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Abstract 

In a correlated equilibrium, the players’ choice of actions is directed by correlated random 

messages received from an outside source, or mechanism. These messages allow for more 

equilibrium outcomes than without any messages (pure-strategy equilibrium) or with 

statistically independent ones (mixed-strategy equilibrium). In an incomplete information game, 

the messages may also reflect the types of the players, either because they are affected by 

extraneous factors that also affect the types (correlated equilibrium) or because the players 

themselves report their types to the mechanism (communication equilibrium). Mechanisms may 

be further differentiated by the connections between the messages that the players receive and 

their own and the other players’ types, by whether the messages are statistically dependent or 

independent, and by whether they are random or deterministic. Consequently, whereas for 

complete information games there are only three classes of equilibrium outcomes, with 

incomplete information the corresponding number is 14 or 15 for correlated equilibria and even 

larger – 15, 16 or 17 – for communication equilibria. For both solution concepts, the implication 

relations between the different kinds of equilibria form a two-dimensional lattice, which is 

considerably more intricate than the single-dimensional one of the complete information case. 

JEL Classification: C72. 
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1 Introduction 
In complete information games, pure-strategy equilibria represent only a subset of the 

outcomes achievable by mixed-strategy equilibria, which in turn allow for fewer equilibrium 

outcomes than correlated equilibria. This is so whether ‘outcome’ is interpreted as referring to 

the distribution of the players’ action profile or to their expected payoffs. Implementing the 

three solution concepts requires different, increasingly more general, mechanisms. Pure-

strategy equilibria can do without any mechanism at all, but mixed-strategy equilibria require 

independent randomizations and correlated equilibria require centralized randomization. A 

similar connection between the allowed kinds of mechanisms and the implementable outcomes 

holds for incomplete information, or Bayesian, games, but it is considerably more complex than 

in the complete information case. This is because the set of equilibrium outcomes 

implementable by a mechanism may depend on the manner and the extent to which its output 

reflects the players’ types. It may matter, for example, whether the messages that the players 

receive from the mechanism provide them with information about the other players’ types, and 

whether they depend on the receiver’s own type. The former may affect the mechanism’s ability 

to implement type-dependent coordinated actions, and the latter reflects its ability to transmit 

information selectively, that is, to certain types of players only.  

Dependence of the message received by a player on his own type does not logically require a 

type-aware mechanism. Type-dependent perceptual abilities may suffice. For example, the 

information about the value of an auctioned asset that a firm is able to extract from publicly 

presented data may depend on its level of experience or financial resources. By contrast, the 

received message may provide information about the other players’ types only if the mechanism 

“knows” something about them. This may be so if the message is affected by factors that also 

mailto:igal.milchtaich@biu.ac.il
https://sites.google.com/view/milchtaich/
https://doi.org/10.1007/s00182-013-0381-y


2 

affect the types. For example, firms entering an auction may factor in certain macroeconomic 

indicators when deciding on their bids, because, among other things, the state of the economy 

as a whole may bear on their competitors’ situation. Similarly, the asking price of a farmer, 

hunter or trawler dealing with a wholesaler may be influenced by the recent weather or sea 

condition, because the latter is correlated with the market supply.  

An alternative, straightforward way to construct a type-aware mechanism is through self-

reporting of types. The reporting may be explicit or implicit. The former may hold, for example, 

for a mechanism that takes the form of an impartial mediator, and the latter holds for direct 

exchange of messages between players.  

The two different kinds of type-aware mechanism correspond to two distinct solution concepts 

for incomplete information games: correlated equilibrium and communication equilibrium. The 

former employs one-way communication only – messages from the mechanism to the players – 

whereas the latter also involves (explicit or implicit) type reports from the players. In both cases, 

the messages that the mechanism sends to the players are not necessarily concrete action 

recommendations. The translation into actions is described by the players’ strategies, which, for 

each player type, associate an action with each possible message. In a correlated equilibrium, 

taking the associated action is required to be incentive compatible. Communication equilibrium 

adds the requirement that truthful type reports are incentive compatible: players never have an 

incentive to misrepresent their types.  

Correlated and communication equilibria, as defined here, share a single notion of correlated 

strategy, which is a pair consisting of a mechanism and a strategy profile. Where they differ is in 

the interpretation of the type profile on which the mechanism’s messages are based: true vs. 

reported types.1 Other solutions concepts, such as Bayesian equilibrium, may be viewed as 

special cases, obtained by limiting in one or more ways the mechanism’s capabilities. Depending 

on the context, the potency of these limitations may stem from their influence on the 

mechanisms’ ability to orchestrate certain joint actions, to make the actions incentive 

compatible, or to elicit truthful type reports. The main objective of this paper is to present a 

taxonomy of correlated and communication equilibrium outcomes that is based on the 

properties of the mechanisms capable of implementing them. The questions this goal raises are 

quite different – both in substance and in the relevant techniques – from those arising in the 

context of complete information games. They have some formal similarity, which is reflected in 

the similar terminology, to the question of implementability of social choice functions studied in 

mechanism design theory. However, the subject matter here is not a special case of the latter 

(see also Kar et al., 2010).  

The “plan of attack” of the present work is to separate the question of the implementability of 

correlated and communication equilibrium outcomes into three interrelated questions. The first 

question is the implementability of correlated strategy distributions, where only the joint 

distribution of the players’ types and actions matters and payoffs are irrelevant. The second 

question, which does take payoffs and incentive compatibility into account, is the 

implementability of correlated and communication equilibrium distributions. The third, and 

arguably most important, question is the implementability of payoff vectors. The players’ 

(expected) payoffs are uniquely determined by the joint distribution of types and actions but not 

conversely. The advantages of this three-part approach, when compared with directly 

addressing the third problem, are that it makes certain issues significantly more manageable 

and provides insights about the roots of non-implementability where the latter occurs.  

The framework laid out in this paper accommodates the majority of the previously described 

varieties of correlated strategies, correlated equilibria and communication equilibria in 

incomplete information games, and adds a good number of new ones. Different kinds of 

equilibria may be related in that one is a special case of another. As this paper shows, these 

 
1 The two solution concepts may be viewed as special cases of a third, more general, one, where both the 
true and the reported types may affect the messages that the players receive from the mechanism. See 
Section 8.3. 
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relations form a rich and intricate structure, and they are not always obvious or perfectly 

intuitive. This is quite different from the complete information case, where the three kinds of 

equilibria are simply linearly ordered.   

The next section illustrates the various issues involved in this work by means of examples. 

Section 3 describes the connections with the existing literature on incomplete information 

games. Section 4 lays out the formal framework. The three subsequent sections present results, 

primarily in the form of three Hasse diagrams that show the relations between the different 

kinds of correlated strategy outcomes (Section 5), correlated equilibrium outcomes (Section 6) 

and communication equilibrium outcomes (Section 7). Section 8 synthesizes and extends these 

results, and in particular uses them as the basis for the classification of the possible outcomes 

according to the properties of the implementing mechanisms. The paper’s four appendices 

include the majority of the proofs and several additional examples.  

2 Illustrative Examples 
The following four examples illustrate some of the questions studied in this paper and the 

framework used for tackling them. In addition, each example points to a specific non-obvious 

way in which the properties of a mechanism affect the correlated strategies, correlated 

equilibria or communication equilibria implementable by it.  

Example 1   

Consider the following simple 2 × 2 Bayesian game (Milchtaich, 2004, Example 6). The two 

players have identical two-element action spaces, 𝐴1 = 𝐴2 = {𝐿, 𝑅}, and identical two-element 

type spaces, 𝑇1 = 𝑇2 = {+1,−1}. The four type profiles are equally probable, so that types are 

independent. (Independence is not a crucial assumption. It would suffice to assume that all type 

profiles have positive probability.) A correlated strategy distribution is defined as follows: (i) If 

both players have type +1, the action profile is either (𝐿, 𝐿) or (𝑅, 𝑅), each with probability 0.5, 

and (ii) if the type profile is any of the other three, the action profile is either (𝐿, 𝑅) or (𝑅, 𝐿), 

each with probability 0.5. 

Since in the above distribution the players’ actions are correlated but their types are not, 

implementation requires an extraneous correlation mechanism. For example, the players may 

use as cues for their choice of actions certain signals, or messages, that they receive from the 

same outside source or different sources. The message that each player receives may 

conceivably depend on his type (e.g., because of type-specific perceptual abilities; see the 

Introduction), but it may be affected by the other player’s type only if the sending source is 

somehow aware of the latter. It may seem doubtful that such effect is necessary. This is because 

the above distribution has the so-called conditional independence property (see Section 5.1): 

the action of a player of a given type is statistically independent of the other player’s type. 

Indeed, the probability that the action is 𝐿 or 𝑅 is always 0.5, regardless of both players’ types. It 

turns out, however, that even though each player’s action does not reflect the other player’s 

type, the latter must have an effect on the cue used for selecting the action. The distribution 

specified above cannot be implemented by any mechanism where a player’s type has no effect 

whatsoever on the message received by the other player. (In other words, this is not a type 

correlated distribution; see Section 4.3.) 

The last assertion can be proved as follows. Consider any mechanism that sends to the players 

messages that are affected only by their own types. These messages may be random, and so are 

described by four, possibly statistically dependent, random variables 𝒎1
+, 𝒎1

−, 𝒎2
+ and 𝒎2

−, 

where the subscript identifies the player and the superscript identifies his type. Each possible 

realization (𝑚1
+,𝑚1

−,𝑚2
+,𝑚2

−) of these random variables determines a quartet of actions 

(𝑎1
+, 𝑎1

−, 𝑎2
+, 𝑎2

−) according to the players’ strategies, which specify the way each player uses the 

message he receives as a cue for choosing his action. (For example, 𝑎1
+ is the action that the 

message 𝑚1
+ prompts player 1 to choose when his type is +1.) For the quartet to be consistent 

with the specified distributions, it must satisfy 𝑎1
+ = 𝑎2

+, 𝑎1
+ ≠ 𝑎2

−, 𝑎1
− ≠ 𝑎2

+ and 𝑎1
− ≠ 𝑎2

−. 

However, since there are only two possible actions, the equality and the three inequalities are 

contradictory. The contradiction proves the above assertion.  
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A simple mechanism capable of implementing the above distribution is one that, for each type 

profile, simply randomizes between the two possible action profiles and tells each player his 

action. The mechanism must be aware of the players’ types, since they determine the allowed 

action pairs. Nevertheless, as indicated, no information about the types is revealed by the action 

of any single player, even if his own type his known. 

Example 2   

The message that a mechanism sends to a player may reflect not only the other players’ types 

but also the player’s own type. The latter is an expression of the selectivity of the message, in 

particular, differences between player types in the information they get about the other players. 

As the following example demonstrates, selectivity may be necessary for making certain choices 

of actions incentive compatible.  

Consider a symmetric 2 × 2 Bayesian game with the same game structure and distribution of 

type profiles as in Example 1, and where the two players always get equal payoffs, which for a 

type profile (𝑡1, 𝑡2) are given by the payoff matrix 

 𝐿       𝑅
𝐿
𝑅

(
−𝑡1𝑡2 0

0 2𝑡1𝑡2
) . 

Thus, depending on the type profile, 𝐿 or 𝑅 is a dominant action for both players. A mechanism 

sends to each player a message, which is a type profile. For type +1 of player 1 and for both 

types of player 2, the type profile is the real one (𝑡1, 𝑡2). For type −1 of player 1, the message is 

always (−1,−1). This mechanism and the pair of strategies that simply instruct each player to 

choose the dominant action for the type profile that is specified by the message he receives 

together constitute a correlated equilibrium, which has the following distribution: if the type 

profile is (+1,+1), (+1,−1), (−1,+1) or (−1,−1) (each possibility has probability 1/4), the 

action profile is (𝑅, 𝑅), (𝐿, 𝐿), (𝑅, 𝐿) or (𝑅, 𝑅), respectively. The expected payoffs of type +1 of 

player 1 and types +1 and −1 of player 2 are 3/2, 1 and 3/2, respectively, and these playoffs 

are clearly the highest these player types could achieve by choosing any actions. The same is 

true for type −1 of player 1, whose expected payoff would decrease from 1 to 1/2 if he 

switched from his (constant) action 𝑅 to 𝐿.  

The mechanism described above sends information about player 2 only to type +1 of player 1. 

Such a differential treatment of 1’s types is necessary. The above correlated equilibrium 

distribution is not implementable by any mechanism where for each type of player 2 the 

message that player 1 receives is statistically independent of his own type. To see this, suppose 

that such a mechanism exists, and let 𝑚1
+ and 𝑚1

− be some specific messages that player 1 

receives with positive probability (which is the same for both types of that player) when player 

2’s type is +1 and −1, respectively. The two messages cannot be identical, for otherwise type 

+1 of player 1 would not always be able to tell 2’s type, which is inconsistent with the fact that 

(according to the above distribution) with probability 1 he plays 𝑅 if the type is +1 and 𝐿 if it is 

−1. Therefore, every such 𝑚2
+ and 𝑚2

− must be distinct, which entails that player 1 can always 

tell by his message the type, and hence the action, of player 2. However, this is inconsistent with 

incentive compatibility, since it implies that, by always choosing the same action as player 2, 

type −1 of player 1 could increase his payoff from 1 to 3/2. This contradiction proves that a 

mechanism that implements the above correlated equilibrium distribution cannot have the 

property that (if the type of player 2 is known) the message to player 1 never reveals any 

information about his own type. 

Example 3   

A non-obvious, yet important distinction exists between the requirement that the message to a 

particular player does not reveal any information about the type of that player (as in the case 

considered in the last paragraph) or about another player’s type and the stronger requirement 

that the message is not affected by that type (which is the property considered in Example 1). 

The significance of this distinction is illustrated by the following example (see also Section 4.2).  
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 Player 2 
   Type +𝟏   Type −𝟏  

Player 1 

  𝐿 𝑅   𝐿 𝑅  

Type +𝟏 
𝐿 0.75 0 0.75 𝐿 0.25 0.25 0.5 
𝑅 0 0.25 0.25 𝑅 0.5 0 0.5 

  0.75 0.25   0.75 0.25  
  𝐿 𝑅   𝐿 𝑅  

Type −𝟏 
𝐿 0.25 0.5 0.75 𝐿 0 0. 5 0.5 
𝑅 0.25 0 0.25 𝑅 0.5 0 0.5 

  0.5 0.5   0.5 0.5  

Table 1. A correlated equilibrium distribution for Example 3. The four type profiles are equally probable. For each 
of them, the joint distribution of the players’ actions (each of which can be 𝑳 or 𝑹), as well as the marginal 
distributions, are shown.  

