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Abstract

We study a competitive market for a homogeneous good, in which the
only uncertainty concerns the number of identical sellers, who are sampled
by a �nite Poisson process from a continuum of potential participants. It
is shown that, in equilibrium, there is price dispersion. Speci�cally, prices
conform to a Poisson process on an interval, which is a proper subset of that
between the sellers' cost and the buyers' reservation price. Although prices
arbitrarily close to the latter may occur in equilibrium, they are less frequent
than prices at the lower end of the pricing interval. JEL Classi�cation: C7,
D4, D8, L1.
Keywords: Random-player games, Poisson games, Uncertain number of

sellers, Directed search.

1 Introduction
The phenomenon of price dispersion was �rst analyzed theoretically by Stigler
[29], who argued that �... it is important to emphasize immediately the fact that
dispersion is ubiquitous even for homogeneous goods� (p. 213). Since Stigler's
seminal paper, which introduced search as the agent's instrument for coping with
�ignorance in the market� (in his terminology), numerous economic models that
can account for price dispersion have been suggested.
In the model we present here, supply or demand uncertainties for a homoge-

neous good create price dispersion. Uncertainty stems from the assumption that
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agents decide on their strategies before they know if they will be actively partici-
pating in the market, and the number of competitors they will face if they will be
active. It is only after strategies are chosen that uncertainty is resolved by a �nite
Poisson process, which samples from the continuum of potential participants. If
the uncertainty is on the supply side (i.e., sellers, who post prices), two con�icting
forces operate. Sellers aim to raise their posted prices to the buyers' reservation
price, but this may jeopardize their chances of selling, since only the lowest offers
are matched. Similarly, if the uncertainty is on the demand side, each buyer would
preferably make the lowest bid possible, however, this may lower the probability
that the offer would be suf�cient to obtain the object.
The equilibrium exhibits price dispersion, which is a (nonhomogeneous) Pois-

son process in prices. If the uncertainty is on the supply side, there is a minimum
price, strictly higher than the sellers' cost, above which any price not exceeding
the reservation price is possible. Furthermore, the price process exhibits decreas-
ing density.
The model re�ects certain aspects of narrowly de�ned segments of the housing

and labor markets. For example, in a housing market, a substantial portion of the
supply is determined by random, exogenous factors relating to the participants (a
seller has to leave town, a divorced couple has to sell their house, etc.). Suppose
all sellers have to post their asking prices in a weekend newspaper before they
know how many other houses are for sale. They would sell as long as there is
a buyer willing to pay the posted price who cannot �nd a better deal. Similarly,
consider the job market for junior faculty in a narrowly de�ned �eld in economics.
The number of candidates (of comparable quality) is generally well known (since
most of them apply to all the departments), but the number of departments actively
recruiting in the speci�c �eld is uncertain. As a result of the uncertainty, there may
be price dispersion even with uniform quality.
The main contributions of this paper to the extensive literature on price dis-

persion is the introduction of �nite point processes as a model for the selection
of market participants and the complete characterization of the equilibrium price
process. This paper demonstrates how the framework of random-player games,
in general, and Poisson games, in particular, may be applied to the analysis of
uncertain economic environments.

2 Price Dispersion Literature
Prescott [24] was the �rst to consider a model of stochastic demand faced by a
�xed number of sellers of a homogeneous good. He showed that the equilibrium
pricing strategy exhibits price dispersion. Prescott's goal was to show that the fact
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that some goods are not exchanged in the market does not imply inef�ciency.1
Bryant [3] considered stochastic demand in his study of the (partial) competitive
equilibrium with price-setting �rms. He showed that the existence of potential
entrants determines the equilibrium pricing strategies, which in the case of sto-
chastic demand results in price dispersion. Eden [10] showed that if agents and
�rms are allowed to trade based on the probability of sale in a spot market, this
leads to marginal cost pricing. Dana [9] introduced costly capacity and allowed
the �rm to choose a set of prices (and quantity limit on each price). He proved that
there is pure strategy equilibrium in price distributions, even without pure strategy
equilibrium in prices (as in Bryant's [3] model). Furthermore, price dispersion in-
creases as competition becomes more intense. Although the above literature and
the current paper share some basic insights, the main difference is that while in the
stochastic demand literature the strategic portion of the market is deterministic, in
this paper the uncertainty is coupled with the strategic component of the market.
That is, the number of sellers posting prices is stochastic, while the demand is
deterministic.
Janssen and Rasmusen [13] studied a Bertrand competition with an unknown

