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A novel notion of potential in population games is presented. A population game is defined, 

very broadly, as any bivariate function 𝑔(𝑥, 𝑦) on a convex set in a linear topological space. 

This function may specify the payoff to an individual population member from choosing 

strategy 𝑥 (in a symmetric population game) or the mean payoff to individuals from playing 

according to strategy profile 𝑥 (in an asymmetric game), with the choices in the population 

as a whole expressed by the population strategy 𝑦. These notions of population game and 

potential include a number of earlier notions as special cases. Potential is closely linked with 

(a general notion of) equilibrium. It increases along every improvement curve: the 

population-game analog of an improvement path in an 𝑁-player game.       

1 Introduction 
The term population games has been in use from the early days of evolutionary game theory 

(see Maynard Smith 1982 and references therein). However, it does not always carry the 

same meaning. Most often, the term refers to what may be called symmetric population 

games. Such games model a large population of identical agents, whose payoff 𝑔(𝑥, 𝑦) is 

determined by the action or strategy 𝑥 they choose and a single second strategy, the 

population strategy 𝑦, which in one way or the other reflects the collective or aggregate 

action of the population as a whole. A population game may also be asymmetric. Different 

population members may have different allowable actions or receive different payoffs from 

choosing the same actions, or it may matter who are the other agents choosing each action. 

In such cases, 𝑥 and 𝑦 are profiles, not single actions or strategies.  

As this paper shows, it is useful in the context of population games to separate between 

formalism and interpretation. A single, simple model is capable of accommodating a large 

swath of interpretations, and pertain to both symmetric and asymmetric population games. 

A population game is defined as any bivariate function 𝑔(𝑥, 𝑦) whose two arguments are 

elements of a convex set 𝑋 in a linear topological space. In a symmetric population game, 𝑋 

may be, for example, the unit simplex in an 𝑛-dimensional Euclidian space, whose elements 

represent all mixed strategies with 𝑛 pure strategies or actions. In an asymmetric context, 

the elements of 𝑋 may be functions, for example, assignments of (pure or mixed) strategies 

to individual agents (i.e., strategy profiles). In this case, 𝑔(𝑥, 𝑦) may represent the mean or 

aggregate payoff to individuals who would play according to 𝑥 when the actual choices of 

the population members are given by 𝑦. Section 2 presents a number of such alternative 

interpretations of the model, points to the examples in this paper where these 

interpretations apply, and identifies the particular interpretations referred to as “population 

game” elsewhere in the literature (which is very voluminous indeed; only a small sample of 

papers is covered here). 

The heart of the paper is Section 3, which concerns potential. It first recalls the meaning of 

this concept in (asymmetric) 𝑁-player games and in symmetric such games and presents a 
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couple of results that are used in the sequel. Then, a novel definition of potential in 

population games is presented, which is meaningful in the broad setting introduced in the 

preceding section.  

An advantage of the proposed definition of potential is that it does not require straying from 

the set 𝑋 of strategies or strategy profiles, as it only involves the variation of the potential 𝛷 

along line segments in 𝑋. By contrast, Sandholm (2001, 2015) defines potential in terms of 

its partial derivatives, which generally requires extending the domain of 𝛷 beyond 𝑋. For 

such extended 𝛷, Section 3.4 presents a generalization of Sandholm’s formulation which is 

equivalent to the definition of potential here. In particular, a sufficient condition for 𝛷 to be 

a potential for a population game 𝑔 is that 𝑔 is the differential of 𝛷. 

In 𝑁-player games, an obvious sufficient condition for a strategy profile to be an equilibrium 

is that it maximizes the potential. Section 4 shows that in a population game, even a local 

maximum point of a potential is an equilibrium. And if the potential is concave, then being a 

(global) maximum point is (also) a necessary condition for equilibrium. Sufficient conditions 

for the existence and uniqueness of equilibrium immediately follow from these results.   

In finite 𝑁-player games, the existence of a potential implies the so-called finite 

improvement property (Monderer and Shapley 1996). Starting at any strategy profile, an 

equilibrium is necessarily reached if the players change their strategies one-by-one, in 

whatever order, in such a way that the payoff of each player changing his strategy increases 

as a result (an improvement path). Even if the game is not finite (that is, the players’ strategy 

sets are not all so), the improvement is still finite in the sense that the sum of the moving 

players’ payoff increments is globally bounded, as it is equal to the difference between the 

values of the potential at the initial and final strategy profiles. Section 5 shows that a similar 

equality holds for population games. However, improvement paths are replaced here by 

improvement curves. Such curves are traced by the population strategy 𝑦 as individual 

population members change their choices of strategies or actions to increase their payoffs. It 

is assumed that the changes involve only a small fraction of the population within any short 

time interval, so that the change of 𝑦 is continuous in time. A corresponding difference from 

the 𝑁-player case is that the sum of the individual payoff increments is replaced here 

(essentially) by an integral. 

The last section of the paper presents applications.  

In Section 6.1, it is shown that any 𝑁-player game with suitable strategy spaces can be 

presented as a population game. Whereas the normal presentation of a game specifies the 

payoff to each player for each strategy profile 𝑦, the alternative (and functionally 

equivalent) population-game presentation specifies the sum of the payoffs that individual 

players would get by unilaterally deviating to play according to a second strategy profile 𝑥. 

For an 𝑁-player game with multilinear payoff functions, it is shown that a potential exists if 

and only if the corresponding population game has a potential. Moreover, the two 

potentials are the same. A corollary of this equality is a novel explicit formula for the 

potential in finite games.  

Certain symmetric 𝑁-player games also have a corresponding population game. And if these 

symmetric games have a potential, then so do the population games. These facts are 

established in Section 6.2, which then applies them to the setting of random matching in 

symmetric 𝑁-player games.   
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A much-studied special case of the symmetric setting is that of symmetric 𝑛 × 𝑛 games. 

These games can be viewed either as symmetric two-player games or as population games, 

with each interpretation carrying its own form of potential. As an illustration, Section 6.3 

compares these two potentials in the 2 × 2 case, in which a potential always exists.   

A (very large) superset of 𝑛 × 𝑛 games is population games there 𝑋 is the unit simplex in a 

Euclidean space ℝ𝑛 and 𝑔 is linear in the first argument. (Such linearity holds, in particular, 

whenever 𝑔 expresses an expected payoff.) For this class of games, Section 6.4 compares the 

notion of potential proposed in this paper with that proposed by Sandholm (2015) and 

(2001) for the symmetric and asymmetric cases respectively. It is shown that the latter 

potentials are essentially a subset of the former. For example, a symmetric 2 × 2 game has a 

potential according to Sandholm’s definition only if the two players’ payoff are always equal. 

As indicated, this limitation does not apply to the definition of potential in this paper or to 

that of potential in symmetric games.  

Sandholm’s treatment of improvement curves assumes a rigid law of motion that dictates 

how the population strategy (or population state) changes over time. In this paper, by 

contrast, improvement curves may bend in different directions, depending on who are the 

first population members to change their choices. This stands in direct analogy with 

improvement paths in 𝑁-player games, several of which may pass through a given strategy 

profile, with each path reflecting a different order of moves. The total improvement (of 

individual payoffs) along an improvement path is given by a line integral. If the population 

game has a potential, then, as indicated, this integral is equal to the potential difference 

between the endpoints of the curve. 

An important and familiar class of population games is nonatomic congestion games. Section 

6.5 shows how some of the earlier literature about these games fits into the present 

framework. It analyzes two concrete, but rather general, models, one involving a symmetric 

congestion game and the other an asymmetric game, and applies to them some of the 

above results.  

2 Population games 
A population game, as defined in this paper, is any (bivariate) function 𝑔: 𝑋2 ⟶ ℝ where 𝑋 

is a convex set in a (Hausdorff real) linear topological space (for example, the unit simplex in 

a Euclidean space ℝ𝑛). A fair number of interpretations are possible. Here is a non-

exhaustive list:  

1. Symmetric population games. 𝑋 is interpreted as the space of strategies, and 𝑔(𝑥, 𝑦) as 

the payoff to an individual using strategy 𝑥 when the population strategy is 𝑦. The 

population strategy is an encapsulated description of the choice of strategies in the 

entire population. For example: 

a. Strategy 𝑦 is the population’s mean, or average, strategy with respect to some 

nonatomic population measure 𝜇, which attaches zero mass to every individual in an 

infinite population.1 See Examples 2 and 6. 

 
1 An infinite population may represent the limiting case of an increasingly large population, with the 

effect of each player’s action on each of the other players correspondingly decreasing. Alternatively, it 

may represent all possible characteristics of players, or potential players, when the number of actual 

players is finite. 
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b. Strategy 𝑦 describes the distribution of strategies in the population. In this case, 𝑋 

necessarily consists of mixed strategies, that is, probability measures on some 

underlying space of actions or (pure2) strategies, and 𝑔(𝑥, 𝑦) is linear in the first 

argument and expresses the expected payoff of an individual whose choice of action 

is random with distribution 𝑥. See Examples 3 and 4. 

2. Asymmetric population games. 𝑋 is interpreted as the space of strategy profiles. These 

may represent the individual choices of actions in greater or lesser detail. 

a. Each element of 𝑋 may be an ordinary strategy profile in an 𝑁-player game, with 

𝑔(𝑥, 𝑦) expressing the aggregate payoff of single players who unilaterally deviate to 

play according to strategy profile 𝑥 when all the other players play according to 𝑦. 

See Example 1. 

b. A strategy profile 𝑦 may be a mapping from an infinite set of players 𝐼 to an action 

set 𝐴 or to the space of all distributions over 𝐴. For a population strategy 𝑦, which 

specifies the players’ actual choices, 𝑔(𝑥, 𝑦) gives the mean payoff for single players 

who unilaterally deviate to play according to strategy profile 𝑥. The mean is with 

respect to a specified population measure 𝜇. See Example 7.  

c. A strategy profile 𝑦 may instead refer to a particular partition of the set of players 

into a finite number of classes of identical players, with each class possibly having a 

different set of actions. In this case, 𝑦 only specifies the distribution of actions within 

each class. The total mass of each class is given by a population measure 𝜇. See 

Examples 5 and 7. 

Earlier definitions of population games are largely compatible with one or more 

interpretations of the above definition.  

Maynard Smith (1982) loosely describes population games as games in which the payoffs 

depend on what other members of the population are doing. His actual concern, however, is 

with random pairwise contests and with situations in which players are “playing the field”. 

The latter possibility means that the payoff of an individual adopting a particular strategy 

only depends on some average property of the population as a whole, or some section of it. 

The definition of population game in Bomze and Pötscher (1989) is interpretation 1.a above. 

However, these authors also consider 1.b.  

In Hammerstein and Selten’s (1994) definition of (symmetric) population game, 𝑋 is a 

compact convex set in a Euclidean space. The population is either monomorphic, meaning 

that everyone uses the same element of 𝑋, or bimorphic, with one element of 𝑋 used with 

frequency 𝑝 and another with frequency 1 − 𝑝.   