The game is the same as in Example 2. A correlated equilibrium distribution in this game is given 

by Table 1, which specifies the (conditional) distribution of the players’ action profile for each 

type profile. The marginal distributions, i.e., the probability that a player of a given type plays 𝐿 

or 𝑅, depend only on the opponent’s type. Specifically, if the latter is +1 or −1, 𝐿 has 

probability 0.75 or 0.5, respectively. Therefore, a mechanism that randomly chooses an action 

profile (𝑎1, 𝑎2) according to the probabilities that the table specifies for the players’ actual type 

profile, and reports 𝑎1 to player 1 and 𝑎2 to player 2, has the property that the message to a 

player reveals no information about his own type. This mechanism and the strategies of acting 

according to the messages it sends together constitute a correlated equilibrium, as it is not 

difficult to check that a player can never increase his expected payoff by deviating to the other 

action. It is also true, but less easy to check, that the correlated equilibrium distribution in Table 

1 is not implementable by any mechanism with the stronger property that the message sent to 

each player is unaffected by the player’s type. In fact, it takes a computer to check this. Although 

the problem is a standard linear programming one – it needs to be checked that a particular 

system of linear equalities and inequalities does not have a solution – the number of variables 

and equalities/inequalities involved (at least 256 and 20, respectively) is far too great for manual 

calculations. 

Some intuition about why a mechanism as above cannot implement the correlated equilibrium 

distribution in Table 1 can be gained by considering two conceivable mechanisms where a 

player’s type does not affect the message he receives. The first mechanism randomly selects 

four actions, 𝑎1
+, 𝑎1

−, 𝑎2
+ and 𝑎2

−, according to some suitable joint distribution, and then, 

depending on whether the type of player 𝑖 (= 1,2) is +1 or −1, instructs the other player 𝑗 to 

take the action 𝑎𝑗
+ and 𝑎𝑗

−, respectively. However, such a mechanism cannot yield the 

distribution in Table 1. The reason is similar to that in Example 1, and in particular, it does not 

involve incentives (i.e., payoffs).  

The second conceivable implementing mechanism for the distribution in Table 1 sends as a 

message to each player not a single action but a pure strategy, which is a specification of action 

for each of the player’s types. It leaves it to the player to choose the action corresponding to his 

actual type. Specifically, the mechanism first chooses action profiles according to the 

probabilities specified by Table 1, independently for each of the four type profiles. Then, based 

on the players’ actual type profile (𝑡1, 𝑡2), it tells player 1 both his action for the type profile 

(+1, 𝑡2) and his action for (−1, 𝑡2), and similarly for player 2 (so that each player’s own type 

does not affect the message he receives). If the players use the messages in the intended 

manner, that is, they take the first or second action if their type is +1 or −1, respectively, then 

the action distributions for the four type profiles are indeed as in Table 1. However, this is not a 

correlated equilibrium. The reason is that the double message conveys too much information 

about the other player’s type. By assumption, the prior probability that player 2 has type +1 is 

0.5. By Bayes’ rule, the posterior probability that 2 has that type given that player 1 plays 𝐿 is 

(0.75/(0.75 + 0.5) =) 0.6. Thus, telling player 1 which action he should take gives him some 

information about 2’s type, but not too much information, in the sense that taking the action is 

still optimal for him. A double message as above amounts to two independent draws from the 

same unknown distribution, which provide more information about the underlying distribution 

than a single draw. For example, telling player 1 that he should play 𝐿 whether his type is +1 or 
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−1 increases the (posterior) probability that 2’s type is +1 to almost 0.7. This probability is 

greater than 2/3, which means that, regardless of the actions that the two types of play 2 take, 

𝐿 is not the optimal action for type +1 of player 1. Thus, a player may deduce from the 

additional information conveyed by the double message he receives that his expected payoff 

from taking the action he is supposed to take is actually less than for the alternative action.   

Example 4   

The following example, which is taken from Gerardi (2004, Example 2), illustrates the difference 

between implementability of correlated equilibrium distribution and of communication 

equilibrium distribution. By definition, in a communication equilibrium, the players report their 

types to the mechanism and truth telling is incentive compatible. The example shows that to 

satisfy this requirement, any implementing mechanism must use randomization. Thus, 

randomization has a different role than in Examples 1 and 3, where it is required simply because 

for some type profiles the player’s actions are not unique. Here (as in Example 2), a single action 

profile is assigned to each type profile. However, without randomization, incentive compatibility 

cannot be upheld. 

In a three-player Bayesian game, player 1 has two types, 𝑡1
′  and 𝑡1

″, player 2 has two types, 𝑡2
′  

and 𝑡2
″, and player 3 has a single type. Types 𝑡1

″ and 𝑡2
″ cannot occur together, but the other 

three type profiles are all possible and equally probable. Players 1 and 2 have a single action, 

and player 3 has four actions, 𝑎3
1, 𝑎3

2, 𝑎3
3 and 𝑎3

4. The four payoff vectors corresponding to these 

actions, for each type profile, are given by the following table: 

 𝑡2
′                                                               𝑡2

″

𝑡1
′

𝑡1
″

(−1,−1,1), (1,1,0), (0,0, −1), (0,0, −1) (1,0,0), (1,1,1), (−3,0,1), (1,0, −1)
(0,1,0), (1,1,1), (0,1, −1), (0, −3,1) N/A

  

According to the table, for each of the three possible type profiles, player 3 receives his 

maximum payoff of 1 only by choosing one or two particular actions, and the former holds only 

for (𝑡1
′ , 𝑡2

′ ) (for which the unique optimal action is 𝑎3
1). Thus, there are four different ways to 

choose optimal actions for each type profile. Each such choice of actions specifies a correlated 

strategy distribution, which is implementable by a mechanism that simply tells player 3 the 

types of the other players. However, it can be shown that only one of these four is also a 

communication equilibrium distribution, namely, the one in which player 3 chooses action 𝑎3
2 if 

the other players’ types are either (𝑡1
′ , 𝑡2

″) or (𝑡1
″, 𝑡2

′ ). In addition, in any communication 

equilibrium, player 3 randomizes exactly fifty-fifty between 𝑎3
3 and 𝑎3

4 if the impossible type 

combination (𝑡1
″, 𝑡2

″) is reported, for otherwise truthful type reports would not be incentive 

compatible for player 1 or 2. It follows that any mechanism that implements the above 

communication equilibrium distribution necessarily involves randomization.  

3 Related Literature 
As Aumann (1987) showed, a correlated equilibrium may be viewed as an expression of 

Bayesian rationality. A rational player’s choice of action is optimal given his knowledge of the 

state of the world. The latter includes a specification of the knowledge of the other players as 

well as their actions, which must also be optimal. Aumann’s paper is concerned only with 

complete information games; types of players and type-dependent payoffs are not part of the 

setting. However, since the state-space formulation is a standard model for Bayesian games, the 

paper indicated the logical next step, which was to merge the two settings by allowing the states 

of the world to determine not only the players’ types but also any additional information that 

they possess and may use for choosing their actions. Crucially, that additional information is not 

specified by the game – it is part of the solution concept. Herein lies the major difference 

between correlated equilibrium and the narrower concept of Bayesian equilibrium. In the latter, 

players have to do with the information that they receive within the game, and possibly private 

coin tosses. 



7 

Two models of the kind outlined above were proposed by Cotter (1991, 1994). They differ from 

one another in the restrictions they put on the players’ additional information. In a strategy 

correlated equilibrium (Cotter, 1991), the additional information takes the form of random 

messages that the players receive from an outside correlation mechanism, which is ignorant of 

their types. A correlated strategy with such a mechanism is a prescription of a (pure or 

randomized) action for each type of each player, which depends on the message he receives. 

The equilibrium condition is that taking the prescribed action is incentive compatible in that no 

player can increase his expected payoff by taking a different action. A type correlated 

equilibrium (Cotter, 1994; see also Samuelson and Zhang, 1989) can be described as a strategy 

correlated equilibrium in a version of the game in which each type of each player is an 

independent agent, so that the message a player receives may depend on his type. However, as 

in a strategy correlated equilibrium, the message is unaffected by the other players’ types. 

Consequently, the player’s action is necessarily conditionally independent of the other players’ 

types, given the player’s own type. Cotter asserted that this conditional independence property 

is characteristic of type correlated equilibria, in that any correlated equilibrium distribution that 

has it can be implemented by a mechanism as above. However, Example 1 shows that this 

assertion is incorrect (see also Section 5.1).  

A different extension of correlated equilibrium to games with incomplete information is 

communication (or mediated) equilibrium (Myerson, 1994). This solution concept is 

characterized by bidirectional communication. The players first send private messages to, and 

then receive such messages from, a particular mechanism, which thus serves as a mediator as 

well as a correlation device. According to the revelation principle (see Myerson, 1994), without 

loss of generality the messages sent by the players to the mediator may be assumed type 

reports. The message that each player gets from the mediator indicates a particular action for 

that player. The mechanism is required to be incentive compatible in that it is in each player’s 

best interest to report his type honestly and take the indicated action if all the others do the 

same.  

A comprehensive account of correlated and communication equilibria in games with incomplete 

information is Forges’ (1993) paper, which compares strategy correlated equilibrium, type (or 

agent normal form) correlated equilibrium, communication equilibrium, and ‘Bayesian solution’. 

(A fifth solution concept considered in the paper concerns hierarchies of beliefs.) Bayesian 

solution is a very general solution concept, which fully realizes the extension of Aumann’s notion 

of Bayesian rationality to incomplete information games. It includes strategy and type correlated 

equilibria as special cases. A Bayesian solution extends a given incomplete information game by 

introducing a state space where several states may correspond to a single type profile. This 

allows players to have partial or complete information about the other players’ types as well as 

about outside events. As in Aumann’s (1987) model, the information structure is complemented 

by a mapping from states to action profiles that is required to satisfy the obvious incentive 

compatibility condition. A Bayesian solution may be implemented by an omniscient mediator, 

who knows the players’ types. Thus, unlike in a communication equilibrium, only one-way 

communication is required.2  

As indicated, the messages that the players receive from the mediator are part of the solution 

concept and are thus distinct from any signals they receive as part of the game itself, which are 

completely specified by their types. However, the potential impact of the former (the mediator’s 

messages) may depend on the degree of dependence among the latter (the players’ types). For 

example, with perfectly correlated types, the players effectively already know each other’s type 

when they receive the mediator’s messages, which can therefore only help them to coordinate 

their actions. Conversely, if the types are independent, the mediator’s messages may also 

inform players about the other players’ types. However, this may be so only if the solution 

concept allows the messages to depend on the other players’ types. Therefore, depending on 

 
2 As noted by Bergemann and Morris (2011), Forges’ formal definition of Bayesian solution is in fact not as 
general as it could be, in that the mediator knows only the players’ types, and not any other payoff-
relevant information that is not extractable from the type profile. They call the generalization that allows 
the mediator to possess and use such information Bayes correlated equilibrium. 
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the solution concept, garbling, or randomly perturbing, in a particular way the signals that the 

players receive as part of the game may or may not change the set of equilibrium outcomes.3 

Lehrer et al. (2006) identified the kinds of garbling that do not affect the equilibrium outcomes 

for three kinds of correlated equilibrium in two-player Bayesian games: mixed-strategy 

equilibrium, type correlated equilibrium, and a special kind of Bayesian solution (called belief 

invariant Bayesian solution by Forges, 2006), which satisfies a condition similar to the 

conditional independence property. They showed, for example, that garbing has no effect on 

mixed-strategy equilibria (regardless of the payoff functions) if and only if it is performed 

independently for each player, that is, without taking into account the other player’s signal.   

Identification of information types (Milchtaich, 2004) is a special kind of garbling. It removes 

distinctions between player types that are interchangeable in terms of their effect on the 

player’s own payoff and on those of the others and differ, say, only in what the player knows 

about the other players’ types. Identification of information types may transform one kind of 

equilibrium into another. For example, a pure-strategy equilibrium (with different actions for 

different information types) may become a mixed-strategy equilibrium (with several possible 

actions for the single type that results from the identification). Therefore, the collection of pure-

strategy equilibria is not closed under identification of information types. The same is true for 

certain more general solution concepts. For example, this is so for type correlated equilibrium, 

since when information types are identified, the conditional independence property may cease 

to hold (Milchtaich, 2004, Examples 7). In fact (see Milchtaich, 2004, Propositions 4 and 5), the 

narrowest extension of pure-strategy equilibrium that is closed under identification of 

information types is the notion of correlated equilibrium used in the present work, which is 

similar to Forges’ (1993, 2006) Bayesian solution, or global equilibrium in the terminology of 

Lehrer et al. (2006). Thus, in this respect at least, this solution concept is not excessively broad.  

4 Preliminaries 

4.1 Bayesian games 
An 𝑛-player (finite) pre-Bayesian game is a function 𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑛): 𝑇 × 𝐴 → ℝ𝑛, where 

𝑇 = 𝑇1 × 𝑇2 × ⋯× 𝑇𝑛 and 𝐴 = 𝐴1 × 𝐴2 × ⋯× 𝐴𝑛 are each the Cartesian product of 𝑛 finite 

sets and ℝ is the real line. 𝑁 = {1,2,… , 𝑛} is the set of players. For each player 𝑖, the sets 𝑇𝑖 and 

𝐴𝑖  and the function 𝑢𝑖 are respectively the type space, action space and payoff function of 

player 𝑖. For each type profile 𝑡 = (𝑡1, 𝑡2, … , 𝑡𝑛) ∈ 𝑇 and action profile 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑛) ∈ 𝐴, 

𝑢(𝑡, 𝑎) is the resulting 𝑛-tuple of payoffs.  

One interpretation of player types is that they represent signals that players receive about the 

“state of nature” (Osborne and Rubinstein, 1994). The latter may conceivably have a direct 

effect on the players’ payoffs, which is apparently not the case in the above “reduced” 

formulation, where the payoffs are completely determined by the type and action profiles. 

However, the general case can be formulated simply by adding nature as a (dummy) player, 

whose type space consists of all states of nature. A state may represent complete resolution of 

all uncertainty in the game, and in particular determine the (real) players’ types. Alternatively, a 

state may represent only certain “hidden variables” that affect the players’ payoffs but cannot 

be extracted from the type profile. Nature does not take action, and so the corresponding action 

space is necessarily a singleton and the payoff function is irrelevant.  

A pure strategy for a player 𝑖 is a function from the player’s type space to his action space, i.e., 

an element of 𝐴𝑖
𝑇𝑖. Using some fixed indexing of the (finite) type space, 𝑇𝑖 = {𝑡𝑖

1, 𝑡𝑖
2, … }, any 

pure-strategy can be written as (𝑎𝑖
1, 𝑎𝑖

2, … ), where, for each 𝑗, 𝑎𝑖
𝑗
 is the action of the 𝑗th type of 

player 𝑖. A pure-strategy profile is an assignment of a pure strategy to each player, i.e., an 

element of 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯× 𝐴𝑛
𝑇𝑛. It can be written as (𝑎1

1, 𝑎1
2, … ; 𝑎2

1, 𝑎2
2, … ;… ; 𝑎𝑛

1 , 𝑎𝑛
2 , …).  