number of sellers, in which each potential seller is active with a given probability.
They showed that in equilibrium there is price dispersion and characterized it.
Janssen and Rasmusen [13] studied the pricing strategy of �rms at the interim
stage: after they are chosen to be �active� but before they know how many other
�rms are active. Although the aim is similar, the focus of their paper is different.
This paper describes an environment in which the ex-ante and interim decisions of
�rms are identical, and studies the implications on the equilibrium price process.
Peters [20] studied Bertrand competition among �rms with capacity constraints.2

After observing prices, each buyer has to choose a �rm (as in the recent directed-
search literature). If the demand of the agents approaching a speci�c �rm exceeds
its capacity, the �rm allocates its capacity among the buyers. In this framework,
there is a trade-off between the price and the probability of being allocated the
desired demand. Peters showed that there is price dispersion in equilibrium (i.e.,
a mixed equilibrium in prices). Using similar logic, Montgomery [18] showed
that wage dispersion may be the equilibrium outcome in a directed-search model
of the labor market, in which heterogeneous �rms post vacancies and wage offers
that are known to the workers. A high offer may attract many workers, reducing
the applicants' probability of getting the job. Coles and Eeckhout [6] showed that
the restriction of the directed search approach�whereby sellers are committed to
the posted prices�is an equilibrium of a game that allows each seller to specify a
mechanism for allocating the good (if the posted price attracts more than a single

1A more elaborate model is presented in Peters and Winter [22].
2The exogenous capacity constraint assumption was relaxed in Peters [21].
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buyer). However, a continuum of other equilibria also exists.
Another strand of models derive price dispersion in equilibrium when adver-

tisements are takes into account. Firms may advertise at a central location (e.g.
Shilony [28], Varian [30]), or target speci�c consumers (e.g. Butters [5]). Some
consumers know the price distribution (through the advertisements), while oth-
ers do not know it or have �brand loyalty�. Price dispersion in these models
allows �rms to discriminate between informed and uninformed consumers. Baye
and Morgan [1] introduced a middleman, who collects price data from sellers and
sells the right to access this information to consumers. The search literature ac-
counting for price dispersion (e.g. Burdett and Judd [4], Rob [27]) assumes basic
heterogeneity in the market, either in the ex-ante availability of information (as in
[4]) or the search cost (as in [27]).

3 The Poisson Process
This section brie�y reviews �nite Poisson processes on the real line. For a more
extensive review, see Milchtaich [17].
A �nite point process X on the real line R is a random selection of a �nite

multiset in R. A multiset differs from an ordinary set in that it may contain mul-
tiple copies of the same point. If the points selected are almost surely distinct, the
process is said to be simple. For each Borel set B in R, the (random) number of
points selected in B, each point counted with its multiplicity, is denoted by X(B).
The joint probability distributions of the numbers of points in all �nite collections
of disjoint intervals in R completely specify the process. A �nite Poisson process
is de�ned by the assumption that, for each Borel set B, X(B) has a Poisson distri-
bution. This implies that the process can be simple only if it has no �xed atoms,
i.e., for every x 2 R, X(fxg) = 0 almost surely. It also implies that the process
has independent increments: for every �nite family of disjoint Borel sets fBigki=1,
the random variables fX(Bi)gki=1are independent. The importance of the Poisson
process comes from the result that if a �nite point process without �xed atoms has
the latter property (also known as complete independence), then it is necessarily
a simple �nite Poisson process.

Theorem 1 (Prékopa [23]) A �nite point process without �xed atoms is a �nite
Poisson process if and only if it is simple and has independent increments.

