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Abstract. Weighted network congestion games are a natural model for interactions involving 

finitely many non-identical users of network resources, such as road segments or 

communication links. However, in spite of their special form, these games are not 

fundamentally special: every finite game can be represented as a weighted network 

congestion game. The same is true for the class of (unweighted) network congestion games 

with player-specific costs, in which the players differ in their cost functions rather than their 

weights. The intersection of the two classes consists of the unweighted network congestion 

games. These games are special: a finite game can be represented in this form if and only if it 

is an exact potential game.  
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1 Introduction 
In a (finite) congestion game, finitely many players share a finite set 𝐸 of resources but may 

differ in which resources they are allowed to use. Specifically, each player’s set of strategies 

is a particular collection of nonempty subsets of 𝐸. The player’s payoff from using a strategy 

is the negative of the total cost of using the resources included in the strategy. The cost of a 

resource depends only on its identity and on the number of users. The cost does not 

necessarily increase with congestion, and it may be negative, in which case using the 

resource contributes positively to the payoff. Rosenthal (1973) showed that every 

congestion game admits an exact potential, which is a function 𝑃 on strategy profiles that 

exactly reflects the players’ incentives to unilaterally change their strategies. Whenever a 

single player moves to a different strategy, his gain or loss is equal to the corresponding 

change in 𝑃. Monderer and Shapley (1996) proved the converse: essentially, only congestion 

games are exact potential games. More precisely, every finite game that admits an exact 

potential can be represented as (in other words, it is isomorphic to) a congestion game. One 

of this paper’s findings strengths Monderer and Shapley’s result by showing that an exact 

potential game can always be represented as a particular kind of congestion game, namely, 

an unweighted network congestion game.  

A restriction or expansion of the meaning of ‘congestion game’ potentially has the same 

effect on the class of representable games. Examples of restriction are: congestion games 

with nondecreasing cost functions, in which increasing congestion never makes users better 

off; singleton congestion games, in which each strategy includes a single resource; and 
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network congestion games, in which resources are represented by edges in a graph and 

strategies correspond to routes, which are paths in the graph that connect the player’s 

designated origin and destination vertices. (The second restriction is a special case of the 

third. It corresponds to a parallel network, which is one with only two vertices.) Examples of 

extensions are: congestion games with player-specific costs (or payoffs, Milchtaich 1996), 

where players are differently affected by congestion; and weighted congestion games, 

where their contributions to it (the players’ “congestion impacts”) differ.  

This paper shows that both weighted network congestion games and (unweighted) network 

congestion games with player-specific costs are actually capable of representing all finite 

games. Both representations use only nondecreasing (but not necessarily positive) cost 

functions and two-terminal, or single-commodity, networks, in which all players’ routes start 

and terminate at the same origin and destination vertices. Thus, although the definitions of 

the two kinds of network congestion games involve quite specific structures, the games 

themselves are not in any way special. For unweighted network congestion games, which 

are simultaneously weighted network congestion games and network congestion games 

with player-specific costs, this is not so. As indicated, these games are special in that they 

represent (all) exact potential games.  

The potential significance of these representation results lies in the properties of the 

represented game that can be inferred from partial information about the representation, in 

particular, information about the network used. An example of such a property is existence 

of pure-strategy Nash equilibrium. As the proof of Theorem 1 below shows, every 2 × 2 

game can be represented both as a weighted network congestion game and as a network 

congestion games with player-specific costs on the network depicted in Fig. 1b. By contrast, 

a representation of either kind on the network in Fig. 1c may exist only if the game has at 

least one pure-strategy equilibrium (Milchtaich 2012). Thus, the fact that the game in Fig. 1a, 

for example, has such an equilibrium can be inferred from the fact it has such a 

representation. No additional information about the game in Fig. 1a is needed – not even 

the number of players.  

