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Polyequilibrium is a generalization of Nash equilibrium that is applicable to any strategic game, 

whether finite or otherwise, and to dynamic games, with perfect or imperfect information. It 

differs from equilibrium in specifying strategies that players do not choose and by requiring an 

after-the-fact justification for the exclusion of these strategies rather than the retainment of the 

non-excluded ones. Specifically, for each excluded strategy of each player there must be a non-

excluded one that responds at least as well as the first strategy does to every profile of non-

excluded strategies of the other players. A particular result (e.g., Pareto efficiency of the payoffs) 

is said to hold in a polyequilibrium if it holds for all non-excluded profiles. As such a result does 

not necessarily hold in any Nash equilibrium in the game, the generalization proposed in this 

work extends the set of justifiable predictions concerning a game’s results. JEL Classification: 

C72. 
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1 Introduction 
A Nash equilibrium is a self-enforcing strategy profile. Each player 𝑖 is assigned a strategy 𝑥𝑖  that 

is an optimal choice for 𝑖 if all the other players choose the strategies assigned to them. Viewed 

from a different perspective, a Nash equilibrium excludes all but a single strategy for each 

player. The exclusion is justified in that, if none of the other players chooses an excluded 

strategy, player 𝑖 also has no incentive to do so; choosing an excluded strategy cannot make the 

player better off in comparison with choosing the unique non-excluded one.  

The first, conventional view of Nash equilibrium generalizes to rationalizability (Bernheim 1984, 

Pearce 1984). A rationalizable strategy is a best response to some belief about each of the other 

players’ play that assigns positive probability only to strategies that are themselves 

rationalizable. Thus, unlike Nash equilibrium, the self-referring rationalizability condition 

potentially involves a set of strategies for each player rather than a single strategy. The same is 

true for the related solution concept of curb set (for “closed under rational behavior”; Basu and 

Weibull 1991). However, whereas rationalizability provides justification for the inclusion of the 

strategies in a player’s set, a curb set can be described as requiring justification for the exclusion 

of the strategies outside it, similarly to the above alternative view of Nash equilibrium. 
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Specifically, in a curb set, every excluded strategy is not a best response to any belief about each 

of the other players’ play that assigns positive probability only to non-excluded strategies.1  

Polyequilibrium is similar to curb set in being an “excluding” set-valued solution concept but 

differs from it and from rationalizability in not involving beliefs, i.e., product probability 

distributions on other players’ strategies. Furthermore, like pure-strategy Nash equilibrium, 

polyequilibrium is a purely ordinal concept, invariant to arbitrary player-specific increasing 

transformations of the payoff functions. It requires that, for each excluded strategy of each 

player, there is a non-excluded one that yields the same or higher payoff against every profile of 

non-excluded strategies. Note that this requirement is weaker than requiring the excluded 

strategies to be weakly dominated, because (a) it only considers strategies of the other players 

that are not themselves excluded and (b) it allows for selection, that is, choosing among equally 

good strategies.  

In short, polyequilibrium can be described as a self-enforcing subgame. A subgame by definition 

restricts each player 𝑖 to a designated set of allowable strategies, and polyequilibrium requires 

the restriction to be self-enforcing in the sense that every strategy 𝑥𝑖
′ outside the player’s 

designated set has an adequate substitute within it: an allowable strategy 𝑥𝑖
″ that responds at 

least as well as 𝑥𝑖
′ does to every profile of allowable strategies for the other players. Note that 

this requirement is a substantially stronger kind of self-enforcement than that employed by 

another set-valued generalization of Nash equilibrium, the Nash retract (Kalai and Samet 1984). 

The latter’s definition changes the order of logical quantifiers and only requires that, against any 

given profile of allowable strategies for the other players, every strategy 𝑥𝑖
′  has an adequate 

substitute 𝑥𝑖
″ among the player’s allowable strategies.  

Polyequilibrium and the corresponding notion of self-enforcement are essentially a 

straightforward generalization of Shapley’s (1964) notion of generalized saddle point in the 

context of finite two-player zero-sum games. More precisely, generalized saddle point is a 

special case of strict polyequilibrium (see Section ‎2) and its weak version is a special case of 

polyequilibrium. See Section ‎5.  

The condition defining polyequilibrium ostensibly allows any strategy of any player to be 

included – justification is only required for the excluded strategies. This lenience in the definition 

is counterbalanced by a unanimity requirement when it comes to stating that a particular 

property of the game’s outcome holds in a particular polyequilibrium 𝑋. The property is said to 

hold only if all strategy profiles in 𝑋 possess it; if only some of them do so, then the 

polyequilibrium is mute about whether or not the outcome of the game may be expected to 

have the property. This way, a polyequilibrium may be able to specify, or predict, certain results 

without singling out a unique strategy profile. It may specify, for example, that a particular 

player takes or does not take a particular action, that the payoffs are positive, that the outcome 

                                                            
1 Another set-valued solution concept is strategic stability (Kohlberg and Mertens 1986). However, the 
solution in this case includes only strategy profiles that are themselves Nash equilibria.  
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is socially efficient, and so on. The polyequilibrium concept thus represents a somewhat 

different philosophy than Nash equilibrium and certain other solution concepts that are 

designed to be completely specific, or at least as specific as possible, about the players’ play. A 

polyequilibrium does not have to satisfy any set requirements in terms of its predictive power. 

Indeed, the collection of all strategy profiles in a game is a polyequilibrium (which immediately 

settles the question of existence). A polyequilibrium is, however, as good as the predictions it 

makes. Crucially, which predictions are “good”, or interesting, is not determined by any 

objective measure of interest but is entirely context-dependent and, ultimately, subjective. 

The raison d’être of the polyequilibrium solution concept is that it supports a larger set of 

justifiable predications about the game’s outcome than Nash equilibrium does. As indicated, an 

outcome, or result, corresponds to a set of strategy profiles that share a common property. The 

result holds in an equilibrium 𝑥 or a polyequilibrium 𝑋 if the latter is an element or a subset of 

that set, respectively.  

Section ‎3 shows that the concept of polyequilibrium result is indeed a genuine extension of 

equilibrium result. Even very simple games, with finite, countably infinite or a continuum of 

strategies, may have an interesting polyequilibrium result that is not an equilibrium result, 

either because the result itself is easily justifiable but no single strategy profile possessing it is so 

(Example 1), or because of what are arguably merely technical reasons, like non-existence of 

best-response strategies (Example 2). On the other hand, there are games in which the 

collections of equilibrium and polyequilibrium results coincide. This property, which means that 

every polyequilibrium in the game includes at least one equilibrium, is dubbed PE-equivalence. A 

major question then is which kinds of games have this property.  

Example 1 already indicates that PE-equivalence often does not hold for finite games (where 

only pure strategies are allowed). However, for the mixed extensions of finite games (which 

result from allowing mixed strategies), Section ‎4 shows that the answer is more nuanced. While 

PE-equivalence does not hold for all such games (Example 5), it does hold for the mixed 

extensions of generic finite games, specifically, those that have only finitely many mixed-

strategy equilibria (Theorem 1). For zero-some games, this is not so. As Section ‎5 shows, all zero-

sum games, whether finite or otherwise, that have at least one equilibrium satisfy PE-

equivalence (Theorem 2).  

An important kind of polyequilibrium result is polyequilibrium strategy, which is any strategy  

that a particular player uses in all strategy profiles in some polyequilibrium 𝑋. Thus, 𝑋 justifies 

the use of the strategy without necessarily pinning down the other players’ strategies. This, of 

course, is not unfamiliar: the use of any dominant strategy can be similarly justified. Section ‎6 

shows that, more generally, if only one of a player’s strategies survives a number of rounds of 

successive elimination of weakly dominated strategies, then it is a polyequilibrium strategy 

(Proposition 6). On the other hand, in a game with the best-response existence property (where 

a player can always best respond to whatever the others are doing), any strategy that is 
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eliminated during successive elimination of strictly dominated strategies is not a polyequilibrium 

strategy (Proposition 7). 

The polyequilibrium concept is particularly natural in the context of dynamic games, where it 

provides a sound justification for specifying the players’ actions in only some of their decision 

nodes or information sets. Section ‎7 shows that here, too, the set of polyequilibrium results may 

extend beyond the equilibrium results. For example, in a perfect-information extensive form 

game, a player may receive a positive payoff in some polyequilibrium but zero in every 

equilibrium (Example 9). However, if the game has a unique subgame perfect equilibrium, then 

the only subgame perfect polyequilibrium results are those holding in the subgame perfect 

equilibrium (Theorem 3).  

2 Definitions and Basic Facts 
A (strategic) game Γ is specified by a set of players and, for each player 𝑖, a nonempty set of 

strategies 𝑆𝑖 and a payoff function 𝑢𝑖 that determines 𝑖’s payoff for each strategy profile 

𝑥 ∈ 𝑆 ≝ ∏ 𝑆𝑗𝑗 . The game is finite if so are its set of players and each player’s strategy set.  

A strategy 𝑥𝑖
″ of player 𝑖 responds to a strategy profile 𝑥 at least as well as strategy 𝑥𝑖

′ does if 

𝑢𝑖(𝑥 ∣ 𝑥𝑖
″) ≥ 𝑢𝑖(𝑥 ∣ 𝑥𝑖

′), 

where the argument on each side of the inequality is the strategy profile obtained from 𝑥 by 

replacing 𝑖’s strategy 𝑥𝑖  with the indicated one. Strategy 𝑥𝑖
″ responds to a set of strategy profiles 

𝑋 at least as well as 𝑥𝑖
′ does if inequality (1) holds for all 𝑥 ∈ 𝑋. If, in addition, at least one of the 

inequalities is strict or all of them are so, then 𝑥𝑖
″ weakly or strictly dominates 𝑥𝑖

′, respectively, 

relative to 𝑋. (The phrase “relative to 𝑋” may be dropped if the reference is to the entire set of 

strategy profiles, that is, 𝑋 = 𝑆.) Strategy 𝑥𝑖
″ is a best response to a strategy profile or to a set of 

strategy profiles if it responds to it at least as well as every other strategy of player 𝑖 does. A 

strategy profile 𝑥″ responds to a strategy profile 𝑥 at least as well as strategy profile 𝑥′ does if 

(1) holds for all 𝑖, and responds to a set of strategy profiles 𝑋 at least as well as 𝑥′ does if the 

previous condition holds for all 𝑥 ∈ 𝑋. A strategy profile is a best response to a strategy profile 

or a set of strategy profiles if it responds to it at least as well as every other strategy profile 

does.   

For a player 𝑖 in a game Γ, a polystrategy is any nonempty set of strategies, ∅ ≠ 𝑋𝑖 ⊆ 𝑆𝑖. A 

polystrategy that is a singleton, {𝑥𝑖}, may be identified with the strategy 𝑥𝑖. Player 𝑖’s entire 

strategy set 𝑆𝑖 is referred to as the trivial polystrategy. A polystrategy profile 𝑋 is a Cartesian 

product of polystrategies, one polystrategy 𝑋𝑖 for each player 𝑖. In other words, it is a nonempty 

rectangular subset of 𝑆. If the subset is a singleton, {𝑥}, then it may be identified with its single 

strategy profile 𝑥. Every polystrategy profile 𝑋 defines a subgame of Γ, denoted Γ𝑋, in which the 

players are as in Γ but each player 𝑖 can only choose among the strategies in 𝑋𝑖 and his payoff 

function is the restriction of 𝑢𝑖 to 𝑋. For polystrategy profiles 𝑋′ and 𝑋″ with 𝑋′ ⊆ 𝑋″, the 

interval [𝑋′, 𝑋″] is the collection of all polystrategy profiles 𝑋 with 𝑋′ ⊆ 𝑋 ⊆ 𝑋″. 

(1) 
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Definition 1. A polystrategy profile 𝑋 is a polyequilibrium if for every player 𝑖 and strategy 

𝑥𝑖
′ ∉ 𝑋𝑖 there is some 𝑥𝑖

″ ∈ 𝑋𝑖  that responds to 𝑋 at least as well as 𝑥𝑖
′ does, and it is a strict 

polyequilibrium if it satisfies the stronger requirement that 𝑥𝑖
″ strictly dominates 𝑥𝑖

′ relative to 𝑋. 