For every �nite Poisson process X , there is a unique �nite Borel measure Λ,
called the parameter measure of the process, such that for every �nite family of
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disjoint Borel sets fBigki=1 and corresponding list of nonnegative integers fnig
k
i=1:

Pr(X (Bi) = ni; i= 1;2; : : : ;k) = e�∑ki=1Λ(Bi)
k

∏
i=1

Λ(Bi)ni

ni!
: (1)

Λ is also the mean measure of the process, i.e., it gives the expected number of
points selected in each Borel set B, each point counted with its multiplicity. Equa-
tion (1) shows that this measure completely speci�es the �nite Poisson process
(and vice versa). The parameter measure itself is completely speci�ed by the gen-
eralized distribution function FΛ (x) := Λ((�∞;x]), de�ned on the real line. This
function is nondecreasing and continuous from the right, and is continuous if and
only if Λ has no atoms, which is the case if and only if the �nite Poisson process
is simple. The derivative f (x) := dFΛ (x)=dx (which exists for almost every x) is
called the density of a simple Poisson process.
An alternative presentation of �nite Poisson processes is sometimes useful.

For any �nite partition of R into Borel sets fBigki=1, the sum λ := ∑ki=1Λ(Bi) =
Λ(R) gives the expected total number of points selected. For such a partition, (1)
can be written as follows:

Pr(X (Bi) = ni; i= 1;2; : : : ;k) =
�
e�λ λ

n

n!

�0BB@ n!
k
∏
i=1
ni!

k

∏
i=1

�
Λ(Bi)

λ

�ni1CCA ; (2)

where n = ∑ki=1 ni. This shows that every �nite Poisson process X can be imple-
mented by �rst determining the total number of points n according to the Poisson
distribution with parameter λ , and then sampling each of the n points indepen-
dently of the others according to the probability measure (1=λ )Λ. These two
stages correspond to the �rst and second expressions on the right-hand side. of
(2), respectively.
This presentation of a �nite Poisson process as a mixed sample process (where

`mixed' refers to the randomness of the sample size n) may be used to compute the
posterior on the number and positions of the other points, given that a particular
point was selected. Since different points are selected independently, information
about positions cannot be extracted from this. The posterior on the number of
points can be computed by noting that the process selects n+1 points with prob-
ability e�λ λ

n+1=(n+ 1)!, and for each of them the number of other points is n.
Therefore, the posterior probability that there are n other points is proportional
to (n+1)e�λ λ

n+1=(n+1)!= λe�λ λ
n=n!. Since this is proportional to the prior

probability that the total number of points is n, the two probabilities must in fact be
equal. This shows that the �nite point process giving the posterior (on the number
and positions of the other points) is equal to the prior (i.e., the original process,
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which speci�es the number and positions of all the points). Indeed, this envi-
ronmental equivalence property uniquely characterizes �nite Poisson processes
(Myerson [19, Theorem 2]; Milchtaich [17, Theorem 1]).

Theorem 2 A �nite point process with �nite mean measure has the environmental
equivalence property if and only if it is a �nite Poisson process.

4 The Model
In a simple market for homogeneous widgets, the demand is deterministic and
consists of b (� 1) identical buyers. Each buyer has an inelastic demand for
one widget and a positive reservation price, which, without loss of generality, is
assumed to be unity: Therefore, the buyers' utility is 1� p if they purchase one
widget at price p and zero otherwise.
The supply side consists of a continuum of identical risk-neutral potential sell-

ers, indexed on the real line or some interval in it. Each seller can potentially sell
one unit, produced at zero cost.3 The potential sellers' asking prices are given by
a Borel measurable asking price function p. For each seller s who is actually cho-
sen to participate in the market, the asking price is 0 � p(s) � 1.4 The selection
of the actual sellers is modeled as a simple �nite Poisson process S on R, with the
parameter measure M. For each Borel set B, the number of actual sellers with
indices in B is the random variable S(B). The expected total number of sellers is:

λ :=M(R) (> 0): (3)

The b actual sellers who quote the lowest prices (or, if there are less than b sellers,
all the sellers) sell their widgets at the quoted prices. If more than one seller
quotes the b lowest price, the matched sellers are chosen with equal probabilities.