2 Preliminaries 

2.1 Game Theory 
A finite (noncooperative) game Γ has a finite number 𝑛 of players, numbered from 1 to 𝑛. 

Each player 𝑖 has a finite strategy set 𝑆𝑖
Γ and a payoff function ℎ𝑖

Γ that specifies 𝑖’s payoff for 

each strategy profile (𝑠1, 𝑠2, … , 𝑠𝑛). For two finite games Γ and Γ′ with the same number 𝑛 

of players, a homomorphism from Γ to Γ′ is  

(i) a renumbering of the players in Γ′ and 

(ii) a function 𝜙𝑖: 𝑆𝑖
Γ → 𝑆𝑖

Γ′  from the strategy set of each player 𝑖 in Γ to that of player 𝑖 

(according to the new numbering) in Γ′  

such that for every strategy profile (𝑠1, 𝑠2, … , 𝑠𝑛) in Γ  

ℎ𝑖
Γ(𝑠1, 𝑠2, … , 𝑠𝑛) = ℎ𝑖

Γ′(𝜙1(𝑠1), 𝜙2(𝑠2), … , 𝜙𝑛(𝑠𝑛)), 𝑖 = 1,2, … , 𝑛. 
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The functions 𝜙𝑖 are not necessarily bijections.1 If they are, the homomorphism is an 

isomorphism, and if in addition Γ and Γ′ are the same game, it is an automorphism (Nash 

1951).2 Two games with the same number of players are isomorphic (Monderer and Shapley 

1996) if there is an isomorphism from one to the other. Such games are essentially just 

alternative representations of a single game. Two games Γ and Γ′ with identical sets of 

players and respective strategy sets are similar if, for every strategy profile, the change in 

the payoff of any player who unilaterally switches to any alternative strategy is the same in 

both games. Put differently, similarity means that, for each player 𝑖, the difference ℎ𝑖
Γ − ℎ𝑖

Γ′  

between 𝑖’s payoffs in the two games can be expressed as a function of the other players’ 

strategies.  A game Γ is an exact potential game (Monderer and Shapley 1996) if it is similar 

to some game Γ′ in which all the players have the same payoff function; that function 𝑃 is 

said to be an exact potential for Γ.  

2.2 Graph Theory 
An undirected multigraph consists of a finite set of vertices and a finite set of edges. Each 

edge 𝑒 joins two distinct vertices, 𝑢 and 𝑣, which are referred to as the end vertices of 𝑒. 

Thus, loops are not allowed but more than one edge can join two vertices. An edge 𝑒 and a 

vertex 𝑣 are incident with each other if 𝑣 is an end vertex of 𝑒. A (simple) path of length 𝑚 is 

an alternating sequence of vertices and edges 𝑣0𝑒1𝑣1⋯ 𝑣𝑚−1𝑒𝑚𝑣𝑚, beginning and ending 

with vertices, in which each edge is incident with the two vertices immediately preceding 

and following it and all the vertices (and necessarily all the edges) are distinct. Every path 

traverses each of its edges 𝑒 in a particular direction: from the end vertex that immediately 

precedes 𝑒 in the path to the vertex that immediately follows it.   

A two-terminal network, or simply network, 𝐺 is an undirected multigraph together with a 

distinguished ordered pair of (distinct) terminal vertices, the origin 𝑜 and the destination 𝑑, 

such that each vertex and each edge belongs to at least one path that begins with 𝑜 and 

ends with 𝑑. Such a path is called a route in 𝐺. 

A network 𝐺 may be connected with another network 𝐺′, which does not share any of its 

vertices and edges, in parallel or in series. The sets of vertices and edges in the resulting 

network are the unions of the corresponding sets in 𝐺 and 𝐺′, except that, for a connection 

in parallel, the two origin vertices are identified and the two destination vertices are 

identified, and for a connection in series, the destination in 𝐺 and the origin in 𝐺′ are 

identified and become a non-terminal vertex. The connection of an arbitrary number of 

networks in parallel or in series is defined recursively.  

                                                            
1 An example is identification of equivalent strategies, which lumps them into a single strategy in the reduced 

normal form of the game.  