A polyequilibrium 𝑋 is simple if there is some strategy profile that is a best response to 𝑋.  

The polyequilibria and strict polyequilibria in a game are partially ordered by inclusion. The 

largest one is the trivial polyequilibrium, which includes all strategy profiles. A polyequilibrium or 

strict polyequilibrium is minimal if it does not contain any other polyequilibrium or strict 

polyequilibrium, respectively. A polyequilibrium is small or large if there is no polyequilibrium 

that can be obtained from 𝑋 by the deletion or addition, respectively, of any single strategy of a 

single player.  

The five facts below easily follow from the definitions. 

Fact 1. A polystrategy profile that is a singleton, {𝑥}, is a polyequilibrium or strict 

polyequilibrium if and only if its single element 𝑥 is a (Nash) equilibrium or strict equilibrium, 

respectively.   

Fact 2. A polystrategy profile 𝑋 is a simple polyequilibrium if and only if some 𝑥′ ∈ 𝑋 is a best 

response to 𝑋. Such a strategy profile 𝑥′ is necessarily an equilibrium. Thus, simple 

polyequilibrium is a particularly simple generalization of equilibrium.  

Fact 3. A sufficient condition for a polystrategy profile 𝑋 in a game Γ to be a polyequilibrium is 

that all the strategy profiles in 𝑋 are equilibria. However, this condition is not necessary. A 

polyequilibrium 𝑋 satisfies it if and only if each player’s payoff in the subgame Γ𝑋 is 

independent of his own strategy, that is, 𝑢𝑖(𝑥) = 𝑢𝑖(𝑥 ∣ 𝑥𝑖
′) for all 𝑖, 𝑥 ∈ 𝑋 and 𝑥𝑖

′ ∈ 𝑋𝑖.2 

Fact 4. A sufficient condition for a polystrategy profile 𝑋 in a subgame Γ′ of a game Γ to be a 

polyequilibrium in Γ′ is that 𝑋 is a polyequilibrium in Γ. If the subgame is of the form Γ′ = Γ𝑋′
, 

where 𝑋′ is a polyequilibrium in Γ, then this condition is also necessary.  

Fact 5. For polystrategy profiles 𝑋′ and 𝑋″ with 𝑋′ ⊆ 𝑋″, [𝑋′, 𝑋″] is an interval of polyequilibria 

(that is, all its elements are so) if and only if for every strategy profile 𝑥′ there is some 𝑥″ ∈ 𝑋′ 

that responds to 𝑋″ at least as well as 𝑥′ does. In the special case 𝑋′ = 𝑋″, this fact reduces to a 

compact alternative description of polyequilibrium. 

Note that the definitions and facts above are all ordinal in the sense that they are invariant to 

arbitrary increasing transformations of the players’ payoff functions. None of them requires 

cardinal utilities or, fundamentally, any utilities, for everything could be alternatively formulated 

in terms of preferences over strategy profiles rather than payoffs. Correspondingly, the 

                                                            
2 An example of such a polyequilibrium is the dominance solution of a dominance solvable finite game 
(Moulin 1979), which is obtained by the successive elimination of all weakly dominated strategies. 
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polyequilibrium concept does not involve randomization or beliefs and is thus a generalization 

of pure-strategy Nash equilibrium. 

It could be argued that, with cardinal utilities, the definition of polyequilibrium should be 

extended to include also polystrategy profiles 𝑋 where for each excluded strategy 𝑥𝑖
′ of a player 

𝑖 there is a mixed strategy that responds to 𝑋 at least as well as 𝑥𝑖
′ does and whose support is 

included in 𝑋𝑖. At least, it may seem justifiable to exclude strategies that are strictly dominated 

by such a mixed strategy. However, an implicit assumption in this assertion is that the player is 

actually able to play the mixed strategy. But in this case, it (or an equivalent strategy) should 

have been included in the strategy set 𝑆𝑖, for otherwise the latter is mislabeled as it is not a 

complete specification of the player’s possible choices. Put differently, allowing mixed strategies 

in a game Γ effectively turns it into another game, namely, the mixed extension Γ∗, and in this 

case, the relevant polyequilibria are those in Γ∗. The connections between the set of 

polyequilibria in a finite game Γ and in its mixed extension Γ∗ are studied in Section ‎4.  

2.1 Strategy Substitution 
A polyequilibrium may be alternatively described in terms of strategy substitution. Whereas an 

equilibrium prescribes one, specific strategy for each player, a polyequilibrium may be viewed as 

a prescription of a suitable substitute for each of the player’s strategies. 

A prescription of substitute strategies for a player 𝑖 is expressed by a function 𝜙𝑖: 𝑆𝑖 ⟶ 𝑆𝑖.
3 Any 

profile of such functions, one for each player, defines a substitution function 𝜙: 𝑆 ⟶ 𝑆 by 

(𝜙(𝑥))𝑖 = 𝜙𝑖(𝑥𝑖) for all 𝑖. A substitution function 𝜙 is rational if, for all 𝑖 and 𝑥, 

𝑢𝑖(𝜙(𝑥)) ≥ 𝑢𝑖(𝜙(𝑥) ∣ 𝑥𝑖). 

The inequality means that it is acceptable for player 𝑖 to use the recommended substitute 

𝜙𝑖(𝑥𝑖) instead of strategy 𝑥𝑖  if all the other players also follow their recommendations. This 

formulation differs from Definition 1 in that it combines the specification of the players’ 

polystrategies with the justification for them. Specifically, the logical relation between the two 

concepts is as follows.  

Fact 6. A polystrategy profile 𝑋 is a polyequilibrium if and only if it is the image of some rational 

substitution function 𝜙 (that is, 𝜙(𝑆) = 𝑋). 

A number of continuity results immediately follow from the definition. For example, in a game 

where the players’ strategy sets are topological spaces and their payoff functions are continuous 

(with respect to the product topology), any substitution function that is the pointwise limit of 

rational substitution functions is also rational. 

                                                            
3 It may be natural to require the function 𝜙𝑖 to be idempotent, which means that any strategy that is 
some other strategy’s substitute is also its own substitute. Adding this requirement would not affect any 
of the assertions below.  
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3 Polyequilibrium Results 
Polyequilibrium is a predictive solution concept, not a prescriptive or normative one. As a 

polyequilibrium generally includes multiple strategy profiles, there is no general sense in which 

it may be “played”. Instead, a polyequilibrium predicts certain outcomes, or results, of the 

players’ choice of strategies.  

Formally, a result 𝑅 in a game Γ is any set of strategy profiles. Its negation ~𝑅 is the 

complementary set 𝑆 ∖ 𝑅. A result 𝑅 holds in a polystrategy profile 𝑋 if 𝑋 ⊆ 𝑅, and it is a 

polyequilibrium result if it holds in some polyequilibrium in Γ. A result may also be specified 

implicitly, as a particular property or consequence of strategy profiles (for example, “player 1’s 

payoff is higher than 2’s payoff”). In this case, 𝑅 is the collection of all strategy profiles with the 

specified property, so that the result holds in a polyequilibrium 𝑋 if and only if all strategy 

profiles 𝑥 ∈ 𝑋 have the property. In particular, a real number 𝑣𝑖 is a polyequilibrium payoff for a 

player 𝑖 if there is some polyequilibrium 𝑋 with 𝑢𝑖(𝑥) = 𝑣𝑖 for all 𝑥 ∈ 𝑋, and a strategy 𝑥𝑖  is a 

polyequilibrium strategy if there is some polyequilibrium 𝑋 with 𝑋𝑖 = {𝑥𝑖}. A generalization of 

the first concept is polyequilibrium payoff interval for player 𝑖, which is any convex set of real 

numbers 𝐸 such that “𝑖’s payoff lies in 𝐸” is a polyequilibrium result, that is, 𝑢𝑖(𝑋) ⊆ 𝐸 for some 

polyequilibrium 𝑋. Another generalization is limit polyequilibrium payoff, which is any extended 

real number 𝑣𝑖 (that is, a real number, ∞ or −∞) such that every convex neighborhood of 𝑣𝑖 is a 

polyequilibrium payoff interval for player 𝑖. Similar definitions may be applied to payoff vectors.  

The concept of result may also be applied to special kinds of polyequilibria, and in particular to 

equilibria. Every equilibrium result is also a polyequilibrium result but not conversely. There is 

also a logical difference between the two concepts. For any result 𝑅 ≠ 𝑆, the proposition “𝑅 

holds in every polyequilibrium” is false (because the result does not hold in the trivial 

polyequilibrium) but the proposition “there does not exist a polyequilibrium where ~𝑅 holds” 

may or may not be false. Thus, the two propositions are not logically equivalent, even though 

they would be so if ‘polyequilibrium’ were replaced by ‘equilibrium’. The reason, of course, is 

the possibility that, in a polyequilibrium 𝑋, both 𝑅 and its negation do not hold. For 𝑅 that is the 

collection of all strategy profiles with a particular property, this is so if and only if some, but not 

all, strategy profiles in 𝑋 have the property.  

Definition 2. A game satisfies PE-equivalence if every polyequilibrium result is also an 

equilibrium result, equivalently, if every polyequilibrium in the game includes at least one 

equilibrium.   

If a game satisfies PE-equivalence, then a polyequilibrium where all strategy profiles have a 

particular property exists if and only if some equilibrium has the property. In a game that does 

not satisfy PE-equivalence, some result that does not hold in any equilibrium holds in a 

polyequilibrium. The next three examples present such games.    
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Example 1. In the finite game  

    𝐿    𝐶   𝑅   
𝑇
𝑀
𝐵

(
1,1 0,0 0,0
0,0 2,3 3,2
0,0 3,2 2,3

)
 

(Basu and Weibull 1991) the only equilibrium payoff is 1 but [2,3] is also a polyequilibrium 

payoff interval for each player (and “both players receive at least 2” is a polyequilibrium result). 

The former holds in the game’s unique (pure-strategy) equilibrium (𝑇, 𝐿) and the latter in the 

polyequilibrium {𝑀, 𝐵} × {𝐶, 𝑅}. If a third player were added to the game, who does not take 

any meaningful action and whose payoff is the average payoff of the original two players, then 

only 1 would be an equilibrium payoff for that player but 5/2 would be a polyequilibrium 

payoff. The latter is obviously also a mixed-equilibrium payoff for all players (see Proposition 5 

below). 

Example 2. Bilateral trade. A buyer has to offer a price 𝑝 to the owner of an item whose worth is
1 to the buyer and 0 to the seller, and the seller has to decide whether to sell at that price. 

The sensible strategy “accept any price greater than zero” is a weakly dominant strategy for the 

seller, yet it is not an equilibrium strategy because the buyer does not have a best response to 

it: offering any 𝑝 > 0 is less profitable than offering, say, half that price. Thus, the intuitive idea 

that the buyer should offer “as little as possible”, or “an 𝜖”, is incompatible with the definition of 

equilibrium. However, the idea is compatible with polyequilibrium. Indeed, for any 0 < 𝜖 ≤ 1, 

the buyer’s polystrategy 0 < 𝑝 ≤ 𝜖 (“offer a positive price not higher than 𝜖”) and the seller’s 

strategy of accepting any positive price together constitute a polyequilibrium, where the result 

is that the item is sold at a positive price not higher than 𝜖. 