5 The Price Process
The �nite Poisson process S that determines the set of actual sellers, and the asking
price function p, together determine the actual multiset of prices. In particular, for
each Borel set P in the real line, the (random) number of sellers who quote a price
in P is given by:

X(P) := S(p�1(P)): (4)
3This is a normalization assumption: the only real requirement is that the cost of production is

less than the buyers' reservation price.
4The assumption that potential sellers choose selling prices before they know if they will actu-

ally participate in the market is not a real restriction. It only requires that, when the sellers choose
prices, they do not know the number or the identities of the other actual sellers.
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Thus the randommultiset of prices is also a �nite point process on the real line. As
the following proposition shows, this price process X is, in fact, a �nite Poisson
process. The easiest way to see this is to consider the presentation described above
of a �nite Poisson process as a mixed sample process.

Proposition 1 (see Milchtaich [17, Section 2.3]) The price process X is a �nite
Poisson process with parameter measure Λ(�) :=M

�
p�1 (�)

�
. Thus it satis�es the

environmental equivalence property and has independent increments.

A seller's environment is the set of all other actual sellers and their asking
prices. According to the environmental equivalence property, the environment of
each seller s coincides with the prior. In other words, the mere presence in the
market and the price quoted do not provide s any information on the number of
other sellers or their asking prices. Moreover, the sellers' posterior about these
coincides with the prior on the total number of sellers and their asking prices,
which is the price process X itself.
Using environmental equivalence, the expected pro�tΠ(p) for a seller quoting

price p can be computed. If 0 < p � 1 and there are n other sellers quoting the
same price and m sellers quoting prices less than p, then the seller's probability of
selling (at price p) is (b�m)=(n+1) if this expression is between 0 and 1, zero
if the expression is negative, and one if it is greater than 1. Hence, by (1),

Π(p) = p
∞

∑
m;n=0

min
�
max

�
b�m
n+1

;0
�
;1
�
e�Λ([0;p])Λ([0; p))

m

m!
Λ(fpg)n

n!
: (5)

Equilibrium is de�ned by the condition that only the prices giving the maxi-
mum expected pro�t can occur. This condition is easiest to express in terms of
the support of the parameter measure Λ, which is the collection of all prices p
such that, for all ε > 0, Λ([p� ε; p+ ε])> 0. However, equilibrium may also be
considered a property of the asking price function p(s). If p(s) is a Nash equilib-
rium in the game in which the players are the potential sellers, then the parameter
measure of the resulting price process is an equilibrium in the following sense.

De�nition 1 The parameter measure Λ is an equilibrium if, for every price p in
the support of Λ and every other price q,

Π(p)�Π(q) : (6)

This condition clearly implies that the expected pro�t is the same for all prices
in the support of the equilibrium. This common value is the equilibrium pro�t.
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6 Characterization of the Equilibrium
This section shows that the equilibrium can be completely characterized. The �rst
result concerns the price dispersion.

Proposition 2 An equilibrium has no atoms, and its support has the form [α;1],
for some 0< α < 1.

Proof. The support of any equilibrium Λ is a closed subset of [0;1]. Let α be the
smallest element in this set. The proof consists of the following three claims.

Claim 1 α � e�λ > 0.

The expected pro�t of a seller with asking price 1 is at least e�λ . This is
because, by de�nition of the Poisson process, there is probability e�λ that there
are no other sellers. A seller asking a price less than e�λ has a lower expected
pro�t, and thus, by de�nition of equilibrium, such a price is not in the support of
Λ.

Claim 2 Λ has no atoms, and Π(p) = pPr(X ([0; p])< b) for all 0� p� 1.

Suppose that Λ has an atom at p; that is, Λ(fpg) > 0. An atom lies in the
support of Λ. Therefore, the previous step gives 0 < p � 1. For any 0 < q < p
with Λ(fqg) = 0, the expected number of sellers also asking price q is zero, and
thus such sellers almost surely do not exist. Therefore,

Π(q) = qPr(X ([0;q])< b)� qPr(X ([0; p))< b) : (7)

Since q can be chosen arbitrarily close to p, (6) and (7) give

Π(p)� pPr(X ([0; p))< b) :

However, this inequality contradicts (5), since that equation implies that

Π(p)< p
∞

∑
m;n=0

minfmaxfb�m;0g ;1ge�Λ([0;p])Λ([0; p))
m

m!
Λ(fpg)n

n!