2 The definitions of the various morphisms extend in a natural manner to games that are not necessarily finite, to 

incomplete information games and to games with random player sets (see Milchtaich 2004). These definitions 

and their extensions comply with the axioms of category theory.  
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2.3 Network Congestion Games 
A weighted network congestion game on a (two-terminal3) network 𝐺 is a finite, 𝑛-player 

game that is defined as follows. First, each edge in 𝐺 is assigned a nondecreasing cost 

function4 𝑐𝑒(0,∞) → (−∞,∞), an allowable direction, which must be that in which some 

route in 𝐺 traverses the edge, and a (possibly, empty) set of allowable users. An edge is 

public or private if it allowable to all players or to one player only, respectively. It is required 

that each player 𝑖 has at least one allowable route, that is, a route in 𝐺 that includes only 

edges that 𝑖 is allowed to use and traverses them in the allowable direction. The collection of 

all such routes is the player’s strategy set 𝑆𝑖. Second, a weight 𝑤𝑖 > 0 is specified for each 

player 𝑖, which represents the player’s congestion impact.5 The total weight 𝑓𝑒 of the players 

whose chosen route includes an edge 𝑒 is the flow (or load) on 𝑒. The cost of 𝑒 for each of its 

users is 𝑐𝑒(𝑓𝑒). A player’s payoff in the game is the negative of the total cost of the edges in 

his route.  

A weighted network congestion game is referred to as an unweighted network congestion 

game if the players’ weights are all identical and equal to 1. The equality of the weights 

entails, in particular, that the cost of an edge is not affected by the identities of its users but 

only by their number. A generalization that allows for a dependence of the cost for a user on 

his own identity is (unweighted) network congestion game with player-specific costs. In such 

a game, each edge 𝑒 is associated with a (player-specific) nondecreasing cost function 

𝑐𝑖𝑒 ∶ (0,∞) → (−∞,∞) for each player 𝑖, and its cost for that player is 𝑐𝑖𝑒(𝑓𝑒), where (the 

flow) 𝑓𝑒 is the total number of players using 𝑒.    

3 Representation Results 
Every unweighted network congestion game is in particular a congestion game in the sense 

of belonging to the class of games presented by Rosenthal (1973) and studied by Monderer 

and Shapley (1996) (see Section 1). In fact, as the following theorem shows, the class of 

unweighted network congestion games essentially coincides with that of all congestion 

games. By contrast, weighted network congestion games and network congestion games 

with player-specific costs are generally not congestion games in the above sense. The 

theorem shows that both classes essentially coincide with that of all finite games.  

                                                            
3 The assumption of a single origin–destination pair may be viewed as a normalization. Any weighted network 

congestion game on a multi-commodity network, which has multiple origin–destination pairs, may also be viewed 

as a game with a single such pair. In that game, each terminal vertex is incident with a single allowable edge (see 

below) for each player, which joins it with the player’s corresponding terminal vertex in the original game. The 

interesting special case in which these are the only edges that not everyone is allowed to use is not considered in 

this paper.  

4 A negative cost is interpreted as (net) gain. It would also be possible to use the opposite sign convention, 

whereby a positive value means gain and a negative one means cost; the choice between the two is a matter of 

taste and convenience only. The question of which finite games are representable using only nonnegative cost 

functions is not considered in this paper. However, see Section 4.2. 

5 In certain contexts (see Milchtaich 2012) it may be desirable to require the following (weak) connection 

between the players’ weights and the cardinality of their strategy sets: For all 𝑖 and 𝑗 with 𝑤𝑖 < 𝑤𝑗, |𝑆𝑖| ≥ |𝑆𝑗|. In 

this paper, this requirement is not needed, but adding it would not affect any of the paper’s results.  
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Fig. 1. Representations of a 𝟐 × 𝟐 exact potential game (a) as a weighted network congestion game (b), with 
weights 𝒘𝟏 = 𝟏 and 𝒘𝟐 = 𝟐, and as a network congestion game with player-specific costs (c). Dotted, dashed 
and solid edges are allowable to player 1, player 2 and both players, respectively. The allowable directions are 
indicated where needed. All relevant costs other than those specified are zero. A player’s payoff is the negative 
of his total cost.  

Theorem 1. Every finite game Γ is isomorphic both to a weighted network congestion game 

Γ′ and to an (unweighted) network congestion game with player-specific costs Γ″. Γ is 

isomorphic to an unweighted network congestion game6 if and only if it is an exact potential 

game.  

By the first part of the theorem, every finite game can be represented as a network 

congestion game where the players differ in their weights and as one where they differ in 

their costs functions. The existence of a representation of the latter kind was first indicated 

by Monderer (2007). However, Monderer’s definition of network congestion game is 

different, and significantly less restrictive, than in this paper. The second part of Theorem 1 

strengths a well-known result of Monderer and Shapley (1996). In the following extension of 

that part of the theorem, their result is the equivalence of properties (ii) and (iii).  

