𝑘 , 𝑥𝑘 , … , 𝑥𝑘) −

𝑔(𝑥𝑘 , 𝑥𝑘 , … , 𝑥𝑘), which by (40) is less than or equal to  

𝑔(𝑤𝑘, 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑦, 𝑥𝑘 , … , 𝑥𝑘). 

This contradicts (44). The contradiction proves that (ii) ⟹ (i). 

To prove that (i) ⟹ (iv), suppose that 𝑦 is locally superior, which means that it has a convex 

neighborhood 𝑈 where (32) holds for every strategy 𝑥 ≠ 𝑦. The convexity of 𝑈 and the 

linearity of 𝑔 in the first argument imply that, for every 𝑥 ∈ 𝑈 ∖ {𝑦}, the strategy 𝑥𝑝 =  𝑝𝑥 +

(1 −  𝑝)𝑦 satisfies  

𝑔(𝑦, 𝑥𝑝, … , 𝑥𝑝) > 𝑔(𝑥, 𝑥𝑝, … , 𝑥𝑝). 

By the second equality in (21), inequality (45) is equivalent to 𝐹𝑦
𝜆(𝑥) < 0, with 𝜆 =

(𝜆1, 𝜆2, … , 𝜆𝑁) given by (16).   

The proof of the reverse implication (iv) ⟹ (i) is rather similar. As shown, 𝑦 has property (iv) 

if and only if it has a neighborhood 𝑈 such that inequality (45) holds for all strategies 𝑥 ≠ 𝑦 

in 𝑈, equivalently, inequality (32) holds for all 𝑥 ≠ 𝑦 in the set 

𝑈𝑝 = {𝑝𝑧 + (1 − 𝑝)𝑦 ∣∣ 𝑧 ∈ 𝑈 }. 

In this case, 𝑦 is locally superior, since 𝑈𝑝 is also a neighborhood of 𝑦. Indeed, for any 

neighborhood 𝑈 of any strategy 𝑦, {𝑈𝜖}0<𝜖<1 is a base for the neighborhood system of 𝑦 

(see Bomze and Pötscher 1989, Lemma 42; Bomze 1991, Lemma 6).   

The special case 𝑈 = 𝑋 of the last topological fact gives the equivalence (i) ⟺ (v). A strategy 

𝑦 has a neighborhood where (32) holds for every 𝑥 ≠ 𝑦 if and only if it has such a 

neighborhood of the form 𝑋𝜖, for some 0 < 𝜖 < 1. ∎ 

Proof of Theorem 7. By Lemma 5, a strategy that has any of the seven properties in the 

theorem is an ESS, hence (by Lemma 4) an equilibrium strategy. An immediate corollary of 

Lemma 6 is that, for an equilibrium strategy, the properties of dependent- and independent 

stability, local superiority, and ESS with uniform invasion barrier are all equivalent. The 

special case 𝑝 = 1/2 of the same lemma (specifically, of the implication (iii) ⟹ (i)) shows 

that symmetric-stability implies local superiority. Finally, local superiority implies stability. 

(44) 

(45) 
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This is because it follows immediately from Definition 9 that a strategy is locally superior if 

and only if it has this property in the population game 𝑔̅ defined in Example 2. Proposition 3 

gives that the same is true for stability. The implication therefore follows from Proposition 

10 (applied to 𝑔̅).  

With only two players (𝑁 = 2), stability and symmetric-stability are the same, and thus the 

equivalence of all the properties in the theorem follows from the first part of the proof and 

Proposition 12. The counterexamples in Example 5 below (where 𝑁 = 4) complete the 

proof. ∎ 

Example 5  The mixed extension of a finite symmetric four-player game. There are three pure 

strategies, so that the strategy space 𝑋 consists of all probability vectors 𝑥 = (𝑥1, 𝑥2, 𝑥3) 

(with 𝑥1 + 𝑥2 + 𝑥3 = 1). The payoff of a player using strategy 𝑥 against opponents using 

strategies 𝑦 = (𝑦1, 𝑦2, 𝑦3), 𝑧 = (𝑧1, 𝑧2, 𝑧3) and 𝑤 = (𝑤1, 𝑤2, 𝑤3) is given by 

𝑔(𝑥, 𝑦, 𝑧, 𝑤) = ∑ 𝑔𝑖𝑗𝑘𝑙𝑥𝑖𝑦𝑗𝑧𝑘𝑤𝑙

3

𝑖,𝑗,𝑘,𝑙=1

. 

It does not matter which of the other players uses which strategy, since the coefficients 

(𝑔𝑖𝑗𝑘𝑙)𝑖,𝑗,𝑘,𝑙=1
3  that define the game satisfy the symmetry condition 𝑔𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑗′𝑘′𝑙′, for all 𝑖 

and all triplets (𝑗, 𝑘, 𝑙) and (𝑗′, 𝑘′, 𝑙′) that are permutations of one another. There are three 

versions of the game, with different coefficients, as detailed in the following table: 

Coefficient Version 1 Version 2 Version 3 

𝑔2211 −2 −18 −4 
𝑔2221 0 −16 −4 
𝑔3221 4 4 0 
𝑔2331 4 20 4 
𝑔2222 3 −9 −3 
𝑔2332 4 12 2 
𝑔3333 −3 −15 −4 
𝑔2322 4 4 0 

Coefficients that are not listed in the table and cannot be deduced from it by using the 

symmetry condition are zero. In all three versions of the game, the strategy 𝑦 = (1,0,0) is an 

equilibrium strategy, since if all the other players use 𝑦, the payoff is zero regardless of the 

player’s own strategy. However, the stability properties of 𝑦 are different for the three 

versions. 

CLAIM. The equilibrium strategy 𝑦 = (1,0,0) is an ESS in all three versions of the game, but it 

is stable only in versions 2 and 3, ESS with uniform invasion barrier (equivalently, locally 

superior, independently-stable, dependently-stable) only in version 3, and symmetrically-

stable in none of them.  

In view of Theorem 7, to prove the Claim it suffices to show that 𝑦 is: (i) an ESS but not 

stable in version 1, (ii) stable but not independently-stable in version 2, and 

(iii) independently-stable but not symmetrically-stable in version 3.  

In version 1 of the game, the condition that 𝐹𝑦
𝜆(𝑥) (given by (14)) is negative for a strategy 

𝑥 = (𝑥1, 𝑥2, 𝑥3) reads  
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−2𝜆2𝑥2
2 − 4𝜆3(𝑥1𝑥2

2 − 𝑥2
2𝑥3 − 𝑥2𝑥3

2)

− 3𝜆4(2𝑥1
2𝑥2
2 − 4𝑥1𝑥2

2𝑥3 − 4𝑥1𝑥2𝑥3
2 − 𝑥2

4 − 4𝑥2
2𝑥3
2 + 𝑥3

4 − 4𝑥2
3𝑥3) < 0. 

Stability corresponds to 𝜆 = (𝜆1, 𝜆2, 𝜆3, 𝜆4) = (1,1,1,1), for which the inequality simplifies 

to 
7

16
𝑥2
2 < (𝑥2−

3

8
(1 − 𝑥1)

2)2. 

There are strategies 𝑥 arbitrarily close to but different from (1,0,0) for which this inequality 

does not hold. For example, this is so whenever 𝑥2 = (3/8)(1 − 𝑥1)
2 > 0. This proves that 

the equilibrium strategy is not stable. To prove that it is nevertheless an ESS, consider 

inequality (39), which in the present case simplifies to   

2𝑥2
2 < (2𝑥2 − 𝜖(1 − 𝑥1)

2)2. 