= p
∞

∑
m=0

minfmaxfb�m;0g ;1ge�Λ([0;p))Λ([0; p))
m

m!
= pPr(X ([0; p))< b) :

This proves that atoms do not exist, and thus the equality in (7) holds for all q.

Claim 3 The support of Λ is [α;1], and α < 1.
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Since α is the smallest element in the support of Λ, and is not an atom, it
cannot also be the biggest element there. Hence, α < 1. Suppose some point
α < q� 1 is not in the support of Λ. Let p be the highest price in [α;q] that is in
the support. Since none of the points in (p;q] is in the support, Λ((p;q]) = 0, and
therefore there is probability 1 that no seller quotes a price in (p;q]. The previous
step gives:

Π(p) = pPr(X ([0; p])< b) = pPr(X ([0;q])< b)
< qPr(X ([0;q])< b) =Π(q) :

However, this contradicts (6).
As Proposition 2 shows, an equilibrium necessarily involves price dispersion:

all the prices between some fraction α of the buyers' reservation price and the
reservation price itself may occur. In addition, an equilibrium has no atoms, and
therefore a seller almost surely does not compete with others quoting the same
price. This implies, in particular, that a seller quoting price α almost surely sells.
Hence, the expected pro�t for such a seller is given by

Π(α) = α: (8)

This shows that the pro�t in equilibrium is equal to the minimum asking price. For
a seller asking a higher price p, the probability of selling is equal to the probability
that the number of other sellers asking prices that are not higher than p is less than
b. Hence, by (1),

Π(p) = p ϕb (FΛ (p)) ; (9)
where FΛ is the generalized distribution function of Λ and

ϕb (t) := e
�t
b�1
∑
n=0

tn

n!
(10)

is the probability that a Poisson random variable with parameter t is less than b,
which can also be written (Feller [11, Section VI.10]) as

ϕb (t) =
1

(b�1)!

∞Z
t

e�xxb�1dx: (11)

In particular, (9) gives
Π(1) = ϕb (λ ) : (12)

By Proposition 2, (8) and (12) are equal. Therefore, the equilibrium pro�t α is
explicitly given by

α = ϕb (λ ) : (13)
Using this result, the equilibrium can now be speci�ed.
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Theorem 3 A unique equilibrium Λ exists, which is given by the following gener-
alized distribution function:

FΛ (p) = ϕ
�1
b

�
α

p

�
(14)

for α � p � 1, and FΛ (p) = 0 or FΛ (p) = λ for p < α or p > 1, respectively
(with α given by (13)).

Proof. First, the uniqueness of the equilibrium is established. As shown above,
any equilibrium Λ is supported in [α;1], and hence satis�es FΛ (p) = 0 for p< α

and FΛ (p) = λ for p > 1. Consider any α � p � 1. Since, by Proposition 2, (9)
and (12) are equal, (13) gives

ϕb (FΛ (p)) =
α

p
: (15)

Since, for all t > 0,
dϕb
dt

=�e�t t
b�1

(b�1)! < 0; (16)

the function ϕb : [0;∞) ! (0;1] is one-to-one and onto, and hence invertible.
Therefore, (14) follows from (15).
It remains to prove that an equilibrium exists. De�ne the selling price function

by
p(s) =

α

ϕb (FM (s))
:

By (16) and (13), p(s) is a nondecreasing continuous function on the real line, and
tends to α as s tends to �∞ and to 1 as it tends to ∞. The price process X satis�es
(4) and therefore has the parameter measure Λ(�) :=M

�
p�1 (�)

�
. For every α <

q < 1, let s be the greatest solution of p(s) = q. Then, p�1 ((�∞;q]) = (�∞;s],
and therefore:

FΛ (q) = Λ((�∞;q]) =M
�
p�1 ((�∞;q])

�
(17)

=M ((�∞;s]) = FM (s)

= ϕ
�1
b

�
α

p(s)