Theorem 2. For every finite game Γ, the following conditions are equivalent: 

(i) Γ is isomorphic to an unweighted network congestion game. 

(ii) Γ is isomorphic to a congestion game. 

(iii) Γ is an exact potential game. 

A finite game Γ obviously has more than a single pair of representations as in Theorem 1. 

The “canonical” games Γ′ and Γ″ constructed in the proof of the theorem, which share the 

same network 𝐺, are just one such pair. Other representations may be preferable in that 

they use a simpler network. An example is shown in Fig. 1c. That representation of the 2 × 2 

                                                            
6 This condition can be expressed as the requirement that Γ′ = Γ″. 

(b) 

 
5,1 6,2
7,3 8,4

  

𝑜 

 

𝑑 
 

𝑐𝑒1(1) = −6

𝑐𝑒1(2) = −3
 

𝑐𝑒2(1) = −7

𝑐𝑒2(2) = −2
 

𝑐𝑒3(1) = −8

𝑐𝑒3(2) = −1
 

𝑐𝑒4(1) = −5

𝑐𝑒4(2) = −4
 

𝑒1 𝑒2 

𝑒4 𝑒3 

𝑒7 𝑒8 

𝑒5 𝑒6 

(c) 

𝑐2𝑒2(1) = −1 

𝑒1 𝑒2 

𝑜 

 

𝑑 
𝑐1𝑒3(1) = −2 𝑐2𝑒4(1) = −3

𝑐2𝑒4(2) = −1
 

𝑒4 𝑒3 

𝑒5 

(a) 

𝑐1𝑒1(1) = −6

𝑐1𝑒1(2) = −5
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exact potential game in Fig. 1a as a network congestion game with player-specific costs uses 

the Wheatstone network, which has fewer edges than the network 𝐺 constructed in the 

proof of Theorem 1 (which, for all 2 × 2 games, is the one in Fig. 1b). Both networks are 

considerably simpler than the network constructed in the proof of Theorem 2. For an 

example of a simple representation of a specific variety of congestion games as weighted 

network congestion games, see Milchtaich (2009). 

Proof of Theorem 1. Suppose that the number 𝑛 of players in Γ and the cardinality 𝑚 of the 

largest strategy set are both at least two (otherwise the assertion is trivial). Without loss of 

generality, it may be assumed that the players are numbered in such a way that every player 

has at least as many strategies as every higher-number player. It is, however, desirable to 

have the stronger properly that the numbers of strategies are actually equal: all players have 

𝑚 strategies. To achieve such equality, (temporarily) increase the number of strategies of 

some players 𝑖 by replicating one of their strategies. By definition, choosing the original 

strategy or any of its replicas has the same effect on 𝑖’s payoff and on the payoffs of the 

other players. Each player’s strategies can now be numbered from 1 to 𝑚. This numbering 

identifies the collection of all strategy profiles with the product set {1,2, … ,𝑚}𝑛. Order this 

set in the following way:  

(1,1, … ,1), (2,2, … ,2), … , (𝑚 − 1,𝑚 − 1,… ,𝑚 − 1), (𝑚,𝑚,… ,𝑚),
… , (2,1, … ,1), (3,2, … ,2), … , (𝑚,𝑚 − 1,… ,𝑚 − 1), (1,𝑚,… ,𝑚),

 

where the order of the 𝑚𝑛 − 2𝑚 elements represented by the middle ellipsis mark is 

immaterial. With each strategy profile 𝑠 = (𝑠1, 𝑠2, … , 𝑠𝑛) associate two vertices, 𝑢𝑠 and 𝑣𝑠, 

and an edge 𝑒𝑠 that joins them, is directed from 𝑢𝑠 to 𝑣𝑠 and is public. Next, for each player 𝑖 

and 1 ≤ 𝑘 ≤ 𝑚, consider all strategy profile 𝑠 with 𝑠𝑖 = 𝑘 and list them according to their 

order in (1). For each pair of successive entries in this list, 𝑠 and 𝑡, add an edge that joins 𝑣𝑠 

and 𝑢𝑡, is directed from 𝑣𝑠 to 𝑢𝑡, and is allowable only to player 𝑖. Finally, identify all vertices 

of the form 𝑢𝑠, where 𝑠 is one of the first 𝑚 elements in (1), and denote this single vertex by 