Sandholm (2015; see Example 4 below) defines (symmetric) population games as the special 

case of interpretation 1.a where the set of pure strategies is finite (so that 𝑋 can be viewed 

as the unit simplex in a Euclidean space) and 𝑔(𝑥, 𝑦) is continuous in the second argument, 

the population strategy (or population state) 𝑦. Similarly, Sandholm’s (2001; see Example 5 

below) definition of asymmetric population games is effectively the special case of 

interpretation 2.c where the action sets are finite and 𝑔(𝑥, 𝑦) is linear in the first argument 

and is continuous in the second argument.  

 
2 “Pure” and “mixed” are relative terms. In particular, a pure strategy may itself be a probability 
vector. 



5 

2.1 Equilibrium  
Depending on the interpretation of 𝑔, the number 𝑔(𝑦, 𝑦) may represent the payoff, mean 

payoff or aggregate payoff in a population with population strategy 𝑦. Any of these 

interpretations suggests the following natural definition. 

Definition 1  An equilibrium in a population game 𝑔 is any element 𝑦 ∈ 𝑋 such that  

𝑔(𝑦, 𝑦) ≥ 𝑔(𝑥, 𝑦), 𝑥 ∈ 𝑋. (1) 

Here too there are several possible interpretations.  

1. In a symmetric population game, an equilibrium 𝑦 is a symmetric equilibrium strategy. 

The equilibrium condition (1) may mean any of the following:  

a. In a monomorphic population where everyone plays strategy 𝑦, single individuals 

cannot increase their payoff by choosing any alternative strategy 𝑥. See Example 3. 

b. For a population strategy 𝑦 that describes the population’s mean strategy or 

distribution of strategies, and a payoff function 𝑔 that is linear in the first argument, 

inequality (1) expresses the condition that almost everyone in the population is 

using a strategy that is a best response to 𝑦. In other words, the possibly 

polymorphic population is in an equilibrium state. See Examples 2, 4 and 6. 

2. In an asymmetric population game, an equilibrium 𝑦 is a strategy profile. Condition (1) 

may (indirectly) assert the optimality for individual players of playing according to 𝑦.   

a. With a finite number of players, the condition may be just an alternative formulation 

of the Nash equilibrium condition. See Example 1. 

b. With an infinite population, it may similarly mean that almost everyone in the 

population would not benefit from choosing an alternative strategy. See Examples 5 

and 7. 

3 Potential 
Potential in population games is closely related to the concept of (exact) potential in 𝑁-

player games. It is therefore useful to start with discussing this concept, first in the context 

of asymmetric 𝑁-player games and then in that of symmetric games. 

3.1 In 𝑁-player games 
In an (asymmetric) 𝑁-player game, each player 𝑖 has a strategy space 𝑋𝑖 and a payoff 

function ℎ𝑖: 𝑋 ⟶ ℝ, where 𝑋 = 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑁 is the space of all strategy profiles. The 

game can be written as a single function, ℎ = (ℎ1, ℎ2, … , ℎ𝑁): 𝑋 ⟶ ℝ𝑁.  

For a game ℎ: 𝑋 ⟶ ℝ𝑁, a function 𝑃: 𝑋 ⟶ ℝ is an (exact) potential (Monderer and Shapley 

1996) if, whenever a single player 𝑖 changes his strategy, the resulting change in 𝑖’s payoff is 

equal to the change in 𝑃. Formally, for all players 𝑖,  

ℎ𝑖(𝑥𝑖 , 𝑦−𝑖) − ℎ𝑖(𝑦) = 𝑃(𝑥𝑖 , 𝑦−𝑖) − 𝑃(𝑦),   𝑥𝑖 ∈ 𝑋𝑖 , 𝑦 ∈ 𝑋, (2) 

where the notation (𝑥𝑖 , 𝑦−𝑖) refers to the strategy profile where player 𝑖 plays 𝑥𝑖  and 

everyone else plays according to 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑁). Fixing 𝑥𝑖  and rearranging (2) to read 

ℎ𝑖(𝑦) = 𝑃(𝑦) + (ℎ𝑖(𝑥𝑖 , 𝑦−𝑖) − 𝑃(𝑥𝑖 , 𝑦−𝑖)), 𝑦 ∈ 𝑋 



6 

shows that, in a potential game, each player’s payoff is equal to the sum of 𝑃 and some 

function of the other players’ strategies. (Obviously, the converse is also true: any function 𝑃 

having the last property is a potential.) An immediate corollary is that the potential is unique 

up to an additive constant. 

A useful observation (Monderer and Shapley 1996, Lemma 2.10) is that potentials of finite 

games are preserved under mixed extensions. That is, in a game where the players’ strategy 

spaces 𝑋𝑖 are finite sets (henceforth, pure strategies), replacing each of them with the set 

Δ(𝑋𝑖) of probability measures on 𝑋𝑖 (mixed strategies) and each payoff function ℎ𝑖 with its 

multilinear extension give a game that has a potential if and only if the original game ℎ has 

one. Indeed, it is easy to see that, if condition (2) holds, then a similar condition holds for 

mixed strategies of player 𝑖 and mixed strategy profiles, with ℎ𝑖 and 𝑃 replaced with their 

multilinear extensions. The multilinear extension of 𝑃 is therefore a potential for the mixed 

extension of ℎ. In the other direction, the restriction of a potential for the mixed extension 

of ℎ to pure strategy profiles is obviously a potential for ℎ. 

A characterization of potential in finite games follows from this observation. In the next 

proposition, ℎ𝑖 denotes both the payoff function of player 𝑖 and its multilinear extension.   

Proposition 1  For a finite 𝑁-player game ℎ: 𝑋 ⟶ ℝ𝑁, a function 𝑃: 𝑋 ⟶ ℝ is a potential if 

and only if 

𝑃(𝑥) − 𝑃(𝑦) = ∫ ∑(ℎ𝑖(𝑥𝑖 , 𝑝𝑥−𝑖 + (1 − 𝑝)𝑦−𝑖) − ℎ𝑖(𝑦𝑖 , 𝑝𝑥−𝑖 + (1 − 𝑝)𝑦−𝑖))

𝑁

𝑖=1

ⅆ𝑝
1

0

,   𝑥, 𝑦 ∈ 𝑋. (3) 

Proof. As remarked, 𝑃 is a potential for ℎ if and only if its multilinear extension, which may 

also be denoted by 𝑃, is a potential for the mixed extension of ℎ. In this case, the sum in (3) 

is equal to  

∑(𝑃(𝑥𝑖 , 𝑝𝑥−𝑖 + (1 − 𝑝)𝑦−𝑖) − 𝑃(𝑦𝑖 , 𝑝𝑥−𝑖 + (1 − 𝑝)𝑦−𝑖))

𝑁

𝑖=1

=
ⅆ

ⅆ𝑝
𝑃(𝑝𝑥 + (1 − 𝑝)). (4) 

The necessity of condition (3) follows from this equality by integration. Sufficiency follows 

from the fact that the equality in (3) reduces to that in (2) in the special case where 𝑦 and 𝑥 

are equal in all but the 𝑖th component (and so (𝑥𝑖 , 𝑦−𝑖) = 𝑥). ∎ 

Note that Eq. (3) provides an explicit form for the potential. For fixed, arbitrary 𝑦 and any 

choice of value for 𝑃(𝑦), the value of 𝑃(𝑥) is given by that formula for all 𝑥 ∈ 𝑋. 

Proposition 1 extends to 𝑁-player games ℎ: 𝑋 ⟶ ℝ𝑁  where for every player 𝑖 the strategy 

space 𝑋𝑖 is a convex set in a linear topological space and the payoff function ℎ𝑖 is multilinear. 

This is because it follows from (2) that a potential 𝑃 for such a game must also be 

multilinear, and therefore satisfy (4).  

3.2 In symmetric 𝑁-player games 
Symmetric 𝑁-player games differ from the asymmetric games considered in the previous 

subsection in that the players share a single strategy space 𝑋 and a single payoff function 

𝑔: 𝑋𝑁 ⟶ ℝ that is invariant to permutations of its second through 𝑁th arguments. If one 

player uses strategy 𝑥 and the other players use 𝑦, … , 𝑧, in any order, the first player’s payoff 

is 𝑔(𝑥, 𝑦, … , 𝑧).  
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Potential in symmetric games has essentially the same meaning as in asymmetric games. 

The only difference is that, here, the potential is necessarily a symmetric function, meaning 

that it is invariant to permutations of its 𝑁 arguments. Thus, for a symmetric game 𝑔: 𝑋𝑁 ⟶

ℝ, a symmetric function 𝐹: 𝑋𝑁 ⟶ ℝ is a potential if 

𝑔(𝑥, 𝑧, … ) − 𝑔(𝑦, 𝑧, … ) = 𝐹(𝑥, 𝑧, … ) − 𝐹(𝑦, 𝑧, … ), 𝑥, 𝑦, 𝑧, … ∈ 𝑋, (5) 

where the ellipsis (…) stands for any 𝑁 − 2 elements of 𝑋.  

It is easy to see that, similarly to the asymmetric case, a symmetric function 𝐹 is a potential 

for a symmetric game 𝑔 if and only if the difference 𝑔 − 𝐹 is a function that does not 

depend on the first argument. By the symmetry of the potential, this implies that it is unique 

up to an additive constant. In addition, if 𝑔 itself is a symmetric function (in other words, if 

the game is doubly symmetric), then 𝑔 is its own potential. This case represents a common-

interest game, where the players’ payoffs are always equal.  

Proposition 2  A symmetric 𝑁-player game 𝑔: 𝑋𝑁 ⟶ ℝ has a potential if and only if  

𝑔(𝑥, 𝑦, … ) + 𝑔(𝑦, 𝑧, … ) + 𝑔(𝑧, 𝑥, … ) = 𝑔(𝑦, 𝑥, … ) + 𝑔(𝑧, 𝑦, … ) + 𝑔(𝑥, 𝑧, … ),  𝑥, 𝑦, 𝑧, … ∈ 𝑋. (6) 

For 𝑁 = 2, the potential 𝐹: 𝑋2 ⟶ ℝ is then given by 

𝐹(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) + 𝑔(𝑦, 𝑧) − 𝑔(𝑧, 𝑦), (7) 

where 𝑧 ∈ 𝑋 is any fixed strategy. 

Proof. Subtract the equality (5) from the sum of two similar equalities, one in which 𝑥 and 𝑧 

are interchanged and one in which 𝑦 and 𝑧 are interchanged. Because of the symmetry of 

the potential 𝐹, the terms in which it appears cancel out, and the result is the equality in (6). 

This proves the necessity of condition (6). 