Example 3. In a symmetric two-player game, each player chooses a positive integer 𝑦 and gets 

the payoff 

𝑧 − |1 −
2𝑧

𝑦
|, 

where 𝑧 is the number chosen by the other player. To receive his maximum payoff of 𝑧, a player 

must choose 𝑦 = 2𝑧. However, such a choice prevents the other player from receiving his 

maximum payoff of 𝑦 (which would require 𝑧 = 2𝑦), and therefore an equilibrium does not 

exist. In fact, as the aggregate payoff is easily seen to be at most 𝑦 + 𝑧 − 2, even an 

𝜖-equilibrium does not exist, for all 0 < 𝜖 < 1. However, the nonexistence of equilibrium 

arguably does not reflect a significant misalignment of interests. In particular, if the players 

alternately escalate their “bids” by doubling that of their rival, both payoffs spiral upwards. This 

observation is reflected in the fact that for every 𝐿 ≥ 2 the (symmetric) polystrategy profile 

where both players’ polystrategy is 𝑦 > 𝐿 (“choose a number greater than 𝐿”) is a strict 

polyequilibrium, in which both of them receive at least 𝐿. Thus, infinity is a limit polyequilibrium 

payoff.  
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4 Finite Games and Their Mixed Extensions 
The game in Example 1 has three polyequilibria, which coincide with the supports of its three 

mixed-strategy equilibria (one of which is pure) as well as with the game’s three curb sets. 

However, such coincidences are not the rule. For example, the finite game  

    𝐿      𝐶      𝑅   
𝑇
𝑀
𝐵

(
−1,2 0,0 2, −1
0,0 0,0 0,0

2, −1 0,0 −1,2
)

 

has two supports of mixed-strategy equilibria, two polyequilibria and two curb sets, but none of 

the pairs coincides with another. The first, pure-strategy, equilibrium (𝑀, 𝐶) is a polyequilibrium 

but is not a curb set. The support {𝑇, 𝐵} × {𝐿, 𝑅} of the second mixed-strategy equilibrium is a 

curb set but is not a polyequilibrium. The trivial polyequilibrium is (trivially) also a curb set.  

By definition (Basu and Weibull 1991), a polystrategy profile 𝑋 in a finite game is a curb set if 

and only if, for every mixed-strategy profile whose support is included in 𝑋, every (pure) strategy 

𝑥𝑖  of a player 𝑖 that is a best response to the profile is included in 𝑋𝑖. The last example shows 

that a curb set may not even contain a polyequilibrium (as a subset), and vice versa. It follows 

from the next proposition that a strict polyequilibrium is a curb set,4 so in a finite game without 

payoff ties, all polyequilibria are curb sets. However, the reverse inclusion does not generally 

hold regardless of ties. The reason for this is the fundamentally stronger nature of the 

polyequilibrium condition. For 𝑋 to be a polyequilibrium, it is not sufficient that each 

polystrategy 𝑋𝑖 includes every best-response strategy to every mixed-strategy profile as above, 

or even to every similar correlated strategy, that is, a probability distribution on 𝑋.5 For 

example, {𝑇, 𝐵} × {𝐿, 𝑅} is a curb set in the game (2), because if the column player, for example, 

only mixes between 𝐿 and 𝑅, then 𝑇 is a best response for the row player or 𝐵 is so. But the set 

is not a polyequilibrium, because neither 𝑇 nor 𝐵 responds to both 𝐿 and 𝑅 at least as well as 𝑀 

does. 

Proposition 1. A necessary condition for a polystrategy profile 𝑋 in a finite game to be a 

polyequilibrium is that, for every probability distribution on 𝑋 and every player 𝑖, some strategy 

that is a best response to the distribution is included in 𝑋𝑖. A necessary condition for 𝑋 to be a 

strict polyequilibrium is that every such best-response strategy is in 𝑋𝑖. The second, stronger 

condition is sufficient for 𝑋 to be a curb set but it is not sufficient for it to be a polyequilibrium. 

Proof. Consider a probability distribution on a polyequilibrium 𝑋, and some strategy 𝑥𝑖
′ of a 

player 𝑖 that is a best response to it. Let 𝑥𝑖
″ ∈ 𝑋𝑖  be a strategy that responds to 𝑋 at least as well 

                                                            
4 This result aligns with the fact that the concept of curb set is meant as a generalization of strict, rather 
than Nash, equilibrium. Note, however, that this meaning of curb set is not universally accepted. See van 
Damme (2002, p. 1568). 
5 A strategy 𝑥𝑖

′ is a best response to a distribution if player 𝑖’s expected payoff 𝔼𝑢𝑖(𝒙 ∣ 𝑥𝑖
′), where 𝒙 is a 

random element of 𝑋 with that distribution, cannot be increased by replacing 𝑥𝑖
′ with any other strategy. 

(2) 
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as 𝑥𝑖
′ does, so that inequality (1) holds for all 𝑥 ∈ 𝑋. Replacing 𝑥 on both sides of the inequality 

with a random element 𝒙 of 𝑋 with the given distribution and taking expectations preserves the 

inequality, which shows that 𝑥𝑖
″ too is a best response to the distribution. Moreover, if 𝑥𝑖

″ 

strictly dominates 𝑥𝑖
′ relative to 𝑋, then it actually affords player 𝑖 a higher expected payoff 

against the distribution than 𝑥𝑖
′ does. However, the conclusion contradicts the assumption that 

the latter is a best-response strategy. Therefore, if 𝑋 is a strict polyequilibrium, then 𝑥𝑖
′ must lie 

in 𝑋𝑖. The last part of the proposition is proved above. ∎ 

Proposition 2. Every polyequilibrium in a finite game contains (although it does not necessarily 

coincide with) the support of a mixed-strategy equilibrium, but not every such support contains 

a polyequilibrium. 

A (pure) strategy that is played with positive probability in a mixed-strategy equilibrium is 

rationalizable (Bernheim 1984, Pearce 1984). Therefore, an immediate corollary of Proposition 2 

is that, in every polyequilibrium, each player’s polystrategy includes at least one rationalizable 

strategy. In particular, every polyequilibrium strategy is rationalizable. Put differently, if a 

strategy 𝑥𝑖  of a player 𝑖 is not rationalizable, then playing it is not a polyequilibrium result. 

However, not playing 𝑥𝑖  may also not be a polyequilibrium result. For example, in the finite 

game  
 𝐿        𝑅
𝑇
𝑀
𝐵

(
3, −3 0,0
1, −1 1, −1

0,0 3, −3
) 

strategy 𝑀 is strictly dominated by a mixed strategy and is therefore not rationalizable, but 

there is no polyequilibrium where player 1’s polystrategy does not include 𝑀, as the only 

polyequilibrium in the game is the trivial one. Thus, the polystrategy profile {𝑇, 𝐵} × {𝐿, 𝑅}, 

which represents all strategies in the game that are rationalizable, and is also the unique 

minimal curb set and the support of the unique mixed-strategy equilibrium, does not even 

contain a polyequilibrium.   

The negative assertions in Proposition 2 are demonstrated by game (3). The positive result is an 

immediate corollary of Proposition 4 below, which identifies a particular connection between 

polyequilibria in a finite game Γ and in its mixed extension Γ∗.  

By definition, an unqualified ‘strategy’ in Γ or Γ∗ is a pure or mixed strategy, respectively, in Γ, 

and similarly for ‘equilibrium’. As the collection 𝑆𝑖 of all (pure) strategies for a player 𝑖 in Γ  may 

be viewed as a subset of the player’s strategy set 𝑆𝑖
∗ in Γ∗, and similarly for the collections 𝑆 and 

𝑆∗ of all strategy profiles, Γ may be viewed as a subgame of Γ∗, with the same symbol 𝑢𝑖 

denoting the payoff function of player 𝑖 in both games. This (standard) view identifies the set of 

equilibria in Γ with a subset of that in Γ∗, namely, the pure-strategy equilibria.  

The relation between the polyequilibria in the two games is more complex. A polystrategy 𝑋𝑖 for 

a player 𝑖 in Γ∗ is any nonempty subset of 𝑆𝑖
∗, that is, a collection of mixed strategies in Γ. It is a 

pure polystrategy if 𝑋𝑖 ⊆ 𝑆𝑖. By the first part of Fact 4, every pure-polystrategy polyequilibrium 

(3) 
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in Γ∗ (that is, one in which all the polystrategies are pure) is a polyequilibrium also in Γ. 

However, as the following example and proposition show, the converse is false. In particular, 𝑆, 

the trivial polyequilibrium in Γ, is usually not a polyequilibrium in Γ∗. Thus, the identity between 

the equilibria in Γ and those equilibria in Γ∗ that only involve pure strategies does not extend to 

polyequilibria. This difference between equilibrium and polyequilibrium means that, for the 

latter, even if the particular strategies examined are all pure, it still matters whether or not 

mixed strategies are admissible alternatives, that is, whether they could be used.  

Example 4. The mixed extension of the game (3) has two small polyequilibria, which are the 

equilibrium 𝑥′ = (1/2 𝑇 + 1/2 𝐵, 1/2 𝐿 + 1/2 𝑅) and 

𝑋′ = { (𝑝𝑇 + (1 − 𝑝)𝐵, 𝑞𝐿 + (1 − 𝑞)𝑅) ∣∣ 0 ≤ 𝑝, 𝑞 ≤ 1 }, 

and two large polyequilibria, which are  

𝑋″ = { (𝑝𝑇 + (1 − 2𝑝)𝑀 + 𝑝𝐵, 1/2 𝐿 + 1/2 𝑅) ∣∣ 0 ≤ 𝑝 ≤ 1/2 } 

and the trivial polyequilibrium 𝑆∗. Its entire set of polyequilibria is the union of two disjoint 

intervals: the interval of simple polyequilibria [{𝑥′}, 𝑋″] and the interval of strict polyequilibria 

[𝑋′, 𝑆∗]. Thus, there is no pure-polystrategy polyequilibrium.  

Proposition 3. A polyequilibrium in a finite game Γ is a polyequilibrium also in the mixed 

extension Γ∗ if and only if it is simple. In particular, the trivial polyequilibrium in Γ is a 

polyequilibrium also in Γ∗ if and only if every player has a (pure) strategy in Γ that is a best 

response to all strategy profiles.  

The proof of the proposition uses the following result. 

Lemma 1. In the mixed extension of a finite game, every finite polyequilibrium is simple. 

Proof. For a finite polyequilibrium 𝑋, there exists for each player 𝑖 a strategy 𝑥𝑖
′ ∈ 𝑋𝑖 that is not 

weakly dominated relative to 𝑋 by any other strategy in 𝑋𝑖. Thus, every strategy 𝑥𝑖 ∈ 𝑋𝑖 is of 

one of two kinds: either (i) 𝑢𝑖(𝑥̅ ∣ 𝑥𝑖) < 𝑢𝑖(𝑥̅ ∣ 𝑥𝑖
′) for some 𝑥̅ ∈ 𝑋, or (ii) 𝑢𝑖(𝑥̅ ∣ 𝑥𝑖) = 𝑢𝑖(𝑥̅ ∣ 𝑥𝑖

′) 

for all 𝑥̅ ∈ 𝑋. Again by the finiteness of 𝑋, there is some 0 < 𝜖 < 1 such that for every strategy 

𝑥𝑖 ∈ 𝑋𝑖 that is of the first kind there is some 𝑥̅ ∈ 𝑋 such that 𝑢𝑖(𝑥̅ ∣ 𝑥𝑖) < 𝑢𝑖(𝑥̅ ∣ (1 − 𝜖)𝑥𝑖
′ +

𝜖𝑥̃𝑖) for all 𝑥̃𝑖 ∈ 𝑆𝑖
∗. Consider any strategy 𝑥̃𝑖 ∈ 𝑆𝑖

∗. Since 𝑋 is a polyequilibrium, there is some 

𝑥𝑖 ∈ 𝑋𝑖 that responds to 𝑋 at least as well as (1 − 𝜖)𝑥𝑖
′ + 𝜖𝑥̃𝑖 does. By definition of 𝜖, 𝑥𝑖  cannot 

be of the first kind above, and it is therefore of the second kind. It follows that 𝑥𝑖
′ too responds 

to 𝑋 at least as well as (1 − 𝜖)𝑥𝑖
′ + 𝜖𝑥̃𝑖 does, and therefore at least as well as 𝑥̃𝑖  does. The 

conclusion shows that each player 𝑖 has a strategy (namely, 𝑥𝑖
′) that is a best response to the 

polyequilibrium 𝑋, which means that the latter is simple. ∎ 

Proof of Proposition 3. If a polyequilibrium 𝑋 in Γ is simple, then by Fact 2 every player 𝑖 has a 

strategy 𝑥𝑖
′ ∈ 𝑋𝑖 that responds to 𝑋 at least as well every (pure) strategy 𝑥𝑖 ∈ 𝑆𝑖  does. By the 

linearity of 𝑢𝑖 in player 𝑖’s own strategy, the same is true also for every (mixed strategy) 𝑥𝑖 ∈ 𝑆𝑖
∗, 
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which proves that 𝑋 is a (simple) polyequilibrium also in Γ∗. Conversely, if a polyequilibrium 𝑋 in 

Γ is a polyequilibrium also in Γ∗, then by Lemma 1 and Fact 2 some 𝑥′ ∈ 𝑋 is a best response to 

𝑋 in Γ∗, and therefore also in Γ, which proves that 𝑋 is simple. The second part of the 

proposition is a special case of the first part. ∎ 

As indicated, the second part of Proposition 3 shows that the set of polyequilibria in Γ does not 

generally coincide with, but is rather a (usually, proper) superset of, the (possibly, empty) set of 

pure-polystrategy polyequilibria in Γ∗. There is, however, a simple, natural one-to-one 

correspondence between the former and another set of polyequilibria in Γ∗. This 

correspondence, which is indicated by the next proposition, matches each polyequilibrium in Γ 

with its convex hull.   