𝑜. Do the same for all vertices of the form 𝑣𝑠, where 𝑠 is one of the last 𝑚 elements in (1), 

and denote the result by 𝑑. These terminal vertices, together with the other vertices and 

edges specified above, constitute a network 𝐺, with specified direction and set of allowable 

users for each edge. (For 2 × 2 games, this is the network depicted in Fig. 1b.) For each 

player 𝑖, each allowable route 𝑟 in 𝐺 corresponds to a unique strategy 𝑠𝑖 in Γ. Specifically, 𝑟 

includes all 𝑚𝑛−1 edges 𝑒𝑡 with 𝑡𝑖 = 𝑠𝑖, alternating with 𝑚𝑛−1 − 1 private edges. Different 

allowable routes to player 𝑖 have no shared edges, and no shared vertices other than the 

terminal ones.  

The network congestion game with player-specific costs Γ″ is defined by assigning the 

following cost functions to each player 𝑖. For a public edge 𝑒𝑠, corresponding to a strategy 

profile 𝑠 in Γ,  

𝑐𝑖𝑒𝑠(𝑥) = {
0, 𝑥 ≤ 𝑛 − 1
𝐾𝑖 − ℎ𝑖(𝑠),   𝑥 = 𝑛

, 

where ℎ𝑖 is player 𝑖’s payoff function in Γ and 𝐾𝑖 is any number equal to or greater than the 

maximum of ℎ𝑖. For a private edge 𝑒 allowable only to player 𝑖, 𝑐𝑖𝑒 = −𝐾𝑖/( 𝑚
𝑛−1 − 1 ). As 

explained above, allowable route choices in 𝐺 are in a one-to-one correspondence with 

(1) 

(2) 
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strategy profiles in Γ. The 𝑛 routes that correspond to a strategy profile 𝑠 have exactly one 

common edge, namely, 𝑒𝑠. Therefore, for each player 𝑖, only 𝑒𝑠 and 𝑚𝑛−1 − 1 of the private 

edges make a nonzero contribution to the cost. By (2), the total cost is −ℎ𝑖(𝑠). Hence, player 

𝑖’s payoff is ℎ𝑖(𝑠), the same payoff he receives in Γ. 

The weighted network congestion game Γ′ is defined by, first, attaching the weight 

𝑤𝑖 = 𝑖 + 𝑛 − 2 to each player 𝑖 (= 1,2, … , 𝑛). Thus, the weight uniquely identifies the player, 

and is less than the total weight of any two players, which is 2𝑛 − 1 or greater. Second, the 

cost functions are defined as follows. For a public edge 𝑒𝑠, corresponding to a strategy 

profile 𝑠 = (𝑠1, 𝑠2, … , 𝑠𝑛) in Γ, 

𝑐𝑒𝑠(𝑖 + 𝑛 − 2) = ∑ (∏(
1

𝑚 − 1
− 𝟷𝑡𝑗=𝑠𝑗  )

𝑗≠𝑖

) (𝐾𝑖 − ℎ𝑖(𝑠𝑖 , 𝑡−𝑖))

𝑡−𝑖∈𝑆−𝑖

,     𝑖 = 1,2, … , 𝑛 

and 𝑐𝑒𝑠(𝑥) = 0 for  𝑥 ≥ 2𝑛 − 1, where 𝐾1, 𝐾2, … , 𝐾𝑛 are any 𝑛 numbers that make the cost 

functions of all public edges nondecreasing.7 In this definition, 𝑆−𝑖 is the collection of all 

partial strategy profiles 𝑡−𝑖 = (𝑡1, 𝑡2, … , 𝑡𝑖−1, 𝑡𝑖+1, … , 𝑡𝑛), the notation (𝑠𝑖 , 𝑡−𝑖) refers to the 

strategy profile (𝑡1, 𝑡2, … , 𝑡𝑖−1, 𝑠𝑖 , 𝑡𝑖+1, … , 𝑡𝑛), and 𝟷𝑡𝑗=𝑠𝑗  is defined as 1 if the indicated 

equality holds and 0 otherwise. For a private edge 𝑒, allowable only to a single player 𝑖, 

𝑐𝑒 = −𝐾𝑖/( 𝑚
𝑛−1 − 1 ). 