To prove sufficiency, define a function 𝐹: 𝑋𝑁 ⟶ ℝ by assigning to some fixed, arbitrary 

point (𝑦1, 𝑦2, … , 𝑦𝑁) ∈ 𝑋𝑁 the value 0 and assigning to every other point 

(𝑥1, 𝑥2, … , 𝑥𝑁) the sum of the players’ changes of payoffs as they move one by one to that 

point from the initial point, with the order of moves determined by the players’ indices, 

starting with 𝑁 and ending with 1. Thus,  

𝐹(𝑥1, 𝑥2, … , 𝑥𝑁) = 𝑔(𝑥𝑁 , 𝑦1, … , 𝑦𝑁−1) − 𝑔(𝑦𝑁 , 𝑦1, … , 𝑦𝑁−1) + 𝑔(𝑥𝑁−1, 𝑥𝑁 , 𝑦1, … , 𝑦𝑁−2) (8) 

−𝑔(𝑥𝑁−1, 𝑥𝑁 , 𝑦1, … , 𝑦𝑁−2) + ⋯ + 𝑔(𝑥1, 𝑥2, … , 𝑥𝑁) − 𝑔(𝑦1, 𝑥2, … , 𝑥𝑁). 

Condition (5) holds, because the first strategy 𝑥1 appears on the right-hand side of (8) only 

in the penultimate term. Therefore, 𝐹 is a potential if and only if it is a symmetric function, 

equivalently, invariant to the transposition of any two consecutive arguments 𝑥𝑗  and 𝑥𝑗+1. 

Because of the invariance of 𝑔 to permutations of its second through 𝑁th arguments, 

interchanging 𝑥𝑗  and 𝑥𝑗+1 does not affect any term on the right-hand side of (8) where they 

both appear in those places. Therefore, the invariance boils down to the equality  

𝑔(𝑥𝑗+1, 𝑥𝑗+2, 𝑥𝑗+3, … , 𝑦𝑗) + 𝑔(𝑥𝑗 , 𝑥𝑗+1, 𝑥𝑗+2, … , 𝑦𝑗−1) − 𝑔(𝑦𝑗 , 𝑥𝑗+1, 𝑥𝑗+2, … , 𝑦𝑗−1)

= 𝑔(𝑥𝑗 , 𝑥𝑗+2, 𝑥𝑗+3, … , 𝑦𝑗) + 𝑔(𝑥𝑗+1, 𝑥𝑗 , 𝑥𝑗+2, … , 𝑦𝑗−1) − 𝑔(𝑦𝑗 , 𝑥𝑗 , 𝑥𝑗+2, … , 𝑦𝑗−1). 

Replacing on both sides of the last equality the first term 𝑔(⋅, 𝑥𝑗+2, 𝑥𝑗+3, … , 𝑦𝑗) with 

𝑔(⋅, 𝑦𝑗 , 𝑥𝑗+2, … , 𝑦𝑗−1) (which is equal to the first because it is obtained by permutation of 

the second through 𝑁th arguments) makes the equality an instance of that in (6) (with 𝑥 =

𝑥𝑗+1, 𝑦 = 𝑦𝑗  and 𝑧 = 𝑥𝑗). This proves the sufficiency of condition (6). 
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The formula (7) is obtained from (8) as a special case by setting 𝑧 = 𝑦1 and dropping a 

constant.   ∎ 

The remark in the previous subsection concerning mixed extensions also applies to 

symmetric games. A symmetric 𝑁-player game that is the mixed extension of a finite 

symmetric game has a potential if and only if the equality in (6) holds for all pure strategies 

𝑥, 𝑦, 𝑧, …. For 𝑁 = 2, the potential 𝐹 is then given by (7).  

3.3 In population games 
For population games, which generally represent interactions involving many identical 

players whose individual actions have negligible effects on the other players, the definition 

of potential may be naturally adapted by replacing the increment of the potential with a 

derivative.  

Definition 2  For a population game 𝑔: 𝑋2 → ℝ, a function 𝛷: 𝑋 ⟶ ℝ is a potential if  

ⅆ

ⅆ𝑝
𝛷(𝑝𝑥 + (1 − 𝑝)𝑦) = 𝑔(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦), 0 ≤ 𝑝 ≤ 1, 𝑥, 𝑦 ∈ 𝑋. (9) 

Note that the requirement here is twofold: the derivative on the left-hand side of (9) exists 

(as a one-sided, right or left derivative, for 𝑝 = 0 or 1 respectively), and the equality holds.  

It is easy to see that the potential is unique up to an additive constant. That is, the difference 

between any two functions satisfying the condition in the definition is a constant function 

on 𝑋.  

When the potential exists, it is normally possible to present it explicitly by transforming the 

differential condition in Definition 2 into an integral condition. The following theorem 

concerns population games where 𝑔: 𝑋2 → ℝ is a continuous function. Linearity of 𝑔 in the 

first argument means 

𝑔(𝑡𝑥 + (1 − 𝑡)𝑦, 𝑧) = 𝑡𝑔(𝑥, 𝑧) + (1 − 𝑡)𝑔(𝑦, 𝑧), 0 ≤ 𝑡 ≤ 1, 𝑥, 𝑦, 𝑧 ∈ 𝑋. (10) 

Theorem 1  For a continuous population game 𝑔: 𝑋2 → ℝ, a function 𝛷: 𝑋 ⟶ ℝ is a 

potential if and only if 

𝛷(𝑥) − 𝛷(𝑦) = ∫ (𝑔(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦)) ⅆ𝑝
1

0

, 𝑥, 𝑦 ∈ 𝑋 (11) 

and 𝑔 is linear in the first argument. 

Theorem 1 is proved – and extended – by the next two propositions. Say that a population 

game 𝑔: 𝑋2 → ℝ satisfies the continuity condition if the function 𝑝 ↦ 𝑔(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) 

−𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦) is continuous in the interval [0,1] for all 𝑥, 𝑦 ∈ 𝑋. A sufficient 

condition for this is that 𝑔 is continuous in the second argument. 

Proposition 3  Consider a population game 𝑔: 𝑋2 → ℝ that satisfies the continuity condition. 

A necessary condition for a function 𝛷: 𝑋 ⟶ ℝ to be a potential for 𝑔 is (11). If 𝑔 is linear in 

the first argument, then this condition is also sufficient.  

Proof. Eq. (11) follows from (9) by integration. Conversely, if (10) and (11) hold, then for 

every 𝑥, 𝑦 ∈ 𝑋 and 0 ≤ 𝑡 ≤ 1  

𝛷(𝑡𝑥 + (1 − 𝑡)𝑦) − 𝛷(𝑦) 
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= ∫ 𝑡 (𝑔(𝑥, 𝑝𝑡𝑥 + 𝑝(1 − 𝑡)𝑦 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑡𝑥 + 𝑝(1 − 𝑡)𝑦 + (1 − 𝑝)𝑦)) ⅆ𝑝
1

0

 

= ∫ 𝑔(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦) ⅆ𝑝
𝑡

0

, 

where the second equality involves a change of the integration variable. Eq. (9) now follows 

from the first fundamental theorem of calculus. ∎ 

Proposition 4  A necessary condition for a continuous population game 𝑔: 𝑋2 → ℝ to have a 

potential is that 𝑔 is linear in the first argument. 

Proof. Suppose that 𝑔 has a potential 𝛷. Fix 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 0 ≤ 𝑡 ≤ 1, and write 𝑥𝑡 = 𝑡𝑥 +

(1 − 𝑡)𝑦. For 0 < 𝜖 < 1, consider the strategy 𝑤 defined by  

𝑤 = 𝜖𝑥𝑡 + (1 − 𝜖)𝑧 

= 𝜖𝑡𝑥 + (1 − 𝜖𝑡)𝑧̅, 

where 𝑧̅ = 𝜖(1 − 𝑡)/(1 − 𝜖𝑡) 𝑦 + (1 − 𝜖)/(1 − 𝜖𝑡) 𝑧. As 𝑤 lies on the line segment 

connecting 𝑥𝑡  and 𝑧 as well as on that connecting 𝑥 and 𝑧̅, and 𝑧̅ lies on the line segment 

connecting 𝑦 and 𝑧, by the mean value theorem and Definition 2 there exist 0 < 𝜂 < 𝜖, 0 <

𝜂′ < 𝜖𝑡 and 0 < 𝜂″ < 𝜖(1 − 𝑡)/(1 − 𝜖𝑡) such that  

𝛷(𝑤) − 𝛷(𝑧) = 𝜖
ⅆ

ⅆ𝑝
|

𝑝=𝜂

𝛷(𝑝𝑥𝑡 + (1 − 𝑝)𝑧) 

= 𝜖(𝑔(𝑥𝑡 , 𝜂𝑥𝑡 + (1 − 𝜂)𝑧) − 𝑔(𝑧, 𝜂𝑥𝑡 + (1 − 𝜂)𝑧)), 

𝛷(𝑤) − 𝛷(𝑧̅) = 𝜖𝑡
ⅆ

ⅆ𝑝
|

𝑝=𝜂′

𝛷(𝑝𝑥 + (1 − 𝑝)𝑧̅) 

= 𝜖𝑡 (𝑔(𝑥, 𝜂′𝑥 + (1 − 𝜂′)𝑧̅) − 𝑔(𝑧̅, 𝜂′𝑥 + (1 − 𝜂′)𝑧̅)), 

𝛷(𝑧̅) − 𝛷(𝑧) = 𝜖
1 − 𝑡

1 − 𝜖𝑡

ⅆ

ⅆ𝑝
|

𝑝=𝜂″

𝛷(𝑝𝑦 + (1 − 𝑝)𝑧) 

= 𝜖
1 − 𝑡

1 − 𝜖𝑡
(𝑔(𝑦, 𝜂″𝑦 + (1 − 𝜂″)𝑧) − 𝑔(𝑧, 𝜂″𝑧 + (1 − 𝜂″)𝑧)). 

The expression on the left-hand side of the first equation is equal to the sum of those in the 

second and third equations. The same must therefore hold for the right-hand sides, and so 

𝑔(𝑥𝑡 , 𝜂𝑥𝑡 + (1 − 𝜂)𝑧) − 𝑔(𝑧, 𝜂𝑥𝑡 + (1 − 𝜂)𝑧) 

= 𝑡 (𝑔(𝑥, 𝜂′𝑥 + (1 − 𝜂′)𝑧̅) − 𝑔(𝑧̅, 𝜂′𝑥 + (1 − 𝜂′)𝑧̅)) 

+
1 − 𝑡

1 − 𝜖𝑡
(𝑔(𝑦, 𝜂″𝑦 + (1 − 𝜂″)𝑧) − 𝑔(𝑧, 𝜂″𝑧 + (1 − 𝜂″)𝑧)). 

Taking the limit 𝜖 → 0 (hence, 𝜂, 𝜂′, 𝜂″ → 0 and 𝑧̅ → 𝑧) gives the equality in (10). ∎ 

Condition (11) provides an explicit formula for the potential. For fixed, arbitrary 𝑦 ∈ 𝑋 and 

any choice of value for 𝛷(𝑦), it gives the value of 𝛷(𝑥) for all 𝑥 ∈ 𝑋.   