For a polystrategy 𝑋𝑖 of a player 𝑖 in Γ∗, the convex hull of 𝑋𝑖, denoted conv 𝑋𝑖, is also a 

polystrategy in Γ∗. If 𝑋𝑖 is pure (in other words, a polystrategy in Γ), conv 𝑋𝑖  consists of all mixed 

strategies whose supports are subsets of 𝑋𝑖. For a polystrategy profile 𝑋 = ∏ 𝑋𝑖𝑖  in Γ∗ or (as a 

special case) in Γ, the convex hull of 𝑋 is the polystrategy profile in Γ∗ given by conv 𝑋 =

∏ conv 𝑋𝑖𝑖 . 

Proposition 4. For every polyequilibrium 𝑋 in a finite game Γ or in its mixed extension Γ∗, 

conv 𝑋 is a polyequilibrium in Γ∗. This polyequilibrium (hence, every polyequilibrium in Γ∗ that 

consists of convex polystrategies) includes at least one equilibrium (which is a mixed-strategy 

equilibrium in Γ).  

Proof. Consider any polyequilibrium 𝑋 in Γ or Γ∗. For each player 𝑖, select for each (pure) 

strategy 𝑥𝑖
′ ∈ 𝑆𝑖 some 𝑥𝑖

″ ∈ 𝑋𝑖 such that (1) holds for all 𝑥 ∈ 𝑋, and let 𝑋𝑖
′ ⊆ conv 𝑋𝑖 be a 

polytope (that is, the convex hull of a finite number of strategies) that includes each of these 

(finitely many) strategies 𝑥𝑖
″. Every (mixed) strategy in 𝑆𝑖

∗ is a convex combination of elements in 

𝑆𝑖. It follows, by the linearity of 𝑢𝑖 in player 𝑖’s own strategy, that for every 𝑥𝑖
′ ∈ 𝑆𝑖

∗ there is 

some 𝑥𝑖
″ ∈ 𝑋𝑖

′ such that (1) holds for all 𝑥 ∈ 𝑋, and therefore, by the multilinearity of 𝑢𝑖, also for 

all 𝑥 ∈ conv 𝑋. Since the polystrategy profile 𝑋′ = ∏ 𝑋𝑖
′

𝑖  is a subset of conv 𝑋, the last 

conclusion proves that these two polystrategy profiles are polyequilibria in Γ∗ (see Fact 5). The 

subgame Γ′ = Γ𝑋′
 of Γ∗, where each player 𝑖 is restricted to strategies in the polytope 𝑋𝑖

′, is 

(identifiable with) the mixed extension of a finite game, and therefore has at least one 

equilibrium. By the second part of Fact 4, such an equilibrium is an equilibrium also in Γ∗. ∎ 

As indicated, one corollary of Proposition 4 is Proposition 2. Another corollary is the following 

list of connections between the equilibrium and polyequilibrium payoffs in a finite game and in 

its mixed extension.  

Proposition 5. For a player 𝑖 in a finite game Γ, with mixed extension Γ∗, the following inclusions 

and equalities hold, and the inclusions may be strict: 

    equilibrium payoffs in Γ ⊆ polyequilibrium payoffs in Γ ⊆ mixed-equilibrium payoffs in Γ 

= equilibrium payoffs in Γ∗ = polyequilibrium payoffs in Γ∗. 
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Moreover, in both Γ and Γ∗, every polyequilibrium payoff interval for player 𝑖 includes at least 

one of the player’s mixed-equilibrium payoffs in Γ. 

Proof. Example 1 shows that both inclusions above may be strict. (In that finite game, 5/2 is a 

polyequilibrium, but not an equilibrium, payoff for the additional, third player, and it is a mixed-

equilibrium, but not a polyequilibrium, payoff for the original, row and column players, who get 

that expected payoff when they play (1/2 𝑀 + 1/2 𝐵, 1/2 𝐶 + 1/2 𝑅).) The first inclusion and 

the first equality are trivial, and the second ones are special cases of the second part of the 

proposition. To prove the latter, consider a polyequilibrium payoff interval 𝐸 for player 𝑖 in 

either Γ or Γ∗ and a corresponding polyequilibrium 𝑋, such that 𝑢𝑖(𝑋) ⊆ 𝐸. By Proposition 4, 

there is some equilibrium payoff 𝑣𝑖 for player 𝑖 in Γ∗ such that 𝑣𝑖 ∈ 𝑢𝑖(conv 𝑋) ⊆ conv 𝑢𝑖(𝑋) 

⊆ 𝐸. ∎ 

Proposition 5 shows that, in the mixed extension Γ∗ of a finite game Γ, the only polyequilibrium 

payoffs are the equilibrium payoffs. It follows from the second part of Theorem 1 below that for 

a generic Γ a stronger proposition holds. Namely, all the polyequilibrium results in Γ∗ are also 

equilibrium results. In other words, mixed extensions of finite games generically satisfy PE-

equivalence. However, not all such games have this property. Specifically, as the next example 

shows, the inclusion indicated by the second part of Proposition 4 does not necessarily hold for 

polyequilibria with non-convex polystrategies.   

Example 5. A polyequilibrium that does not include an equilibrium. Player 1 chooses whether to 

ask for $1 or $2. Player 2, who does not know the choice of player 1, has three options. He can 

do nothing and get $1, or try to guess player 1’s choice and get $2 if he is correct. Player 1 gets 

the amount he asked for, unless player 2 guessed $2, in which case player 1 loses the amount he 

asked for. Thus, the payoff matrix is  

𝐿    𝐶       𝑅   
𝑇
𝐵

(
1,1 1,2 −1,0
2,1 2,0 −2,2

) .
 

In the mixed extension of the game, a strategy profile is an equilibrium if and only if players 1 

and 2 play 𝑇 and 𝑅, respectively, with probability 0.5. However, regardless of player 1’s strategy, 

any strategy (1 − 𝑝 − 𝑝′)𝐿 + 𝑝𝐶 + 𝑝′𝑅 of player 2 yields him the same payoff as the non-

equilibrium strategy  

(1 + 𝑡 − 2𝑓(𝑡))𝐿 + 𝑓(𝑡)𝐶 + (𝑓(𝑡) − 𝑡)𝑅, 

where 𝑡 = 𝑝 − 𝑝′ and the function 𝑓 is defined by 

𝑓(𝑡) = {
(1 + 𝑡)/2, −1 ≤ 𝑡 ≤ −1/3
0, −1/3 < 𝑡 < 0
𝑡, 0 ≤ 𝑡 ≤ 1

 . 

Therefore, the following polystrategy profile 𝑋 = 𝑋1 × 𝑋2 is a polyequilibrium: 𝑋1 consists of all 

strategies of player 1 and 𝑋2 consists of all strategies of player 2 except the equilibrium ones.  

(4) 

(5) 
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A smaller, minimal polyequilibrium is obtained by including in 𝑋2 only the strategies of the form 

(4), with −1 ≤ 𝑡 ≤ 1 and 𝑓(𝑡) given by (5).6 It is easy to check that, in this polyequilibrium, 

player 1’s payoff satisfies |𝑢1| ≥ 1/3. His unique equilibrium payoff, by contrast, is 0.7 

The game in Example 5 has infinitely many equilibria, but some polyequilibria do not include any 

of them. Somewhat paradoxically, with a finite set of equilibria, no polyequilibrium can be 

similarly shielded.  

Theorem 1. If a polyequilibrium 𝑋 in the mixed extension Γ∗ of a finite game Γ does not include 

an equilibrium, then its convex hull conv 𝑋 must include infinitely many equilibria. Therefore, if 

Γ∗ has only finitely many equilibria, then it satisfies PE-equivalence: every polyequilibrium 

includes at least one equilibrium. 

Proof. It has to be shown that, for any polyequilibrium 𝑋 in Γ∗ and any finite set 𝐴 ⊆ conv 𝑋 ∖ 𝑋, 

the set conv 𝑋 ∖ 𝐴 includes an equilibrium. If 𝐴 = ∅, the inclusion follows from Proposition 4. 

Suppose then that 𝐴 = {𝑥1, … , 𝑥𝐿}, with 𝐿 ≥ 1. For each 1 ≤ 𝑙 ≤ 𝐿, let 𝑥̅𝑙  be a strategy profile 

in 𝑋 (hence, 𝑥̅𝑙 ≠ 𝑥𝑙) that responds to 𝑋, and therefore also to conv 𝑋, at least as well as 𝑥𝑙  

does. For each player 𝑖, let 𝑋𝑖
′ ⊆ conv 𝑋𝑖 be a polytope as in the proof of Proposition 4, with the 

additional requirement that {𝑥𝑖
1, … , 𝑥𝑖

𝐿 , 𝑥̅𝑖
1, … , 𝑥̅𝑖

𝐿} ⊆ 𝑋𝑖
′. As shown in that proof, every 

equilibrium 𝑥∗ in the subgame Γ′ of Γ∗ obtained by restricting each player 𝑖 to strategies in 𝑋𝑖
′ is 

an equilibrium also in Γ∗. Therefore, it suffices to show that some such equilibrium satisfies 

𝑥∗ ∉ 𝐴. Note that, by construction, for every player 𝑖 and 1 ≤ 𝑙 ≤ 𝐿 

𝑢𝑖(𝑥 ∣ 𝑥̅𝑖
𝑙) ≥ 𝑢𝑖(𝑥 ∣ 𝑥𝑖

𝑙), 𝑥 ∈ 𝑋′, 

where 𝑢𝑖 is player 𝑖’s payoff function in Γ∗ (and in Γ′) and 𝑋′ = ∏ 𝑋𝑖
′

𝑖 .  

Claim 1. For each player 𝑖 there is a continuous function 𝑔𝑖: 𝑋𝑖
′ ⟶ 𝑋𝑖

′ that satisfies the following 

two conditions: 

𝑢𝑖(𝑥 ∣ 𝑔𝑖(𝑥𝑖)) ≥ 𝑢𝑖(𝑥), 𝑥 ∈ 𝑋′, 

and, for every 1 ≤ 𝑙 ≤ 𝐿 with 𝑥̅𝑖
𝑙 ≠ 𝑥𝑖

𝑙, 

𝑔𝑖(𝑥𝑖) ≠ 𝑥𝑖
𝑙 , 𝑥𝑖 ∈ 𝑋𝑖

′. 

The meaning of (7) is that changing player 𝑖’s strategy from any 𝑥𝑖  to 𝑔𝑖(𝑥𝑖) cannot decrease his 

payoff in Γ′. The meaning of (8) is that (if 𝑥̅𝑖
𝑙 ≠ 𝑥𝑖

𝑙) the image of 𝑔𝑖 does not include 𝑥𝑖
𝑙.   

                                                            
6 The function 𝑓 essentially defines a rational substitution function for this polyequilibrium (see 
Section ‎2.1). 
7 Note that, by the second part of Proposition 5, it would not be possible to find a similar example where 
player 1’s payoff (rather than its absolute value) in some polyequilibrium 𝑋 is greater than 0 while his 
unique equilibrium payoff is 0. 