For every (fixed) strategy 𝑥 ≠ (1,0,0), this inequality holds for sufficiently small 𝜖 > 0. 

Therefore, (1,0,0) is an ESS.  

In version 2 of the game, for 𝜆 = (1,1,1,1) the condition 𝐹𝑦
𝜆(𝑥) < 0 simplifies to  

−
1

80
𝑥2
2 < (𝑥2−

3

8
(1 − 𝑥1)

2)2. 

This inequality holds for all strategies 𝑥 other than (1,0,0), and therefore the latter is stable. 

However, it is not independently-stable, since for 𝜆 = (1/8,3/8,3/8,1/8) the condition 

𝐹𝑦
𝜆(𝑥) < 0 simplifies to 

1

10
𝑥2
2 < (𝑥2 −

1

4
(1 − 𝑥1)

2)2. 

This inequality does not hold for strategies 𝑥 with 𝑥2 = (1/4)(1 − 𝑥1)
2 > 0, which exist in 

every neighborhood of (1,0,0). 

Finally, in version 3 of the game, for 𝜆 = (1/8 ,3/8,3/8,1/8) the condition 𝐹𝑦
𝜆(𝑥) < 0 

simplifies to  

−𝑥3
4 < 3(4𝑥2 − (𝑥2 + 𝑥3)

2)2. 

This inequality holds for all strategies 𝑥 other than (1,0,0). Therefore, by Lemma 6 (which 

implies that, if (iv) holds for 𝑝 = 1/2, then it holds for all 0 < 𝑝 < 1), (1,0,0) is 

independently-stable. However, it is not symmetrically-stable. There are vectors 𝜆 > 0 

satisfying (17) for which 𝐹𝑦
𝜆(𝑥) ≮ 0 for some strategies 𝑥 arbitrarily close to (1,0,0). For 

examples, for 𝜆 = (1,9,9,1), the condition 𝐹𝑦
𝜆(𝑥) < 0 simplifies to 

24𝑥2
2 −

1

3
𝑥3
4 < (8𝑥2 − (1 − 𝑥1)

2)2. 

For strategies 𝑥 with 𝑥2 = (1/8)(1 − 𝑥1)
2, this inequality is equivalent to (1 − 𝑥1)

4 −

32(1 − 𝑥1)
3 + 384(1 − 𝑥1)

2 − 2048(1 − 𝑥1) > 512. Hence, it does not hold if 𝑥1 is 

sufficiently close to 1. This completes the proof of the Claim. 

The Claim has some significance beyond the present context. The fact that, in version 2 of 

the game, the ESS (1,0,0) does not have a uniform invasion barrier and is not locally 

superior refutes two published results. A theorem of Crawford (1990), which is reproduced 

by Hammerstein and Selten (1994, Result 7), implies that every ESS in the mixed extension of 
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a finite symmetric game has a uniform invasion barrier. However, there is a known error in 

the proof of that theorem (Bomze and Pötscher 1993). Theorem 2 of Bukowski and Miekisz 

(2004) asserts that local superiority and the ESS condition are equivalent even for 𝑁 > 2. 

However, these authors employ a definition of ESS that is different from that used here (and 

in other papers) in that it requires the existence of a uniform invasion barrier. 

4.4 Continuous stability 
Continuous stability (Eshel and Motro 1981; Eshel 2005) is another kind of static stability in 

symmetric and population games, which is applicable when the strategy space is 

unidimensional. 

Definition 13  In a symmetric two-player game or population game 𝑔 with a strategy space 

that is a (finite or infinite) interval in the real line ℝ, an equilibrium strategy 𝑦 is a 

continuously stable strategy (CSS) if it has a neighborhood where, for every strategy 𝑥 ≠ 𝑦, 

for sufficiently small 𝜖 > 0 the inequality  

𝑔((1 −  𝜖)𝑥 + 𝜖𝑦, 𝑥) > 𝑔(𝑥, 𝑥) 

holds while a similar inequality where 𝜖 is replaced by – 𝜖 does not hold. 

In other words, a strategy 𝑦 that satisfies the global condition of being an equilibrium 

strategy14 is a CSS if it also satisfies the local condition (known as m-stability or convergence 

stability; Taylor 1989; Christiansen 1991) that every nearby strategy 𝑥 is not a best response 

to itself, specifically, any small deviation from 𝑥 towards 𝑦, but not in the opposite direction, 

increases the payoff.  

Depending on whether a game 𝑔 as in Definition 13 is viewed as a symmetric two-player 

game or as a population game, stability of an equilibrium strategy 𝑦 is defined either by 

Definition 4 or by 7. However, as the following theorem shows, in both cases stability is 

essentially equivalent to 𝑦 being a CSS, as the two conditions share the same differential 

form.  

Theorem 8  In a symmetric two-player game or population game 𝑔 with a strategy space 

that is an interval in the real line, let 𝑦 be an interior15 equilibrium strategy such that at the 

equilibrium point (𝑦, 𝑦) the payoff function has continuous second-order partial 

derivatives.16 If  

𝑔11(𝑦, 𝑦) + 𝑔12(𝑦, 𝑦) < 0, 

then 𝑦 is stable and a CSS. If the reverse inequality holds, then 𝑦 is definitely unstable 

and not a CSS.17 

 
14 The original definition of CSS differs slightly from the version given here in that it requires a 
stronger global condition, which is a version of ESS.  
15 An interior strategy is a strategy lying in the interior of the strategy space. 

16 Partial derivatives are denoted here by subscripts. Thus, 𝑔12 is the mixed second-order partial 
derivative of the payoff function. 
17 Very similar sufficient conditions for stability and definite instability hold in symmetric multiplayer 

games. The only difference is that, with 𝑁 ≥ 2 players, the expression on the left-hand side of (47) is 

replaced by 𝑔11 + (𝑁 − 1)𝑔12 (computed at the equilibrium point (𝑦, 𝑦, … , 𝑦)). 

(46) 

(47) 
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Proof. It is not difficult to show, using Taylor’s theorem, that for 𝑥 tending to 𝑦 the left-hand 

side of (9) can be expressed as  

2𝑔1(𝑦, 𝑦)(𝑥 − 𝑦) + (𝑔11(𝑦, 𝑦) + 𝑔12(𝑦, 𝑦))(𝑥 − 𝑦)
2 + 𝑜((𝑥 − 𝑦)2). 

Similarly, the integral in (20) can be expressed as 1/2 times (48). Since 𝑦 is an interior 

equilibrium strategy, the first term in (48) is zero. Therefore, a sufficient condition for (48) to 

be negative or positive for every 𝑥 ≠ 𝑦 in some neighborhood of 𝑦 (hence, for 𝑦 to be stable 

or definitely unstable, respectively) is that 𝑔11(𝑦, 𝑦) + 𝑔12(𝑦, 𝑦) has that sign.   

Consider now the CSS condition in Definition 13. It may be possible to determine whether 

this condition holds by looking at the sign of  

ⅆ

ⅆ𝜖
|
𝜖=0

(𝑔(𝑥, 𝑥) − 𝑔((1 −  𝜖)𝑥 + 𝜖𝑦, 𝑥)) = 𝑔1(𝑥, 𝑥)(𝑥 − 𝑦). 