Consider the 𝑛 routes in 𝐺 that correspond to a particular strategy profile 𝑠 = (𝑠1, 𝑠2, … , 𝑠𝑛) 

in Γ. The total cost of the private edges in the route of any player 𝑖 is −𝐾𝑖. The total cost of 

the public edges, which wholly comes from edges where player 𝑖 is the sole user, can be 

computed as follows (to enhance readability, the computation is shown for 𝑖 = 1):  

∑ ∑ ⋯ ∑ ∑ (∏(
1

𝑚 − 1
− 𝟷𝑡𝑗=𝑠�̅�  )

𝑛

𝑗=2

) (𝐾1 − ℎ1(𝑠1, 𝑡−1))

𝑡−1∈𝑆−1𝑠�̅�≠𝑠𝑛𝑠3̅≠𝑠3𝑠2̅≠𝑠2

= ∑ (∏ ∑ (
1

𝑚 − 1
− 𝟷𝑡𝑗=𝑠�̅�  )

𝑠�̅�≠𝑠𝑗

𝑛

𝑗=2

) (𝐾1 − ℎ1(𝑠1, 𝑡−1))

𝑡−1∈𝑆−1

= ∑ (∏𝟷𝑡𝑗=𝑠𝑗

𝑛

𝑗=2

) (𝐾1 − ℎ1(𝑠1, 𝑡−1))

𝑡−1∈𝑆−1

= 𝐾1 − ℎ1(𝑠). 

Therefore, also in Γ′, a player’s total cost is the negative of the corresponding payoff in Γ. 

To complete the proof of the first part of the theorem it only remains to dispose of any 

spurious strategies that were introduced by replication at the beginning. These strategies 

can be eliminated simply by deleting or disallowing the use of all the private edges that 

belong to the corresponding routes. The second part of the theorem is covered by the proof 

of Theorem 2. ∎  

                                                            
7 For sufficiently large 𝐾 ≥ 0, the last requirement is satisfied by 𝐾𝑖 = (𝑖 − 𝑛 − 1)𝐾 (≤ 0), 𝑖 = 1,2, … , 𝑛. This is 

because the coefficient of 𝐾𝑖 in (3) is equal to the constant 1/(𝑚 − 1)𝑛−1.  

(3) 
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Proof of Theorem 2. The fact that every congestion game, and in particular every unweighted 

network congestion game, is an exact potential game is well known (Monderer and Shapley 

1996, Rosenthal 1973). The reverse implications are proved below, using a variant of the 

proof in Monderer and Shapley (1996). 

Suppose that Γ has an exact potential 𝑃. As in the proof of Theorem 1, and for similar 

reasons, it is sufficient to consider the case in which the number 𝑛 of players is at least 2 and 

the strategy set 𝑆𝑖 of each player 𝑖 includes at least two elements. (To achieve this, some 

players’ strategies may need to be replicated, and the replicas disposed of at the end of the 

proof. Note that it would be possible in this way to also temporarily equalize the players’ 

numbers of strategies. However, such equality would not add much to the proof.) Strategy 

profiles in Γ are naturally identifiable with subsets of the disjoint union ∐ 𝑆𝑖
𝑛
𝑖=1  (where 

‘disjoint’ means that strategies of different players are viewed as distinct elements): 

𝑠 = (𝑠1, 𝑠2, … , 𝑠𝑛) is identified with the set {𝑠1, 𝑠2, … , 𝑠𝑛}. Similarly, a partial strategy profile 

𝑠−𝑖, which is obtained from a strategy profile 𝑠 by ignoring the coordinate corresponding to 

a particular player 𝑖, is identified below with the set {𝑠1, 𝑠2, … , 𝑠𝑛} ∪ 𝑆𝑖. Player 𝑖 (who, 

because of the assumption that each player has at least two strategies, is the only player 𝑗 

with 𝑆𝑗 ⊆ 𝑠−𝑖) is said to own 𝑠−𝑖.  