 
3 This assumes that the players’ types only represent information and do not have a direct effect on 
payoffs.  
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A pre-Bayesian game becomes a (finite) Bayesian game when it is coupled with a specified 

probability measure on 𝑇, the players’ common prior 𝜂𝑇. The collection of all type profiles to 

which the common prior assigns positive probability, i.e., its support supp(𝜂𝑇), may be a proper 

subset of 𝑇. However, it is assumed (essentially without loss of generality) that every type 𝑡𝑖 of 

every player 𝑖 is supported, in the sense that (𝑡𝑖, 𝑡−𝑖) ∈ supp(𝜂𝑇) for some partial type profile 

𝑡−𝑖 = (𝑡1, … , 𝑡𝑖−1, 𝑡𝑖+1, … , 𝑡𝑛). It is useful to view the common prior as the distribution of some 

random variable with values in 𝑇,4 the random type profile 𝒕 = (𝒕1, 𝒕2, … , 𝒕𝑛).5 Thus, 

𝜂𝑇({𝑡}) = Pr(𝒕 = 𝑡), 𝑡 ∈ 𝑇. 

For each player 𝑖, the conditional distribution of 𝒕, given 𝒕𝑖, may be interpreted as the player’s 

posterior beliefs about the type profile after he learns his own type.  

4.2 Mechanisms 
A mechanism for an 𝑛-player Bayesian game is an extraneous source of messages6, which the 

players receive before they choose their actions. The message 𝑚𝑖 that each player 𝑖 receives is 

an element of some finite set 𝑀𝑖, the player’s (received) message space. It may reflect to a 

lesser or greater extent the players’ type profile. As indicated, one of these players may be 

nature, and in this case, the messages may provide the real players with payoff-relevant 

information that would not otherwise be available to them even through information pooling. 

Formally, a mechanism is a random variable 𝒎 that is (statistically) independent of the random 

type profile 𝒕, with values that are functions from 𝑇 to the product set 𝑀 = 𝑀1 × 𝑀2 × ⋯× 𝑀𝑛. 

Evaluation at (in other words, projection on) any type profile 𝑡 ∈ 𝑇 gives the corresponding 

random message profile 𝒎(𝑡) = (𝒎1(𝑡),𝒎2(𝑡), … , 𝒎𝑛(𝑡)), which describes the messages 

that the players receive when their types are 𝑡. Since the type profile is itself random, the actual 

messages are given by the random variable 𝒎(𝒕), whose value is the message profile obtained 

by evaluating the function returned by 𝒎 at the type profile returned by 𝒕. Note that the 

assumption that 𝒎 and 𝒕 are (statistically) independent, which expresses the extraneous nature 

of the messages (see Section 4.2.1 for further discussion of this point), does not contradict the 

assertion that the latter may reflect the type profile. To take an extreme example, if the 

mechanism is an outside observer who is capable of finding out the players’ types, his message 

to each player 𝑖 may fully convey that information:  

𝒎𝑖(𝑡) = 𝑡, 𝑡 ∈ 𝑇. 

In this example, independence holds simply because the mechanism does not perform any 

randomization, and thus serves purely as a source of information about the other players’ types. 

Other mechanisms may partially or exclusively serve as randomization devices, and convey little 

or no information about the types. A finer, more exact classification of mechanisms is facilitated 

by the following list of possible properties, which are referred to in this paper as the 

fundamental properties of mechanisms. Each property is expressed by a condition that the 

message that each player 𝑖 receives from the mechanism is required to satisfy for every pair of 

type profiles 𝑡 = (𝑡𝑖 , 𝑡−𝑖) and 𝑡′ = (𝑡𝑖
′, 𝑡−𝑖

′ ).  

(𝑆) The message is unaffected by the receiving player’s type:  

𝒎𝑖(𝑡) = 𝒎𝑖(𝑡𝑖
′, 𝑡−𝑖). 

 
4 A random variable, in this work, is any function from a finite probability space where each point has 
positive probability to a finite set. Enumerating the range would in principle enable viewing the random 
variable as real- or integer-valued, but doing so has little practical value. Random variables are denoted by 
boldface letters and, following common practice, their arguments are always suppressed.  
5 One way to obtain a random type profile is by restricting the common prior to its support and defining 𝒕 

as the identity map on supp(𝜂𝑇). However, since only the distribution of the random type profile is 
specified, there is actually more than one version of it. Any reference to the random type profile is taken 
to mean that differences between versions are irrelevant, which entails that the reference is ultimately to 
the common prior itself.  
6 The term ‘messages’, rather than ‘signals’, is used here to emphasize the assumption that the sending 
mechanism is part of a solution concept rather than the game. As indicated, ‘signals’ in an incomplete 
information game are often synonymous with the players’ types, which are part of the game.  

(1) 
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(𝑆̃) The message provides no information about the receiving player’s type: 

𝒎𝑖(𝑡) =
𝑑

𝒎𝑖(𝑡𝑖
′, 𝑡−𝑖).

7 

(𝑂) The message is unaffected by the other players’ types:  

𝒎𝑖(𝑡) = 𝒎𝑖(𝑡𝑖, 𝑡−𝑖
′ ). 

(𝑂̃) The message provides no information about the other players’ types: 

𝒎𝑖(𝑡) =
𝑑

𝒎𝑖(𝑡𝑖, 𝑡−𝑖
′ ). 

(𝐷) The message is non-random:  

𝒎𝑖(𝑡) has a degenerate distribution.8 

(𝐼) The message is (statistically) independent of the messages that the other players 

receive:  

𝒎1(𝑡),𝒎2(𝑡),… ,𝒎𝑛(𝑡) are independent. 

The equality between random variables required by properties 𝑆 and 𝑂 means equality with 

probability 1 (equivalently, pointwise equality). Conditions 𝑆̃ and 𝑂̃, by contrast, only require 

equality between the distributions of two random variables, for specified type profiles. Since the 

players’ types are actually random, the latter translates into equality between conditional 

distributions. Specifically, 𝑆̃ entails that the message that player 𝑖 receives is conditionally 

independent of his type 𝒕𝑖, given the other players’ types 𝒕−𝑖. In property 𝑂̃, 𝒕𝑖 and 𝒕−𝑖 are 

interchanged.  

As this work shows, the distinction between equality with probability 1 and equality in 

distribution has significant implications for correlated strategies and equilibria.9 Nevertheless, it 

does not seem to have received sufficient attention in the existing literature on games with 

incomplete information. Indeed, properties 𝑆 and 𝑂 cannot even be stated using the formalism 

employed, e.g., by Myerson (1994). That formalism specifies the distribution of the random 

message profile separately for each type profile, and thus provides no language for describing 

connections between the messages corresponding to different type profiles.  

The list of properties of mechanisms is potentially extendable beyond the fundamental 

properties. Two conceivable additions are the “duals” of 𝑂 and 𝑂̃, which assert that the type of 

a player does not affect the other players’ messages or (at least) is not reflected in their joint 

distribution. These additions may be particularly meaningful if the player in question is nature 

(see Section 4.1). They mean, in this case, that even if the real players pooled their information, 

their messages would not tell them anything about the state of nature beyond what they can 

learn already from their types. 

4.2.1 Independence lemma and the default mechanism 

The definition of mechanism in effect posits that the randomness or uncertainty regarding the 

messages that the players receive has two independent potential sources: the inherent 

randomness of the type profile, which the messages may reflect, and residual randomness, 

which persists also with a specified type profile (and reflects, for example, the use of noisy 

communication channels). The following lemma shows that the assumption that the two 

sources are independent involves no loss of generality. Any joint distribution of types and 

 
7 The symbol =

𝑑
 denotes equality in distribution. 

8 A distribution is degenerate if it assigns probability 1 to some value. For example, this is the case in (1). 
9 As an example of this distinction, if a mechanism satisfies 𝑂̃, and the types of all but two players change, 
the distribution of the message that each of these two receives does not change. However, the joint 
distribution of the two messages may change, for example, uncorrelated messages may become 
correlated. By contrast, 𝑂 would imply that the joint distribution also does not change when the other 

players’ types change. A subtler, yet highly consequential (See Section 5.1), difference between 𝑂 and 𝑂̃ 
applies also to two-player games.  

(2) 

(3) 
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messages can be produced by “mixing” the random type profile 𝒕 with a suitable mechanism 𝒎, 

which by definition is independent of 𝒕.  

Lemma 1. Let 𝑀 = 𝑀1 × 𝑀2 × ⋯× 𝑀𝑛 be any finite product set and 𝜂 any probability measure 

on 𝑇 × 𝑀 whose marginal on 𝑇 is equal to the common prior. There exists a random variable 𝒎 

that is independent of the random type profile 𝒕, with values that are functions from 𝑇 to 𝑀, 

such that the joint distribution of 𝒕 and 𝒎(𝒕) is equal to 𝜂 and, in addition:  

(i)   The random profiles {𝒎(𝑡)}𝑡∈𝑇 are independent. 

(ii)   For every 𝑡 ∈ 𝑇 and 𝑖 ∈ 𝑁 there is some 𝑡′ ∈ 𝑇 such that (𝑡𝑖, 𝑡−𝑖
′ ) ∈ supp(𝜂𝑇) 

       and (2) holds. 

(iii)   For every 𝑡 ∉ supp(𝜂𝑇) , (3) holds. 

Proof. Given a probability measure 𝜂 as above, construct a family {𝒎(𝑡)}𝑡∈𝑇 of independent 

random variables with values in 𝑀, indexed by the type profiles, that are collectively 

independent of 𝒕 and are distributed as follows. For 𝑡 ∈ supp(𝜂𝑇), the distribution of 𝒎(𝑡) is 

the probability measure on 𝑀 that assigns to each element 𝑚 the (conditional) probability   

𝜂({(𝑡,𝑚)})

𝜂𝑇({𝑡})
. 

Note that this already implies that the joint distribution of 𝒕 and 𝒎(𝒕) is equal to 𝜂:  

Pr(𝒕 = 𝑡,𝒎(𝒕) = 𝑚) = 𝜂𝑇({𝑡}) Pr(𝒎(𝑡) = 𝑚) = 𝜂({(𝑡,𝑚)}), 𝑡 ∈ 𝑇,𝑚 ∈ 𝑀. 

For 𝑡 ∉ supp(𝜂𝑇), choose for each 𝑖 ∈ 𝑁 some type profile 𝑡′ such that (𝑡𝑖, 𝑡−𝑖
′ ) ∈ supp(𝜂𝑇). 

The distribution of 𝒎(𝑡) = (𝒎1(𝑡),𝒎2(𝑡), … ,𝒎𝑛(𝑡)) is then completely specified the 

requirement that (2) and (3) hold. ∎ 

A mechanism 𝒎 as in Lemma 1 is referred to in this paper as the default mechanism of the 

measure 𝜂.10 The three special properties that the default mechanism is required to possess may 

seem purely technical. Property (4) concerns relations between different type profiles, which by 

definition cannot coexist (since only one type profile is realized), while (5) (which is not trivial 

only for 𝑡 ∉ supp(𝜂𝑇)) and (6) concern type profiles 𝑡 that cannot occur (Pr(𝒕 = 𝑡) = 0). 

However, property (4) is not innocuous, as it essentially prevents the mechanism from satisfying 

𝑆 or 𝑂 unless it also satisfies 𝐷. This is because two random variables that are equal and 

independent necessarily have a degenerate distribution. Mainly because of this limitation, it is 

not possible to restrict attention to default mechanisms. They are, however, useful technical 

constructs.  

4.3 Correlated strategies 
A correlated strategy in an 𝑛-player Bayesian game is a pair (𝒎, 𝜎) consisting of a mechanism 𝒎 

and a profile of strategies 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝑛). The strategy of each player 𝑖 is a function 

𝜎𝑖: 𝑇𝑖 × 𝑀𝑖 → 𝐴𝑖  that specifies how the player’s type 𝑡𝑖 and the message he receives 𝑚𝑖 

together determine the player’s action 𝑎𝑖.
11 As indicated, the messages are part of the 

correlated strategy’s specification rather than the game. Their (potential) randomness and that 

of the types means that the actions are also random. The random action profile corresponding 

to a correlated strategy (𝒎, 𝜎) is the random variable 𝒂 = (𝒂1, 𝒂2, … , 𝒂𝑛) given by  

 
10 Since some aspects of the default mechanism are only partially specified, the definition actually allows 
for more than one version of it. Any reference to the default mechanism is taken to mean that differences 
between versions are irrelevant. 
11 By assumption, the specification of the actions is deterministic; randomized actions are not allowed. 
This assumption involves no loss of generality and, in particular, does not preclude mixed strategies. It 
only means that even private randomization is viewed as part of a single large mechanism. If there is 
already a mechanism from which the players receive messages, randomization may be relegated to it. This 
may be done by appending a random number to the massage that each player receives, such that the 𝑛 
random numbers are independent. A mechanism modified in this way does not satisfy 𝐷, but the 

modification has no effect on properties 𝑆, 𝑆̃, 𝑂, 𝑂̃ or 𝐼. 

(4) 

(5) 

(6) 
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𝒂𝑖 = 𝜎𝑖(𝒕𝑖,𝒎𝑖(𝒕)), 𝑖 ∈ 𝑁. 

Pure- and mixed-strategy profiles are essentially special cases of correlated strategy. If the 

message that each player receives is unaffected by his or the others’ types and is also non-

random, that is, if the mechanism satisfies 𝑆, 𝑂 and 𝐷 (which effectively means that there are no 

messages at all), then, for some fixed 𝑚1,𝑚2, … ,𝑚𝑛, 

𝒂𝑖 = 𝜎𝑖(𝒕𝑖, 𝑚𝑖), 𝑖 ∈ 𝑁. 

In this case, for each player 𝑖, 𝜎𝑖 associates a (deterministic) action 𝑎𝑖  with each type 𝑡𝑖, which 

means that the correlated strategy is effectively a pure-strategy profile. A mixed-strategy profile 

is described by a correlated strategy with a mechanism that satisfies 𝑆, 𝑂 and 𝐼. These 

properties of the mechanism mean that the messages are independent and equal to 

𝒎1(𝑡′),𝒎2(𝑡′), …, 𝒎𝑛(𝑡′), where 𝑡′ is any fixed type profile. The corresponding random action 

profile is  

(𝜎1(𝒕1,𝒎1(𝑡′)), 𝜎2(𝒕2,𝒎2(𝑡′)), … , 𝜎𝑛(𝒕𝑛,𝒎𝑛(𝑡′))). 

This is effectively the same as, and it can be implemented by, private randomization over pure 

strategies independently for each player.12  

The correlated strategy distribution (CSD) of a correlated strategy (𝒎, 𝜎) is the joint distribution 

of the random type profile 𝒕 and the random action profile 𝒂 specified by (7). Many different 

correlated strategies, employing different mechanisms, may have the same CSD. A CSD is 

implementable by a mechanism 𝒎 (which implements the distribution) if it is the distribution of 

some correlated strategy of the form (𝒎, 𝜎), that is, if suitable strategies 𝜎1, 𝜎2, … , 𝜎𝑛 exist. A 

CSD is a pure-strategy distribution or a mixed-strategy distribution if it is implementable by some 

mechanism 𝒎 with properties 𝑆, 𝑂 and 𝐷 or properties 𝑆, 𝑂 and 𝐼, respectively. The former is 

obviously a special case of the latter, which in turn is a special case of type correlated 

distribution, which is defined as a CSD that is implementable by a mechanism with property 𝑂 

(that is, one whose message to each player may reflect the player’s type but is not affected by 

the types of the other players). 