(6) 

(7) 

(8) 
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The function in Claim 1 is defined as 𝑔𝑖 = 𝑔𝑖
𝐿 ∘ ⋯ ∘ 𝑔𝑖

1, the successive composition of 𝐿 functions 

𝑔𝑖
𝑙: 𝑋𝑖

′ ⟶ 𝑋𝑖
′ (𝑙 = 1, … , 𝐿). These functions are defined by  

𝑔𝑖
𝑙(𝑥𝑖) = 𝑥𝑖 + 𝛼𝑖

𝑙𝜙𝑖
𝑙(𝑥𝑖)(𝑥̅𝑖

𝑙 − 𝑥𝑖
𝑙), 

where, if 𝑥̅𝑖
𝑙 ≠ 𝑥𝑖

𝑙 (otherwise, the second term in (9) is zero), 0 < 𝛼𝑖
𝑙 < 1 is any constant that 

satisfies two requirements which are spelled out below and 

𝜙𝑖
𝑙(𝑥𝑖) = max{𝛼 ≥ 0 ∣ 𝑥𝑖 + 𝛼(𝑥̅𝑖

𝑙 − 𝑥𝑖
𝑙) ∈ 𝑋𝑖

′}. 

It is not difficult to see that the function 𝜙𝑖
𝑙: 𝑋𝑖

′ ⟶ [0, ∞) defined by (10) is continuous and 

satisfies 

𝜙𝑖
𝑙(𝑥𝑖) = 𝜙𝑖

𝑙(𝑥𝑖
′) + 𝑏 

for every 𝑥𝑖 , 𝑥𝑖
′ ∈ 𝑋𝑖

′ and real number 𝑏 such that 𝑥𝑖 + 𝑏(𝑥̅𝑖
𝑙 − 𝑥𝑖

𝑙) = 𝑥𝑖
′. In particular, 𝜙𝑖

𝑙(𝑥𝑖
𝑙) = 

𝜙𝑖
𝑙(𝑥̅𝑖

𝑙) + 1, which shows that the maximum 𝑀 of the function 𝜙𝑖
𝑙 satisfies 𝑀 ≥ 1. In addition, 

any strategy 𝑥𝑖  satisfying 𝑔𝑖
𝑙(𝑥𝑖) = 𝑥𝑖

𝑙 (hence, 𝑥𝑖 + (𝛼𝑖
𝑙𝜙𝑖

𝑙(𝑥𝑖) + 1)(𝑥̅𝑖
𝑙 − 𝑥𝑖

𝑙) = 𝑥̅𝑖
𝑙) also satisfies 

𝜙𝑖
𝑙(𝑥𝑖) = 𝜙𝑖

𝑙(𝑥̅𝑖
𝑙) + 𝛼𝑖

𝑙𝜙𝑖
𝑙(𝑥𝑖) + 1, and therefore  

𝛼𝑖
𝑙 ≤ 1 − 1/𝜙𝑖

𝑙(𝑥𝑖) ≤ 1 − 1/𝑀.  

The first requirement that the constant 𝛼𝑖
𝑙 has to satisfy is that it is, in fact, greater than 

1 − 1/𝑀. This requirement guarantees that, if 𝑥̅𝑖
𝑙 ≠ 𝑥𝑖

𝑙, then 

𝑔𝑖
𝑙(𝑥𝑖) ≠ 𝑥𝑖

𝑙 , 𝑥𝑖 ∈ 𝑋𝑖
′. 

The second requirement is that 𝛼𝑖
𝑙 is sufficiently close to (but smaller than) 1 to make the 

inequality (1 − 𝛼𝑖
𝑙)𝑀 < 𝜙𝑖

𝑙(𝑥𝑖
𝑙′

) hold for all 𝑙′ ≠ 𝑙 with 𝜙𝑖
𝑙(𝑥𝑖

𝑙′
) > 0. This requirement 

guarantees that for every 𝑙′ ≠ 𝑙   

𝑔𝑖
𝑙(𝑥𝑖) = 𝑥𝑖

𝑙′
⟹ 𝑥𝑖 = 𝑥𝑖

𝑙′
, 𝑥𝑖 ∈ 𝑋𝑖

′. 

This is because, if 𝑔𝑖
𝑙(𝑥𝑖) = 𝑥𝑖

𝑙′
, then by (11) 𝜙𝑖

𝑙(𝑥𝑖) = 𝜙𝑖
𝑙(𝑥𝑖

𝑙′
) + 𝛼𝑖

𝑙𝜙𝑖
𝑙(𝑥𝑖), so that 𝜙𝑖

𝑙(𝑥𝑖
𝑙′

) =

(1 − 𝛼𝑖
𝑙)𝜙𝑖

𝑙(𝑥𝑖) ≤ (1 − 𝛼𝑖
𝑙)𝑀, which by the above requirement implies that 𝜙𝑖

𝑙(𝑥𝑖
𝑙′

) = 0, and 

therefore also 𝜙𝑖
𝑙(𝑥𝑖) = 0, so that 𝑥𝑖 = 𝑔𝑖

𝑙(𝑥𝑖) = 𝑥𝑖
𝑙′

. 

It follows from (6) and (9) that each of the functions 𝑔𝑖
𝑙 satisfies a condition similar to (7). Since 

by definition 𝑔𝑖(𝑥𝑖) = 𝑔𝑖
𝐿(⋯ (𝑔𝑖

1(𝑥𝑖)) ⋯ ), (7) itself clearly also holds. It remains to prove that 

(8) holds for every 𝑙 with 𝑥̅𝑖
𝑙 ≠ 𝑥𝑖

𝑙. Suppose that this is not so, which means that 

𝑔𝑖
𝐿(⋯ (𝑔𝑖

1(𝑥𝑖
′)) ⋯ ) = 𝑥𝑖

𝑙′
 for some strategy 𝑥𝑖

′ and some 1 ≤ 𝑙′ ≤ 𝐿 with 𝑥̅𝑖
𝑙′

≠ 𝑥𝑖
𝑙′

. Necessarily, 

𝑙′ ≠ 𝐿, since an equality would violate (12) for 𝑙 = 𝐿. Therefore, by (13) (again with 𝑙 = 𝐿), 

𝑔𝑖
𝐿−1(⋯ (𝑔𝑖

1(𝑥𝑖
′)) ⋯ ) = 𝑥𝑖

𝑙′
. A repeated use of the same argument now shows that the 

inequality 𝑙′ ≠ 𝑙 also holds for all 𝑙 < 𝐿. This contradiction completes the proof of Claim 1.     

(9) 

(10) 

(11) 

(12) 

(13) 



16 

Define a function 𝑔: 𝑋′ ⟶ 𝑋′ by (𝑔(𝑥))𝑖 = 𝑔𝑖(𝑥𝑖) for all 𝑖. Construct a game Γ̅ that has the 

same players and strategy sets as Γ′ (but is not necessarily the mixed extension of a finite game) 

by assigning to each player 𝑖 the payoff function 𝑢̅𝑖 defined by  

𝑢̅𝑖(𝑥) = 𝑢𝑖(𝑔(𝑥) ∣ 𝑥𝑖). 

The function 𝑢̅𝑖 is linear in player 𝑖’s own strategy 𝑥𝑖, and therefore the set 𝐵𝑖(𝑥) of best 

response strategies to any strategy profile 𝑥 is a nonempty convex subset of the player’s 

strategy set 𝑋𝑖
′. The continuity of 𝑔 and of (the multilinear function) 𝑢𝑖 implies that the 

correspondence 𝑥 ↦ 𝐵𝑖(𝑥) has a closed graph. It therefore follows from Kakutani fixed-point 

theorem that Γ̅ has some equilibrium 𝑥̅. To complete the proof of the theorem, it remains to 

establish the following. 

Claim 2. The strategy profile 𝑥∗ = 𝑔(𝑥̅) satisfies 𝑥∗ ∉ 𝐴 and it is an equilibrium in Γ′. 

Consider any 1 ≤ 𝑙 ≤ 𝐿. Since 𝑥̅𝑙 ≠ 𝑥𝑙, there is some 𝑖 such that 𝑥̅𝑖
𝑙 ≠ 𝑥𝑖

𝑙. By (8), 𝑔𝑖(𝑥̅𝑖) ≠ 𝑥𝑖
𝑙, 

and therefore 𝑥∗ = 𝑔(𝑥̅) ≠ 𝑥𝑙. This proves that 𝑥∗ ∉ 𝐴. For every player 𝑖 and strategy 𝑥𝑖 ∈ 𝑋𝑖
′, 

𝑢𝑖(𝑥∗) = 𝑢𝑖(𝑔(𝑥̅) ) = 𝑢𝑖(𝑔(𝑥̅) ∣ 𝑔𝑖(𝑥̅𝑖) ) ≥ 𝑢𝑖(𝑔(𝑥̅) ∣ 𝑥̅𝑖) 

= 𝑢̅𝑖(𝑥̅) ≥ 𝑢̅𝑖(𝑥̅ ∣ 𝑥𝑖) = 𝑢𝑖(𝑔(𝑥̅) ∣ 𝑥𝑖) = 𝑢𝑖(𝑥∗ ∣ 𝑥𝑖), 

where the first inequality follows from (7), the second inequality holds because 𝑥̅ is an 

equilibrium in Γ̅, and all the equalities follow from the definitions. This proves that 𝑥∗ is an 

equilibrium in Γ′. ∎ 

5 Zero-Sum Games  
Shapley (1964) called a strict polyequilibrium in a finite two-player zero-sum game a generalized 

saddle point, and called a polyequilibrium a weak generalized saddle point.8 He showed that, in 

a game of this kind, the intersection of any number of strict polyequilibria is also a strict 

polyequilibrium, so that the intersection of all of them, called the saddle, is the game’s unique 

minimal strict polyequilibrium. A similar result does not hold for polyequilibria. Two of them 

may have a nonempty intersection that does not even contain a polyequilibrium, and every 

equilibrium is a minimal polyequilibrium. However, it follows as a conclusion from the next 

proposition that a unique equilibrium is necessarily also the game’s unique minimal 

polyequilibrium. By Theorem 1, the same is true in every game that is the mixed extension of a 

finite game. However, the conclusion here and the proposition from which it follows concern 

any two-player zero-sum game: finite, the mixed extension of a finite game, or otherwise.  

Theorem 2. A two-player zero-sum game satisfies PE-equivalence if and only if it has an 

equilibrium.  

                                                            
8 Duggan and Le Breton (1996) use the last term in a somewhat different sense.  
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Proof. It has to be shown that if the game has an equilibrium 𝑥′, with payoff vector (𝑣, −𝑣), then 

every polyequilibrium 𝑋 includes some equilibrium. In fact, a stronger conclusion holds: every 

strategy profile 𝑥″ ∈ 𝑋 that responds to 𝑋 at least as well as 𝑥′ does is an equilibrium. To prove 

this, it suffices to show that if player 1 plays 𝑥1
″, then player 2 cannot get a higher payoff than 

−𝑣, and if player 2 plays 𝑥2
″, then player 1 cannot get a higher payoff than 𝑣. If there were, for 

example, a strategy 𝑥1 of player 1 that yields a higher payoff than 𝑣 against 𝑥2
″, then this would 

be so also for every strategy in 𝑋1 that responds to 𝑋 at least as well as 𝑥1 does. However, the 

existence of such a strategy in 𝑋1 contradicts the assumption that strategy 𝑥2
″ responds to 𝑋 at 

least as well as the equilibrium strategy 𝑥2
′  does, so that when player 2 plays 𝑥2

″ against any 

strategy in 𝑋1, he gets at least – 𝑣 and player 1 gets at most 𝑣. The contradiction proves that a 

strategy 𝑥1 as above does not exist, so that 𝑥″ is indeed an equilibrium. ∎ 

A finite two-player zero-sum game may or may not have a (pure-strategy) equilibrium. The latter 

holds, for example, for the 4 × 4 game where the row player’s payoff matrix is 

   𝐿           𝑅   
𝑇
 
 

𝐵

(

3 2 4 1
2 5 −5 0
0 −5 5 2
1 4 2 3

)
. 