A congestion game isomorphic to Γ is defined as follows. All strategy profiles in Γ and all 

partial strategy profile are viewed as resources. (Thus, a resource is identified with a specific 

subset of ∐ 𝑆𝑖
𝑛
𝑖=1 .) For each player 𝑖 and strategy 𝑠𝑖 of that player in Γ, the corresponding 

strategy in the congestion game is the selection of all the resources that include 𝑠𝑖. These 

resources are of three kinds: all strategy profiles containing 𝑠𝑖, all partial strategy profiles 

containing 𝑠𝑖 but owned by another player, and all partial strategy profiles owned by 𝑖. The 

resources of the first two kinds are included only in the strategy in question but those of the 

third kind are shared by all of player 𝑖’s strategies in the congestion game. It follows that 

player 𝑖 is the sole user of (the resource identified with) a partial strategy profile if and only 

if (a) he owns it, i.e., the partial strategy profile is of the form 𝑠−𝑖, and (b) the strategy of 

every other player 𝑗 is not (that corresponding to) his strategy 𝑠𝑗  in 𝑠−𝑖. The cost for a player 

of using a resource, which is also the negative of the resource’s contribution to the player’s 

payoff, is defined as follows. For (the resource identified with) a strategy profile 𝑠, the cost is 

−𝑃(𝑠) if all 𝑛 players use the resource and 0 otherwise. For a partial strategy profile 𝑠−𝑖 

owned by some player 𝑖, the cost is  

1

|𝑆𝑖|
∑(∏(

1

|𝑆𝑗| − 1
− 𝟷𝑡𝑗=𝑠𝑗  )

𝑗≠𝑖

)(𝑃(𝑡) − ℎ𝑖(𝑡))

𝑡∈𝑆

 

if no one else uses the resource (which, as indicated, is possible only if the player using the 

resource is 𝑖 himself) and 0 otherwise. In (4), ℎ𝑖 is player 𝑖’s payoff function in Γ, 𝑆 is the 

collection of all strategy profiles in that game, and 𝟷𝑡𝑗=𝑠𝑗  is defined as 1 if the indicated 

equality holds and 0 otherwise. Note that a sufficient condition for the cost functions to be 

nondecreasing is that 𝑃 and (4) are both nonpositive. Without loss of generality, this 

condition may be assumed to hold. Indeed, it is not difficult to see that subtracting any 

(4) 
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number 𝑐 from 𝑃 leaves it an exact potential function, and subtracts a certain constant 

fraction (specifically, 1/∏ (|𝑆𝑗| − 1)𝑗≠𝑖 ) of 𝑐 from (4).  

By construction, strategy profiles in the congestion game are in a one-to-one 

correspondence with strategy profiles in Γ. To prove that the two games are isomorphic it 

remains to show that, for every strategy profile 𝑠, the total cost in the congestion game for 

every player 𝑖 is −ℎ𝑖(𝑠), the negative of his payoff in Γ. Two kinds of resources make a 

nonzero contribution to player 𝑖’s cost: the single resource corresponding to the strategy 

profile 𝑠, which contributes −𝑃(𝑠), and the resources corresponding to partial strategy 

profiles �̅�−𝑖 owned by 𝑖 in which the strategy �̅�𝑗 of every player 𝑗 ≠ 𝑖 is not 𝑠𝑗. Assuming, for 

readability, that 𝑖 = 1, the total contribution of the latter is 

∑ ∑ ⋯ ∑
1

|𝑆1|
∑(∏(

1

|𝑆𝑗| − 1
− 𝟷𝑡𝑗=𝑠�̅�  )

𝑛

𝑗=2

) (𝑃(𝑡) − ℎ1(𝑡))

𝑡∈𝑆𝑠�̅�≠𝑠𝑛𝑠3̅≠𝑠3𝑠2̅≠𝑠2

=
1

|𝑆1|
∑(∏ ∑ (

1

|𝑆𝑗| − 1
− 𝟷𝑡𝑗=𝑠�̅�  )

𝑠�̅�≠𝑠𝑗

𝑛

𝑗=2

)(𝑃(𝑡) − ℎ1(𝑡))

𝑡∈𝑆

=
1

|𝑆1|
∑(∏𝟷𝑡𝑗=𝑠𝑗

𝑛

𝑗=2

) (𝑃(𝑠1, 𝑡−1) − ℎ1(𝑠1, 𝑡−1))

𝑡∈𝑆

= 𝑃(𝑠) − ℎ1(𝑠). 