Every CSD 𝜂 is a probability measure on 𝑇 × 𝐴 whose marginal on 𝑇 coincides with the common 

prior 𝜂𝑇.13 Hence, it has a default mechanism 𝒎 (see Section 4.2.1), in which the message space 

𝑀𝑖 of each player 𝑖 is his action space 𝐴𝑖. Thus, the default mechanism simply tells each player 

what action to take. The default correlated strategy of 𝜂 is defined as (𝒎, 𝜎), where  

𝜎𝑖(𝑡𝑖, 𝑚𝑖) = 𝑚𝑖 , 𝑖 ∈ 𝑁. 

Thus, each player’s strategy simply instructs him to obey the default mechanism. The 

resulting random action profile 𝒂, called the default random action profile of 𝜂, satisfies 

𝒂 = (𝜎1(𝒕1,𝒎1(𝒕)), 𝜎2(𝒕2,𝒎2(𝒕)),… , 𝜎𝑛(𝒕𝑛,𝒎𝑛(𝒕))) = 𝒎(𝒕). 

The second equality shows that the default mechanism 𝒎 of a CSD 𝜂 implements it. 

Obviously, a similar equality holds for the default mechanism and strategy of any probability 

measure on 𝑇 × 𝐴 with the marginal 𝜂𝑇. Hence, every such measure is a CSD. This conclusion 

establishes the following simple result.  

Lemma 2. In a Bayesian game, a probability measure on 𝑇 × 𝐴 is a correlated strategy 

distribution if and only if its marginal on 𝑇 is equal to the common prior. 

 
12 A correlated strategy with a mechanism as above may alternatively be viewed as a behavior strategy for 
each player, that is, a randomized action for each of the player’s types. 
13 Since the common prior is given as part of the specification of the game, a CSD may also be viewed as 
an assignment of a probability measure on 𝐴 to every type profile 𝑡, namely, the distribution of the 
players’ action when their types are given by 𝑡. If 𝑡 lies outside the support of 𝜂𝑇, the probability measure 
may be chosen arbitrarily. 

(7) 

(8) 

(9) 
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4.4 Correlated equilibria 
The players’ incentives in a Bayesian game are embodied by their payoff functions, 𝑢1, 𝑢2, … , 𝑢𝑛. 

For a correlated strategy (𝒎, 𝜎), the expected payoff (hereafter referred to usually simply as the 

payoff) of each player 𝑖 is the expectation of the random variable 𝑢𝑖(𝒕, 𝒂), where 𝒕 is the 

random type profile and 𝒂 is the random action profile given by (7). The correlated strategy is 

incentive compatible if none of the players 𝑖 can increase his payoff by unilateral deviation, that 

is, by switching from 𝜎𝑖 to some other strategy 𝜎𝑖
′: 𝑇𝑖 × 𝑀𝑖 → 𝐴𝑖. Equivalently, incentive 

compatibility means that the action that the correlated strategy specifies for each player 𝑖 

always maximizes the conditional expectation14 of 𝑢𝑖(𝒕, 𝒂), given the player’s type and the 

message he receives. The latter condition is used in the following definition.  

Definition 1. In a Bayesian game, a correlated strategy (𝒎, 𝜎) is a correlated equilibrium if the 

corresponding random action profile 𝒂 is such that, for every player 𝑖 and action 𝑎𝑖
′ for that 

player, 

𝐸( 𝑢𝑖(𝒕, 𝒂) − 𝑢𝑖(𝒕, (𝑎𝑖
′, 𝒂−𝑖)) ∣ 𝒕𝑖,𝒎𝑖(𝒕) ) ≥ 0. 

The correlated strategy distribution of a correlated equilibrium is referred to as a correlated 

equilibrium distribution (CED). A CED is implementable by a mechanism 𝒎 if it is the CSD of 

some correlated equilibrium with that mechanism. A CED is a pure-equilibrium distribution or a 

mixed-equilibrium distribution if it is implementable by some mechanism 𝒎 with properties 𝑆, 𝑂 

and 𝐷 or properties 𝑆, 𝑂 and 𝐼, respectively, in other words, if it is the CSD of some correlated 

equilibrium employing a mechanism with the first or second set of properties (a correlated 

equilibrium of either kind is called a Bayesian equilibrium). Two additional kinds of CEDs are 

named in Section 6.3.  

As the following lemma shows, to check whether a given correlated strategy distribution is a 

correlated equilibrium distribution it suffices to consider its default correlated strategy. The 

lemma also presents an equivalent characterization of CED, which does not explicitly refer to 

correlated equilibrium. Like Definition 1, it is formulated in terms of random variables (whose 

joint distribution is the CED). However, the characterization could also be expressed in purely 

measure theoretic terms.  

Lemma 3. For a correlated strategy distribution 𝜂 in a Bayesian game, the following conditions 

are equivalent: 

(i) 𝜂 is a correlated equilibrium distribution. 

(ii) Its default correlated strategy is a correlated equilibrium. 

(iii) For some (equivalently, every15) random variable 𝒂 = (𝒂1, 𝒂2, … , 𝒂𝑛) such that the joint 

distribution of 𝒕 and 𝒂 is equal to 𝜂, 

𝐸(𝑢𝑖(𝒕, 𝒂) − 𝑢𝑖(𝒕, (𝑎𝑖
′, 𝒂−𝑖)) ∣∣ 𝒕𝑖, 𝒂𝑖 ) ≥ 0, 𝑖 ∈ 𝑁, 𝑎𝑖

′ ∈ 𝐴𝑖. 

Proof. Condition (i) means that 𝜂 is the CSD of some correlated strategy (𝒎, 𝜎) that satisfies 

the condition in Definition 1. For every player 𝑖, taking the condition expectation of both sides of 

(10), given 𝒕𝑖 and 𝒂𝑖, yields 

𝐸(𝐸(𝑢𝑖(𝒕, 𝒂) − 𝑢𝑖(𝒕, (𝑎𝑖
′, 𝒂−𝑖)) ∣∣ 𝒕𝑖,𝒎𝑖(𝒕) ) ∣∣ 𝒕𝑖, 𝒂𝑖 ) ≥ 0. 

 
14 For a random variable 𝒙 and a real-valued random variable 𝒚 that are defined on the same probability 
space, the conditional expectation 𝐸(𝒚 ∣ 𝒙) is also a random variable on that space. It is constant on every 
event of the form [𝒙 = 𝑥] (where 𝒙 takes a particular value 𝑥), and its value there is 𝐸(𝒚 ∣ 𝒙 = 𝑥), i.e., the 
conditional expectation of 𝒚, given that 𝒙 = 𝑥. The meaning of equalities and inequalities involving 
conditional expectations is that they hold with probability 1 (equivalently, hold pointwise). 
15 The equivalence holds since whether or not the inequality in (11) holds only depends on the joint 
distribution of 𝒕 and 𝒂. 

(10) 

(11) 

(12) 
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Since, by (7), 𝒂𝑖 can be expressed as a function of 𝒕𝑖 and 𝒎𝑖(𝒕), the iterated conditional 

expectation in (12) is equal to the single one in (11) (see Shiryaev, 1996, Chapter I, §8). Hence, 

(iii) holds.  

Conversely, if 𝜂 satisfies (iii), then in particular (11) holds when 𝒂 is the default random action 

profile. By (9), the inequality in this case coincides with (10), which shows that the default 

correlated strategy (𝒎, 𝜎) is a correlated equilibrium. This proves that (iii) implies (ii), which in 

turn implies (i). ∎ 

A probability measure 𝜂 on 𝑇 × 𝐴 that satisfies the equivalent conditions in Lemma 3 is 

sometimes referred to itself as a correlated equilibrium (Bergemann and Morris, 2007). Another 

reasonable alternative definition of this concept would be a mechanism that recommends an 

action to each player, which together with the strategies of following the recommendations 

constitutes a correlated equilibrium in the sense of Definition 1. Lemma 3 shows that these two 

alternative definitions of correlated equilibrium are not fundamentally different from Definition 

1. However, this paper emphatically distinguishes between correlated equilibrium and 

correlated equilibrium distribution, and between correlated equilibrium and the mechanism it 

employs. These distinctions are instrumental for the paper’s primary objective of studying the 

implementability relation between a correlated equilibrium distribution and a mechanism, 

which is the existence of some correlated equilibrium with that mechanism that has that 

distribution.  

4.5 Communication equilibria 
Communication equilibrium differs from correlated equilibrium in that the players self-report 

their types to the mechanism. Correspondingly, the incentive-compatibility condition of 

correlated equilibrium is augmented by the requirement that a player cannot gain from being 

the only one to misreport his type (and possibly also deviate from the correlated strategy). The 

reliance on the players’ reports turns the mechanism from a primary source of information 

about the (other) players’ types to a secondary source – a mediator. The mediator may be a 

physical entity, such as a disinterested third party or a machine, or it may be a communication 

protocol, such as one-shot direct exchange of messages between players.16 Note that in the last 

example, the assumption that the mechanism receives type reports as input does not exclude 

the exchange of more complicated messages. This is because each player could in principle use a 

gadget that takes type as input and outputs any required message. The players’ individual 

gadgets could then be viewed collectively as a single mechanism, in the sense of the definition in 

Section 4.2. This mechanism is still rather special in that it has property 𝑆: the massage that a 

player receives is unaffected by his own type. In the context of communication equilibrium, this 

and the other fundamental properties of mechanisms described in Section 4.2 may be 

interpreted as specific limitations on the allowed kinds of communication protocols.   

With a correlated strategy (𝒎, 𝜎), a player 𝑖 who misreports his type as 𝑡𝑖
′ changes the (random) 

messages that the mechanism sends to the players from 𝒎(𝒕), where 𝒕 = (𝒕𝑖, 𝒕−𝑖) is the (true) 

random type profile, to 𝒎(𝑡𝑖
′, 𝒕−𝑖). The player may take advantage of the resulting change of the 

other players’ actions by appropriately changing the strategy he himself uses for determining 

the response to the mechanism’s message, from 𝜎𝑖 to some 𝜎𝑖
′: 𝑇𝑖 × 𝑀𝑖 → 𝐴𝑖. The resulting 

random action profile 𝒂′ = (𝒂1
′ , 𝒂2

′ , … , 𝒂𝑛
′ ) is given by  

𝒂𝑖
′ = 𝜎𝑖

′(𝒕𝑖,𝒎𝑖(𝑡𝑖
′, 𝒕−𝑖)), 

𝒂𝑗
′ = 𝜎𝑗(𝒕𝑗,𝒎𝑗(𝑡𝑖

′, 𝒕−𝑖)), 𝑗 ∈ 𝑁 ∖ {𝑖}. 

Communication equilibrium is defined by the requirement that, regardless of player 𝑖’s true 

type, misreporting it in the above manner and changing the strategy cannot increase 𝑖’s 

expected payoff.  

 
16 The question of how, and to what extent, can unmediated communication between players replace a 
mediator or a correlation device lies outside to scope of this paper. This question has been extensively 
studied in the contexts of both complete and incomplete information games. See, for example, Forges 
(1990), Ben-Porath (2003), Gerardi (2004) and references therein.  

(13) 
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Definition 2. In a Bayesian game, a correlated strategy (𝒎, 𝜎) is a communication equilibrium if, 

for every player 𝑖, type 𝑡𝑖
′ for that player and function 𝜎𝑖

′: 𝑇𝑖 × 𝑀𝑖 → 𝐴𝑖, 

𝐸(𝑢𝑖(𝒕, 𝒂) − 𝑢𝑖(𝒕, 𝒂
′) ∣∣ 𝒕𝑖 ) ≥ 0, 

where 𝒂 and 𝒂′ are given by (7) and (13), respectively. 

A generalization of the revelation-principle argument invoked in the first paragraph of this 

subsection shows that the set of possible communication equilibrium outcomes would not 

change if players were allowed to send to the mechanism arbitrary (rather than only type) 

reports, possibly affected by private randomization. For a player 𝑖 of type 𝑡𝑖, such a general 

report might be described as a random variable 𝒓𝑖(𝑡𝑖), with values in some finite (say) set 𝑅𝑖. A 

corresponding generalized mechanism would be a random variable 𝒎̂, with values that are 

functions from 𝑅1 × 𝑅2 × ⋯× 𝑅𝑛 to 𝑀. Thus, if the players send to the mechanism the reports 

𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛), its response is the random profile of messages 𝒎̂(𝑟). The action 𝑎𝑖  of each 

player 𝑖 would then be determined as some function 𝜎̂𝑖 by the player’s type 𝑡𝑖, the report 𝑟𝑖 he 

sent to the mechanism and the message 𝑚𝑖 he got in response:  

𝑎𝑖 = 𝜎̂𝑖(𝑡𝑖, 𝑟𝑖, 𝑚𝑖). 

The reason this setup is in fact no more general than the one described above is that there exists 

a “normal” correlated strategy that induces identical actions. The mechanism 𝒎 it employs 

simply internalizes the players’ reporting process. That is, for each type profile 𝑡, the random 

message it sends to each player 𝑖 is the pair 

(𝒓𝑖(𝑡𝑖), 𝒎̂𝑖(𝒓1(𝑡1), 𝒓2(𝑡2),… , 𝒓𝑛(𝑡𝑛))). 

A player 𝑖 of type 𝑡𝑖 who receives a message (𝑟𝑖, 𝑚𝑖) then determine his action according to the 

strategy 𝜎𝑖 defined by 

𝜎𝑖(𝑡𝑖 , (𝑟𝑖, 𝑚𝑖)) = 𝜎̂𝑖(𝑡𝑖, 𝑟𝑖, 𝑚𝑖). 

It is a simple and standard exercise to show that if with the generalized mechanism none of the 

players 𝑖 could increase his expected payoff by changing (𝒓𝑖(𝑡𝑖))𝑡𝑖∈𝑇𝑖
 (which specifies the report 

he sends) and/or 𝜎̂𝑖 (which specifies his response to the mechanism’s messages), then the 

correlated strategy (𝒎, 𝜎) is a communication equilibrium in the sense of Definition 2.  