For 𝑥 tending to 𝑦, the right-hand side of (49) is given by an expression similar to (48) except 

that it lacks the factor 2 in the first term (which, as indicated, is zero anyway). Therefore, if 

(47) or the reverse inequality holds, then the expression on the left-hand side of (49) is 

negative or positive, respectively, for every 𝑥 ≠ 𝑦 in some neighborhood of 𝑦. In the first or 

second case, (46) holds or does not hold, respectively, for 𝜖 > 0 sufficiently close to 0 and 

the converse is true for 𝜖 < 0. Therefore, in the first case, 𝑦 is a CSS, and in the second case, 

it is not a CSS. ∎ 

The differential condition (47) has a simple geometrical interpretation (Eshel 2005). It 

expresses the familiar condition that, at the (symmetric) equilibrium point, the graph of the 

best-response function, or reaction curve, intersects the forty-five degree line from above. 

This follows from the fact that, for an interior equilibrium strategy 𝑦, the equilibrium 

condition (18) implies that 𝑔1(𝑦, 𝑦) = 0 and 𝑔11(𝑦, 𝑦) ≤ 0. If the last inequality is in fact 

strict, then by the implicit function theorem there is a continuously differentiable function 𝑓 

from some neighborhood of 𝑦 to the strategy space, with 𝑓(𝑦) = 𝑦, such that 𝑔1(𝑓(𝑥), 𝑥) =

 0 and 𝑔11(𝑓(𝑥), 𝑥) < 0 for all strategies 𝑥 in the neighborhood. Thus, strategy 𝑓(𝑥) is a 

local best response to 𝑥. By the chain rule, at the point 𝑦 

𝑓′(𝑦)  = −
𝑔12(𝑦, 𝑦)

𝑔11(𝑦, 𝑦)
. 

Therefore, (47) holds (so that 𝑦 is stable and a CSS) or the reverse inequality holds (𝑦 

definitely unstable and not a CSS) if and only if the slope of the function 𝑓 at 𝑦 is less or 

(48) 

(49) 

Unstable Stable 

Strategy 

 

Best 
response 

Figure 1. An equilibrium strategy is both stable and a CSS if, at the equilibrium point, the 
reaction curve (thick line) intersects the forty-five degree line (thin line) from above, and it 
is definitely unstable and not a CSS if the intersection is from below. 
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greater than 1, respectively.18 In the first case, the reaction curve, which is the graph of 𝑓 

(see Figure 1), intersects the forty-five degree line from above (which means that the (local) 

fixed point index is +1; see Dold 1980), and in the second case, the intersection is from 

below (and the fixed point index is −1).  

As Theorem 8 only establishes the identity of the differential conditions for stability and 

continuous stability, it leaves some “cracks” where the coincidence between stable strategy 

and CSS may break down. An example of such breakdown is provided by the doubly 

symmetric two-player game with strategy space 𝑋 = [0,1] and the strictly concave payoff 

function 𝑔(𝑥, 𝑦) = −2|𝑥 − 𝑦| − (𝑥 − 1/2)2 − (𝑦 − 1/2)2 (Neyman 1997). Here, all 

strategies are equilibrium strategies, hence best response to themselves, which implies that 

none of them is a CSS. But strategy 1/2 is globally stable, as can be inferred from Theorem 3 

and the fact that (1/2,1/2) is the unique maximum point of the payoff function 𝑔, which, 

because of its symmetry, is also the game’s potential. All other strategies are not stable. This 

fact is in agreement with Neyman’s assertion that the equilibrium points (𝑥, 𝑥) with 𝑥 ≠

1/2 lack some form of stability. Although that assertion apparently refers to dynamic 

stability of one kind or the other, a concrete kind of static stability rendering it true is that of 

Definition 4.  

The common differential condition for stability and continuous stability is not shared by a 

third kind of static stability, local superiority, which in the present context is also known by a 

different name. In a symmetric two-player or population game with a unidimensional 

strategy space, an equilibrium strategy that is locally superior is said to be a neighborhood 

invader strategy (NIS; Apaloo 1997). A sufficient and “almost” necessary condition for an 

interior equilibrium strategy 𝑦 to be an NIS is given by the differential form of the condition 

in Definition 9. That condition differs from the one in Theorem 8 in that the first term in (47), 

𝑔11(𝑦, 𝑦), is multiplied by 1/2. Since, as indicated above, 𝑔11(𝑦, 𝑦) ≤ 0, this difference 

makes the condition generally more demanding. Thus, unlike for symmetric 𝑛 × 𝑛 games, 

where stability and local superiority are equivalent (see Section 4.3), here stability is 

essentially a weaker requirement.  

Example 6  Stability does not imply local superiority. In the symmetric two-player game or 

population game 𝑔(𝑥, 𝑦) = −2𝑥2 + 3𝑥𝑦, with a strategy space that is a finite interval whose 

interior includes 0, the latter is a globally stable strict equilibrium strategy but is not an NIS. 

This is because, for 𝑦 = 0 and all 𝑥 ≠ 0, inequality (9) holds but 𝑔(𝑦, 𝑥) <  𝑔(𝑥, 𝑥). The 

conclusion is born out by the differential conditions for stability and local superiority, as 

𝑔11 + 𝑔12 < 0 < 1/2 𝑔11 + 𝑔12.      

A similar relation between stability and local superiority holds for the mixed extensions of 

symmetric two-player and population games with a unidimensional strategy space. A mixed 

strategy is any (Borel) probability measure on the strategy space 𝑋. If the payoff function 𝑔 

is bounded and continuous, then the game has a well-defined mixed extension where the 

payoff 𝑔(𝜇, 𝜈) for a player using a strategy 𝜇 against a strategy (or population strategy) 𝜈 is 

given by  

 
18 This geometric condition for static stability is weaker than the corresponding one for dynamic 
stability, which requires the absolute value of slope to be less than 1 (Fudenberg and Tirole 1995). See 
also Section 6.   
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𝑔(𝜇, 𝜈) = ∫ ∫𝑔(𝑥, 𝑦) ⅆ𝜇(𝑥) ⅆ𝜈(𝑦)
𝑋𝑋

. 

With any suitable topology on the space of mixed strategies, the mixed extension is itself a 

symmetric two-player game or population game, respectively, with bilinear payoff function. 

As shown in Section 4.2 (Proposition 10 and the preceding paragraph), for an equilibrium 

strategy in that game local superiority implies stability. However, the reverse implication 

does not hold: even a globally stable strict equilibrium strategy is not necessarily locally 

superior. In particular, this is so for local superiority with respect to the topology of weak 

convergence of measures, a concept called evolutionary robustness (Oechssler and Riedel 

2002; van Veelen and Spreij 2009). For example, in the mixed extension of the game in 

Example 6 (which is similar to Example 4 in Oechssler and Riedel 2002; see also their 2001 

paper), the degenerate measure 𝛿0 is a strict equilibrium strategy which is not evolutionary 

robust, because 𝑔(𝛿𝑥 , 𝛿𝑥) > 𝑔(𝛿0, 𝛿𝑥) for all 𝑥 ≠ 0. However, 𝛿0 is globally stable, because 

𝑔(𝜇, 𝜇) − 𝑔(𝛿0, 𝜇) + 𝑔(𝜇, 𝛿0) − 𝑔(𝛿0, 𝛿0) = −E
2 − 4 Var (where the two symbols refer to 

the mean and variance of 𝜇) and the last expression is negative for all 𝜇 ≠ 𝛿0.  