The formula for the potential takes a particularly special form if 𝑔 is linear in both 

arguments. 

Proposition 5  A bilinear population game 𝑔: 𝑋2 → ℝ has a potential if and only if  

𝑔(𝑥, 𝑦) + 𝑔(𝑦, 𝑧) + 𝑔(𝑧, 𝑥) = 𝑔(𝑦, 𝑥) + 𝑔(𝑧, 𝑦) + 𝑔(𝑥, 𝑧), 𝑥, 𝑦, 𝑧 ∈ 𝑋. (12) 
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The potential 𝛷: 𝑋 → ℝ is then given by  

𝛷(𝑥) =
1

2
(𝑔(𝑥, 𝑥) + 𝑔(𝑥, 𝑦) − 𝑔(𝑦, 𝑥)), (13) 

where 𝑦 is any fixed element of 𝑋.  

Proof. By Proposition 3, a necessary and sufficient condition for a function 𝛷: 𝑋 ⟶ ℝ to be a 

potential is (11), which by the linearity of 𝑔 in the second argument can be written as 

𝛷(𝑥) − 𝛷(𝑧) =
1

2
(𝑔(𝑥, 𝑥) + 𝑔(𝑥, 𝑧) − 𝑔(𝑧, 𝑥) − 𝑔(𝑧, 𝑧)), 𝑥, 𝑧 ∈ 𝑋. (14) 

Replacing 𝑧 with any fixed 𝑦, the necessity of condition (14) implies that a potential must 

coincide up to an additive constant with the function defined by (13). Plugging that function 

into the equality in (14) and simplifying give condition (12). ∎ 

An immediate corollary of Propositions 2 and 5 concerns games that can be viewed either as 

symmetric two-player games or as population games. An important class of such games is 

considered in Section 6.3. 

Corollary 1  A bilinear population game 𝑔: 𝑋2 → ℝ has a potential if and only if it has a 

potential when viewed as a symmetric two-player game. In this case, a potential 𝛷: 𝑋 → ℝ 

for the population game and a potential 𝐹: 𝑋2 → ℝ for the symmetric game are connected 

by   

𝛷(𝑥) =
1

2
𝐹(𝑥, 𝑥), 𝑥 ∈ 𝑋. (15) 

3.4 Differential formulation 
The term potential is borrowed from physics, where it refers to a scalar field whose gradient 

gives the force field. Force is analogous here to incentive, which is expressed by the payoff 

difference. The analogy can be taken one step further by connecting the payoff function 𝑔 

with the differential of the potential. This requires the potential 𝛷 to be defined on a larger 

set than 𝑋.  

For a convex set 𝑋 in a linear topological space, consider the cone   

 �̂� = { 𝑡𝑥 ∣ 𝑥 ∈ 𝑋, 𝑡 > 0 }. 

For example, if 𝑋 is the set of all mixed strategies, that is, all probability measures on some 

set of pure strategies, then �̂� is the set of all non-zero positive finite measures. For a 

function 𝛷: �̂� ⟶ ℝ, consider the directional derivative in the direction �̂� at the point �̂�, 

ⅆ𝛷(�̂�, �̂�) ≔
ⅆ

ⅆ𝑡
|

𝑡=0+
𝛷(𝑡�̂� + �̂�). (16) 

If this (right) derivative exists for all �̂�, �̂� ∈ �̂�, then the function ⅆ𝛷: �̂�2 ⟶ ℝ defined by (16) 

is the differential of 𝛷.  

Theorem 2  Let 𝑔: 𝑋2 → ℝ be a population game, and let 𝛷: �̂� ⟶ ℝ be a continuous 

function with a differential ⅆ𝛷: �̂�2 ⟶ ℝ that is continuous in the second argument. The 

restriction of 𝛷 to 𝑋 is a potential for 𝑔 if and only if there is some function 𝜓: 𝑋 ⟶ ℝ such 

that 

𝑔(𝑥, 𝑦) = ⅆ𝛷(𝑥, 𝑦) + 𝜓(𝑦), 𝑥, 𝑦 ∈ 𝑋. (17) 
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The meaning of condition (17) is that 𝑔 is “almost” given by the differential of 𝛷; the 

difference between the two functions depends only on the population strategy 𝑦. Even in 

the very simple case of symmetric 2 × 2 games (Example 3 below), this difference 𝜓 is 

generally not a constant function. 

The proof of the theorem is based on the following lemma. 

Lemma 1  For a convex set 𝑋 in a linear topological space, a continuous function 𝛷: �̂� ⟶ ℝ 

with a differential ⅆ𝛷: �̂�2 ⟶ ℝ that is continuous in the second argument satisfies 

ⅆ

ⅆ𝑝
𝛷(𝑝𝑥 + (1 − 𝑝)𝑦) = ⅆ𝛷(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − ⅆ𝛷(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦),  0 ≤ 𝑝 ≤ 1, 𝑥, 𝑦 ∈ 𝑋. (18) 

Proof (an outline). Using elementary arguments, the following can be established. 

FACT. A continuous real-valued function defined on an open real interval is continuously 

differentiable if and only if it has a continuous right derivative.  

Now, replacing �̂� in (16) with 𝑝�̂� + �̂� gives 

ⅆ𝛷(�̂�, 𝑝�̂� + �̂�) =
ⅆ

ⅆ𝑡
|

𝑡=𝑝+
𝛷(𝑡�̂� + �̂�), 𝑝 ≥ 0, �̂�, �̂� ∈ �̂�. (19) 

By the above Fact, the continuity of 𝛷 and the continuity of ⅆ𝛷 in the second argument, for 

0 < 𝑝 < 1 the right derivative in (19) is actually a two-sided derivative and it depends 

continuously on �̂�. Therefore, the right-hand side in (18) is equal to the expression 

ⅆ

ⅆ𝑡
|

𝑡=𝑝
𝛷(𝑡𝑥 + (1 − 𝑝)𝑦) −

ⅆ

ⅆ𝑡
|

𝑡=1−𝑝
𝛷(𝑝𝑥 + 𝑡𝑦), 

which by the chain rule is equal to the derivative on the left-hand side. Hence, equality (18) 

holds for 0 < 𝑝 < 1. The validity of the equality also at the endpoints now follows from the 

continuity properties of 𝛷 and ⅆ𝛷.  ∎ 

Proof of Theorem 2. By (18), condition (17) implies (9). Conversely, if (9) holds, then together 

with (18) it gives (by setting 𝑝 = 0) that (17) holds for the function 𝜓(𝑦) ≔ 𝑔(𝑦, 𝑦) −

ⅆ𝛷(𝑦, 𝑦). ∎ 

Theorem 2 may be viewed as an alternative definition of potential in population games. 

While this definition is not as general as Definition 2, it may be more familiar. In particular, 

the definition of potential in Sandholm (2015) is a special case. See Section 6.4. 

The theorem may also be looked at from the opposite perspective. As it shows, any suitably 

extendable function 𝛷 on a convex set 𝑋 in a linear topological space is a potential for some 

population game. That game 𝑔 is the restriction of ⅆ𝛷 to 𝑋2 (which corresponds to a choice 

of 𝜓 = 0 in (17)).  

4 Potential and equilibrium  
An important property of potential is its intimate connection with the equilibria in the game. 

In an 𝑁-player game, every maximum point of a potential is obviously an equilibrium. For 

games where the potential satisfies a concavity and smoothness condition, the converse 

also holds: every equilibrium maximizes the potential (Neyman 1997).  
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In a population game 𝑔: 𝑋2 → ℝ, an equilibrium is an element 𝑦 ∈ 𝑋 that satisfies condition 

(1). Depending on whether the game is symmetric or asymmetric (see the discussion in 

Section 2.1), 𝑦 may represent either an equilibrium strategy or a strategy profile. For a game 

that has a potential, the following theorem connects the potential with the game’s 

equilibria. 

Theorem 3  In a population game with a potential 𝛷, every strategy (profile) 𝑦 that is a local 

maximum point of 𝛷 is an equilibrium (strategy). If the potential 𝛷 is concave, then the 

converse also holds, indeed, every equilibrium (strategy) is a global maximum point of 𝛷.  

Proof. Setting 𝑝 = 0 in (9) gives that a potential 𝛷 for a population game 𝑔: 𝑋2 → ℝ satisfies 

ⅆ

ⅆ𝑝
|

𝑝=0+

𝛷(𝑝𝑥 + (1 − 𝑝)𝑦) = 𝑔(𝑥, 𝑦) − 𝑔(𝑦, 𝑦), 𝑥, 𝑦 ∈ 𝑋. (20) 

An element 𝑦 ∈ 𝑋 is an equilibrium if and only if the right-hand side of the equality is 

nonpositive for all 𝑥, equivalently, if and only if this is so for the left-hand side. The last 

condition is implied by 𝑦 being a local maximum point of 𝛷, and if 𝛷 is concave, the 

condition implies that 𝑦 is a global maximum point. ∎ 

It follows from Theorem 3 that a sufficient condition for a population game with a potential 

𝛷 to have at least one equilibrium (strategy) is that 𝑋 is compact and 𝛷 is continuous. 

A sufficient condition for a population game to have at most one equilibrium (strategy) is 

that it has a strictly concave potential. This is because a strictly concave function on the 

convex set 𝑋 can have no more than one maximum point.  

5 Finite improvement property 
In an 𝑁-player game ℎ, an improvement path of length 𝐿 (≥ 1) is any list of strategy profile 

𝑥0, 𝑥1, … , 𝑥𝐿 such that, for 𝑙 = 1,2, … , 𝐿, 𝑥𝑙  differs from 𝑥𝑙−1 only in the strategy of a single 

player 𝑖𝑙, for whom the payoff increment ℎ𝑖𝑙
(𝑥𝑙) − ℎ𝑖𝑙

(𝑥𝑙−1) is positive. Clearly, a potential 

𝑃 increases along every improvement path and, moreover, the potential difference between 

the endpoints, 𝑃(𝑥𝐿) − 𝑃(𝑥0), is equal to the sum of the players’ payoff increments. If the 

game is finite, then the monotone increase of the potential implies that ℎ has the finite 

improvement property (Monderer and Shapley 1996): the length of any improvement path is 

less than the number of strategy profiles in the game. The same conclusion holds for finite 

symmetric 𝑁-player games that have a potential.  

Population games cannot be expected to have a property similar to the FIP even if they have 

a potential, because they are not finite games. However, it is shown below that a version of 

the result that the sum of the payoff increments is equal to the payoff difference between 

the endpoints holds here too. 