A similar argument, which is also part of the revelation principle, shows that in every Bayesian 

game the set of communication equilibrium outcomes would not change also if the messages 

that the mechanism sends to the players were required to be concrete action recommendations 

rather than arbitrary objects. (Such a mechanism is also called a mediation plan. See Myerson, 

1994.) More specifically, if a correlated strategy distribution is a communication equilibrium 

distribution (MED), that is, if it is the CSD of some communication equilibrium, then it is also the 

CSD of a communication equilibrium where (i) the message spaces coincide with the respective 

players’ actions spaces and (ii) each player’s equilibrium strategy is to act according to the 

message he receives. This observation shows that communication equilibrium as defined in this 

paper is not a fundamentally different concept than, e.g., in Myerson (1994), where (i) and (ii) 

are part of the definition. However, as for correlated equilibria, this does not mean that 

attention can be restricted to communication equilibria of this special kind. Doing so, and thus 

effectively dispensing with the distinction between mechanism (which is the mediator or 

communication protocol used) and correlated strategy (which also describes how the players 

react to the messages they receive), might affect in unwarranted ways the properties of the 

implementing mechanisms. This is demonstrated by the simple example of two players who 

base their choice of actions on their own type and on a type report that they receive from the 

other player. A mechanism that simply transmits the reports has property 𝑆, but a mechanism 

that is required to explicitly indicate each player’s action cannot have that property.  
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Figure 1. Hasse diagram of the different attributes of correlated strategy distributions (CSDs) in Bayesian games, 
ordered by implication. An attribute is represented by a box that contains its equivalent definitions, each of which 
is a set of fundamental properties possessed by some mechanism that implements the CSD. Two sets in the same 
box identify kinds of mechanisms that implement exactly the same CSDs. For those in different boxes, the 
implementable CSDs are different. An arrow from one box to another indicates that the first attribute implies the 
second one but the reverse implication does not hold. 

The question of which fundamental properties a mechanism that implements a given 

communication equilibrium distribution can possibly have is central for this work. To put it 

somewhat simplistically, these properties describe how simple the implementing mechanisms 

can be. The classification of MEDs presented in Section 7 below may correspondingly be viewed 

as reflecting the extent to which the workload of the mediator or communication protocol can 

be reduced by off-loading some of it to the individual players – in the sense of employing a 

simpler mechanism but possibly more complicated strategies – without affecting the outcome.17 

This classification reflects and is partially based on similar classifications of correlated strategies 

and correlated equilibria, which are presented in the next two sections. 

5 Attributes of Correlated Strategy Distributions 
The six fundamental properties of mechanisms described in Section 4.2 are not independent. 

Property 𝑆 implies 𝑆̃, property 𝑂 implies 𝑂̃, and 𝐷 implies 𝐼. Therefore, for each of the three 

pairs, a mechanism may satisfy both properties, only the second one, or none of them. 

Altogether, there are (33 =) 27 possibilities. This classification of mechanisms induces a 

classification of correlated strategy distributions. For a set of properties 𝒫 ⊆ {𝑆, 𝑆̃, 𝑂, 𝑂̃, 𝐷, 𝐼}, a 

CSD is 𝒫-implementable if it is implementable by some mechanism that has all the properties in 

𝒫. For example, a CSD is 𝑆-implementable if it is implementable by some mechanism with 

property 𝑆, and it is 𝑆, 𝑂-implementable if it is implementable by some mechanism that has both 

property 𝑆 and property 𝑂.18  

The various attributes of CSDs are not independent. For example, 𝑆, 𝑂-implementability 

implies 𝑆̃, 𝑂-implementability, since 𝑆 is a more stringent requirement than 𝑆̃, and it is implied 

 
17 Note that this issue is quite different from that mentioned in footnote 16. In particular, the latter 
concerns changes of mechanism that typically make it more rather than less complex. 
18 Since implementability concerns sets of properties, a more accurate, though unwieldy, notation would 
be {𝑆}- and {𝑆, 𝑂}-implementability.    
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by 𝑆, 𝑂, 𝐼-implementability, which involves the additional requirement that the implementing 

mechanism also satisfies 𝐼. A natural question for each of these implications is whether the 

reverse implication also holds, so that the two attributes are actually equivalent. As the Hasse 

diagram in Figure 1 shows, the answer is affirmative for 𝑆, 𝑂- and 𝑆̃, 𝑂-implementability (which 

are equivalent) but negative for 𝑆, 𝑂- and 𝑆, 𝑂, 𝐼-implementability (which are not equivalent). 

Thus, every CSD that is implementable by some mechanism that satisfies 𝑆̃ and 𝑂 is also 

implementable by a mechanism that satisfies 𝑆 and 𝑂 (and, obviously, vice versa), and there is 

some such CSD in some Bayesian game that is not implementable by any mechanism that also 

satisfies 𝐼.  

As Figure 1 shows, there are not 27 but only 7 distinct (i.e., nonequivalent) attributes of CSDs 

that can be defined in terms of fundamental properties of the implementing mechanisms. The 

attributes are not all comparable. That is, some of them neither imply nor are implied by certain 

other attributes. Each attribute can be described in several equivalent ways by using different 

combinations of properties. For example, 𝑆-implementability and 𝑆̃-implementability are both 

equivalent to the attribute of simply being a CSD, which is denoted in Figure 1 by the empty set 

(of fundamental properties of implementing mechanisms) { }. Thus, the limitations that these 

two properties put on the implementing mechanisms are inconsequential. This result and all the 

others that are presented by Figure 1 are proved in Appendix A. 

Additional attributes of correlated strategy distributions in Bayesian games may conceivably be 

defined by conjunction. For example, a CSD may be both 𝑂̃-implementable and 𝐷-

implementable. A natural question is whether this attribute is equivalent to 𝑂̃, 𝐷-

implementability. More generally, if there is some implementing mechanism with a particular 

set of properties and another mechanism with some other properties, does it follow that the 

CSD is implementable by a single mechanism that has all the properties of the other two? 

Lemma 5 in Appendix A answers this question in the affirmative. Hence, conjunctions do not in 

fact define new attributes of correlated strategy distributions. In this, the latter differ from 

correlated equilibrium distributions, for which conjunctions do give rise to new attributes (see 

Section 6).  

5.1 Intrinsic characterizations 
Each of the seven attributes of CSDs in Figure 1 can also be characterized intrinsically, that is, 

without explicitly referring to implementing mechanisms.19 The significance of intrinsic 

characterization is that it gives an additional, concrete meaning to the attribute, and may help to 

check whether particular distributions have it. Lemma 2 may be viewed as an intrinsic 

characterization of the weakest attribute (I in Figure 1), which is simply being a CSD. The 

following proposition characterizes the strongest attribute, which is being a pure-strategy 

distribution (attribute VII), as well as the attribute of being a mixed-strategy distribution (VI). 

The proofs of this and the next two propositions are given in Appendix A. 

Proposition 1. A correlated strategy distribution 𝜂 is a mixed-strategy distribution if and only if 

the following holds for some (equivalently, every) random variable 𝒂 = (𝒂1, 𝒂2, … , 𝒂𝑛) such 

that the joint distribution of 𝒕 and 𝒂 is equal to 𝜂:  

(i) For each player 𝑖, 𝒂𝑖 and (𝒕−𝑖, 𝒂−𝑖) are conditionally independent, given 𝒕𝑖. 

A correlated strategy distribution is a pure-strategy distribution if and only if it satisfies the 

stronger condition in which (i) is replaced by: 

(ii) For each player 𝑖, the conditional distribution 𝒂𝑖, given 𝒕𝑖, is degenerate. 

An intrinsic characterization of type correlated distributions is given by the next proposition. The 

characterizing property in this case is the existence of a probability measure 𝜇 on 𝐴1
𝑇1 × 𝐴2

𝑇2 × 

⋯× 𝐴𝑛
𝑇𝑛 that satisfies a certain condition. By definition, 𝜇 assigns a probability to each pure-

 
19 Note that ‘intrinsic’ is not a strict, formal notion. However, the discussion below and in Appendix A 
should make its meaning clear. 
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strategy profile (𝑎1
1, 𝑎1

2, … ; 𝑎2
1, 𝑎2

2, … ;… ; 𝑎𝑛
1 , 𝑎𝑛

2 , … ) (see Section 4.1). For each type profile  

𝑡 = (𝑡1
𝑗1 , 𝑡2

𝑗2 , … , 𝑡𝑛
𝑗𝑛), there is a corresponding marginal measure 𝜇𝑡  on 𝐴1 × 𝐴2 × ⋯× 𝐴𝑛, 

which assigns to each action profile 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑛) the probability that the actions 

associated with the types specified by 𝑡 are those specified by 𝑎. Formally, 

𝜇𝑡({𝑎}) = 𝜇 ({ (𝑎1
1, 𝑎1

2, … ; 𝑎2
1, 𝑎2

2, … ; … ; 𝑎𝑛
1 , 𝑎𝑛

2 , … ) ∈ 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯× 𝐴𝑛
𝑇𝑛

∣∣ (𝑎1
𝑗1 , 𝑎2

𝑗2 , … , 𝑎𝑛
𝑗𝑛) = 𝑎 }). 

Proposition 2. A correlated strategy distribution 𝜂 is a type correlated distribution if and only if 

there is a probability measure 𝜇 on 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯× 𝐴𝑛
𝑇𝑛 such that the marginal measure 

defined above coincides with the conditional probability of action profiles, that is,  

𝜇𝑡({𝑎}) =
𝜂({(𝑡, 𝑎)})

𝜂𝑇({𝑡})
, 𝑡 ∈ supp(𝜂𝑇) , 𝑎 ∈ 𝐴. 

The intrinsic characterization in Proposition 2 is not as straightforward as those in Proposition 1. 

According to the latter, pure-strategy distributions are characterized by the property that 

knowing a player’s type entails knowing his action, and mixed-strategy distributions are 

characterized by the weaker property that if a player’s type is known, his action does not add 

any information about the other players’ types or actions.20 It would seem that type correlated 

distributions ought to be characterized by the even weaker property that, if a player’s type is 

known, his action does not add any information about the other players’ types (but may do so 

for the actions). This property can be formally expressed as follows (Forges, 1993). 

Definition 3. A correlated strategy distribution 𝜂 has the conditional independence property if 

for some (equivalently, every) random variable 𝒂 such that the joint distribution of 𝒕 and 𝒂 is 

equal to 𝜂, the action 𝒂𝑖 of each player 𝑖 and the types 𝒕−𝑖 of the other players are conditionally 

independent, given 𝑖’s own type 𝒕𝑖. 

Every type correlated distribution has the conditional independence property. This is because, if 

a correlated strategy distribution is implementable by a mechanism whose message to each 

player is unaffected by the other players’ types, it is impossible to learn from the player’s action 

anything about the others’ types. However, somewhat surprisingly, the converse it not true. As 

Example 1 demonstrates21 (see also Lehrer at al., 2010, and Forges, 2006), even in a two-player 

game a correlated strategy distribution may have the conditional independence property 

without being a type correlated distribution.22 As the next proposition shows, the non-

equivalence of these two attributes of CEDs reflects a difference between properties 𝑂 and 𝑂̃ of 

mechanisms. Whereas being a type correlated distribution by definition means 𝑂-

implementability (attribute V in Figure 1), the conditional independence property is equivalent 

to the weaker requirement of 𝑂̃-implementability (attribute IV). 

Proposition 3. A correlated strategy distribution is 𝑂̃-implementable if and only if it has the 

conditional independence property. 

Intrinsic characterizations for the remaining two attributes of CSDs (II and III in Figure 1) are 

given by Proposition 4 in Appendix A.  

6 Attributes of Correlated Equilibrium Distributions 
A correlated equilibrium distribution in a Bayesian game is also a correlated strategy distribution 

but the opposite is not always true. However, since every correlated strategy distribution can be 

made a correlated equilibrium distribution simply by replacing the payoff functions with 

constant ones, the number of distinct (i.e., nonequivalent) attributes of CEDs that can be  

 
20 For an extension of this result to games with a random number of players, see Milchtaich (2004, 
Theorem 2). 
21 Note that the demonstration can be read as a proof that a probability measure 𝜇 as in Proposition 2 
does not exist for Example 1, because no strategy profile can belong to its support.    
22 Forges (1993) and Cotter’s (1994) suggestion that the conditional independence property characterizes 
type correlated distributions is mistaken. The mistake was corrected in Forges (2006).  

(14) 



19 

 

Figure 2. Hasse diagram of the different attributes of correlated equilibrium distributions (CEDs) in Bayesian games, 
ordered by implication. As in Figure 1, each attribute is represented by a box, and an implication relation is 
represented by an arrow. A conjunction symbol ∧ means that the CED is implementable both by a mechanism 
satisfying one property and by a mechanism satisfying the other property. The box marked with a question mark 
represents an attribute that may or may not be equivalent to the one below it. If the former holds, the two boxes 
need to be merged.   

defined in terms of fundamental properties of the implementing mechanisms is not smaller than 

for CSDs. In fact, as Figure 2 shows, the number is significantly larger: 14 or 15 instead of 7. This 

reflects the fact that the classifications of CEDs can be viewed as consisting of two layers: (i) the 

classification induced by the different attributes of CSDs, and (ii) the refinement that results 

from also taking into account the incentive compatibility requirement ((iii) in Lemma 3). Thus, 

two CEDs in a Bayesian game may differ (i) in that even as CSDs they require different kinds of 

implementing mechanisms, or (ii) only in that different kinds of implementing mechanisms are 

compatible with the equilibrium condition. This is a useful distinction, which seems to be lacking 

in the existing literature on games with incomplete information. 

Where the equilibrium condition is effective is the connection between a player’s type and the 

messages he receives, i.e., properties 𝑆 and 𝑆̃ of the mechanism. For CSDs these properties do 

not make any difference, as can be seen in Figure 1, but this is not so for CEDs. In particular, the 

three attributes of simply being a CED, 𝑆-implementability and 𝑆̃-implementability (I, Ia and Ib in 

Figure 2) are not equivalent. As Examples 2 and 3 show, there are CEDs in some Bayesian games 

that cannot be implemented by any mechanism satisfying 𝑆̃, and there are CEDs that are 

Strategy correlated 
equilibrium 
distributions 

VI VII 

Va 

? 

Pure-equilibrium 
distributions 

All correlated 
equilibrium 

distributions 

II I 

Ib 

Ia 

IV 

V 

{ } 

{𝑂̃} ∧ {𝐼} 

൛𝑂̃, 𝐼ൟ 

{𝑂, 𝐼} 

{𝑆̃, 𝑂̃, 𝐼} 

{𝑆, 𝑂̃, 𝐼} 

{𝑆̃, 𝑂, 𝐼} 

{𝑆, 𝑂, 𝐼} 

{𝑆̃} 

{𝐼} 

{𝑆, 𝑂} 

{𝑂̃} 

{𝑆̃, 𝑂̃} 

{𝑆, 𝑂̃} 

{𝑂} 
{𝑆̃, 𝑂} 

{𝑆} 

{𝑂̃} ∧ {𝐷} 

൛𝑂̃, 𝐷ൟ 

{𝑂, 𝐷} 

{𝑆̃, 𝑂̃, 𝐷} 

{𝑆, 𝑂̃, 𝐷} 

{𝑆̃, 𝑂, 𝐷} 

{𝑆, 𝑂, 𝐷} 

{𝐷} 

IIb 

IIIa 

{𝑆̃} ∧ {𝐼} 

{𝑆} ∧ {𝐼} 

IIa 

{𝑆̃, 𝐷} 
{𝑆, 𝐷} 

IIIb {𝑆̃} ∧ {𝐷} 
{𝑆} ∧ {𝐷} 

{𝑆̃, 𝐼} 
{𝑆, 𝐼} 

Mixed-equilibrium 
distributions 

Conditional 
independence 

property 

Type correlated 
equilibrium 
distributions 

III 



20 

implementable by such a mechanism but cannot be implemented by any mechanism with the 

stronger property 𝑆.  