5 Games with differentiable payoffs 
This section concerns stability in a class of asymmetric games which includes, but is much 

larger than, the class of mixed extensions of finite games considered in the last part of 

Section 4.2. Here, a strategy space is not necessarily the unit simplex but can be any subset 

of a Euclidean space, and a payoff function is not necessarily multilinear. Multilinearity is 

replaced, where needed, by an (explicit) assumption that the payoff function has continuous 

second-order partial derivatives at the point or points under consideration.19  

With strategies written as column vectors, a strategy profile 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁) in an 

asymmetric 𝑁-player game ℎ where the strategy space of each player 𝑖 is a set in a Euclidean 

space ℝ𝑛𝑖 is represented by a column vector of dimension 𝑛 = ∑ 𝑛𝑖𝑖 . The profile will be said 

to be interior if each of the strategies 𝑥𝑖 lies in the relative interior of the corresponding 

player’s strategy space 𝑋𝑖  (which coincides with the interior of 𝑋𝑖  if the latter has affine 

dimension 𝑛𝑖, in other words, if it is of full affine dimension in ℝ𝑛𝑖). The gradient with 

respect to the components of player 𝑖’s strategy is denoted ∇𝑖 and is written as an 𝑛𝑖-

dimensional row vector (of first-order differential operators). Correspondingly, for each 𝑖 

and 𝑗, ∇𝑖
T∇𝑗 is an 𝑛𝑖 × 𝑛𝑗 matrix (of second-order differential operators). In particular, 

∇𝑖
T∇𝑖ℎ𝑖 is the Hessian matrix of player 𝑖’s payoff function with respect to the player’s own 

strategy. These Hessian matrices are the diagonal blocks in the 𝑛 × 𝑛 block matrix  

𝐻 = (
∇1
T∇1ℎ1 ⋯ ∇1

T∇𝑁ℎ1
⋮ ⋱ ⋮

∇𝑁
T∇1ℎ𝑁 ⋯ ∇𝑁

T∇𝑁ℎ𝑁

). 

The value that the matrix 𝐻 attains when its entries are evaluated at a strategy profile 𝑥 is 

denoted 𝐻(𝑥). The next result, which is an extension of Proposition 7 in Milchtaich (2012), 

connects this value with the stability of the strategy profile. 

 
19 Technically, this assumption means that each point has an open neighborhood in the underlying 
Euclidean space where a twice continuously differentiable extension of the payoff function exists. 

(50) 
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Theorem 9  In an asymmetric 𝑁-player game ℎ where the strategy space of each player is a 

set in a Euclidean space, let 𝑦 be an equilibrium at which the players’ payoff functions have 

continuous second-order partial derivatives. If 𝑦 is interior or the players’ strategy spaces 

are convex, then a sufficient condition for 𝑦 to be stable is that the matrix 𝐻(𝑦) is negative 

definite. If 𝑦 is interior and the strategy spaces are of full affine dimension, then a necessary 

condition for 𝑦 to be weakly stable is that 𝐻(𝑦) is negative semidefinite.20 

Proof. It easily follows from Lemma 1 that, with 1𝑆 denoting the indicator function of a set of 

players 𝑆,  

𝑃𝑦(𝑥) =∑∑
1

( 𝑁−1|𝑆∖{𝑖}|)

1

𝑁
(1𝑆(𝑖) ℎ𝑖( 𝑦 ∣∣ 𝑥𝑆 ) − 1𝑆∁(𝑖) ℎ𝑖( 𝑦 ∣∣ 𝑥𝑆 ))

𝑖𝑆

. 

For 𝑥 tending to 𝑦, that is, ϵ𝑖 ≔ 𝑥𝑖 − 𝑦𝑖 → 0 for all 𝑖, this expression can be written as  

1

𝑁
∑∑

1

( 𝑁−1|𝑆∖{𝑖}|)
(1𝑆(𝑖) − 1𝑆∁(𝑖))(ℎ𝑖 +∑∇𝑗ℎ𝑖  ϵ𝑗

𝑗∈𝑆

+
1

2
∑∑ϵ𝑘

T ∇𝑘
T∇𝑗ℎ𝑖  ϵ𝑗

𝑘∈𝑆𝑗∈𝑆

)

𝑖𝑆

+ 𝑜(‖𝜖‖2), 

where the payoff functions ℎ𝑖 and their partial derivatives are evaluated at the point 𝑦 and 

‖𝜖‖ is the (Euclidean) length of the vector ϵ = (ϵ1, ϵ2, … , ϵ𝑁) = 𝑥 − 𝑦. For each player 𝑖, the 

coefficient of ℎ𝑖 in (51) is 

1

𝑁
∑

1

( 𝑁−1|𝑆∖{𝑖}|)
(1𝑆(𝑖) − 1𝑆∁(𝑖))

𝑆

=
1

𝑁
∑

1

( 𝑁−1|𝑆∖{𝑖}|)
[(1𝑆(𝑖) − 1𝑆∁(𝑖)) + (1𝑆∪{𝑖}(𝑖) − 1(𝑆∪{𝑖})∁(𝑖))]

𝑆
𝑖∉𝑆

. 

This coefficient is equal to zero, because the condition 𝑖 ∉ 𝑆 implies that the expression in 

square brackets is zero. For each 𝑖 and 𝑗, the coefficient of ∇𝑗ℎ𝑖  ϵ𝑗 in (51) is 

1

𝑁
∑

1

( 𝑁−1|𝑆∖{𝑖}|)
(1𝑆(𝑖) − 1𝑆∁(𝑖))

𝑆
𝑗∈𝑆

, 

which by a similar argument is zero if 𝑗 ≠ 𝑖, and is equal to  

1

𝑁
∑

1

(𝑁−1|𝑆|−1)𝑆
𝑖∈𝑆

=
1

𝑁
∑

(𝑁−1𝑙−1 )

(𝑁−1𝑙−1 )

𝑁

𝑙=1

= 1 

if 𝑗 = 𝑖. For each 𝑖, 𝑗 and 𝑘, the coefficient of (1/2)ϵ𝑘
T ∇𝑘

T∇𝑗ℎ𝑖  ϵ𝑗 in (51) is 

1

𝑁
∑

1

( 𝑁−1|𝑆∖{𝑖}|)
(1𝑆(𝑖) − 1𝑆∁(𝑖))

𝑆
𝑗,𝑘∈𝑆

, 

which again is zero if 𝑗 and 𝑘 are both different from 𝑖. If 𝑗 = 𝑘 = 𝑖, then, by (52), the 

coefficient is equal to 1, and if 𝑘 = 𝑖 but 𝑗 ≠ 𝑖 or vice versa, then it is equal to 

 
20 A square matrix 𝐴 is said to be negative definite or semidefinite if the symmetric matrix (1/2)(𝐴 +

𝐴T) has the same property, equivalently, if the latter’s eigenvalues are all negative or nonpositive, 
respectively. 

(51) 

(52) 
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1

𝑁
∑

1

(𝑁−1|𝑆|−1)𝑆
𝑖,𝑗∈𝑆

=
1

𝑁
∑

(𝑁−2𝑙−2 )

(𝑁−1𝑙−1 )

𝑁

𝑙=2

=
1

𝑁
∑

𝑙 − 1

𝑁 − 1

𝑁

𝑙=2

=
1

2
. 