Its saddle (actually, the unique non-trivial polyequilibrium) is {𝑇, 𝐵} × {𝐿, 𝑅}. Therefore, positive 

payoff for the row player is a polyequilibrium result in this game but not an equilibrium result.  

The mixed extension of a finite two-player zero-sum game, that is, a matrix game, always has an 

equilibrium. It therefore follows from Theorem 2 that PE-equivalence holds for all matrix games: 

their sets of equilibrium and polyequilibrium results always coincide (which is not true for these 

games’ non-zero-sum counterparts, the bimatrix games, as Example 5 demonstrates). The actual 

collections of equilibria and polyequilibria vary in their relative sizes. In rock-scissors-paper, the 

game’s unique equilibrium is also its only non-trivial polyequilibrium. Other matrix games with a 

unique equilibrium, such as that in Example 4, have larger, richer sets of polyequilibria. 

6 Successive Elimination of Strategies 
In a polyequilibrium, the exclusion of strategies is given an after-the-fact justification. Each 

excluded strategy does not do better than a particular retained strategy of the same player 

against any profile of the other players’ retained strategies. In this, exclusion differs from 

elimination of dominated strategies, which involves the stronger requirement that some 

alternative is better even relative to the collection of original strategy profiles. Successive 

elimination of dominated strategies blurs this distinction. The connections between successive 

elimination and polyequilibrium are explored below.  

Successive elimination may involve weakly dominated, strictly dominated or never-best-

response strategies. A player’s strategy is a never-best-response strategy relative to a set of 

strategy profiles 𝑋 (or, if 𝑋 is the entire collection of strategy profiles 𝑆, simply “never-best-
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response strategy”) if it is not a best response to any strategy profile in 𝑋. Such a strategy is not 

necessarily weakly dominated relative to 𝑋 or vice versa. However, a strategy that is strictly 

dominated relative to 𝑋 is clearly also a never-best-response strategy relative to it.  

Definition 3. A polystrategy profile 𝑋 is obtained by successive elimination of weakly or strictly 

dominated strategies if there is a nonincreasing finite sequence of polystrategy profiles 

𝑆 = 𝑋0 ⊇ 𝑋1 ⊇ ⋯ ⊇ 𝑋𝐿 = 𝑋, with 𝐿 ≥ 1, such that for every 1 ≤ 𝑙 ≤ 𝐿, player 𝑖 and 

(eliminated) strategy 𝑥𝑖 ∈ 𝑋𝑖
𝑙−1 ∖ 𝑋𝑖

𝑙  there is some 𝑥𝑖
′ ∈ 𝑋𝑖

𝑙  that weakly or strictly dominates 𝑥𝑖, 

respectively, relative to 𝑋𝑙−1. Successive elimination of never-best-response strategies is 

defined similarly, except that the requirement concerning 𝑥𝑖  is replaced by the requirement that 

it is a never-best-response strategy relative to 𝑋𝑙−1.  

Clearly, every weakly dominant strategy is a polyequilibrium strategy, whereas a strictly 

dominated strategy, or more generally a never-best-response one, is not a polyequilibrium 

strategy. The next two propositions extend these observations to successive elimination.  

Proposition 6. A polystrategy profile 𝑋 that is obtained by (any number of rounds of) successive 

elimination of (any number of) weakly dominated strategies is a polyequilibrium.  

Proof. With the notation of Definition 3, each 𝑋𝑙  (1 ≤ 𝑙 ≤ 𝐿) is clearly a polyequilibrium in the 

subgame Γ𝑋𝑙−1
 (where Γ = Γ𝑋0

 is the original game). Repeated use of the second part of Fact 4 

completes the proof. ∎ 

A game has the best-response existence property if for every strategy profile 𝑥 there is a strategy 

profile that is a best response to 𝑥. Clearly, all finite games and all mixed extensions of finite 

games have this property. 

Fact 7. For a polyequilibrium 𝑋 in a game with the best-response existence property, and for 

every strategy profile 𝑥1 ∈ 𝑋, some 𝑥2 ∈ 𝑋 is a best response to 𝑥1. Repeated use of this fact 

yields a best-response sequence 𝑥1, 𝑥2, 𝑥3, … where each entry, except the first one, is an 

element of the polyequilibrium that is a best response to its immediate predecessor. 

Proposition 7. In a game with the best-response existence property, a polystrategy profile 𝑋 

that is obtained by successive elimination of never-best-response strategies shares at least one 

strategy profile with each of the game’s polyequilibria. Therefore, in such a game, any strategy 

that is eliminated during successive elimination of never-best-response (or, as a special case, 

strictly dominated) strategies is not a polyequilibrium strategy.  

Proof. Consider a finite sequence 𝑆 = 𝑋0 ⊇ 𝑋1 ⊇ ⋯ ⊇ 𝑋𝐿 = 𝑋 as in (the second part of) 

Definition 3. Let 𝑋′ be any polyequilibrium, and 𝑥1, 𝑥2, 𝑥3, … a best-response sequence of 

elements of 𝑋′ as in Fact 7. Using induction, it is easy to see that {𝑥𝑙+1, 𝑥𝑙+2, … } ⊆ 𝑋𝑙  for all 

0 ≤ 𝑙 ≤ 𝐿. (If 𝑙 = 0, the inclusion is trivial, and if 𝑙 > 0, it is implied by the inclusion for 𝑙 − 1, 

since the latter shows that 𝑥𝑙+1, 𝑥𝑙+2, … are best responses to strategy profiles in 𝑋𝑙−1.) In 

particular, 𝑋′ ∩ 𝑋 ≠ ∅. ∎ 
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Example 6. The Traveler’s Dilemma (Basu 1994). In this finite symmetric two-player game, the 

strategy sets are 𝑆1 = 𝑆2 = {2,3, … ,100}. For a player choosing strategy 𝑦, the payoff is 𝑦, 𝑦 + 2 

or 𝑧 − 2 if the other player’s choice 𝑧 is equal to, greater than or less than 𝑦, respectively. 

Clearly, the unique best response to any strategy 𝑧 is 𝑦 = max{𝑧 − 1,2}. Therefore, successive 

elimination of never-best-response strategies eliminates 100,99, … ,3, for both players. It 

follows, by Proposition 7, that the game’s unique equilibrium (2,2) is included in each of its 

(489, as it turns out) polyequilibria. Thus, there is no polyequilibrium where either player’s 

payoff is greater than 2. The same is true also for the mixed extension of the game. This follows 

from the second part of Proposition 5 and the fact that (2,2) is also the unique mixed-strategy 

equilibrium. 

The last example is somewhat special in that the polystrategy profile obtained by successive 

elimination of never-best-response strategies is a singleton. It is not difficult so see that, in a 

game with the best-response existence property, such a singleton must be an equilibrium. 

However, if the polystrategy profile 𝑋 obtained is not a singleton, then it is not necessarily a 

polyequilibrium (but only intersects every polyequilibrium in the game). For example, in the 

finite game (3), elimination of the never-best-response strategy 𝑀 does not give a 

polyequilibrium.  

In Proposition 7, the assumption that the game has the best-response existence property cannot 

be dropped. In fact, as the next example shows, in a game without this property, successive 

elimination (unlike one-time elimination) of strictly dominated strategies may eliminate a 

polyequilibrium strategy. Note that the same it not true for equilibrium strategies, which never 

get eliminated this way. Thus, equilibria and polyequilibria differ in this respect. 

Example 7. The strategy set of player 1 consists of all integers and that of player 2 is {0,1}. If 

they choose 𝑦 and 𝑧, respectively, player 1 receives 𝑦 and player 2 receives 0 if 𝑦 + 𝑧 is even 

and 1 if it is odd. Consider the following two ways of successively eliminating strictly dominated 

strategies: first, either all odd or all even numbers are eliminated for player 1, and then strategy 

0 or 1, respectively, is eliminated for player 2. In both cases (odd or even numbers), a 

polyequilibrium is obtained. Thus, each of player 2’s two strategies is a polyequilibrium strategy, 

even though successive elimination of strictly dominated strategies may eliminate it. 

7 Dynamic Games 
The defining property of polystrategy is that a player’s course of action may be only partially 

specified. In a dynamic context, this may mean that the specification is restricted to only some 

of the player’s information sets.  

As for strategic games, a polystrategy 𝑋𝑖 of a player 𝑖 in a dynamic game 𝐺 with either perfect or 

imperfect information is any nonempty set of strategies. The meaning of ‘strategy’ here is 

viewed as part of the game’s specification. The term may refer to pure strategies, which 

prescribe a single action at each of the player’s information sets, or to behavior strategies, which 
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prescribe a probability distribution over actions at each information set. A polystrategy 𝑋𝑖 is said 

to exclude a particular action or distribution over actions at a particular information set if none 

of the strategies in 𝑋𝑖 prescribes it (in other words, if every strategy that does prescribe it is 

excluded). A polystrategy is rectangular if it includes all the strategies that do not prescribe 

excluded actions or distributions over actions at any of the player’s information sets. A profile of 

rectangular polystrategies corresponds to a polystrategy profile in the agent normal form of the 

game.  

The simplest kind of dynamic game is an (either perfect- or imperfect-information) extensive 

form game, which is one that can be described by a finite game tree, possibly with chance 

nodes. As in the case of general dynamic games, it still needs to be specified whether all 

behavior strategies or only pure strategies may be used. Any statement where this is not 

specified or can be understood from the context is to be interpreted as referring to both cases.   

Example 8. The centipede game (Rosenthal 1981). In this extensive form game with perfect 

information, there are 𝑚 ≥ 2 decision nodes, numbered from 1 to 𝑚 (see Figure 1). The odd- 

and even-numbered nodes are controlled by player 1 and 2, respectively. At each node, the 

controlling player has to choose between Stop and Continue, except that at node 𝑚 only Stop 

can be chosen. The payoffs are determined by the first node 𝑘 at which Stop was chosen. The 

player controlling that node receives 2𝑘  and the other player receives 2𝑘/3.   

Consider the version of the centipede game where only pure strategies may be used. Effectively, 

a strategy is described by the index 1 ≤ 𝑘 ≤ 𝑚 + 1 of the first node at which the player chooses 

Stop, with 𝑘 = 𝑚 + 1 standing for the strategy of never stopping (which is relevant only for the 

player not controlling the last node 𝑚). Therefore, a polystrategy profile is any subset of 

{1,2, … , 𝑚 + 1} (specifying the collection of “first Stop” nodes) that includes at least one odd 

number and at least one even number. A necessary condition for such a subset to be a 

polyequilibrium is that it is of the form {1,2, … , 𝑙}, for some 2 ≤ 𝑙 ≤ 𝑚 + 1. This is because, by 

Fact 7, a polyequilibrium that includes any strategy 2 ≤ 𝑘 ≤ 𝑚 + 1 must also include the unique 

best response to it, which is strategy 𝑘 − 1. The above condition is also sufficient for 

polyequilibrium. This is because, for any 2 ≤ 𝑙 ≤ 𝑚 + 1, the strategy of first stopping at 𝑙 or 

𝑙 − 1 (depending on the player’s identity and the evenness or oddness of 𝑙) responds to 

{1,2, … , 𝑙} at least as well as any strategy that prescribes a later stopping time does. Thus, a 

Figure 1. The centipede game (with an odd number of decision nodes 𝒎). 
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Figure 2. Two polyequilibria that do not include an equilibrium, in complete-information games that begin with 

a chance move. a Each player’s polystrategy comprises two strategies, one indicated by black lines and the 

other by gray ones. b Each player’s polystrategy comprises three strategies: one indicated by black lines, one 

by gray lines, and one by thick lines of either color.  
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polystrategy profile is a non-trivial polyequilibrium if and only if the two players’ polystrategies 

are to stop no later than node 𝑙, for some (fixed, common) 2 ≤ 𝑙 ≤ 𝑚. The game therefore has 

𝑚 nested polyequilibria. The largest polyequilibrium is the trivial one, and the smallest (which is 

also the only small polyequilibrium) is the game’s unique equilibrium (corresponding to 𝑙 = 2). 