The reason 𝑆 and 𝑆̃ affect implementability of CEDs is that these properties may entail inability 

to restrict messages to certain types of players only. This is not a problem for correlated 

strategies, where information cannot do any harm, but it may be a problem for correlated 

equilibria, where incentive compatibility comes into play. However, as can be seen in Figure 2, 

whether this is actually so depends on the other properties of the mechanism. For example, for 

𝑂̃-implementable CEDs (IV in Figure 2), requiring that the implementing mechanism also 

satisfies 𝑆 or 𝑆̃ does not make any difference.  

The various relations between attributes of correlated equilibrium distributions shown in Figure 

2 are established in Appendix B. The next subsection takes a closer look at the connection 

between these attributes and those of correlated strategy distributions. The subsequent 

subsection presents another source of difference between the two sets of attributes. The last 

subsection examines in detail a couple of particular attributes.  

6.1 Attributes inherited from correlated strategy distributions 
As a correlated strategy distribution, a correlated equilibrium distribution has one or more of 

the attributes in Figure 1, which are based on the fundamental properties of the implementing 

mechanisms. However, a CED that, as a CSD, is implementable by a mechanism with particular 

properties is not necessarily implementable by such a mechanism also as a CED. That is, it may 

be impossible to find a correlated strategy with that kind of mechanism that is also a correlated 

equilibrium. For example, as indicated, the CED in Example 2 is not 𝑆̃-implementable, but it is 𝑆̃-

implementable as a CSD (indeed, this is so for every CSD; see Figure 1). However, as the 

following theorem shows, this kind of discrepancy between the two notions of implementability 

may arise only when properties 𝑆 or 𝑆̃ of mechanisms are involved. The proof of the theorem is 

given in Appendix B. 

Theorem 1. For 𝒫 ⊆ {𝑂, 𝑂̃, 𝐷, 𝐼}, a correlated equilibrium distribution is implementable by a 

mechanism with all the properties in 𝒫 if and only if it satisfies a similar condition as a 

correlated strategy distribution. 

Since the four fundamental properties considered in Theorem 1 are sufficient to characterize all 

the attributes of CSDs in Figure 1, it follows from the theorem that a CED has attribute I, II, III, IV, 

V, VI or VII in Figure 2 if and only if, as a CSD, it has the similarly numbered attribute in Figure 1. 

For example, a CED is a pure- or mixed-equilibrium distribution if and only if it is a pure- or 

mixed-strategy distribution, respectively. The intrinsic characterizations of the various attributes 

of CSDs given by Propositions 1 through 4 therefore apply also to the similarly numbered 

attributes of CEDs. For example, a CED is 𝑂̃-implementable (attribute IV in Figure 2) if and only if 

it has the conditional independence property. An intrinsic characterization for the very attribute 

of being a CED (I in Figure 2) is given by condition (iii) in Lemma 3, which says that a CSD is a CED 

if and only if it satisfies a certain incentive-compatibility condition (for distributions). It follows 

that, for example, an 𝑂̃-implementable CED can be (intrinsically) characterized as a CSD that 

satisfies the incentive-compatibility condition and has the conditional independence property.  

6.2 Attributes defined by conjunction 
Attributes of CSDs and those of CEDs show not only similarities but also differences. One such 

difference concerns the effect of conjunctions. As indicated in Section 5, if a CSD that is 

implementable by a mechanism with a particular fundamental property is also implementable 

by a mechanism with another property, then it is implementable by a single mechanism that has 

both properties. It follows from Theorem 1 that this remains true for CEDs as long as the 

fundamental properties concerned do not include 𝑆 or 𝑆̃. However, Examples 6 and 7 in 

Appendix B show that, without the qualification, the result would not hold. Specifically, a CED 

that is implementable by a mechanism with property 𝑆 as well as by a mechanism with property 

𝐷 may not be implementable by any mechanism with both properties, and the same is true with 

𝐷 replaced by 𝐼.  
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The conjunction of 𝑆- and 𝐷-implementability (as in Example 6) and the conjunction of 𝑆- and 𝐼-

implementability (Example 7) are two attributes of CEDs that have no parallels among the 

attributes of CSDs. A third attribute that is defined in a similar manner may exist, namely, the 

conjunction of 𝑆̃- and 𝐼-implementability. However, its existence is still an open question: it is 

not known whether this third attribute is indeed distinct from the second one. This uncertainty 

is represented in Figure 2 by a question mark. In any case, by Theorem 2 below, these two or 

three attributes of CEDs are the only ones that can be defined (only) by conjunctions; additional 

such attributes do not exist.  

6.3 Type correlated and strategy correlated equilibria 
As an illustration of the discussion in the previous two subsections, this one describes in detail 

two of the attributes of correlated equilibrium distributions in Figure 2: 𝑂-implementability 

(attribute V), which is inherited from correlated strategy distributions, and the “spin-off” 

attribute 𝑆, 𝑂-implementability (Va). Both attributes have been previously described in the 

literature, under various names. The 𝑂-implementable CEDs may be referred to as type 

correlated equilibrium distributions, as they are the distributions of type correlated equilibria 

(Cotter, 1994), also known as agent normal form correlated equilibria (Forges, 1993, 2006; 

Lehrer et al., 2006, 2010). The 𝑆, 𝑂-implementable CEDs may be referred to as strategy 

correlated equilibrium distributions, as they are the distributions of strategy correlated 

equilibria (Cotter, 1991), also known as strategic (normal) form correlated equilibria (Forges, 

1993, 2006; Lehrer et al., 2010).  

In a strategy correlated equilibrium, a referee who does not know the players’ types 

confidentially recommends a strategy to each player. The recommendations are necessarily 

independent of the players’ actual types but not necessarily of one another. The equilibrium 

condition is that it is always optimal for each player to take the action that the strategy 

recommended by the referee prescribes to his actual type, assuming that all the other players 

do the same. In the terminology of this work, in which a referee corresponds to a mechanism, 

the assumption that he does not know the players’ types corresponds to the properties 𝑆 and 𝑂, 

which together mean that the players’ types do not affect the messages.  

A type correlated equilibrium differs from a strategy correlated equilibrium in that each player is 

not told the whole strategy but only the action it prescribes to his actual type. However, it is still 

assumed that the referee does not know the players’ types when he chooses his 

recommendations. Myerson (1991, p. 262) finds this assumption unnatural. Even though the 

referee does not know the player’s type, he is able to prevent him from learning what he is not 

supposed to know, namely, the actions that the recommended strategy prescribes to each of 

the player’s other possible types. However, as noted by Cotter (1994), such differentiation can 

be achieved if different types perceive the information presented to them differently. For 

example, different instructions may be issued to unilingual English and French readers simply by 

handing out a bilingual sheet with English and French texts that do not match. Alternatively, the 

mediator may simply learn the player’s type after choosing his recommendation but before 

sending the message. Either way, the message that each player receives may depend on his own 

type, so that the mechanism only has property 𝑂.  

Forges (1993) showed that some type correlated equilibria are not equivalent to any strategy 

correlated equilibrium. The next example provides another, simple demonstration of this result. 

Note that this example, and all the other examples in this paper that concern correlated strategy 

distributions or correlated equilibrium distributions, involve two-player games. This reflects 

(indeed, establishes) the fact that the Hasse diagrams in Figure 1 and Figure 2 apply to two-

player Bayesian games as well as to the general, 𝑛-player case.  

Example 5 A correlated equilibrium distribution that is 𝑶- but not 𝑺,𝑶-implementable  

Two players play a coordination game. They have the same action space, {𝐿, 𝑅}, and the same 

payoff matrix,  

  𝐿 𝑅 
𝐿
𝑅

(
1 0
0 1

) . 



22 

Player 1 can be of type +1 or type −1, which are both equally likely, and player 2 has the single 

type +1. A mechanism bases its messages to the players on the outcomes of two independent 

coin tosses, 𝒎+ and 𝒎−, each of which gives 𝐿 or 𝑅 with equal probabilities. A player of type 

+1 or −1 receives the message 𝒎+ or 𝒎−, respectively. This mechanism and the strategies that 

instruct the players to act according to the message the mechanism sends them together 

constitute a correlated equilibrium. At the equilibrium, types +1 and −1 of player 1 receive the 

expected payoffs 1 and 0.5, respectively, and player 2 gets 0.75. It is easy to check that, in all 

three cases, profitable deviations do not exist.  

The above mechanism has properties 𝑆̃ and 𝑂. Player 1’s type is not reflected by the message he 

receives (which has probability 0.5 of being 𝐿 whether the type is +1 or −1), and has no effect 

whatsoever on player 2’s message. Thus, the corresponding correlated equilibrium distribution 

is 𝑆̃, 𝑂-, and in particular 𝑂-, implementable. However, the CED is not implementable by any 

mechanism that satisfies 𝑆 and 𝑂, i.e., one in which the messages to both players are unaffected 

by 1’s type. The reason is that, in any correlated equilibrium that employs such a mechanism, 

the expected payoffs for the two types of player 1 must be equal. Otherwise, one of them could 

increase his payoff by mimicking the other type’s reaction to the message he receives.  

7 Attributes of Communication Equilibrium Distributions 
A communication equilibrium in a Bayesian game is also a correlated equilibrium but the 

opposite is generally false. Whereas for correlated equilibrium the only incentive compatibility 

requirement is that a player cannot gain from taking a different action than that prescribed by 

the correlated strategy, communication equilibrium adds the requirement that reporting the 

type truthfully is also incentive compatible.   

The second incentive compatibility requirement obviously has no bite if the mechanism ignores 

the players’ type reports, that is, if it has properties 𝑆 and 𝑂. Thus, if a correlated equilibrium 

distribution is implementable by a mechanism with these properties, it is automatically a 

communication equilibrium distribution. Among the attributes in Figure 2, 𝑆, 𝑂-implementability 

is in fact the weakest attribute of a CED that guarantees that it is also a MED.23 Hence, for any 

given set of fundamental properties, the CEDs that are implementable by mechanisms with (all) 

these properties are either (i) all 𝑆, 𝑂-implementable, and hence MEDs, or (ii) not all MEDs. 

Significantly, in case (ii), those CEDs that are MEDs are not necessarily implementable as MEDs 

by a mechanism with the given properties. That is, a communication equilibrium with such a 

mechanism may not exist. This is demonstrated by Example 4, where the MED described is not 

𝐷-implementable even though it has that attribute as a CED. Thus, MEDs and CEDs are not 

connected by a relation similar to that in Theorem 1, which concerns CEDs and CSDs.  

Example 4 also shows that a result similar to that in Lemma 3 does not hold for communication 

equilibrium distributions: the default correlated strategy is not necessarily a communication 

equilibrium. The reason for this difference between correlated and communication equilibria is 

that, in the latter, the messages that the mechanism sends when it receives type reports that 

are patently not all truthful (since the profile of reported types lies outside the support of the 

common prior) cannot be chosen arbitrarily. The mechanism’s reaction to such reports has to 

induce actions that ensure that the player who lied about his type (who may or may not be 

identifiable) is not rewarded. The feasibility of such a reaction may depend on the properties of 

the implementing mechanism.  

Implementability by a mechanism with a particular set of fundamental properties is an attribute 

of MEDs, just as for CEDs and CSDs. As in Sections 5 and 6, a basic question, for each such 

attribute of MEDs or a conjunction of several attributes, is: which of the other attributes are 

implied by it? The answer is given by the Hasse diagram in Figure 3, which presents the 

implication relations among the various attributes of communication equilibrium distributions.  

 
23 This assertion is proved by Examples 4 and 5. The former presents three 𝑆, 𝐷-implementable CEDs 

which are not MEDs, and the latter presents an 𝑆̃, 𝑂-implementable CED where the otherwise identical 
two types of player 1 receive different payoffs, which is clearly impossible in a MED.  
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Figure 3. Hasse diagram of the different attributes of communication equilibrium distributions (MEDs) in Bayesian 
games, ordered by implication. Each attribute is represented by a box, and an implication relation is represented by 
an arrow. A conjunction symbol ∧ means that the MED is implementable both by a mechanism satisfying one 
property or pair of properties and by a mechanism satisfying the other property. A box marked with a question 
mark represents an attribute that may or may not be equivalent to the one below it. If the former holds, the two 
boxes need to be merged.   

Comparison with the corresponding diagram for correlated equilibrium distributions (Figure 2) 

shows that, among the attributes that are defined by a single set of fundamental properties of 

mechanisms, the implication relations for MEDs and CEDs are identical. However, this is not so 

for attributes that are defined by conjunction. For example, for MEDs, unlike for CEDs, the 

conjunction of 𝑆- and 𝐷-implementability does not imply 𝑆, 𝐼-implementability. This is 

demonstrated by Example 8 in Appendix C, which presents an MED that is both 𝑆- and 𝐷-

implementable but is not 𝑆, 𝐼-implementable. The appendix also includes the proofs all the other 

results that are expressed by Figure 3.  

8 Synthesis 
The three collections of attributes of distributions presented in the preceding three sections are 

complete in the sense of closedness under conjunctions. That is, each collection includes every 

attribute that can be defined as the conjunction of several of its elements, i.e., as the quality of 

possessing all of these attributes. This result is formally expressed by the following theorem, 

which is proved near the end of Appendix C.  
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Theorem 2. The conjunction of any number of the attributes of correlated strategy distributions 

in Figure 1, correlated equilibrium distributions in Figure 2 or communication equilibrium 

distributions in Figure 3 is equivalent to one of the attributes in the same figure. 

Each of the three collections of attributes is a two-dimensional lattice with respect to the 

implication relation. The two-dimensionality is proved by the fact that, in each Hasse diagram, 

the different attributes are vertically and horizontally arranged in such a way that an attribute 

implies another if and only if the center of the box representing the latter is located higher and 

left of that of the former. The horizontal dimension corresponds to the attributes of equilibria in 

complete information games: pure-strategy, mixed-strategy and correlated equilibrium. The 

vertical dimension corresponds to the possible ways in which the players’ types are connected 

with the messages that an implementing mechanism sends.  

The assertion that the three collections of attributes are lattices means that every two attributes 

have a greatest lower bound (or infimum) and a least upper bound (or supremum). The greatest 

lower bound, also called the meet of the two attributes, is the unique attribute in the 

corresponding Hasse diagram that (i) implies both attributes and (ii) is implied by every other 

attribute in the diagram that implies them. The least upper bound, also called the join of the two 

attributes, is the unique attribute that (i) is implied by each of the two attributes and (ii) implies 

every other attribute in the diagram that is implied by each of them. The meet and join 

operations are customarily denoted by ∧ and ∨, respectively. This notation is consistent with the 

use of ∧ in Figure 2 and Figure 3 as the symbol for logical conjunction. An attribute that is 

defined as the conjunction of two other attributes is clearly their meet: it implies each of the 

two attributes and it is implied by any other attribute that does the same. Conversely, the meet 

of any two attributes must be equivalent to their conjunction, since by Theorem 2 an attribute 

equivalent to the latter appears in the diagram. 