Therefore, (51) reduces to  

∑∇𝑖ℎ𝑖  ϵ𝑖
𝑖

+∑(
1

4
∑ϵ𝑖

T ∇𝑖
T∇𝑗ℎ𝑖  ϵ𝑗

𝑗

+
1

4
∑ϵ𝑘

T ∇𝑘
T∇𝑖ℎ𝑖  ϵ𝑖

𝑘

)

𝑖

+ 𝑜(‖𝜖‖2)

=∑∇𝑖ℎ𝑖  ϵ𝑖
𝑖

+
1

2
ϵT𝐻(𝑦)ϵ + 𝑜(‖𝜖‖2), 

where the equality holds because, at 𝑦, the first-order partial derivatives of ℎ𝑖 commute and 

therefore ϵ𝑘
T ∇𝑘

T∇𝑖ℎ𝑖  ϵ𝑖 = ϵ𝑘
T (∇𝑖

T∇𝑘ℎ𝑖)
Tϵ𝑖 = ϵ𝑖

T ∇𝑖
T∇𝑘ℎ𝑖  ϵ𝑘.  

If player 𝑖 has a convex strategy space, then every convex combination of strategies 𝑥𝑖 and 

𝑦𝑖  is also a strategy. The one-sided limit lim
𝜆→0+

(1/𝜆)(ℎ𝑖( 𝑦 ∣∣ 𝜆𝑥𝑖 + (1 − 𝜆)𝑦𝑖 ) − ℎ𝑖(𝑦)) exists 

and is equal to ∇𝑖ℎ𝑖(𝑦)(𝑥𝑖 − 𝑦𝑖) = ∇𝑖ℎ𝑖  ϵ𝑖, and since 𝑦 is an equilibrium, the limit is 

necessarily nonpositive. The same conclusions hold if the strategy space is not necessarily 

convex but 𝑦𝑖  lies in its relative interior. Moreover, in this case, the one-sided limit with 𝜆 →

0− also exists, and (again, because 𝑦 is an equilibrium) is necessarily nonnegative. However, 

the last limit, too, is equal to ∇𝑖ℎ𝑖  ϵ𝑖, and so the latter must be zero. This proves that, if the 

players’ strategy spaces are convex or the equilibrium 𝑦 is interior, then the first term in (53) 

is nonpositive or zero, respectively. 

If 𝐻(𝑦) is negative definite, then ϵT𝐻(𝑦)ϵ ≤ −|𝜆0|‖𝜖‖
2, where 𝜆0 (< 0) is the eigenvalue of 

(1/2)(𝐻(𝑦) + 𝐻(𝑦)T) having the smallest absolute value. Therefore, if in addition either of 

the conditions in the last paragraph holds, then (53) is negative for 𝜖 ≠ 0 sufficiently close to 

0, which means that 𝑃𝑦(𝑥) < 0 for 𝑥 ≠ 𝑦 sufficiently close to 𝑦. Thus, 𝑦 is stable.  

If 𝐻(𝑦) is not negative semidefinite, then (1/2)(𝐻(𝑦) + 𝐻(𝑦)T) has an eigenvector 𝑣 with 

eigenvalue 𝜆 > 0, so that 𝑣T𝐻(𝑦)𝑣 is positive and equal to 𝜆‖𝑣‖2. If in addition 𝑦 is interior 

(which, as shown above, implies that the first term in (53) is zero) and the strategy spaces 

are of full affine dimension, this means that there are strategy profiles 𝑥 arbitrarily close to 𝑦 

for which 𝑃𝑦(𝑥) > 0. Thus, 𝑦 is not weakly stable. ∎ 

It is interesting to note that negative definiteness of 𝐻 is also connected with the uniqueness 

of the equilibrium (Rosen 1965). In particular, it follows from the next proposition that an 

equilibrium is necessarily unique if the players’ strategy spaces are convex and 𝐻 is negative 

definite everywhere. The same is true with ‘equilibrium’ replaced with ‘interior equilibrium’ 

and ‘everywhere’ replaced with ‘at every interior strategy profile’.  

Proposition 13  In an asymmetric 𝑁-player game ℎ where the strategy space of each player 

is a set in a Euclidean space, let 𝑋′ be a convex set of strategy profiles where the players’ 

payoff functions are twice continuously differentiable. If 𝐻(𝑥) is negative definite for all 𝑥 ∈

𝑋′, then 𝑋′ includes at most one equilibrium. 

Proof. As shown in the proof of Theorem 9, for every 𝑥, 𝑦 ∈ 𝑋′ such that 𝑦 is an equilibrium 

the inequality ∇𝑖ℎ𝑖(𝑦)(𝑥𝑖 − 𝑦𝑖) ≤ 0 holds for all 𝑖. If 𝑥, too, is an equilibrium, then similar 

inequalities hold with 𝑥 and 𝑦 interchanged, and so  

(53) 
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0 ≤∑(∇𝑖ℎ𝑖(𝑥) − ∇𝑖ℎ𝑖(𝑦))(𝑥𝑖 − 𝑦𝑖)

𝑖

 

=∑(∫
ⅆ

ⅆ𝜆
∇𝑖ℎ𝑖(𝜆𝑥 + (1 − 𝜆)𝑦) ⅆ𝜆

1

0

) (𝑥𝑖 − 𝑦𝑖)

𝑖

 

= ∫ ∑(𝑥𝑗 − 𝑦𝑗)
T ∇𝑗

T∇𝑖ℎ𝑖(𝜆𝑥 + (1 − 𝜆)𝑦) (𝑥𝑖 − 𝑦𝑖)

𝑖,𝑗

ⅆ𝜆
1

0

 

= ∫ (𝑥 − 𝑦)T 𝐻(𝜆𝑥 + (1 − 𝜆)𝑦)(𝑥 − 𝑦) ⅆ𝜆
1

0

. 

If 𝐻 is negative definite at every point on the line segment connecting 𝑥 and 𝑦, then the 

nonnegativity of the last integral implies that 𝑥 − 𝑦 must be zero.  ∎ 

6 Comparison with dynamic stability 
As explained in Section 4, static stability is based on incentives rather than motion. Dynamic 

stability, by contrast, also depends on explicit assumptions about the way the incentives to 

move translate into actual changes of strategies. For example, if the players’ strategy spaces 

in an asymmetric 𝑁-player game as in Section 5 are unidimensional (that is, 𝑛𝑖 = 1 for all 𝑖), 

the law of motion may take the form  

ⅆ𝑥𝑖
ⅆ𝑡

= ⅆ𝑖ℎ𝑖,𝑖(𝑥1, 𝑥2, … , 𝑥𝑁), 𝑖 = 1,2,… ,𝑁, 

with ⅆ𝑖 > 0 for all 𝑖, where the symbol ℎ𝑖,𝑖  is shorthand for the partial derivative 𝜕ℎ𝑖/𝜕𝑥𝑖 

and 𝑡 is the time variable. This system of differential equations expresses the assumption 

that the rate of change of each strategy 𝑥𝑖 is proportional to the corresponding marginal 

payoff. With these dynamics, the condition for asymptotic stability of an interior equilibrium 

𝑦 where the players’ payoff functions are twice continuously differentiable is that, at 𝑦, the 

(Jacobian) matrix 

(

ⅆ1ℎ1,11 ⋯ ⅆ1ℎ1,1𝑁
⋮ ⋱ ⋮

ⅆ𝑁ℎ𝑁,𝑁1 ⋯ ⅆ𝑁ℎ𝑁,𝑁𝑁

) 

(where ℎ𝑖,𝑗𝑘 ≔ 𝜕
2ℎ𝑖/𝜕𝑥𝑗𝜕𝑥𝑘 = 𝜕

2ℎ𝑖/𝜕𝑥𝑘𝜕𝑥𝑗) is stable, that is, all its eigenvalues have 

negative real parts. The requirement that this condition holds for all positive adjustment 

speeds ⅆ1, ⅆ2, … , ⅆ𝑁 (Dixit 1986) is known as D-stability of the matrix obtained by omitting 

the ⅆ𝑖’s, which is the matrix 𝐻(𝑦) (where 𝐻 here is the special, unidimensional case of (50), 

in which each block is a single entry).  