Consider a population game 𝑔: 𝑋2 ⟶ ℝ such that the topology on the space in which 𝑋 lies 

is induced by a norm ‖⋅‖. Suppose that 𝑔 has a potential 𝛷: 𝑋 ⟶ ℝ that can be extended to 

an open neighborhood of 𝑋 in such a way that the Fréchet derivative ⅅ𝛷 (see below) exists 

and its restriction to 𝑋 is uniformly continuous. A rectifiable curve 𝒞 in 𝑋 is any continuous 

function from [0,1] to 𝑋, 𝑡 ↦ 𝑦(𝑡), such that  

sup
𝑃

∑‖𝑦(𝑡𝑙) − 𝑦(𝑡𝑙−1)‖

𝐿

𝑙=1

< ∞, (21) 
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where the supremum is over all partitions 𝑃 of the unit interval, that is, all finite collections 

of points 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝐿 = 1, 𝐿 ≥ 1. (The supremum value represents the length of 

𝒞.) The norm of a partition 𝑃 is defined as 𝜆(𝑃) ≔ max
1≤𝑙≤𝐿

(𝑡𝑙 − 𝑡𝑙−1). 

Theorem 4  For a population game 𝑔 and a potential 𝛷 as above, and any rectifiable curve 𝒞, 

lim
𝜆(𝑃)→0

∑(𝑔(𝑦(𝑡𝑙), 𝑦(𝑡𝑙−1)) − 𝑔(𝑦(𝑡𝑙−1), 𝑦(𝑡𝑙−1)))

𝐿

𝑙=1

= 𝛷(𝑦(1)) − 𝛷(𝑦(0)). (22) 

In words, for a sufficiently fine partition of [0,1], the sum on the left-hand side of (22), which 

concerns the corresponding points on the curve, is arbitrarily close to the difference 

between the potential values at the endpoints.   

Proof of Theorem 4. For any partition 𝑃, Eq. (20) gives that 

𝛷(𝑦(1)) − 𝛷(𝑦(0)) − ∑(𝑔(𝑦(𝑡𝑙), 𝑦(𝑡𝑙−1)) − 𝑔(𝑦(𝑡𝑙−1), 𝑦(𝑡𝑙−1)))

𝐿

𝑙=1

 

= ∑ (𝛷(𝑦(𝑡𝑙)) − 𝛷(𝑦(𝑡𝑙−1)) −
ⅆ

ⅆ𝑝
|

𝑝=0

𝛷(𝑝𝑦(𝑡𝑙) + (1 − 𝑝)𝑦(𝑡𝑙−1)))

𝐿

𝑙=1

. (23) 

It follows from the definition of the Fréchet derivative3 that   

ⅆ

ⅆ𝑝
𝛷(𝑝𝑥 + (1 − 𝑝)𝑦) =  ⅅ𝛷(𝑝𝑥 + (1 − 𝑝)𝑦)(𝑥 − 𝑦), 0 ≤ 𝑝 ≤ 1, 𝑥, 𝑦 ∈ 𝑋. (24) 

Therefore, by the mean value theorem, there is some 0 < 𝑝 < 1 such that the expression on 

the right-hand side of (23) is equal to  

∑(ⅅ𝛷(𝑝𝑦(𝑡𝑙) + (1 − 𝑝)𝑦(𝑡𝑙−1)) − ⅅ𝛷(𝑦(𝑡𝑙−1)))(𝑦(𝑡𝑙) − 𝑦(𝑡𝑙−1))

𝐿

𝑙=1

 

and its absolute value is therefore bounded by  

sup
𝑥,𝑦∈𝑋

‖𝑥−𝑦‖≤ max
1≤𝑙≤𝐿

‖𝑦(𝑡𝑙)−𝑦(𝑡𝑙−1)‖

‖ⅅ𝛷(𝑥) − ⅅ𝛷(𝑦)‖  × ∑‖𝑦(𝑡𝑙) − 𝑦(𝑡𝑙−1)‖

𝐿

𝑙=1

. 

By the (automatically, uniform) continuity of 𝑦(⋅) on [0,1] and the uniform continuity of 

ⅅ𝛷(⋅) on 𝑋, the supremum in the last expression tends to 0 as 𝜆(𝑃) → 0. It follows, in view 

of (21), that both sides of (23) also tend to 0. ∎ 

As the next proposition shows, the equality in Theorem 1 is a special case of that in Theorem 

4. For other cases in which the latter equality takes a simple form, see Section 6.4 and 

Example 6. 

 
3 The Fréchet derivative at a point 𝑦 is a bounded linear functional ⅅ𝛷(𝑦) (whose norm is denoted 

‖ⅅ𝛷(𝑦)‖) such that (1/‖ℎ‖)(𝛷(𝑦 + ℎ) − 𝛷(𝑦) − ⅅ𝛷(𝑦)(ℎ)) → 0 whenever ‖ℎ‖ → 0. In 

particular, the directional derivative in any direction 𝑥 exists and is given by ⅆ𝛷(𝑥, 𝑦) = ⅅ𝛷(𝑦)(𝑥). 
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Proposition 6  If 𝒞 in Theorem 4 is a line segment, that is, for some 𝑥, 𝑦 ∈ 𝑋 

𝑦(𝑡) = 𝑡𝑥 + (1 − 𝑡)𝑦, 0 ≤ 𝑡 ≤ 1, (25) 

then the limit in (22) is equal to the integral in (11). 

Proof. As the equalities in (9) and (24) have the same left-hand side, the expressions on the 

right-hand side are equal. The equality implies that 𝑔 satisfies the continuity condition 

(which follows from the assumed continuity of ⅅ𝛷 in 𝑋) and is linear in the first argument 

(which following from setting 𝑝 = 0). The linearity and assumption (25) give that the sum in 

(22) is equal to  

∑(𝑡𝑙 − 𝑡𝑙−1)(𝑔(𝑥, 𝑡𝑙−1𝑥 + (1 − 𝑡𝑙−1)𝑦) − 𝑔(𝑦, 𝑡𝑙−1𝑥 + (1 − 𝑡𝑙−1)𝑦))

𝐿

𝑙=1

. 

This is a Riemann sum of the integral in (11). ∎ 

The significance of Theorem 4 comes from the case where 𝒞 describes a gradual, continuous 

change of the population strategy that results when, at every moment, a small fraction of 

the population changes its choice of strategies or actions. As discussed in Section 2, the 

strategies of the individual population members determine the population strategy 𝑦. 

Different individual choices would yield a possibly different population strategy 𝑦′. The 

expression 𝑔(𝑦′, 𝑦) gives the mean payoff for individual population members who 

unilaterally deviate to their latter strategy when everyone else chooses their former 

strategy. As a special case, 𝑔(𝑦, 𝑦) is the mean payoff when no one deviates. The mean 

change of payoff from these unilateral changes of strategy is therefore given by  

𝑔(𝑦′, 𝑦) − 𝑔(𝑦, 𝑦). (26) 

By the assumed continuity of 𝑡 ↦ 𝑦(𝑡), the population strategy 𝑦(𝑡) changes only little 

during any short time interval [𝑡, 𝑡′]. The mean change of payoff for individual population 

members that results from their own change of strategy (if any) during this time interval is 

therefore closely approximated by (26), with 𝑦 = 𝑦(𝑡) and 𝑦′ = 𝑦(𝑡′). Therefore, the sum 

of these payoff changes throughout the entire period has a mean that is approached by the 

sum on the left-hand side of (22) as the partition of [0,1] becomes finer. Theorem 4 shows 

that this mean is given by the potential difference between the endpoints of 𝒞. 

Individual population members may be expected to change their strategy only if they gain 

from doing so. In this case, the curve 𝒞 that the population strategy traces in 𝑋 is an 

improvement curve. Theorem 4 shows that the gains from the unilateral deviations sum up 

to the difference between the values that the potential 𝛷 takes at the two endpoints – just 

as they do in the 𝑁-player case. The total gains are therefore bounded by twice the 

supremum of |𝛷|. 
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6 Applications 
6.1 𝑁-player games 
For an 𝑁-player game ℎ: 𝑋 ⟶ ℝ𝑁  (see Section 3.1), the function 𝑔: 𝑋2 ⟶ ℝ defined by  

𝑔(𝑥, 𝑦) = ∑ ℎ𝑖(𝑥𝑖 , 𝑦−𝑖)

𝑁

𝑖=1

(27) 

gives the sum of the payoffs that individual players would get by unilaterally switching to 

play according to strategy profile 𝑥 when all the other players play according to 𝑦. It is easy 

to see that a strategy profile 𝑦 ∈ 𝑋 satisfies (1) if and only if it is a (Nash) equilibrium in ℎ.  

Suppose that for every player 𝑖 in ℎ the strategy space 𝑋𝑖 is a convex set in a linear 

topological space, and so the same holds for the product space 𝑋 = 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑁. 

Then, 𝑔 may be viewed as a population-game representation of ℎ. The observation in the 

previous paragraph means that 𝑔 and ℎ share the same equilibria. The next theorem shows 

that if each of the payoff functions in ℎ is linear in each of its arguments, then the two 

games also share the same potential. That is, if either game has a potential, then it is also 

the other game’s potential.    

Proposition 7  Let ℎ: 𝑋 ⟶ ℝ𝑁 be an 𝑁-player game where for every player 𝑖 the strategy 

space 𝑋𝑖 is a convex set in a linear topological space and the payoff function ℎ𝑖 is multilinear, 

and let 𝑔: 𝑋2 ⟶ ℝ be the corresponding population game. A real-valued function on 𝑋 is a 

potential for ℎ if and only if it is a potential for 𝑔.  

Proof. The multilinearity of the payoff functions in ℎ implies that 𝑔 is also multilinear, and 

therefore satisfies the continuity condition. By Proposition 3, a function 𝛷: 𝑋 ⟶ ℝ is a 

potential for 𝑔 if and only if it satisfies condition (11). As remarked as the end of Section 3.1, 

a function 𝑃: 𝑋 ⟶ ℝ is a potential for ℎ is and only if it satisfies condition (3). However, in 

view of (27), these two conditions are one and the same. ∎ 

Example 1  Finite games. Proposition 1 characterizes and gives an explicit form for the 

potential in a finite 𝑁-player game, using the game’s mixed extension. As the proof of 

Proposition 7 shows, this form is actually a population-game potential in disguise. It is the 

potential of the population game 𝑔 defined by (27).  

6.2 Symmetric 𝑁-player games 
For a symmetric 𝑁-player game 𝑔𝑁: 𝑋𝑁 ⟶ ℝ (see Section 3.2; a subscript indicating the 

number of players is added here for clarity), the function 𝑔: 𝑋2 ⟶ ℝ defined by  

𝑔(𝑥, 𝑦) = 𝑔𝑁(𝑥, 𝑦, … , 𝑦) (28) 

gives the payoff of a player playing 𝑥 when all the other players play 𝑦. A strategy 𝑦 ∈ 𝑋 

satisfies (1) if and only if it is (symmetric Nash) equilibrium strategy in 𝑔𝑁. 