A CSD, CED or MED in a Bayesian game usually has more than one of the attributes of 

distributions described in this paper. In particular, if it has a certain attribute, then it also 

possesses every other attribute that is implied by it. For example, every type correlated 

distribution (attribute V in Figure 1) has the conditional independence property (attribute IV). 

However, it follows as a corollary from Theorem 2 that, among all the attributes in Figure 1, 

Figure 2 or Figure 3 that a given CSD, CED or MED has, there is always one that implies all the 

others; it is the distribution’s strongest attribute. Clearly, specifying the strongest attribute is 

equivalent to specifying the whole collection of attributes that the distribution possesses. 

Corollary. For every correlated strategy distribution 𝜂, the collection of all the attributes in 

Figure 1 that 𝜂 possesses includes one attribute that implies all the others. The same is true for 

correlated equilibrium distributions and for communication equilibrium distributions, except 

that for them the relevant attributes are those in Figure 2 and Figure 3, respectively. 

This result follows immediately from the closedness under conjunctions. By Theorem 2, the 

conjunction of all the attributes that a distribution 𝜂 possesses is equivalent to one of the 

attributes in the relevant Hasse diagram. Since equivalence means two-way implication, it 

follows that (i) 𝜂 has that attribute, and (ii) the attribute implies all the other attributes that 𝜂 

possesses. Parenthetically, the Corollary does not simply follow from the observation that each 

of the three Hasse diagrams is a lattice (or vice versa). Removing IIIb, for example, from Figure 2 

would invalidate the corollary, but the Hasse diagram would still be a lattice.  

As an illustration of the Corollary, consider a CED with the conditional independence property 

that is not a pure-equilibrium distribution. Any mechanism that implements the CED must 

involve randomization. Otherwise, the CED’s strongest attribute would imply both 𝐷- and 𝑂̃-

implementability but not 𝑆, 𝑂, 𝐷-implementability. However, no attribute in Figure 2 has these 

properties. 

Classification according to the strongest attribute partitions the collection of all CSDs into seven 

nonempty and mutually disjoint classes. The partition for CEDs, which is finer than (that 

inherited from) the former, has 14 or 15 elements, and for MEDs the number of classes is 15, 16  
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Figure 4. Hasse diagram of the different implication relations between attributes of outcomes in Bayesian games, 
ordered by implication. A box represents an implication relation between attributes of correlated strategy 
distributions (CSDs), correlated equilibrium distributions (CEDs) or communication equilibrium distributions 
(MEDs). An arrow represents an implication between implication relations: for all subsets 𝓟′, 𝓟″, … and 𝓠 of (the 

fundamental properties of mechanisms) {𝑺, 𝑺̃, 𝑶, 𝑶̃, 𝑫, 𝑰}, if the implication relation in the lower box holds, that in 
the higher box also holds.  

or 17 (and, as proved below, is strictly greater than the previous number). Each of these classes 

can be designated by the same roman number and, if applicable, subscript letter as the 

corresponding attribute in Figure 1, Figure 2 or Figure 3. For example, class IV of CSDs consists of 

all the correlated strategy distributions with the conditional independence property that are not 

type correlated distributions.  

8.1 Relations between solution concepts 
The three Hasse diagrams presented in the preceding sections refer to different notions of 

solution concepts or outcomes in Bayesian games. Specifically, they present the implication 

relation between attributes of correlated strategy distributions (Figure 1), between attributes of 

correlated equilibrium distributions (Figure 2), and between attributes of communication 

equilibrium distributions (Figure 3). However, since in all cases the attributes are defined in 

terms of fundamental properties of implementing mechanisms, the implication relations are 

themselves potentially comparable. Indeed, by Propositions 11 and 22 in the appendices, each 

of the three relations implies or is implied by each of the others. This implication relation 

between implication relations is shown by the Hasse diagram in Figure 4. It follows, in particular, 

from this diagram and the previous ones that the number of attributes of CEDs (which is either 

14 or 15, depending on the answer to the Open Question presented at the end of Appendix B) is 

strictly less than for MEDs. 

8.2 Payoffs 
In the context of correlated strategies, correlated equilibria or communication equilibria, an 

“outcome” may mean either the joint distribution of the players’ types and actions or, perhaps 

more naturally, the corresponding players’ payoffs. The analysis in the preceding sections is 

concerned with the former. However, as shown below, this analysis is also most relevant for the 

latter.  

The expected payoffs of the players in a Bayesian game are completely determined by the joint 

distribution of their types and actions. However, the relation between distributions and payoff 

vectors is normally many-to-one. Hence, if a particular correlated equilibrium distribution, for 

example, cannot be implemented by a mechanism of a particular kind, it does not necessarily 

follow that the corresponding payoff vector is not thus implementable; it may be that a 

mechanism of that kind implements another CED with the same payoffs. Games with constant 

payoff functions provide a trivial example of this. In such games, a CED is implementable if and 

only if it is implementable as a CSD, so that the connection between distributions and the 

properties of the implementing mechanisms is as detailed in Section 5. By contrast, the single 

possible payoff vector is of course implementable by any mechanism.  

A less trivial example is provided by Example 5. The original purpose of that example is to show 

that, in the two-player game considered, the joint distributions of type and action profiles 

achievable by type correlated equilibria are not identical to those achievable by strategy 

correlated equilibria. As shown, only the former include distributions for which the two types of 

(𝒫′ ∧ 𝒫″ ∧ ⋯ ) ⇒
CSD

𝒬 

(𝒫′ ∧ 𝒫″ ∧ ⋯ ) ⇒
CED

𝒬 

(𝒫′ ∧ 𝒫″ ∧ ⋯ ) ⇒
MED

𝒬 
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player 1 receive the different payoffs 1 and 0.5. It is, however, not difficult to see that the 

expected payoff for player 1, which is (the mean) 0.75, is achievable also in a strategy correlated 

equilibrium. Thus, the example seemingly does not go as far as Forges’ (1993) (considerably 

more involved) demonstration of the nonequivalence of type correlated and strategy correlated 

equilibria, which shows that even the players’ payoffs, which combine those of all their types, 

may be different for the two kinds of equilibria. However, it follows from the next theorem that 

to study the effect of the properties of the implementing mechanism on the correlated 

equilibrium payoffs (CEPs), which are the 𝑛-tuples 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛) specifying the players’ 

(expected) payoffs in the correlated equilibria in an 𝑛-player Bayesian game, it is not necessary 

to actually examine these payoffs, as Forges (1993, 2006) did. Solving the (seemingly easier) 

problem of CED implementability (Section 6) may suffice. This is because any two kinds of 

mechanisms (of those considered in Figure 2) that do not implement the same CEDs necessarily 

also do not implement the same CEPs. A similar relation exists between correlated strategy 

distributions (Section 5) and correlated strategy payoffs (CSPs), and between communication 

equilibrium distributions (Section 7) and communication equilibrium payoffs (MEPs). Moreover, 

the proof of the theorem, which is given in Appendix D, is constructive, and thus provides a 

means of automatically transforming an example such as Example 5 into one where type 

correlated equilibria and strategy correlated equilibria have different payoff vectors, rather than 

just different joint distributions of types and actions or different payoffs for player types.   

Theorem 3. For any two subsets 𝒫 and 𝒬 of the six fundamental properties of mechanisms, the 

proposition  

𝒫-implementability implies 𝒬-implementability 

holds for correlated strategy payoffs, correlated equilibrium payoffs or communication 

equilibrium payoffs if and only if it holds for correlated strategy distributions, correlated 

equilibrium distributions or communication equilibrium distributions, respectively.  

Note that Theorem 3 does not mean that the Hasse diagrams in Figure 1, Figure 2 and Figure 3 

also apply to CSPs, CEPs and MEPs, respectively. This is because one direction of the result (“if”) 

does not extend to the more general case in which the premise “𝒫-implementability” is 

replaced by the conjunction “𝒫′-implementability and 𝒫″-implementability and …”, for arbitrary 

list 𝒫′, 𝒫″, …  of subsets of the fundamental properties.  

The last assertion is demonstrated by the simple game in which player 1 has two, equally 

probable types and only one action and player 2 has a single type and two actions. Player 2’s 

action only affects player 1’s payoff, which is 1 for one action and −1 for the other. A zero 

payoff for player 1 is implementable by a mechanism that reveals 1’s type to player 2, who then 

chooses one action or the other depending on the type, or alternatively by a simple coin toss. 

The former has property 𝐷 and the latter has property 𝑂. However, a zero payoff is not 

implementable by any mechanism with both properties, since with such a mechanism, player 2’s 

action is necessarily always the same. Thus, unlike for correlated equilibrium distributions (see 

Figure 2, attribute VII), correlated equilibrium payoffs may not be 𝑂,𝐷-implementable even if 

they are both 𝑂-implementable and 𝐷-implementable. 

8.3 A unified framework – an outline 
Correlated and communication equilibria may both be viewed as special cases of a model in 

which the messages that the mechanism sends to the players may depend on both their true 

and reported types. The dependence on the latter may be of little significance if there are no 

limitations on the mechanism’s use of the former. However, the present setup is constructed 

specifically for facilitating the analysis of such limitations and their significance. Suppose, for 

example, that only certain aggregate data concerning the players’ true types are available to the 

mechanism, e.g., a “checksum” of the types. The mechanism may then be able to detect 

unilateral deviations from truthful type reporting even if the profile of reported types lies inside 

the support of the common prior and is thus not a priori impossible, but may not be able to 

identify the player who lied about his type.  
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The meaning of correlated strategy in the general setting outlined above is the same as in the 

two special cases: it consists of a mechanism and instructions for translating the mechanism’s 

messages into type-dependent actions for the players. A natural requirement, which generalizes 

both correlated and communication equilibrium, is that it is optimal for players to truthfully 

report their types and take the actions that are indicated by the messages they receive, if all the 

others do the same. The question that arises is: how do different limitations on the mechanism 

affect the outcomes of such generalized communication/correlated equilibria? From this 

perspective, the results reported in this work only concern two special kinds of limitations. In 

the first kind, the messages that the mechanism sends to the players are never affected by the 

reported types, and in the second, the true types do not affect the messages.  

Appendix A Correlated Strategy Distributions 
For a subset 𝒫 of the six fundamental properties of mechanisms (see Section 4.2), a correlated 

strategy distribution is 𝒫-implementable if there is some mechanism with all the properties in 𝒫 

that implements it. If 𝒫 and 𝒬 are two subsets of properties, 𝒫-implementability implies 𝒬-

implementability if in every Bayesian game every 𝒫-implementable CSD is also 𝒬-

implementable. Shorthand for this relation is  

𝒫 ⇒ 𝒬. 

A trivial sufficient condition for implication is reverse inclusion, 𝒫 ⊇ 𝒬. 𝒫-implementability and 

𝒬-implementability are comparable if the former implies the latter or vice versa, and equivalent 

if both implications hold. Shorthand for equivalence is  

𝒫 ⇔ 𝒬 

The connection between properties of mechanisms and attributes of CSDs is extended by 

considering pairs of subsets of the fundamental properties. Each such pair, 𝒫 and 𝒫′, defines an 

attribute of CSDs , namely, the conjunction of 𝒫-implementability and 𝒫′-implementability, 

which is denoted by  

𝒫 ∧ 𝒫′. 

A CSD has this attribute if it is implementable both by a mechanism with the properties in 𝒫 and 

by a (generally different) mechanism with the properties in 𝒫′.24 Lemma 5 at the end of this 

section shows that such a CSD is always implementable by a mechanism that has both the 

properties in 𝒫 and those in 𝒫′. It follows that conjunctions actually do not give rise to new 

attributes of CSDs. 

If a particular implementing mechanism for a CSD does not have a certain fundamental 

property, it does not generally follow that the CSD lacks the corresponding attribute, for it still 

may be that some other implementing mechanism does have the property. An exception to this 

rule is presented by the following lemma. The lemma identifies several attributes of CSDs that 

can be determined by looking at a particular implementing mechanism, namely, the default one 

(see Section 4.2.1).  

Lemma 4. A CSD is 𝑂̃-, 𝐷- or 𝐼- implementable if and only if its default mechanism has property 

𝑂̃, 𝐷 or 𝐼, respectively.  

Proof. Consider a CSD 𝜂 and its default mechanism 𝒎. By definition, 𝜂 is equal to the joint 

distribution of the random type profile 𝒕 and the default random action profile 𝒎(𝒕). Let 

(𝒎′, 𝜎′) be any correlated strategy other than the default one whose CSD is 𝜂, which means 

that 𝜂 is equal to the joint distribution of 𝒕 and the random action profile 𝒂′ defined by 

𝒂𝑖
′ = 𝜎𝑖

′(𝒕𝑖,𝒎𝑖
′(𝒕)), 𝑖 ∈ 𝑁. 

 
24 The implication and other relations naturally extend to attributes that are defined by conjunction. The 
conjunction of three or more attributes is defined in the obvious way.  
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The two equalities together imply that  

𝒎(𝑡) =
𝑑

(𝜎𝑗
′(𝑡𝑗,𝒎𝑗

′(𝑡)))
𝑗∈𝑁

, 𝑡 ∈ supp(𝜂𝑇). 

By property (5) of the default mechanism, for every 𝑡 ∈ 𝑇 and 𝑖 there is some 𝑡′ with (𝑡𝑖, 𝑡−𝑖
′ ) ∈

supp(𝜂𝑇) such that (2) holds, which by (15) implies that 

𝒎𝑖(𝑡) =
𝑑

𝜎𝑖
′(𝑡𝑖,𝒎𝑖

′(𝑡𝑖, 𝑡−𝑖
′ )). 

If 𝒎′ satisfies 𝐷, then the expression on the right-hand side has a degenerate distribution, which 

proves that 𝒎 satisfies 𝐷. If 𝒎′ satisfies 𝑂̃, then the distribution of the expression on the right-

hand side is unaffected by replacing 𝑡′ with any other type profile. The equality that results from 

this replacement proves that 𝒎 also satisfies 𝑂̃. If 𝒎′ satisfies 𝐼, then for every 𝑡 ∈ supp(𝜂𝑇) 

the entries on the right-hand side of the equality in (15) are independent, and therefore (3) 

holds. Since by property (6) of the default mechanism (3) holds also for 𝑡 ∉ supp(𝜂𝑇), this 

means that 𝒎 satisfies 𝐼. ∎ 

Unfortunately, Lemma 4 cannot be extended to all attributes of CSDs. In particular, as indicated 

at the end of Section 4.2.1, the default mechanism of an 𝑂-implementable CSD does not 

necessarily have property 𝑂.  

A.1 Intrinsic characterizations 
An intrinsic characterization of an attribute of CSDs presents an alternative to the attribute’s 

original definition in terms of properties of implementing mechanisms. This subsection presents 

the proofs of the three propositions in Section 5.1 and adds to them intrinsic characterization 

for the remaining two attribute in Figure 1.  