Every negative definite matrix is D-stable but not conversely, and so D-stability of 𝐻(𝑦) is a 

weaker condition than negative definiteness. In particular, a necessary and sufficient 

condition for D-stability in the two-player case21 is 

ℎ1,11 < 0 and ℎ2,22 ≤ 0 or vice versa, and ℎ1,11ℎ2,22 > ℎ1,12ℎ2,21 

(Hofbauer and Sigmund 1998), while negative definiteness is equivalent to the stronger 

 
21 Unlike negative definiteness, for which a number of useful characterizations are known, necessary 
and sufficient conditions for D-stability of 𝑛 × 𝑛 matrices are known only for small 𝑛 (Impram et al. 
2005) and they are reasonably simple only for 𝑛 = 2.  

(54) 

(55) 
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condition 

ℎ1,11, ℎ2,22 < 0 and ℎ1,11ℎ2,22 > (
ℎ1,12 + ℎ2,21

2
)
2

. 

Moreover, unlike negative definiteness, D-stability of 𝐻(𝑦) is not a sufficient condition for 

(static) stability of an equilibrium 𝑦.  

Example 1 (continued)  Both in the game (4), where  

𝐻 = (
−2 3
−1 −1

), 

and in (5), where  

𝐻 = (
−2 3
0 −1

), 

the matrix 𝐻 satisfies (55) and is thus D-stable. Therefore, in both games the equilibrium 

(0,0) is asymptotically stable with respect to the dynamics (54). However, as shown above, 

in the first game the equilibrium is stable but in the second game it is not even weakly 

stable. Note that these facts also follow from Theorem 9, because in the first game 𝐻 is 

negative definite, as it satisfies (56), and in the second game it is not even negative 

semidefinite, as one eigenvalue of (1/2)(𝐻 + 𝐻T) is positive.  

While asymptotic stability with respect to the dynamics (54) is essentially a weaker condition 

than static stability, the same may not be true for other kinds of dynamic stability. In 

particular, static stability does not imply asymptotic stability with respect to another natural 

adjustment process, in which the two players alternate in myopically playing a best response 

to their opponent’s strategy. As seen in Figure 2, starting from any other strategy profile, 

these dynamics quickly bring the players to the origin in the game (5) but take them 

increasingly farther away from it in (4). Thus, the equilibrium (0,0) is dynamically stable in 

(5) but not in (4) – which is the opposite of the situation for static stability and is also 

different from that for the simultaneous and continuous adjustment process (54) (for which 

the equilibrium is asymptotically stable in both games).   

These differences between the different kinds of stability can be understood by noting that, 

if both inequalities in the first part of (55) are strict, then the second part can be written as  

(−
ℎ2,21
ℎ2,22

)(−
ℎ1,12
ℎ1,11

) < 1. 

Thus, asymptotic stability of an interior equilibrium 𝑦 with respect to the dynamics (54) 

essentially requires that, at that point, the product of the slope of player 2’s reaction curve 

and the reciprocal of the slope of player 1’s curve is less than 1.22 (Both reaction, or best-

response, curves lie in the plane where the horizontal and vertical axes correspond to the 

strategies of player 1 and player 2, respectively, as in Figure 2.) This condition is weaker than 

the condition for asymptotic stability of the equilibrium with respect to alternating best 

responses, which is that the absolute value of the product is less than 1 (Fudenberg and 

Tirole 1995). The latter, stronger condition, which means that player 1’s reaction curve is 

steeper than that of player 2, is not implied by (55). The condition is also not implied by, and 

 
22 The (weak version of this strict) inequality is also the differential condition for Motro’s (1994) 
notion of continuous stability of a strategy profile (CSS) in an asymmetric two-player game.  

(56) 
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it does not imply, negative definiteness of 𝐻, as demonstrated by the fact that it does not 

hold for the game in (4) but does hold for (5).  

A general lesson that can be learned from the above analysis is that there is no single, 

general notion of dynamic stability with which static stability can be compared. Even for a 

specific, simple class of games, one kind of dynamic stability may be weaker than static 

stability while another may be incomparable with it. 

An exception to the above general conclusion is provided by the essentially symmetric 

games (Section 2.2) with unidimensional strategy spaces. In these games, the matrix 𝐻(𝑦) is 

symmetric at any symmetric strategy profile 𝑦. A symmetric matrix is negative definite if and 

only if it is D-stable. This means that static stability of a symmetric strategy profile is 

essentially equivalent to asymptotic stability with respect to the dynamics (54). For example, 

in the two-player case, the essential symmetry condition (13) implies that, at any interior 

symmetric strategy profile, 

ℎ1,11 = ℎ2,22  and  ℎ1,12 = ℎ2,21. 

With these equalities, both (55) and (56) are equivalent to the requirement that  

ℎ2,22 < 0  and  |
ℎ2,21
ℎ2,22

| < 1. 

At any interior equilibrium, the second-order maximization condition ℎ𝑖,𝑖𝑖 ≤ 0 holds 

automatically for 𝑖 = 1,2, so that the first inequality in (57) only adds the requirement that 

the inequalities are strict. The second inequality, as indicated, means that the equilibrium is 

asymptotically stable with respect to alternating best responses. Thus, for an interior 

(57) 

Strategy of player 1 

Player 1’s 
reaction curve 
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Player 2’s reaction 
curve in (4) 

Player 2’s reaction 
curve in (5) 

Figure 2. The players’ reaction curves in the two games in Example 1. Player 1’s reaction 
curve (upward sloping line) is the same in both games, but those of player 2 (horizontal 
and downward sloping lines) are different. The arrows show possible trajectories under 
the alternating-best-response dynamics, in which player 1 moves first, then player 2, then 
player 1 again, and so on. For the game given by (5) (solid arrows), the trajectory ends at 
the equilibrium point (𝟎, 𝟎). For the game in (4) (dotted arrows), it spirals away.  
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symmetric equilibrium, this kind of (dynamic) stability, asymptotic stability with respect to 

the continuous dynamics (54) and static stability are all essentially equivalent to one another 

and to the condition that, at the equilibrium point, the slope of player 2’s reaction curve is 

less than 1 but greater than −1. On the other hand, as noted in footnote 18 in Section 4.4, 

the last pair of inequalities is stronger than the condition for static stability of an equilibrium 

strategy in a symmetric game, which consists of the first inequality only. This difference is 

another example of the more lenient nature of the (static) stability condition in symmetric 

games in comparison with the corresponding essentially symmetric ones (see Section 2.2).  

7 Stability and altruism 
In both symmetric and asymmetric games, static stability is closely linked with the 

comparative statics of altruism and spite, or more generally, of the degree of internalization 

of social welfare (Milchtaich 2012, 2021). This general connection may take different forms, 

as detailed below.  