If the strategy space 𝑋 in 𝑔𝑁 is a convex set in a linear topological space, then 𝑔 is a 

population game. By the above observation, the equilibria in the population game are 

precisely the equilibrium strategies in the symmetric game. The next proposition connects 

the two games’ potentials.  

Proposition 8  Let 𝑔𝑁: 𝑋𝑁 ⟶ ℝ be a symmetric 𝑁-player game where the strategy space 𝑋 

is a convex set in a linear topological space, and let 𝑔: 𝑋2 ⟶ ℝ be the corresponding 
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population game. If 𝑔𝑁 is linear in the first argument (equivalently, if 𝑔 is so) and has a 

potential 𝐹: 𝑋𝑁 ⟶ ℝ, then the function 𝛷: 𝑋 ⟶ ℝ defined by  

𝛷(𝑥) =
1

𝑁
𝐹(𝑥, 𝑥, … , 𝑥)  

is a potential for 𝑔. 

Proof. As indicated in Section 3.2, the difference 𝑔𝑁 − 𝐹 does not depend on the first 

argument. Therefore, 𝐹 too is linear in that argument. As 𝐹 is a symmetric function, this 

means that it is actually multilinear. The multilinearity and symmetry of the potential 𝐹 give 

that, with 𝑥𝑝 = 𝑝𝑥 + (1 − 𝑝)𝑦, 

𝑔(𝑥, 𝑥𝑝) − 𝑔(𝑦, 𝑥𝑝) = 𝑔𝑁(𝑥, 𝑥𝑝, … , 𝑥𝑝) − 𝑔𝑁(𝑦, 𝑥𝑝, … , 𝑥𝑝)

= 𝐹(𝑥, 𝑥𝑝, … , 𝑥𝑝) − 𝐹(𝑦, 𝑥𝑝, … , 𝑥𝑝) =
1

𝑁

ⅆ

ⅆ𝑝
𝐹(𝑥𝑝, 𝑥𝑝, … , 𝑥𝑝) =

ⅆ

ⅆ𝑝
𝛷(𝑥𝑝). 

This means that 𝛷 is a potential for 𝑔. ∎ 

Example 2  Random matching in a symmetric 𝑁-player game with a multilinear payoff 

function. Random matching (Bomze and Weibull 1995, Broom et al. 1997, and many other 

papers) refers to the random selection of 𝑁 individuals who are matched to play a 

symmetric game 𝑔𝑁: 𝑋𝑁 ⟶ ℝ. The strategy space 𝑋 is a convex set in a linear topological 

space and the function 𝑔𝑁 is multilinear. The players are picked up independently and 

according to the same distribution (i.i.d.) from an (effectively) infinite population of 

potential players, whose individual probability of being selected is (practically) zero.  

Because of the multilinearly of 𝑔𝑁, a player’s expected payoff depends only on the player’s 

own strategy 𝑥 and on the population’s mean strategy 𝑦. Specifically, the expected payoff is 

expressed by the population game 𝑔: 𝑋2 ⟶ ℝ defined in (28). As indicated, 𝑦 ∈ 𝑋 is an 

equilibrium in this game if and only if it is an equilibrium strategy in the symmetric game 𝑔𝑁. 

If 𝑔𝑁 has a potential 𝐹, then by Proposition 8 the potential “along the diagonal” is, up to the 

multiplicative constant 𝑁, a potential for 𝑔. It follows, by Theorem 3, that a sufficient (and if 

the function 𝑥 ↦ 𝐹(𝑥, 𝑥, … , 𝑥) is concave, also necessary) condition for 𝑦 ∈ 𝑋 to be an 

equilibrium in the population game 𝑔 is that for all strategies 𝑥 in some neighborhood of 𝑦  

𝐹(𝑥, 𝑥, … , 𝑥) ≤ 𝐹(𝑦, 𝑦, … , 𝑦). 

The meaning of being an equilibrium is that, if the population’s mean strategy is 𝑦, then 

(almost) everyone’s strategy is optimal: no alternative strategy would yield a higher 

expected payoff in the game 𝑔𝑁 against randomly selected opponents.  

6.3 Symmetric 𝑛 × 𝑛 games 
A symmetric 𝑛 × 𝑛 game is a symmetric two-player game 𝑔: 𝑋2 → ℝ where the strategy 

space 𝑋 is the unit simplex in ℝ𝑛 and 𝑔 can be expressed by a square, 𝑛 × 𝑛 (payoff) 

matrix 𝐴. With strategies written as column vectors and T denoting transposition, 

𝑔(𝑥, 𝑦) = 𝑥T𝐴𝑦, 𝑥, 𝑦 ∈ 𝑋. (29) 

The interpretation is that both players share a common set of 𝑛 actions, and a (mixed) 

strategy 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑋 specifies the probability 𝑥𝑖  with which a player chooses the 

𝑖th action, for 𝑖 = 1,2, … , 𝑛. A strategy 𝑥 is pure if all the probabilities but one are zero.   
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A symmetric two-player game can be viewed also as a (symmetric) population game 

(Maynard Smith 1982). Instead of being matched with a specific opponent, a player is 

randomly matched with other members of a large population. The population strategy 𝑦 is 

the mean strategy in the population, which is also the distribution of actions there. In fact, it 

makes no difference whether individuals in the population are playing pure or mixed 

strategies. The duality of the game – both symmetric and population game – is a special case 

of Example 2, as for 𝑁 = 2 there is no formal difference between the functions on the right- 

and left-hand sides of (28). Only the interpretations differ. 

Whether 𝑔 is a potential game does not depend on the interpretation. This is shown by 

Corollary 1, which in addition shows that a potential 𝐹: 𝑋2 → ℝ for 𝑔 as a symmetric game 

and a potential 𝛷: 𝑋 → ℝ for it as a population game are connected by (15). 

Example 3  Symmetric 2 × 2 games. Every symmetric 2 × 2 game 𝑔, with payoff matrix 𝐴 =

(𝑎𝑖𝑗)𝑖,𝑗=1
2 , is a potential game, with the potential  

𝐹(𝑥, 𝑦) = (𝑎11 − 𝑎21)𝑥1𝑦1 + (𝑎22 − 𝑎12)𝑥2𝑦2. (30) 

(The arguments of 𝐹 are mixed strategies, 𝑥 = (𝑥1, 𝑥2) = (𝑥1, 1 − 𝑥1) and 𝑦 = (𝑦1, 𝑦2) =

(𝑦1, 1 − 𝑦1).) This is because 𝐹 is evidently a symmetric function and its difference from 𝑔 is 

a function that depends only on the second argument 𝑦, as it is easy to check that 𝑔(𝑥, 𝑦) −

𝐹(𝑥, 𝑦) equals 𝜓(𝑦) ≔ 𝑎21𝑦1 + 𝑎12𝑦2.  

The same conclusion can also be deduced from 𝑔 being the mixed extension of a finite 

symmetric game with only two strategies. That game trivially satisfies condition (6), because 

at least two of any (pure strategies) 𝑥, 𝑦, 𝑧 are identical. As remarked at the end of Section 

3.2, this fact means that 𝑔 also has a potential, which is given by formula (7). Choosing 𝑧 =

(0,1) in (7) and subtracting the constant 𝑎12 give (30). 

As a population game, 𝑔 has the potential 

𝛷(𝑥) =
1

2
(𝑎11 − 𝑎21)𝑥1

2 +
1

2
(𝑎22 − 𝑎12)𝑥2

2. 

This fact follows immediately from Corollary 1 or from Proposition 8, as 𝛷 satisfies (15). It 

can also be verified by checking that the condition in Definition 2, Theorem 1 or Theorem 2 

holds. For the latter theorem, note that  

ⅆ𝛷(𝑥, 𝑦) = 𝐹(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑋, (31) 

and therefore (17) holds with the 𝜓 defined above.  

The quadratic function 𝛷 is strictly concave if and only if 𝑎11 + 𝑎22 < 𝑎12 + 𝑎21. In this case, 

by Theorem 3 and the remarks following it, the unique strategy 𝑦 = (𝑦1, 𝑦2) = (𝑦1, 1 − 𝑦2) 

maximizing 𝛷 is the unique (Nash) equilibrium in 𝑔.  

If the above inequality does not hold, equivalently, if 𝛷 is convex, then it is locally maximized 

at one or both end points. By the same theorem, this means that the population game 𝑔 has 

at least one pure-strategy equilibrium. Such an equilibrium describes a monomorphic 

population in which everyone is using the same action. An equilibrium 𝑦 that is not pure may 

exist too. Such an equilibrium may represent either a monomorphic population, in which 

everyone uses the mixed strategy 𝑦, or a polymorphic population, in which 𝑦 is the mean 

strategy.    
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6.4 Population games on the unit simplex 
Many applications involve populations games 𝑔: 𝑋2 ⟶ ℝ such that 𝑋 is the unit simplex in a 

Euclidean space ℝ𝑛 and 𝑔 is linear in the first argument. (Symmetric 𝑛 × 𝑛 games are the 

special case where 𝑔 is linear also in the second argument.) Writing 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑋 

as ∑ 𝑥𝑗𝑒𝑗 ,𝑛
𝑗=1  where {𝑒1, 𝑒2, … , 𝑒𝑛} is the standard basis in ℝ𝑛, the linearity means that  

𝑔(𝑥, 𝑦) = 𝑥 ⋅ 𝑓(𝑦), 𝑥, 𝑦 ∈ 𝑋, (32) 

with the dot denoting scalar product and 𝑓 = (𝑓1, 𝑓2, … , 𝑓𝑛): 𝑋 ⟶ ℝ𝑛 defined by  

𝑓𝑗(𝑦) = 𝑔(𝑒𝑗 , 𝑦), 𝑗 = 1,2, … , 𝑛. (33) 

The next proposition characterizes the potential of 𝑔, if it exists. It concerns a candidate 

function on the unit simplex that has a smooth extension to the whole nonnegative orthant. 

Proposition 9  Let 𝑔: 𝑋2 → ℝ be a population game where 𝑋 is the unit simplex in ℝ𝑛 and 𝑔 

is linear in the first argument (and so has the presentation (32)), and let 𝛷: ℝ+
𝑛 ⟶ ℝ be a 

continuously differentiable function. The restriction of 𝛷 to 𝑋 is a potential for 𝑔 if and only 

if there is some function 𝜓: 𝑋 ⟶ ℝ such that  

𝑓𝑗(𝑦) =
𝜕𝛷

𝜕𝑦𝑗

(𝑦) + 𝜓(𝑦), 𝑦 ∈ 𝑋, 𝑗 = 1,2, … , 𝑛. (34) 

The proposition readily extends to population games where 𝑋 is the product of several 

simplices. The extension is outlined at the end of this subsection.  