Thus, the game satisfies PE-equivalence. 

As the next example shows, there are also perfect-information extensive form games that do 

not satisfy PE-equivalence. Moreover, there are such games where a player has a unique 

equilibrium payoff but receives a higher payoff in a polyequilibrium. 

Example 9. Semi-dictator games. Players 1 and 2 have $2 to share. They flip a coin, and the 

winner can either dictate an equal split of the money or ask for the whole sum. If he chooses the 

latter, however, the other player is allowed to object, and in this case, no one gets anything. 

Assuming that only pure strategies may be used, each player has four strategies. However, since 

the only decision that affects a player’s own payoff is the one he makes if he wins the coin toss, 

any polystrategy that does not exclude any of the two possible decisions there is part of a 

polyequilibrium. Such a polyequilibrium 𝑋 is shown in Figure 2a. Each player’s polystrategy 

includes two strategies, Black and Gray, which prescribe choosing the actions indicated by black 

and gray lines, respectively, in both decision nodes. It is easy to see that none of the four 

strategy profiles in 𝑋 is an equilibrium. The game in Figure 2b is a variant of the first one, and 

can be described as involving an additional, payoff-irrelevant public coin toss. The polystrategy 

𝑋𝑖  shown for each player 𝑖 includes three strategies, Black, Gray and Thick, which prescribe 

choosing the action indicated by a line with that property at each decision node. In particular, at 

the two decision nodes of player 𝑖 that immediately follow the chance node 𝐶, his polystrategy 

prescribes three pairs of actions; the only pair missing is choosing the actions indicated by thin 

lines in both nodes. However, the latter yields player 𝑖 the same (expected) payoff as Thick, as 

long as the other player 𝑗 only uses strategies belonging to his polystrategy 𝑋𝑗. This proves that 

𝑋 = (𝑋1, 𝑋2) is a polyequilibrium. None of the nine strategy profiles in 𝑋 is an equilibrium. 
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Moreover, the outcome of each of them, that is, the distribution it induces over the terminal 

nodes, is not an equilibrium outcome. Indeed, it is not difficult to check that every strategy 

profile in 𝑋 yields the players an aggregate payoff of either 1 or 3/2, whereas in every (pure-

strategy) equilibrium in the game the aggregate payoff is 2. If a third player, whose only role is 

to get the money if the others do not receive it, were added to the game, that player’s payoff 

would be greater than 0 in the polyequilibrium 𝑋 but 0 in every equilibrium. Parenthetically, it is 

an immediate corollary of the second part of Proposition 5 that the last statement would not be 

true if behavior strategies were allowed, as a corresponding equilibrium yielding a positive 

payoff to the third player does exist. However, the polyequilibrium 𝑋 yields such a payoff 

without requiring the players to randomize. 

7.1 Subgame Perfection 
A strategy 𝑥𝑖  of a player 𝑖 in a dynamic game 𝐺 induces a strategy for 𝑖 in each subgame of 𝐺. 

That strategy, which may also be denoted by 𝑥𝑖  if the meaning is clear from the context, is 

obtained by restricting the original strategy to the information sets included in the subgame.9 

These observation and notation convention naturally extend to strategy profiles, polystrategies 

and polystrategy profiles.  

Definition 4. A polystrategy profile 𝑋 in a dynamic game10 𝐺 is a weak subgame perfect 

polyequilibrium if, in every subgame of 𝐺, the induced polystrategy profile is a polyequilibrium. 

This condition may be expressed more explicitly as follows: for every strategy profile 𝑥′ and 

every subgame 𝐺′ there is some 𝑥″ ∈ 𝑋 that, in the subgame 𝐺′, responds to 𝑋 at least as well 

as 𝑥′ does. A polystrategy profile 𝑋 is a subgame perfect polyequilibrium if it satisfies the 

following stronger condition: for every strategy profile 𝑥′ there is some 𝑥″ ∈ 𝑋 that in all 

subgames of 𝐺 responds to 𝑋 at least as well as 𝑥′ does. 

The difference between subgame perfection and weak subgame perfection is illustrated by 

Figure 3. (Another example is Figure 2, where the polyequilibrium in a is subgame perfect 

whereas that in b is only a weak subgame perfect polyequilibrium.) Both properties are 

“hereditary” in the sense that a polyequilibrium with either property induces a polyequilibrium 

with that property in every subgame. For a polystrategy profile that is a singleton, 𝑋 = {𝑥}, the 

two properties are equivalent and hold if and only if 𝑥 is a subgame perfect equilibrium. In 

general, however, a subgame perfect polyequilibrium may not include a subgame perfect or 

even any equilibrium. (The polyequilibrium in Figure 2a is an example of this.) Two exceptions to 

this general rule are given by the next theorem. 

                                                            
9 A subgame by definition includes either none or all of the nodes in each information set. Note that the 
meaning of ‘subgame’ in the present, dynamic context (Selten 1975) is different from that in the strategic 
context (Shapley 1964; see Section ‎2).    
10 The definition is applicable to both perfect- and imperfect-information games. However, for the latter, 
subgame perfection is a relatively weak requirement, which does not fully capture the notion of 
sequential rationality. A refinement of subgame perfect polyequilibrium that accommodates that notion is 
introduced in Milchtaich (2018).   
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Figure 3. Subgame perfect polyequilibrium (SPP) and weak SPP. a In this one-player game, the singleton {𝑹𝑹′} 

is a SPP and its complement {𝑹𝑳′,𝑳𝑹′,𝑳𝑳′} is a weak SPP. b In this two-player game, where only player 1’s 

payoffs are shown, 𝑿 = {𝑳𝑹′,𝑳𝑳′} × {𝒓, 𝒍} is a weak SPP. It is not a SPP because neither of player 1’s strategies 

responds to 𝑿 at least as well as 𝑹𝑳′ does both in the whole game (where 𝑳𝑹′ does so) and in the subgame 

starting at the player’s second decision node (where 𝑳𝑳′ does so).  
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Theorem 3. In a perfect-information extensive form game 𝐺: 

(1) Every weak subgame perfect polyequilibrium 𝑋 where the players’ polystrategies are 

rectangular includes a subgame perfect equilibrium.  

(2) If 𝐺 has a unique subgame perfect equilibrium 𝑥′, then every subgame perfect 

polyequilibrium 𝑋 includes 𝑥′.  

Proof. (1) Consider the collection 𝒳 of all subsets of 𝑋 that are weak subgame perfect 

polyequilibria and consist of rectangular polystrategies. This collection is not empty, as 𝑋 ∈ 𝒳. 

For each element of 𝒳, count the number of decision nodes at which at least two actions or 

distributions over actions are not excluded, and consider some 𝑋′ ∈ 𝒳 for which this number is 

minimal. If the number is zero, then 𝑋′ is a singleton, which implies that it is a subgame perfect 

equilibrium, and the proof is complete. It therefore suffices to assume that the number is 

greater than zero, and show that this assumption leads to a contradiction. The assumption 

implies that, for 𝑋′, there is some decision node 𝑣 such that, (i) at each of the decision nodes 

following 𝑣, only one action or distribution over actions is not excluded, but (ii) this is not so for 

𝑣 itself. Let 𝑥′ be a strategy profile such that, (i) the actions or distributions over actions 

specified by 𝑥′ at the nodes following 𝑣 are those singled out by 𝑋′, and (ii) the one specified at 

𝑣 best responds to them in the subgame 𝐺′ starting at that node. Since 𝑋′ is a weak subgame 

perfect polyequilibrium, it includes a strategy profile 𝑥″ which, in 𝐺′, responds to 𝑋′ at least as 

well as 𝑥′ does. Let 𝑋″ be the polystrategy profile obtained from 𝑋′ by removing all strategy 

profiles that do not agree with 𝑥″ (in the sense of specifying the same action or distribution over 

actions) at the node 𝑣. It is not difficult to see that 𝑋″ is also an element of 𝒳. However, this 

conclusion contradicts the minimality assumption concerning 𝑋′.  

(2) Consider a strategy profile 𝑥″ ∈ 𝑋 that in all subgames of 𝐺 responds to 𝑋 at least as well as 

𝑥′ does. If 𝑥″ ≠ 𝑥′, then there is some subgame 𝐺′ where the strategy profiles induced by 𝑥′ 

and by 𝑥″ differ only at the root, where they prescribe different actions or distribution over 
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actions to the acting player 𝑖. Since in 𝐺′ strategy 𝑥𝑖
″ responds to 𝑥″ (hence, to 𝑥′) at least as 

well as 𝑥𝑖
′ does, and 𝑥′ is a subgame perfect equilibrium, both 𝑥′ and 𝑥″ induce subgame perfect 

equilibria in 𝐺′. This conclusion clearly contradicts the assumption that (the whole game) 𝐺 has 

a unique subgame perfect equilibrium. The contradiction proves that 𝑥″ = 𝑥′. ∎ 

In the above analysis of the centipede game, ‘strategy’ actually refers to a number of equivalent 

(pure) strategies, which specify the same first Stop node but differ in their prescription of 

actions at the player’s later decision nodes. This is so in general: polyequilibrium analysis never 

requires distinguishing between equivalent strategies, because the payoffs they yield are always 

identical and therefore all but (any) one of them may be excluded. However, since equivalent 

strategies may differ in the strategies they induce in subgames, the distinction between them 

may be important in the context of subgame perfection. 

Example 8 (continued). As shown, a polystrategy profile in the centipede game is a 

polyequilibrium if and only if it has the form {1,2, … , 𝑙}, for some 2 ≤ 𝑙 ≤ 𝑚 + 1. For each such 

polyequilibrium, and for each 1 ≤ 𝑘 ≤ 𝑙, which represents all equivalent strategies whose first 

Stop is at node 𝑘, consider the representative strategy that prescribes Stop also at each of the 

player’s later decision nodes. Such a choice of representative strategies makes the 

polyequilibrium a weak subgame perfect polyequilibrium, since it is not difficult to check that 

the polystrategy profile it induces in every subgame is again of the general form indicated 

above. This weak subgame perfect polyequilibrium 𝑋 is actually subgame perfect if 2 ≤ 𝑙 ≤ 5. 

However, for larger 𝑙 this is not so. To see this, suppose that 𝑙 ≥ 6 and consider the strategy 𝑥1
′  

of player 1 that instructs him to continue only at his second decision node (no. 3). No strategy 

𝑥1
″ ∈ 𝑋1 responds to 𝑋 at least as well as 𝑥1

′  does in all subgames. This is because, to do so in the 

two subgames starting at player 1’s first and second decision nodes, 𝑥1
″ must specify the same 

actions there as 𝑥1
′ . However, by construction, no strategy in 𝑋1 does so. This proves that the 

weak subgame perfect polyequilibrium 𝑋 is not subgame perfect if 𝑙 ≥ 6. Note that 𝑋 consists of 

rectangular polystrategies if and only if 2 ≤ 𝑙 ≤ 4. Nevertheless, for all 2 ≤ 𝑙 ≤ 𝑚 + 1, 𝑋 

includes the game’s unique subgame perfect equilibrium, which corresponds to 𝑙 = 2 (cf. 

Theorem 3).11 

Dynamic games that are not extensive form ones do not always have a subgame perfect 

equilibrium. For such games, the concept of subgame perfect polyequilibrium may be 

particularly pertinent. 