�
= ϕ

�1
b

�
α

q

�
:

By (16) and (13), this shows that FΛ (q) is continuous, strictly increasing for α <
q < 1, and tends to 0 or λ as q tends to α or 1, respectively. It follows that (17)
also holds for q = α and q = 1, that the support of Λ is [α;1], and that Λ has no
atoms. The latter property implies that for every 0 � p � 1 the pro�t is given by
(9). By (17), this implies that, for every α � p � 1, Π(p) = p ϕb (FΛ (p)) = α .
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For 0� p< α , FΛ (p) = 0, and therefore, by (9), Π(p) = p ϕb (0) = p< α . This
proves that Λ is an equilibrium.
The next result speci�es the density of the price process. In particular, it shows

that, in equilibrium, prices closer to the minimum price α are more likely to occur.

Proposition 3 In the support of the equilibrium Λ, the density f = F 0Λ satis�es

f (p) =
1
p

 
1+

b�1
FΛ(p)

+
(b�1)(b�2)
(FΛ(p))2

+ � � �+ (b�1)!
(FΛ(p))b�1

!
: (18)

Hence, it decreases monotonically there.

Proof. Taking the derivatives of both sides of (15) and using (16) gives 
�e�FΛ(p) (FΛ(p))b�1

(b�1)!

!
f (p) = � α

p2
=�1

p
ϕb (FΛ (p))

= �1
p
e�FΛ(p)

b�1
∑
n=0

(FΛ (p))n

n!
;

which simpli�es to (18).

7 Comparative Statics
Equations (13) and (14) show that the equilibrium depends only on the number
of buyers b and the expected number of sellers λ . The �nite Poisson process S
selecting the actual sellers is irrelevant. The following proposition considers the
effect of these two parameters on the equilibrium pro�t.

Proposition 4 If λ increases or b decreases, the equilibrium pro�t α decreases.
If λ and b are equal (i.e., the market is balanced in expectation), then α < 1

2 , and
as they both increase concomitantly, α approaches 12 :

Proof. The �rst part follows immediately from (10) and (11). The second part
follows from a result of Ramanujan [25, 26], who showed that, for λ � 1,

ϕλ (λ ) =
λ�1
∑
n=0
e�λ λ

n

n!
=
1
2
�θ (λ )e�λ λ

λ

λ !
;

where 13 � θ (λ ) � 1
2 (see also Choi [7]). Since limλ!∞ e�λ λ

λ

λ ! = 0, this implies
that limλ!∞ ϕλ (λ ) =

1
2 :

11



The equilibrium pro�t α may be rather sensitive to changes in the expected
number of sellers. In other words, the elasticity η of α with respect to λ may be
rather high, even if the market is balanced in expectation. Indeed, by (13) and
(16),

η jλ=b =
λ

α

∂α

∂λ

����
λ=b

=�λ

α
e�λ λ

λ�1

(λ �1)!

= �
 
1
α
e�λ λ

λ+ 12

λ !

!
p

λ :

By Proposition 4 and Stirling's formula, the expression in parenthesis tends toq
2
π
as λ tends to in�nity. For example, if λ = b= 100, this approximation gives

an elasticity of about �8. Exact computation shows that increasing λ to 101
decreases the equilibrium pro�t α by 8:2%, from 0:4867 to 0:447.
The next result extends Proposition 4 by describing the effect of increasing

supply or decreasing demand on the whole equilibrium price distribution, rather
than the minimum price only.

Proposition 5 Let p be any �xed price between the minimum price in equilibrium
α and the buyers' reservation price 1. If λ increases or b decreases, the expected
number of sellers posting prices less than p increases.