Proof of Proposition 9. The necessary and sufficient condition in Theorem 2 for (the 

restriction of) 𝛷 to be a potential can be written as  

𝑔(𝑥, 𝑦) = 𝑥 ⋅ ∇𝛷(𝑦) + 𝜓(𝑦), 𝑥, 𝑦 ∈ 𝑋, 

with ∇𝛷 denoting the gradient of 𝛷. It follows from (32) that this condition is equivalent to 

(34). ∎ 

An explicit formula for the potential can be derived from Proposition 9. Assuming that the 

vector-valued function 𝑓 is continuous, consider its line integral along a piecewise smooth 

curve 𝒞 ⊆ 𝑋 that starts at a point 𝑦 and ends at a point 𝑥. By (34), 

∫𝑓(𝑧) ⋅ ⅆ𝑧
𝒞

= ∫(∇𝛷(𝑧) + 𝜓(𝑧)𝑒) ⋅ ⅆ𝑧
𝒞

= 𝛷(𝑥) − 𝛷(𝑦), (35) 

where 𝑒 = (1,1, … ,1). (As 𝑒 ⋅ 𝑧 = 1 for all 𝑧 ∈ 𝑋, 𝑒 ⋅ ⅆ𝑧 = 0.) This equation shows that the 

line integral of 𝑓 is path independent and also that, for any fixed starting point 𝑦 ∈ 𝑋, the 

potential can be presented as  

𝛷(𝑥) = ∫𝑓(𝑧) ⋅ ⅆ𝑧
𝒞

+ constant, 𝑥 ∈ 𝑋. 

Eq. (35) is nothing but Eq. (22), adapted to the present context. This follows from (32), which 

gives that the sum in (22) is equal to  

∑ 𝑓(𝑦(𝑡𝑙−1)) ⋅ (𝑦(𝑡𝑙) − 𝑦(𝑡𝑙−1))

𝐿

𝑙=1

, 

and so the limit in (22) is, by definition, the line integral presented in (35).  
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The significance of the last finding is that, at shown in Section 5, it means that, if 𝐶 is an 

improvement curve representing the evolution of the population strategy as individual 

population members unilaterally change their choice of strategies and increase their payoff 

as a result, then the aggregate of these individual gains is given by the line integral in (35). 

By either that equation or (22), the aggregate gain is also equal to the potential difference 

between the endpoints of 𝐶.    

The last conclusion has much similarity with Lemma 4.1 in Sandholm (2001), which concerns 

evolutionary dynamics, that is, a vector field 𝑉: 𝑋 ⟶ ℝ𝑛 defining an equation of motion �̇� =

𝑉(𝑥) (with the dot indicating time derivative). However, a fundamental difference between 

the present setting and Sandholm’s is that, here, there is no assumption about who are the 

individuals changing their strategy choices at each moment (among those who can gain from 

doing so), and therefore an improvement curve may turn in different directions. This is a 

direct analog of an improvement path in an 𝑁-player game, which may go in different 

directions depending on the order of moves. Evolutionary dynamics, by contrast, assumes 

that a population strategy 𝑦 may change in only one direction, that specified by 𝑉(𝑦). The 

conformance with the individuals’ incentives is achieved by what Sandholm calls the positive 

correlation assumption: 

𝑉(𝑥) ⋅ 𝑓(𝑥) > 0  whenever 𝑉(𝑥) ≠ 0. 

The assumption implies that a potential 𝛷 is a Lyapunov function for the evolutionary 

dynamics. That is, it increases along the solution trajectories of �̇� = 𝑉(𝑥). These trajectories 

are the specific improvement curves picked up by 𝑉. 

It should be noted that Sandholm’s notion of potential is somewhat more restricted than in 

this paper. A more detailed examination of his models in light of the present setting follows. 

Example 4 (Sandholm 2015) The unit simplex 𝑋 in ℝ𝑛 represents all distributions over a set 

of 𝑛 possible actions. Each user in a continuum of total mass 1 has to choose an action. The 

proportion 𝑦𝑗  of users choosing each action 𝑗 defines the population strategy (or population 

state) 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) ∈ 𝑋. The payoff from choosing action 𝑗 is given by 𝑓𝑗(𝑦), where 

𝑓𝑗: 𝑋 ⟶ ℝ is a continuous function. A mixed strategy 𝑥 ∈ 𝑋 therefore yields the payoff 

𝑔(𝑥, 𝑦) given in (32). The population strategy 𝑦 is said to be a Nash equilibrium if every 

action used by a non-zero fraction of the users is payoff-maximizing. This condition is easily 

seen to be equivalent to (1). 

Suppose that the function 𝑓 = (𝑓1, 𝑓2, … , 𝑓𝑛): 𝑋 ⟶ ℝ𝑛 has a continuous extension (which is 

also denoted by 𝑓) to the entire nonnegative orthant ℝ+
𝑛 . Sandholm (2015) calls a 

continuously differentiable function 𝛷: ℝ+
𝑛 ⟶ ℝ a potential function if 𝑓 = ∇𝛷, or more 

explicitly 

𝑓𝑗(𝑦) =
𝜕𝛷

𝜕𝑦𝑗

(𝑦), 𝑦 ∈ ℝ+
𝑛 , 𝑗 = 1,2, … , 𝑛. (36) 

This definition corresponds to the special case of (34) where 𝜓 = 0. It is similar to the 

meaning of potential in mathematical physics, where 𝑓 represents a vector field, a force 

field for example. The existence of a potential function means that 𝑓 is a conservative vector 

field. If 𝑓 is continuously differentiable, then a necessary and sufficient condition for this is 

𝜕𝑓𝑗

𝜕𝑦𝑘
=

𝜕𝑓𝑘

𝜕𝑦𝑗
, 𝑗, 𝑘 = 1,2, … , 𝑛. (37) 
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By Proposition 9, condition (36) is sufficient for 𝛷 to be a potential for the symmetric 

population game 𝑔: 𝑋2 → ℝ in the sense of Definition 2. However, it is not a necessary 

condition, and is in fact unnecessarily restrictive as it only picks up potentials 𝛷 for which 𝜓 

in (34) is identically zero. A symmetric population game may well have a potential even if 𝑓 

is not a conservative vector field.4  

Consider, for example, a symmetric 𝑛 × 𝑛 game 𝑔: 𝑋2 → ℝ, viewed as a population game. 

With the notation in Section 6.3,  

𝑓(𝑦) = 𝐴𝑦, 𝑦 ∈ 𝑋. 

Condition (37) therefore means that the payoff matrix 𝐴 is symmetric, equivalently, 𝑔 is a 

symmetric function. As indicated in Section 3.2, this represents the very special case of a 

doubly symmetric game: a common-interest game. A potential may exist also in 𝑛 × 𝑛 

games where 𝐴 is not symmetric. Indeed, for 𝑛 = 2 (Example 3), it exists for all 𝐴.   

Example 5 (Sandholm 2001) In an asymmetric version of Example 4, a unit-mass continuum 

of users is divided into a finite number 𝑟 of classes of identical users. Class 𝑘 (= 1,2, … , 𝑟) 

has total mass 𝑚𝑘 > 0. Each of its members needs to choose one of a finite number of 

actions, numbered from 1 to 𝑛𝑘. The total number of actions is therefore 𝑛 = ∑ 𝑛𝑘𝑟
𝑘=1 . A 

population strategy 𝑦 specifies the mass of users choosing each action. It is thus an 𝑛-tuple 

where the first 𝑛1 coordinates 𝑦11, 𝑦12, … , 𝑦1𝑛1  refer to class 1 (and therefore constitute a 

vector in the unit simplex in ℝ𝑛1
 multiplied by 𝑚1), the next 𝑛2 coordinates refer to class 2, 

and so on. The set 𝑋 ⊆ ℝ+
𝑛  of all possible population strategies is therefore the product of 𝑟 

simplices, each of which is a scaled unit simplex in a Euclidean space.  

The payoff for members of class 𝑘 (= 1,2, … , 𝑟) from choosing action 𝑗 (= 1,2, … , 𝑛𝑘) is 

𝑓𝑘𝑗(𝑦), where 𝑓𝑘𝑗: 𝑋 ⟶ ℝ is a continuous function. The population strategy 𝑦 is said to be a 

Nash equilibrium if, in each class, every action used by a non-zero fraction of users is payoff-

maximizing. This condition is easily seen to be equivalent to 𝑦 being an equilibrium (in the 

sense of Definition 1) in the asymmetric population game 𝑔: 𝑋2 ⟶ ℝ defined by (32). The 

interpretation of 𝑔(𝑥, 𝑦) is that it gives the mean payoff to individual users (of all classes) 

who unilaterally deviate to play the mixed strategy specified by 𝑥 for their class (with 

frequencies interpreted as probabilities) when the actual population strategy is 𝑦.   

Suppose that the function 𝑓 = (𝑓11, … , 𝑓1𝑛1 , 𝑓21, … , 𝑓2𝑛2 , … , 𝑓𝑟𝑛𝑟): 𝑋 ⟶ ℝ𝑛 has a 

continuous extension, which is also denoted by 𝑓, to the entire nonnegative orthant ℝ+
𝑛 . 

Sandholm (2001) calls a continuously differentiable function 𝛷: ℝ+
𝑛 ⟶ ℝ a potential 

function if 𝑓 = ∇𝛷, or more explicitly 

𝑓𝑘𝑗(𝑦) =
𝜕𝛷

𝜕𝑦𝑘𝑗

(𝑦), 𝑦 ∈ ℝ+
𝑛 ,  𝑘 = 1,2, … , 𝑟,  𝑗 = 1,2, … , 𝑛𝑘 . (38) 

Thus, as in Example 4, the existence of a potential function means that 𝑓 is a conservative 

vector field. However, again, while (38) is sufficient for 𝛷 to be a potential also in the sense 

of Definition 2, it is not necessary. The population game 𝑔 defined above may have a 

potential even if 𝑓 is not a conservative vector field. This fact follows from a straightforward 

 
4 As shown above, a necessary condition for the existence of a potential is that the line integral of 𝑓 in 

𝑋 is path independent. The condition that 𝑓 is a conservative vector field is equivalent to the stronger 

condition of path independence in the entire positive orthant ℝ+
𝑛 .  
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extension of Proposition 9. The extended result states that the restriction of a continuously 

differentiable function 𝛷: ℝ+
𝑛 ⟶ ℝ to a set 𝑋 ⊆ ℝ+

𝑛  as above is a potential for a population 

game 𝑔: 𝑋2 ⟶ ℝ of the form (32) if and only if it satisfies a condition similar to (34) in which 

the index 𝑗 is replaced with the double index 𝑘𝑗 and 𝜓(𝑦) is replaced with a class-specific 

𝜓𝑘(𝑦). Condition (38) only picks up the case where all the 𝜓𝑘’s are identically zero.  

6.5 Nonatomic congestion games 
An important class of population games is nonatomic congestion games, which model the 

negative externalities of resource use with a continuum of users. Such games can be 

symmetric (e.g., Milchtaich 2012, 2021), with all the users identical, or asymmetric (e.g., 

Milchtaich 2000, 2004), with different users potentially facing different choices or receiving 

different payoffs from making identical choices. The following two examples present one, 

specific model of each kind. 