Altruism or spite is the willingness to bear a cost in order to benefit or harm, respectively, 

another individual. It may be quantified by the altruism coefficient 𝑟, which is the ratio 

between the marginal contribution of the other individual’s material utility and the marginal 

contribution of the person’s own material utility to the latter’s perceived payoff. Positive, 

negative or zero 𝑟 expresses altruism, spite or complete selfishness, respectively. In 

particular, if all players in an asymmetric game ℎ are equally altruistic or spiteful towards 

one another, the expression that each player 𝑖 seeks to maximize is not 𝑖’s own, personal 

payoff ℎ𝑖 but the modified payoff ℎ𝑖 + 𝑟∑ ℎ𝑗𝑗≠𝑖 , which can also be written as 

ℎ𝑖
𝑟 ≔ (1 − 𝑟)ℎ𝑖 + 𝑟𝑓, 

with 𝑓 = ∑ ℎ𝑗𝑗  denoting the aggregate payoff. More generally, for any given social 

payoff function 𝑓: 𝑋 ⟶ ℝ, which specifies a metric of social welfare that is determined by 

the players’ strategy profile (either through the personal payoffs or directly), formula (58) 

for the modified payoff associates a modified game ℎ𝑟 with every 𝑟 ≤ 1. In this general 

framework, the altruism coefficient 𝑟 expresses the players’ common degree of 

internalization of the social payoff. Thus, higher 𝑟 means higher rate of substitution between 

social and personal payoff. Comparative statics concern the effect of varying 𝑟 on the actual 

level of 𝑓, which reflects the players’ choice of actions. In particular, a basic question here is 

whether higher (common) degree of altruism necessarily entails higher social welfare. 

A very similar setting and an identical question apply to symmetric games. The only 

difference is that, for a symmetric game 𝑔, the social payoff function 𝑓 is assumed a 

symmetric function, which means that the players’ actions or their personal payoffs affect 

the measure of social welfare under examination in a symmetric manner. With altruism 

coefficient 𝑟 ≤ 1, the modified game is the symmetric game that differs from 𝑔 in that the 

payoff function is    

𝑔𝑟 ≔ (1 − 𝑟)𝑔 + 𝑟𝑓. 

In population games, 𝑓 in the last formula is replaced by the differential ⅆ𝜑 of a specified 

social payoff function 𝜑, which in this context is any univariate real-valued function on the 

cone of the strategy space with a differential that is continuous in the second argument (see 

Section 3.2). This difference from symmetric games reflects the assumed insignificance of 

(58) 
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single individuals in a large population, where the social payoff 𝜑(𝑦) depends only on the 

population strategy 𝑦. Correspondingly, consideration for social welfare is interpreted as 

internalization of the marginal effect of one’s action 𝑥 on 𝜑, which is given by ⅆ𝜑(𝑥, 𝑦) 

(Chen and Kempe 2008; Milchtaich 2012, 2021). Thus, an individual’s concern is not with the 

effect of a unilateral adoption of 𝑥 (which is null) but with the effect that adoption by a small 

but significant (and representative) proportion 𝑝 of the population would have,23 so that the 

modified payoff is given by 

𝑔𝑟(𝑥, 𝑦) = (1 − 𝑟)𝑔(𝑥, 𝑦) + 𝑟 ⅆ𝜑(𝑥, 𝑦). 

The question, again, is whether an increase in the weight 𝑟 attached to these concerns 

actually results in a higher level of social payoff.   

In general, the answer to the above questions is No (Milchtaich 2006, 2012). For example, 

even in a symmetric 3 × 3 game 𝑔, and with the aggregate payoff as the social payoff, the 

level of that payoff (and therefore also of both players’ personal, material payoffs) at the 

unique, symmetric equilibrium in the modified game 𝑔𝑟 may actually be lower when the 

players are mildly altruistic (𝑟 = 0.25, say) than when they are completely selfish (𝑟 = 0). 

However, as the next three theorems show, such a paradoxical effect of altruism on social 

welfare necessarily involves equilibria or equilibrium strategies that are not globally stable.   

Theorem 10 (Milchtaich 2021, Theorem 7) For an asymmetric 𝑁-player game ℎ, a social payoff 

function 𝑓, and altruism coefficients 𝑟 and 𝑠 with 𝑟 < 𝑠 ≤ 1, if two distinct strategy profiles 

𝑦𝑟 and 𝑦𝑠 are globally weakly stable in the modified games ℎ𝑟 and ℎ𝑠, respectively, then  

𝑓(𝑦𝑟) ≤ 𝑓(𝑦𝑠). 

If moreover 𝑦𝑠 is globally stable, then the inequality is strict. A strategy profile that is 

globally weakly stable or globally stable in ℎ1 is a maximum or strict maximum point, 

respectively, of 𝑓 in the set of all strategy profiles.  

Theorem 11  For a symmetric 𝑁-player game 𝑔, a social payoff function 𝑓, and altruism 

coefficients 𝑟 and 𝑠 with 𝑟 < 𝑠 ≤ 1, if two distinct strategies 𝑦𝑟 and 𝑦𝑠 are globally weakly 

stable in the modified games 𝑔𝑟 and 𝑔𝑠, respectively, then  

𝑓(𝑦𝑟, 𝑦𝑟, … , 𝑦𝑟) ≤ 𝑓(𝑦𝑠, 𝑦𝑠, … , 𝑦𝑠). 

If moreover 𝑦𝑠 is globally stable, then the inequality is strict. A strategy that is globally 

weakly stable or globally stable in 𝑔1 is a maximum or strict maximum point, respectively, of 

the function 𝑥 ↦ 𝑓(𝑥, 𝑥, … , 𝑥) in the set of all strategies. 

Proof. The proof uses the following identity, which holds for all (𝑟, 𝑠 and) strategies 𝑥 and 𝑦: 

(1 − 𝑟)∑(𝑔𝑠(𝑥, … , 𝑥⏟  
𝑗 times

, 𝑦, … , 𝑦) − 𝑔𝑠(𝑦,… , 𝑦⏟  
𝑗 times

, 𝑥, … , 𝑥))

𝑁

𝑗=1

+ (1 − 𝑠)∑(𝑔𝑟(𝑦,… , 𝑦⏟  
𝑗 times

, 𝑥, … , 𝑥) − 𝑔𝑟(𝑥, … , 𝑥⏟  
𝑗 times

, 𝑦, … , 𝑦))

𝑁

𝑗=1

 

 
23 This description reflects the following identify, which follows from (29) (with 𝜑 instead of 𝛷):  

ⅆ𝜑(𝑥, 𝑦) − ⅆ𝜑(𝑦, 𝑦) =
ⅆ

ⅆ𝑝
|
𝑝=0+

𝜑(𝑝𝑥 + (1 − 𝑝)𝑦). 
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         = (1 − 𝑟)(1 − 𝑠)∑(𝑔(𝑥,… , 𝑥⏟  
𝑗 times

, 𝑦, … , 𝑦) − 𝑔(𝑦,… , 𝑦⏟  
𝑗 times

, 𝑥, … , 𝑥))

𝑁

𝑗=1

+ (1 − 𝑠)(1 − 𝑟)∑(𝑔(𝑦,… , 𝑦⏟  
𝑗 times

, 𝑥, … , 𝑥) − 𝑔(𝑥,… , 𝑥⏟  
𝑗 times

, 𝑦, … , 𝑦))

𝑁

𝑗=1

+ (1 − 𝑟)𝑠 (𝑓(𝑥, 𝑥, … , 𝑥) − 𝑓(𝑦, 𝑦, … , 𝑦))

+ (1 − 𝑠)𝑟 (𝑓(𝑦, 𝑦, … , 𝑦) − 𝑓(𝑥, 𝑥, … , 𝑥)) 

         = (𝑠 − 𝑟)(𝑓(𝑥, 𝑥, … , 𝑥) − 𝑓(𝑦, 𝑦, … , 𝑦)). 