Proof. In the equilibrium Λ, the expected number of sellers posting prices less
than p is FΛ (p). By (15) and (13),

ϕb (FΛ (p)) =
ϕb (λ )

p
:

By (11), this gives:

∞Z
FΛ(p)

e�xxb�1dx=
1
p

∞Z
λ

e�xxb�1dx:

Therefore, if λ increases, so does FΛ (p). Suppose that λ does not change. The
above equation, which can also be written as

λZ
FΛ(p)

e�xxb�1dx= (
1
p
�1)

∞Z
λ

e�xxb�1dx; (19)
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interpolates the dependency of FΛ (p) on b for all real b � 1. Taking the partial
derivatives with respect to b of both sides of (19) gives:

λZ
FΛ(p)

e�xxb�1 lnx dx� e�FΛ(p) (FΛ (p))b�1
∂

∂b
FΛ (p) (20)

= (
1
p
�1)

∞Z
λ

e�xxb�1 lnx dx:

The integral on the right-hand side of (20) is (strictly) greater than lnλ times the
integral on the right-hand side of (19). The integral on the left-hand side is less
than lnλ times the corresponding one in (19). Therefore, (19) and (20) imply that,
for �xed p,

∂

∂b
FΛ (p)< 0:

Thus, if b decreases, FΛ (p) increases.

7.1 Numerical Examples
In the simple case of a single buyer (b = 1), the expected pro�t (5) is α = e�λ .
By (14), this implies that the equilibrium Λ is given by FΛ (p) = λ + ln p, and the
density by

f (p) =
�
1=p e�λ � p� 1
0 otherwise : (21)

Note that where the density is positive it is independent of the expected number
of sellers λ .
With more than one buyer, a graphical presentation of the equilibrium is more

illuminating than an analytical one. Figure 1 shows the effect of varying the num-
ber of buyers b, with the expected number of sellers kept �xed at λ = 10. If the
market is balanced in expectation (b = 10), the minimum price in equilibrium
(which equals the sellers' expected pro�t) is α = 0:458 (which is less than 0:5,
in accordance with Proposition 4). In expectation, six sellers quote prices be-
tween α and 0:5, two others quote prices between 0:5 and 0:65, and the expected
number of sellers asking for more than 0:8 is less than one. Thus, the price distrib-
ution is heavily skewed towards the minimum price (see Proposition 3). However,
all higher prices not exceeding the buyers' reservation price of 1 also occur (see
Proposition 2). Reducing the number of buyers to eight decreases the minimum
price to α = 0:22 (see Proposition 4). Moreover, the entire price distribution shifts
to the left (see Proposition 5), with six sellers in expectation now quoting prices
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less than 0:3 and two others between 0:3 and 0:5. Increasing the number of buyers
to twelve has the opposite effect on the prices.

10.750.50.250

10

8

6

4

2

0

p

sellers

p

sellers

Figure 1: The effects of changes in the number of buyers b on the equilibrium price
distribution. The expected number of sellers is �xed at λ = 10. The generalized
distribution function of the equilibrium is shown for b= 10 (heavy curve), b= 8
(light curve), and b= 12 (dashed curve). Each function gives the expected number
of sellers quoting prices less than p in equilibrium.

8 Conclusion
This paper demonstrates how random-player games, and Poisson games in par-
ticular, can be used to model uncertain economic environments. In agreement
with the literature, it shows that price dispersion of a homogeneous product may
exist in a competitive market, if the environment, speci�cally the number of par-
ticipants, is uncertain. The main contribution of the present model is in providing
an alternative framework to study price dispersion. This framework is simple,
and the model has sharp predictions, which can be tested empirically. Thus, the
distribution of prices and the equilibrium pro�ts for various parameter values can
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be completely characterized. This makes it possible to analyze the sensitivity of
the price process, and the minimum price in particular, to changes in the market
structure.
The present framework can easily be adapted to model auctions, in which

price dispersion stems not from heterogeneity in information but from uncertainty
regarding the number of bidders. Unlike much of the existing literature on un-
certain number of bidders (Matthews [15], McAfee and McMillan [16], Harstad,
Kagal and Levin [12], Levin and Ozdenoren [14]), which assumes an indepen-
dent private-value-single-object model, this model would assume a pure common-
value multi-object model without informational asymmetries, i.e., all the parties
involved know the value of the objects being auctioned. The only uncertainty in-
volves the number of bidders. The model can also be adapted to allow for private
values and other differences among bidders. This only requires a richer type space
from which bidders are selected. Standard questions relating to auction design and
the advantages of alternative designs can be studied in such a way.
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