Example 10. “Almost perfect” information and a continuous action space (Harris et al. 1995, 

Myerson and Reny 2015). First, players 1 and 2 choose their actions simultaneously. Then, 

players 3 and 4, who are informed of their predecessors’ choices, do so. The set of actions for 

player 1 is the interval [−1,1] and that of each of the other players is the pair {−1,1}. Denoting 

the action of player 𝑖 by 𝑎𝑖, the four players’ payoffs are given by 

                                                            
11 For an analysis of curb sets in the centipede game, see Pruzhansky (2003). If 𝑚 is odd, the only curb set 
is the trivial polyequilibrium. 
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𝑢1 = 5(𝑎3𝑎4 − 1) − |𝑎1|𝑎2𝑎3 − 𝑎1
2       𝑢2 =

1

2
(1 + 3𝑎2)𝑎3

𝑢3 = 𝑎1𝑎3       𝑢4 = 𝑎1𝑎4

 

It can be shown that, even with all behavior strategies allowed, this game does not have a 

subgame perfect equilibrium. Roughly, the reason is that, to make the first, second and third 

term in player 1’s payoff function as large as possible, 𝑎1 should be, respectively, (i) different 

from 0, so that the responses of players 3 and 4 will match, (ii) positive and negative with close-

to-equal probabilities, so that player 2 will not be able to match player 3’s action, and (iii) close 

to 0. No behavior strategy of player 1 (equivalently, mixed strategy, probability measure on 

[−1,1]) optimally satisfies these three requirements. However, for any 0 < 𝜖 ≤ 1, consider the 

polystrategy 𝑋1 = {±𝑎 ∣ 0 < 𝑎 ≤ 𝜖}, where ±𝑎 means playing 𝑎 with probability 0.5 and −𝑎 

with probability 0.5. Thus, the smaller is 𝜖, the tighter is the description of player 1’s behavior. 

For the other players, the behavior is completely specified, as follows: 𝑋2 includes only the 

single strategy ±1, and 𝑋3 and 𝑋4 include only the strategy that specifies choosing 1, −1 or ±1 

if player 1’s action 𝑎1 is positive, negative or zero, respectively. Clearly, the strategy of each of 

these three players is a best response to the polystrategy profile 𝑋 = 𝑋1 × 𝑋2 × 𝑋3 × 𝑋4, and 

this is so also in every subgame (that is, after players 1 and 2 play). To show that 𝑋 is a subgame 

perfect polyequilibrium, it remains to show that for every mixed strategy 𝑥1 of player 1 there is 

some 0 < 𝑎 ≤ 𝜖 such that ±𝑎 responds to 𝑋 at least as well as 𝑥1 does. If player 1 uses 𝑥1, his 

payoff is −5ℙ(𝑎1 = 0) − 𝔼𝑎1
2, where the expectation and probability are those specified by 𝑥1. 

This payoff is lower than the −𝑎2 player 1 would get from playing ±𝑎, for every 𝑎 smaller than 

𝔼|𝑎1| (or, if 𝔼|𝑎1| = 0, for any 0 < 𝑎 ≤ 𝜖). 

Another advantage of subgame perfect polyequilibrium over subgame perfect equilibrium 

manifests itself in dynamic games with many information sets. Whereas a subgame perfect 

equilibrium must prescribe a carefully selected action at each information set, including those 

lying far away from the equilibrium path, a polyequilibrium may legitimately ignore all but a 

relatively small number of relevant information sets.  

Example 11. Sequential competition (Milchtaich et al. 2018). A market for a particular good has a 

continuum of consumers on one side and two sellers on the other side. The consumers arrive in 

a steady flow: in any time interval of length 𝑙, the total mass of arriving consumers is 𝑙. Each 

consumer demands a single unit of the good, and leaves the market after buying it or spending a 

unit of time in the market, whichever comes first. In the first case, the consumer’s payoff is 

1 − 𝑥 − 𝑝, where 𝑥 is the time he spent in the market and 𝑝 is the price he paid for the good, 

and in the second case, the payoff is zero. Thus, a consumer’s valuation of the good decreases 

linearly with his “age” 𝑥. The two sellers produce the good at zero cost. Seller 1 arrives at time 1 

and seller 2 arrives shortly afterwards, at 1.1. An arriving seller announces a price 𝑝 for the 

good, sells the demanded quantity 𝑞, and immediately leaves. His payoff is the revenue 𝑝𝑞. 

For any price 0 < 𝑝1 < 1 that seller 1 sets, the total mass of the consumers who would receive 

positive payoff from buying at that price is 1 − 𝑝1. However, the seller’s actual profit from 

setting price 𝑝1 may be lower than his monopoly profit of 𝑝1(1 − 𝑝1), because if consumers 
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expect seller 2’s price 𝑝2 to be significantly lower than 𝑝1, some of them may choose to wait. 

The wait may in turn affect 𝑝2, since it changes the demand seller 2 faces. Thus, a strategy for 

seller 2 has to prescribe a price 𝑝2 for every 𝑝1 and every possible total mass and age 

distribution for the consumers who are in the market at the time seller 2 arrives there. One may 

suspect that these myriad decision nodes are not all equally relevant. This is where the notions 

of polystrategy and (subgame perfect) polyequilibrium, which legitimize the consideration of 

only some decision nodes, come in handy.  

As shown below, for every price 0.4 ≤ 𝑝∗ ≤ 0.5 there is a subgame perfect polyequilibrium with 

𝑝1 = 𝑝∗ and 𝑝2 = 0.9. Since the second price is higher, none of seller 1’s potential customers 

opts for waiting. Nevertheless, with 𝑝∗ < 0.5, seller 1 does not take advantage of this by 

choosing his monopoly price of 0.5, which maximizes the monopoly profit. The reason is the 

credible threat implicit in the consumers’ strategies, which are the following ones. Consumers 

always buy at any price 𝑝 that leaves them with nonnegative payoff, except when it is seller 1’s 

price and it is higher than 𝑝∗, in which case they buy only if their payoff is at least 𝑝 − 0.2. Thus, 

if seller 1 sets a price 𝑝1 ≤ 𝑝∗, all the consumers who arrived in the time interval [𝑝1, 1] buy 

from him, but if 𝑝1 > 𝑝∗, then only those who arrived in [2(𝑝1 − 0.1), 1] do so (or, if 𝑝1 > 0.6, 

no one buys). In the first case, seller 1’s profit is 𝑝1(1 − 𝑝1), and it is therefore maximal at 

𝑝1 = 𝑝∗, where the profit is between 0.24 and 0.25. In the second case, the profit is only 

𝑝1(1 − 2(𝑝1 − 0.1)) (or 0), which is less than 0.16. Thus, 𝑝1 = 𝑝∗ is the profit-maximizing price 

for seller 1. Seller 2’s polystrategy specifies a profit-maximizing price 𝑝2 only at decision nodes 

where the consumers’ total mass and age distribution correspond to the price 𝑝1 set by seller 1 

(that is, they are as described above). For 𝑝1 ≤ 𝑝∗ (≤ 0.5), the price is 𝑝2 = 0.9, and for 𝑝1 >

𝑝∗, it is 𝑝2 = min{0.5, 𝑝1 − 0.1}. In the second case, the difference between 𝑝2 and 𝑝1 

compensates for the loss of payoff due to the waiting time of 0.1 and guarantee that both the 

consumers who bought from seller 1 (if there are any such consumers) and those who chose to 

wait acted optimally. This optimality is the sense in which the threat implicit in the consumers’ 

strategies is credible, and it is what makes these strategies, together with seller 1’s strategy of 

selling at price 𝑝∗ and sellers 2’s rectangular polystrategy just described, a subgame perfect 

polyequilibrium.  

Note that the polyequilibrium in Example 11 has a well-defined path as it prescribes a unique 

action at every information set that is actually reached. In this, it differs from every non-

singleton polyequilibrium in the centipede game, in which different strategy profiles may specify 

different paths in the game tree.  

8 Discussion 
The notion of polyequilibrium generalizes – in a rather simple, straightforward manner – the 

Nash equilibrium solution concept. Like the latter, it is universally applicable, in that it does not 

rely on any assumptions about the nature of the game (simultaneous, dynamic, complete or 

incomplete information, etc.), the cardinality of the player set (finite, countably infinite or a 

continuum; see Example 11), the structure of the strategy sets (linear structure, topological 
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properties), the functional form of the payoff functions (multilinear, continuous) or the 

interpretation of the payoffs (ordinal, von Neumann-Morgenstern utilities). Unlike mixed-

strategy Nash equilibrium, polyequilibrium does not involve randomization. It is perfectly 

compatible with mixed strategies, but it does not introduce them. Thus, a finite game and its 

mixed extension are viewed as distinct games, with distinct – and often quite dissimilar (see 

Proposition 3) – sets of polyequilibria. The same applies to dynamic games with pure strategies 

and (the same) games with behavior strategies. 

Polyequilibrium is similar to other set-valued solution concepts, like rationalizable strategies and 

curb sets, in that it identifies polystrategy profiles (that is, rectangular sets of strategy profiles) 

that can be described as self-enforcing. However, it differs from them quite fundamentally in 

that beliefs play no role. The first implication of this difference is that polyequilibrium does not 

require cardinal utilities and does not involve probabilities, so its applicability is not limited to 

only certain families of games. Second, the definition of polyequilibrium, which is based on 

strategy substitution, is sufficiently different to make the concept logically incomparable with 

rationalizable strategies and curb sets even in simple finite games (see Section ‎4). Third, and 

most profoundly, polyequilibrium is a strictly excluding solution concept. This means that the 

inclusion of a strategy in a player’s polystrategy does not suggest that anyone believes or should 

believe that the use of that strategy is likely or even possible. Self-enforcement only concerns 

the exclusion of strategies from the players’ polystrategies. Thus, the latter are not themselves 

interpreted as strategy recommendations or as the collections of all strategies that other players 

view as possible. By contrast, the concepts of rationalizable strategies and curb sets are based 

on an interpretation along these lines, from which they derive the requirement that the 

polystrategy profile must be a subset or a superset, respectively, of the set of all best responses 

to the beliefs that are supported in it (van Damme 2002, p. 1527). For polyequilibrium, neither 

inclusion is a defining property, but in games with the best-response existence property, every 

strategy profile in a polyequilibrium 𝑋 has some best response that is also in 𝑋 (Fact 7). Not all 

of them must be included, though, so this solution concept allows for selection among best 

responses.  

As an illustration of the difference between an emphasis on inclusion or exclusion of strategies, 

consider the chain of nested polyequilibria that are obtained by successively eliminating weakly 

or strictly dominated strategies (Section ‎6). The temporary inclusion of a strategy does not 

constitute a contradiction to its later exclusion, because the inclusion is not a suggestion that 

the use of the strategy is possible. The first elimination may only establish that, say, “player 𝑖 

does not play some strategy 𝑇” is a polyequilibrium result, and a later stage may establish the 

same for “player 𝑖 does not play 𝑇 or 𝑀”. These results are perfectly harmonious. Indeed, any 

logical consequence of a polyequilibrium result is also so. Although it might seem natural to 

refer only to the last polystrategy profile in the chain as a polyequilibrium, or more radically, to 

reserve the term to minimal polyequilibria, this mathematical reflex is to be resisted. A larger 

polyequilibrium yields weaker results than a smaller polyequilibrium (which is included in it) 

does, because fewer properties are common to all its strategy profiles. However, if the larger 
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polyequilibrium already yields the result of interest, there is little point in chasing the absolute 

minimum or pondering whether it exists at all. Thus, multiplicity of equilibria is a feature, not a 

bug. This philosophy sets polyequilibrium apart from other set-valued solution concepts, which 

put a premium on either minimality or maximality.  

The last point is particularly true for dynamic games (Section ‎7), where an insistence on 

minimality would actually be self-defeating. Part of the appeal of the polyequilibrium concept in 

such games, particularly those with many information sets, is the legitimization it provides to 

specifying the players’ actions at only some of these sets, thus doing away with the need for 

pruning actions at information sets that are, in a logically consistent sense, unimportant. In 

particular, if all strategy profiles in a subgame perfect polyequilibrium give the same outcome 

(that is, the same distribution over terminal nodes), laboring to decrease its size would be 

counterproductive.  

As the results in this paper demonstrate, the kinds of questions, results, directions of inquiry and 

conceptual issues raised by the polyequilibrium concept are quite different from those 

associated with other – more similar or less so − solution concepts. Moreover, the potential for 

extension is vast. For example, the concept may be applied to additional, important classes of 

games, such as games with incomplete information. It can be extended to encompass (suitably 

defined) correlated polyequilibria. And it may suggest a fresh look at other, established solution 

concepts, such as sequential equilibrium (Milchtaich 2018).  
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