(The first equality uses the symmetry of the function 𝑓.) The identity implies that a sufficient 

condition for the difference 𝑓(𝑥, 𝑥, … , 𝑥) − 𝑓(𝑦, 𝑦, … , 𝑦) to be nonpositive or negative is 

that the first term on the left-hand side is nonpositive or negative, respectively, and the 

second term is nonpositive. By Lemma 2, this condition holds with 𝑥 = 𝑦𝑟 and 𝑦 = 𝑦𝑠 if the 

latter strategy is globally weakly stable or globally stable, respectively, in 𝑔𝑠 and the former 

is globally weakly stable in 𝑔𝑟. For 𝑠 = 1, the condition also holds with any other 𝑥 ≠ 𝑦𝑠. ∎ 

Theorem 12 (Milchtaich 2021, Theorem 8) For a population game 𝑔, a social payoff function 

𝜑, and altruism coefficients 𝑟 and 𝑠 with 𝑟 < 𝑠 ≤ 1, if two distinct strategies 𝑦𝑟 and 𝑦𝑠 are 

globally weakly stable in the modified games 𝑔𝑟 and 𝑔𝑠, respectively, then  

𝜑(𝑦𝑟) ≤ 𝜑(𝑦𝑠). 

If moreover 𝑦𝑠 is globally stable, then the inequality is strict. A strategy that is globally 

weakly stable or globally stable in 𝑔1 is a maximum or strict maximum point, respectively, of 

𝜑 in the set of all strategies.  

The reference in these theorems to global stability corresponds to the fact that they concern 

global comparative statics (Milchtaich 2012, Sections 6 and 7.1). That is, the comparison is 

between two strategies or strategy profiles in two modified games corresponding to 

different altruism coefficients 𝑟 and 𝑠, without assuming that the coefficients are close or 

that the strategies or strategy profiles are close or can be connected in a continuous 

manner. However, as stability is fundamentally a local concept, it is relevant also to local 

comparative statics, which involve small, continuous changes to the altruism coefficient 𝑟 

and the corresponding strategies or strategy profiles, and may be thought of as tracing the 

players’ evolving behavior as they respond to the changing 𝑟. The next three theorems are 

the local counterparts of those above. As they show, (local) stability is associated with 

“normal”, positive local comparative statics, whereby a continuous increase in the altruism 

coefficient increases social welfare, and definite instability is associated with negative local 

comparative statics, in which the opposite relation holds. 

Theorem 13 (Milchtaich 2012, Theorem 8) For an asymmetric game ℎ and a social payoff 

function 𝑓 such that both the payoff functions and 𝑓 are Borel measurable,24 and altruism 

coefficients 𝑟0 and 𝑟1 with 𝑟0 < 𝑟1 ≤ 1, suppose that there is a continuous and finitely-many-

to-one25 function assigning to each 𝑟0 ≤ 𝑟 ≤ 𝑟1 a strategy profile 𝑦𝑟 such that the function 

𝜋: [𝑟0, 𝑟1] ⟶ ℝ defined by 

 
24 A sufficient condition for Borel measurability of a function is that it is continuous. 
25 A function is finitely-many-to-one if the inverse image of every point is a finite set. 
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𝜋(𝑟) = 𝑓(𝑦𝑟) 

is absolutely continuous.26 If the strategy profile 𝑦𝑟 is stable, weakly stable or definitely 

unstable in the modified game ℎ𝑟 for every 𝑟0 < 𝑟 < 𝑟1, then 𝜋 is strictly increasing, 

nondecreasing or strictly decreasing, respectively. 

Theorem 14 (Milchtaich 2012, Theorem 1) For a symmetric game 𝑔 and a social payoff 

function 𝑓 such that both the payoff function and 𝑓 are Borel measurable, and altruism 

coefficients 𝑟0 and 𝑟1 with 𝑟0 < 𝑟1 ≤ 1, suppose that there is a continuous and finitely-many-

to-one function assigning to each 𝑟0 ≤ 𝑟 ≤ 𝑟1 a strategy 𝑦𝑟 such that the function 

𝜋: [𝑟0, 𝑟1] ⟶ ℝ defined by  

𝜋(𝑟) = 𝑓(𝑦𝑟, 𝑦𝑟 , … , 𝑦𝑟) 

is absolutely continuous. If the strategy 𝑦𝑟 is a stable, weakly stable or definitely unstable in 

the modified game 𝑔𝑟 for every 𝑟0 < 𝑟 < 𝑟1, then 𝜋 is strictly increasing, nondecreasing or 

strictly decreasing, respectively. 

Theorem 15 (Milchtaich 2012, Theorem 2) For a population game 𝑔 and a social payoff 

function 𝜑 such that both the payoff function and ⅆ𝜑 are Borel measurable, and altruism 

coefficients 𝑟0 and 𝑟1 with 𝑟0 < 𝑟1 ≤ 1, suppose that there is a continuous and finitely-many-

to-one function assigning to each 𝑟0 ≤ 𝑟 ≤ 𝑟1 a strategy 𝑦𝑟 such that the function 

𝜋: [𝑟0, 𝑟1] ⟶ ℝ defined by 

𝜋(𝑟) = 𝜑(𝑦𝑟) 

is absolutely continuous. If the strategy 𝑦𝑟 is stable, weakly stable or definitely unstable in 

the modified game 𝑔𝑟 for every 𝑟0 < 𝑟 < 𝑟1, then 𝜋 is strictly increasing, nondecreasing or 

strictly decreasing, respectively. 

The very general connection between static stability and comparative statics established by 

the above theorems is hardly intuitively obvious. Whereas stability concerns a comparison 

between different strategies or strategy profiles in a single, given game, comparative statics 

compare corresponding strategies or strategy profiles in different (modified) games.27 

Significantly, a similar connection does not generally hold for dynamic stability. Specifically, 

this is so in the class of symmetric 𝑛 × 𝑛 games, where a prominent notion of dynamic 

stability is asymptotic stability under the continuous-time replicator dynamics (Hofbauer and 

Sigmund 1998). As shown in Milchtaich (2012), even in a symmetric 3 × 3 game and with the 

aggregate payoff as the social payoff, continuously increasing the altruism coefficient may 

actually lower the players’ identical (personal, material) payoffs when the equilibrium 

strategies involved are dynamically stable and raise them when the strategies are unstable. 

Thus, unlike static stability, dynamic stability does not preclude negative local comparative 

statics and instability does not preclude positive local comparative statics.  

 
26 A sufficient condition for absolute continuity is that the function is continuously differentiable. 
27 This connection is somewhat reminiscent of that between the (local) degree of an equilibrium (or of 
a connected component of equilibria) and its index in several classes of games (Govindan and Wilson 
1997; Demichelis and Germano 2000). The index of an equilibrium is connected with its asymptotic 
stability or instability with respect to a large class of natural dynamics, which determine how 
strategies in the game change over time. The degree, by contrast, expresses a topological property of 
the same equilibrium when viewed as a point on a manifold that includes the various equilibria of 
different games (Ritzberger 2002). 
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