(The second equality uses the fact that, by definition of exact potential, for every strategy 

profile 𝑡 the difference 𝑃(𝑡) − ℎ1(𝑡) does not depend player 1’s strategy 𝑡1.) This completes 

the proof of the isomorphism between Γ and the congestion game, which corresponds to 

the implication (iii) ⇒ (ii). 

The above proof also constitutes the main step in the proof of the stronger assertion (iii) ⇒ 

(i). To complete the latter, the (unweighted) congestion game defined above needs to be 

turned into an unweighted network congestion game. To this end, the resources need to be 

viewed as public edges, which are supplemented and connected with a certain number of 

zero-cost private edges in the following manner. First, a single-route network is created for 

every strategy of every player 𝑖 by connecting all the public edges that 𝑖 uses only in that 

strategy (that is, resources of the first and second kinds considered above) alternately in 

series with private edges for that player, such that the first and last edges in the route are 

private. (The order of the public edges is immaterial.) Second, the resulting |𝑆𝑖| single-route 

networks are connected in parallel, and then connected in series with a similar single-route 

network in which all the public edges that 𝑖 uses in all of his strategies (that is, resources of 

the third kind above) alternate with private edges. The final step is to identify the origin 

vertices of the 𝑛 resulting networks (one network for each player) and similarly for their 

destination vertices. This gives an unweighted network congestion game that is trivially 

isomorphic to the congestion game defined above (and hence to Γ). This is because, for each 

strategy of each player 𝑖 in the congestion game, all the resources that are included in that 

strategy, and only them, are also included in one of 𝑖’s |𝑆𝑖| allowable routes in the network.

           ∎ 
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4 Variations 

4.1 Acyclicity 
An allowable route for a player by definition traverses each edge at most once. Relaxing this 

condition by allowing a higher number of repetitions can potentially enlarge the players’ 

strategy sets by adding to them strategies that include cycles. There are two cases in which 

such a relaxation would not mean much. The first case, which is further discussed below, is 

that of nonnegative cost functions. With nonnegative costs, a strategy that includes a cycle is 

weakly dominated by the strategy obtained from it by removing the cycle. However, 

dominated strategies still appear in the game’s normal form, so that the above relaxation is 

still not innocuous. The second case, in which the relaxation is totally inconsequential, in 

that in which cycles simply do not exist. That is, for every player 𝑖, starting at any vertex in 

the network, it is not possible to walk away and back to it by traversing (in the allowable 

directions) only edges that are allowable to 𝑖. This acyclicity condition holds for all the 

network congestion games specifically considered in this paper, and in particular for those in 

the proofs. Therefore, adding the condition as part of the definitions of the network 

congestion games would not affect any of the representation results. 

4.2 Nonnegative Costs 
In the proof of Theorem 2, for each player 𝑖 all strategies in the congestion game include the 

same number of resources, and therefore all allowable routes in the network congestion 

game include the same number of edges. This entails that adding any constant 𝐾 to all cost 

functions is strategically inconsequential in that it modifies each player’s payoff function 

only by shifting it by some constant, which can moreover be made player-independent. The 

significance of this fact is that choosing 𝐾 sufficiently large makes all cost functions 

nonnegative as well as nondecreasing. A similar remark applies to Theorem 1, which shows 

that, even with nonnegative cost functions, weighted network congestion games and 

network congestion games with player-specific costs can “almost” represent every finite 

game, specifically, represent it up to an additive constant. 

4.3 Games Without Self-Effect 
A third kind of network congestion games capable of representing all finite games is 

weighted network congestion games (in the wide sense) without self-effect (Milchtaich 

2012). These games are similar to “normal” weighted network congestion games in that a 

single nondecreasing cost function 𝑑𝑒 is associated with each edge 𝑒, which together with 

the flow 𝑓𝑒 determines the cost of 𝑒 for all users. However, the cost of 𝑒 for a user 𝑖 is given 

by 𝑑𝑒(𝑓𝑒 −𝑤𝑖), and it thus depends only on the total weight of the other users of 𝑒. 

Consequently, for users of different weights the cost may not be the same. In this respect, 

weighted network congestion games without self-effect are similar to network congestion 

games with player-specific costs. Using arguments similar to those given in the proof of 

Theorem 1, it is not difficult to show that every finite game can be represented as such a 

network congestion game. 
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