Example 6  Symmetric nonatomic congestion game. An infinite population 𝐼 of identical 

users share a finite number 𝑛 of common resources (for example, road segments). Each user 

𝑖 ∈ 𝐼 has to choose a subset of resources (for example, a route, comprising several road 

segments), which can be expressed as a binary vector 𝜎(𝑖) = (𝜎1(𝑖), 𝜎2(𝑖), … , 𝜎𝑛(𝑖)), with 

𝜎𝑗(𝑖) = 1 or 0 indicating that resource 𝑗 is included or is not included, respectively, in 𝑖’s 

choice. The vector must belong to a specified (finite) collection 𝑆 ⊆ {0,1}𝑛, which describes 

the allowable subsets of resources (for example, all routes from town 𝐴 to town 𝐵). A pure 

strategy profile is a mapping 𝜎: 𝐼 ⟶ 𝑆 such that for each resource 𝑗 the set of all 𝑖 with 

𝜎𝑗(𝑖) = 1 is measurable in the sense that it belongs to a specified 𝜎-algebra ℐ of subsets of 𝐼. 

The load on each resource 𝑗 is then defined as the measure of its set of users with respect to 

a specified nonatomic probability measure on (𝐼, ℐ), the population measure 𝜇. The load 𝑦𝑗  

can therefore be written as 

𝑦𝑗 = ∫ 𝜎𝑗(𝑖) ⅆ𝜇(𝑖). 

The load vector 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) = ∫ 𝜎(𝑖) ⅆ𝜇(𝑖) is also the population’s mean strategy. 

This vector, the population strategy, lies in the convex hull of 𝑆, a compact subset of 

[0,1]𝑛 denoted 𝑋. 

The cost of using each resource 𝑗 (for example, the time is takes to traverse a road) depends 

on the load 𝑦𝑗  and is given by 𝑐𝑗(𝑦𝑗), where 𝑐𝑗: ℝ+ ⟶ ℝ is a continuous and strictly increasing 

cost function. The total cost for user 𝑖 is the sum of the costs of the resources included in 𝑖’s 

choice, ∑ 𝜎𝑗(𝑖)𝑐𝑗(𝑦𝑗)𝑛
𝑗=1 . The user’s payoff is the negative of the cost. A natural, linear 

extension of the payoff to mixed strategies5 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑋 is given by  

𝑔(𝑥, 𝑦) ≔ − ∑ 𝑥𝑗𝑐𝑗(𝑦𝑗)

𝑛

𝑗=1

= −𝑥 ⋅ 𝑐(𝑦), 

where 𝑐(𝑦) = (𝑐1(𝑦1), 𝑐2(𝑦2), … , 𝑐𝑛(𝑦𝑛)). This formula defines a population game 𝑔: 𝑋2 ⟶

ℝ.  

 
5 Note that such mixtures, which are weighted averages of the elements of 𝑆, are generally not 

probability vectors.  
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The function 𝛷: 𝑋 ⟶ ℝ defined by 

𝛷(𝑥) = − ∑ ∫ 𝑐𝑗(𝑡) ⅆ𝑡
𝑥𝑗

0

𝑛

𝑗=1

 

is a potential for 𝑔. This fact follows from Theorem 2, as the expression defining 𝛷 is actually 

meaningful for all 𝑥 ∈ ℝ+
𝑛  and it is not difficult to check that (17) holds, with 𝜓 = 0. Since 

the cost functions are continuous and strictly increasing, the function 𝛷 is continuous and 

strictly concave. Therefore, by Theorem 3 and the remarks following it, the population game 

𝑔 has exactly one equilibrium 𝑦, which is the unique maximum point of 𝛷 in 𝑋. 

The interpretation of the equilibrium condition is as follows. Since the population measure 𝜇 

is nonatomic, there exists a pure strategy profile 𝜎 having the equilibrium 𝑦 as its load 

vector. By the equilibrium condition (1), expressed in terms of costs, 

𝑦 ⋅ 𝑐(𝑦) = min
𝑥∈𝑋

(𝑥 ⋅ 𝑐(𝑦)) ≤ 𝜎(𝑖) ⋅ 𝑐(𝑦) 

for all 𝑖 ∈ 𝐼. However, the expression on the left-hand side is the integral with respect to 𝜇 

of that on the right-hand side, which implies that the (weak) inequality must hold as equality 

for (𝜇-) almost all users 𝑖. Thus, in 𝜎, almost everyone uses one of the least costly resources. 

If a population strategy 𝑦 is not an equilibrium, then for any pure strategy profile 𝜎 

corresponding to 𝑦 there is a profile 𝜎′ such that for all 𝑖 ∈ 𝐼 

𝜎′(𝑖) ⋅ 𝑐(𝑦) ≤ 𝜎(𝑖) ⋅ 𝑐(𝑦) 

and the inequality is strict for all 𝑖 in some subset of 𝐼 of positive 𝜇-measure. The mean gain 

for users from unilaterally shifting from playing according to 𝜎 to playing according to 𝜎′ is 

given by  

−(𝑦′ − 𝑦) ⋅ 𝑐(𝑦), 

where 𝑦′ = ∫ 𝜎′(𝑖) ⅆ𝜇(𝑖). The same expression gives the first-order approximation of the 

mean gain if the strategy changes are not unilateral but rather all users, in whatever order, 

actually change from playing according to 𝜎 to playing according to 𝜎′. (While these strategy 

changes take place, the argument of 𝑐 changes; it does not remain 𝑦. However, the effect of 

these changes of the population strategy on the players’ mean payoff is of a second order.) 

Therefore, if users keep on changing their strategies in this manner, with only a small 

fraction of them doing so during any short time interval, the mean total gain for users from 

their own changes of strategy is given by the line integral 

− ∫𝑐(𝑧) ⋅ ⅆ𝑧
𝒞

, 

where 𝒞 is the improvement curve traced in 𝑋 by the changing population strategy. (This 

assumes that the integral is well defined, which is the case if 𝒞 is rectifiable.) By Theorem 4 

(see also Section 6.4), the mean total gain is equal to the difference between the values of 

the potential 𝛷 at the two endpoints of 𝒞.  

Example 7  Asymmetric nonatomic congestion game. A finite or infinite set 𝐼 of 

representative players is endowed with a population measure 𝜇, which is a probability 

measure defined on a 𝜎-algebra ℐ of subsets of 𝐼. Each 𝑖 ∈ 𝐼 may be either a single user, as 

in Example 6, or represent a continuum of identical users, with the latter possibility 
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necessarily holding if 𝜇({𝑖}) > 0. There are 𝑛 resources, of which exactly one has to be 

chosen by each user. A mixed strategy profile is a measurable mapping 𝑥: 𝐼 ⟶ Δ, where Δ is 

the unit simplex in ℝ𝑛. For each 𝑖 ∈ 𝐼, the mixed strategy 𝑥(𝑖) = (𝑥1(𝑖), 𝑥2(𝑖), … , 𝑥𝑛(𝑖)) is a 

probability vector, which may represent two things. If 𝑖 is a single user, then 𝑥(𝑖) expresses 

the probability with which the user chooses each of the 𝑛 resources. If 𝑖 represents a 

continuum of users, then 𝑥(𝑖) gives the frequencies of the different resources in these users’ 

choices.  

For a mixed strategy profile 𝑦, the cost of resource 𝑗 is 𝑐𝑗(𝜇(𝑦𝑗)), where 𝑐𝑗: ℝ+ ⟶ ℝ is a 

continuous and strictly increasing cost function and 𝜇(𝑦𝑗) is shorthand for the integral 

∫ 𝑦𝑗(𝑖) ⅆ𝜇(𝑖)
𝐼

, which is the load on 𝑗. Representative player 𝑖 gets from using 𝑗 also a 

constant benefit (or cost, if negative) of 𝑓𝑗(𝑖), where 𝑓𝑗: 𝐼 ⟶ ℝ is an integrable function, 

that is, an element of 𝐿1(𝐼, ℐ, 𝜇). The payoff for 𝑖 from using resource 𝑗 is therefore 𝑓𝑗(𝑖) −

𝑐𝑗(𝜇(𝑦𝑗)), and the payoff from using a mixed strategy 𝑥(𝑖) = (𝑥1(𝑖), 𝑥2(𝑖), … , 𝑥𝑛(𝑖)) is 

∑ 𝑥𝑗(𝑖) (𝑓𝑗(𝑖) − 𝑐𝑗(𝜇(𝑦𝑗)))

𝑛

𝑗=1

. 

 The formula  

𝑔(𝑥, 𝑦) ≔ ∫ ∑ 𝑥𝑗(𝑖) (𝑓𝑗(𝑖) − 𝑐𝑗(𝜇(𝑦𝑗)))

𝑛

𝑗=1

ⅆ𝜇(𝑖)

𝐼

 = ∑ (𝜇(𝑥𝑗𝑓𝑗) − 𝜇(𝑥𝑗) 𝑐𝑗(𝜇(𝑦𝑗)))

𝑛

𝑗=1

 

gives the mean payoff for individual users who unilaterally deviate and choose according to 

𝑥 when everyone else chooses according to 𝑦. (Note that these are not the representative 

players who deviate but the individual users they represent.) This formula defines a 

population game 𝑔: 𝑋2 ⟶ ℝ, where 𝑋 is the space of all mixed strategy profiles. 𝑋 is 

obviously a convex set, and it follows easily from Alaoglu’s theorem that it is also a compact 

set if viewed as a subset of (𝐿∞(𝐼, ℐ, 𝜇))𝑛 with 𝐿∞ endowed with the weak* topology (as the 

dual space of 𝐿1).  

The function 𝛷: 𝑋 ⟶ ℝ defined by 

𝛷(𝑥) = ∑ (𝜇(𝑥𝑗𝑓𝑗) − ∫ 𝑐𝑗(𝑡) ⅆ𝑡

𝜇(𝑥𝑗)

0

)

𝑛

𝑗=1

 

is a potential for 𝑔 (Milchtaich 2004). As in Example 6, this fact follows easily from Theorem 

2, using the linearity of integration with respect to 𝜇. Since the cost functions are continuous 

and increasing, the potential 𝛷 is easily seen to be continuous and concave. Therefore, by 

Theorem 3 and the remark following it, the set of equilibria in 𝑔 is the (nonempty) set of 

global maximum points of 𝛷. 

The meaning of the equilibrium condition (1) for a mixed strategy profile 𝑦 is that for (𝜇-) 

almost all representative players 𝑖  

∑ 𝑦𝑗(𝑖) (𝑓𝑗(𝑖) − 𝑐𝑗(𝜇(𝑦𝑗)))

𝑛

𝑗=1

= max
𝑗

(𝑓𝑗(𝑖) − 𝑐𝑗(𝜇(𝑦𝑗))). 

The equality means that the mixed strategy 𝑦(𝑖) assigns positive probability only to payoff-

maximizing resources.  
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