Proof of Proposition 1. To prove the sufficiency of the two conditions, consider a CSD 𝜂, with 

default mechanism 𝒎 and default random action profile 𝒂 = 𝒎(𝒕). Suppose that (i) or (the 

stronger condition) (ii) holds. For every type profile 𝑡 ∈ supp(𝜂𝑇) and action profile 𝑎,  

Pr(𝒂 = 𝑎 ∣ 𝒕 = 𝑡 ) = Pr(𝒂1 = 𝑎1 ∣∣ 𝒂−1 = 𝑎−1, 𝒕 = 𝑡 ) Pr( 𝒂−1 = 𝑎−1 ∣∣ 𝒕 = 𝑡 ) 

   = Pr( 𝒂1 = 𝑎1 ∣∣ 𝒕1 = 𝑡1 ) Pr( 𝒂−1 = 𝑎−1 ∣∣ 𝒕 = 𝑡 ) = ⋯

= Pr(𝒂1 = 𝑎1 ∣∣ 𝒕1 = 𝑡1 ) Pr( 𝒂2 = 𝑎2 ∣∣ 𝒕2 = 𝑡2 )⋯Pr(𝒂𝑛 = 𝑎𝑛 ∣∣ 𝒕𝑛 = 𝑡𝑛 ),  

where the second equality follows from (i) (with 𝑖 = 1), and the subsequent equalities follow 

from using an identical trick for the other entries of 𝑎. Again by (i), for every player 𝑖, type 𝑡𝑖, 

action 𝑎𝑖, and type profile 𝑡′ for which (𝑡𝑖 , 𝑡−𝑖
′ ) ∈ supp(𝜂𝑇), 

Pr(𝒂𝑖 = 𝑎𝑖 ∣∣ 𝒕𝑖 = 𝑡𝑖 ) = Pr( 𝒂𝑖 = 𝑎𝑖 ∣ 𝒕 = (𝑡𝑖, 𝑡−𝑖
′ ) ) = Pr(𝒎𝑖(𝑡𝑖, 𝑡−𝑖

′ ) = 𝑎𝑖). 

It follows from property (5) of the default mechanism that the equality between the left- and 

right-hand sides continues to hold even if (𝑡𝑖 , 𝑡−𝑖
′ ) ∉ supp(𝜂𝑇). This proves that, if (ii) holds, 

then 𝒎 satisfies 𝐷. In addition, by (16), for 𝑡 ∈ supp(𝜂𝑇), 𝑎 ∈ 𝐴 and any 𝑡′ ∈ 𝑇, 

Pr(𝒂 = 𝑎 ∣ 𝒕 = 𝑡) = Pr(𝒎(𝑡) = 𝑎) = ∏Pr(𝒎𝑖(𝑡𝑖 , 𝑡−𝑖
′ ) = 𝑎𝑖)

𝑛

𝑖=1

. 

Assume, without loss of generality, that the indexing of the (finite) type space 𝑇𝑖 = ൛𝑡𝑖
1, 𝑡𝑖

2, … ൟ of 

each player 𝑖 (see Section 4.1) is such that 𝑡1 = (𝑡1
1, 𝑡2

1, … , 𝑡𝑛
1) ∈ supp(𝜂𝑇). Define a mechanism 

𝒎̅ by 

𝒎̅𝑖(𝑡) = (𝒎𝑖(𝑡𝑖
1, 𝑡−𝑖

1 ),𝒎𝑖(𝑡𝑖
2, 𝑡−𝑖

1 ), … ), 𝑖 ∈ 𝑁. 

Thus, the message that each player 𝑖 receives from 𝒎̅ is a pure strategy of the form 

(𝑎𝑖
1, 𝑎𝑖

2, … ) ∈ 𝐴𝑖
𝑇𝑖, where the 𝑗th action 𝑎𝑖

𝑗
 (𝑗 = 1,2, …) coincides with the message player 𝑖 

would receive from the default mechanism 𝒎 if his type were 𝑡𝑖
𝑗
 and the other players’ types 

were given by 𝑡−𝑖
1 . Since this description does not involve in any way the actual, realized type 

(15) 

(16) 

(17) 

(18) 
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profile, the mechanism 𝒎̅ satisfies 𝑆 and 𝑂. Clearly, it also satisfies 𝐷 if 𝒎 does the same, which, 

as shown, is the case if (ii) holds. Even if only (i) holds, 𝒎̅ satisfies 𝐼. To prove this, it has to be 

shown that for any 𝑎1
1, 𝑎1

2, … ∈ 𝐴1, 𝑎2
1, 𝑎2

2, … ∈ 𝐴2, … , 𝑎𝑛
1 , 𝑎𝑛

2 , … ∈ 𝐴𝑛, 

Pr(𝒎1(𝑡1
1, 𝑡−1

1 ) = 𝑎1
1,𝒎1(𝑡1

2, 𝑡−1
1 ) = 𝑎1

2, … ;𝒎2(𝑡2
1, 𝑡−2

1 ) = 𝑎2
1,𝒎2(𝑡2

2, 𝑡−2
1 ) = 𝑎2

2, … ;… )

= ∏Pr(𝒎𝑖(𝑡𝑖
1, 𝑡−𝑖

1 ) = 𝑎𝑖
1,𝒎𝑖(𝑡𝑖

2, 𝑡−𝑖
1 ) = 𝑎𝑖

2, … )

𝑛

𝑖=1

. 

By (4), the right-hand side is equal to  

∏∏Pr(𝒎𝑖(𝑡𝑖
𝑗
, 𝑡−𝑖

1 ) = 𝑎𝑖
𝑗
)

𝑗

𝑛

𝑖=1

 

and the left-hand side is equal to  

Pr(𝒎(𝑡1) = (𝑎1
1, 𝑎2

1, … , 𝑎𝑛
1  )) ⋅ ∏∏Pr(𝒎𝑖(𝑡𝑖

𝑗
, 𝑡−𝑖

1 ) = 𝑎𝑖
𝑗)

𝑗≠1

𝑛

𝑖=1

. 

By the second equality in (17), used with 𝑡 = 𝑡′ = 𝑡1, the last expression is equal to (20). Thus, 

the mechanism 𝒎̅ satisfies 𝐼. To prove that it implements the CSD 𝜂, define a corresponding 

correlated strategy (𝒎̅, 𝜎̅) by  

𝜎̅𝑖(𝑡𝑖
𝑗
, (𝑎𝑖

1, 𝑎𝑖
2, … )) = 𝑎𝑖

𝑗
, 𝑖 ∈ 𝑁, 𝑗 = 1,2,…. 

According to 𝜎̅𝑖, of all the entries in the message, player 𝑖 takes the one corresponding to his 

actual type. It has to be shown that for every 𝑡 ∈ supp(𝜂𝑇) and 𝑎 ∈ 𝐴,  

Pr(𝒂 = 𝑎 ∣ 𝒕 = 𝑡 )

= Pr( 𝜎̅1(𝒕1, 𝒎̅1(𝒕)) = 𝑎1, 𝜎̅2(𝒕2, 𝒎̅2(𝒕)) = 𝑎2, … , 𝜎̅𝑛(𝒕𝑛, 𝒎̅𝑛(𝒕)) = 𝑎𝑛 ∣∣ 𝒕 = 𝑡 ). 

By (17), used with 𝑡′ = 𝑡1, this equality is equivalent to 

∏Pr(𝒎𝑖(𝑡𝑖 , 𝑡−𝑖
1 ) = 𝑎𝑖)

𝑛

𝑖=1

= Pr(𝜎̅1(𝑡1, 𝒎̅1(𝑡)) = 𝑎1, 𝜎̅2(𝑡2, 𝒎̅2(𝑡)) = 𝑎2, … , 𝜎̅𝑛(𝑡𝑛, 𝒎̅𝑛(𝑡)) = 𝑎𝑛). 

By property 𝐼 of the mechanism 𝒎̅, the right-hand side is equal to  

∏Pr(𝜎̅𝑖(𝑡𝑖, 𝒎̅𝑖(𝑡)) = 𝑎𝑖)

𝑛

𝑖=1

, 

and by (18) and (21), the left-hand side is also equal to this product. Therefore, the above 

equality holds, which proves that 𝒎̅ implements 𝜂. 

It remains to prove the necessity of the two conditions. For every CSD 𝜂 there is a correlated 

strategy (𝒎, 𝜎) such that 𝜂 is the joint distribution of 𝒕 and the random action profile 𝒂 defined 

by (7). By that definition, 

Pr(𝒂𝑖 = 𝑎𝑖 ∣ 𝒕 = 𝑡) = Pr(𝜎𝑖(𝑡𝑖,𝒎𝑖(𝑡)) = 𝑎𝑖) , 𝑖 ∈ 𝑁, 𝑡 ∈ supp(𝜂𝑇) , 𝑎𝑖 ∈ 𝐴𝑖. 

Therefore, if the mechanism 𝒎 satisfies 𝐷, then the probability on the left-had side is either 0 or 

1, and if 𝒎 satisfies 𝑂̃, then  

Pr (𝒂𝑖 = 𝑎𝑖 ∣ 𝒕 = 𝑡) = Pr (𝒂𝑖 = 𝑎𝑖 ∣ 𝒕𝑖 = 𝑡𝑖), 𝑖 ∈ 𝑁, 𝑡 ∈ supp(𝜂𝑇) , 𝑎𝑖 ∈ 𝐴𝑖. 

If 𝒎 satisfies 𝐼, then for every 𝑖 ∈ 𝑁, 𝑡 ∈ supp(𝜂𝑇) and 𝑎 ∈ 𝐴 

Pr(𝒂 = 𝑎 ∣ 𝒕 = 𝑡 ) = ∏Pr(𝜎𝑗(𝑡𝑗,𝒎𝑗(𝑡)) = 𝑎𝑗)

𝑛

𝑗=1

= Pr(𝒂𝑖 = 𝑎𝑖 ∣∣ 𝒕 = 𝑡 ) Pr( 𝒂−𝑖 = 𝑎−𝑖 ∣∣ 𝒕 = 𝑡 ). 

(19) 

(20) 

(21) 

(22) 
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These equalities and the one in (22) together give  

Pr( 𝒕−𝑖 = 𝑡−𝑖, 𝒂 = 𝑎 ∣∣ 𝒕𝑖 = 𝑡𝑖 ) = Pr(𝒂 = 𝑎 ∣ 𝒕 = 𝑡 ) Pr(𝒕−𝑖 = 𝑡−𝑖|𝒕𝑖 = 𝑡𝑖)

= Pr(𝒂𝑖 = 𝑎𝑖 ∣∣ 𝒕 = 𝑡 ) Pr( 𝒂−𝑖 = 𝑎−𝑖 ∣∣ 𝒕 = 𝑡 ) Pr(𝒕−𝑖 = 𝑡−𝑖|𝒕𝑖 = 𝑡𝑖)

= Pr(𝒂𝑖 = 𝑎𝑖 ∣∣ 𝒕𝑖 = 𝑡𝑖 ) Pr( 𝒕−𝑖 = 𝑡−𝑖, 𝒂−𝑖 = 𝑎−𝑖 ∣∣ 𝒕𝑖 = 𝑡𝑖 ). 

This proves that if 𝜂 is both 𝐷- and 𝑂̃-implementable (and, a fortiori, if it is 𝑆, 𝑂, 𝐷-

implementable), then (ii) holds, and if 𝜂 is 𝑂̃- and 𝐼-implementable (and, a fortiori, if it is 𝑆, 𝑂, 𝐼-

implementable), then (i) holds. ∎ 

Proof of Proposition 2. To prove the sufficiency of the condition, suppose that a measure 𝜇 

satisfying (14) exists for a CSD 𝜂. Restrict 𝜇 to its support 𝑅, and let the random variable 𝒓 be the 

identity map on 𝑅. By construction, 𝒓 is independent of the random type profile 𝒕. Define a 

mechanism 𝒎 by 

𝒎𝑖(𝑡) = 𝒓, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇. 

This mechanism clearly has properties 𝑆 and 𝑂. The message space of each player is 𝑅, each 

element 𝑟 of which is a pure-strategy profile (𝑎1
1, 𝑎1

2, … ; 𝑎2
1, 𝑎2

2, … ;… ; 𝑎𝑛
1 , 𝑎𝑛

2 , … ) (where, for 

each 𝑖 and 𝑗, 𝑎𝑖
𝑗
 is the action prescribed to player 𝑖’s 𝑗th type). Define a correlated strategy 

(𝒎, 𝜎) with this mechanism by  

𝜎𝑖(𝑡𝑖
𝑗
, 𝑟) = 𝑎𝑖

𝑗
, 𝑖 ∈ 𝑁, 𝑗 = 1,2, …. 

Strategy 𝜎𝑖 simply instructs player 𝑖 to take the action that his strategy prolife prescribes to his 

actual type. It has to be shown that the joint distribution of 𝒕 and the random action profile 𝒂 

corresponding to this correlated strategy is equal to 𝜂. By (14), this equality is equivalent to  

Pr(𝒂 = 𝑎 ∣ 𝒕 = 𝑡) = 𝜇𝑡({𝑎}), 𝑡 ∈ supp(𝜂𝑇) , 𝑎 ∈ 𝐴. 

By (7) and (23), for any type profile 𝑡 = (𝑡1
𝑗1 , 𝑡2

𝑗2 , … , 𝑡𝑛
𝑗𝑛) 

Pr(𝒂 = 𝑎 ∣ 𝒕 = 𝑡) = Pr((𝜎1(𝑡1
𝑗1 , 𝒓), 𝜎2(𝑡2

𝑗2 , 𝒓), … , 𝜎𝑛(𝑡𝑛
𝑗𝑛 , 𝒓)) = 𝑎). 

By (24) and the definition of 𝒓, the right-hand side is the 𝜇-measure of the set of all pure-

strategy profiles (𝑎1
1, 𝑎1

2, … ; 𝑎2
1, 𝑎2

2, … ;… ; 𝑎𝑛
1 , 𝑎𝑛

2 , … ) such that (𝑎1
𝑗1 , 𝑎2

𝑗2 , … , 𝑎𝑛
𝑗𝑛) = 𝑎, which by 

definition is equal to 𝜇𝑡({𝑎}). Thus, (25) holds, so that 𝒎 implements the CSD 𝜂. 

To prove the necessity of the condition, consider a CSD 𝜂 that is equal to the joint distribution of 

a pair of random variables 𝒕 and 𝒂 such that (7) holds for some correlated strategy (𝒎, 𝜎) with a 

mechanism that satisfies 𝑂. It has to be shows that there is a probability measure 𝜇 such that 

(14), or equivalently (25), holds. Fix a type profile 𝑡′. The random variable  

(𝜎1(𝑡1
1,𝒎1(𝑡1

1, 𝑡−1
′ )), 𝜎1(𝑡1

2,𝒎1(𝑡1
2, 𝑡−1

′ )),… ; 𝜎2(𝑡2
1,𝒎2(𝑡2

1, 𝑡−2
′ )), 𝜎2(𝑡2

2,𝒎2(𝑡2
2, 𝑡−2

′ )),… ;… ) 

returns values in 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯× 𝐴𝑛
𝑇𝑛, i.e., pure-strategy profiles. Its distribution 𝜇 is given by  

𝜇({(𝑎1
1, 𝑎1

2, … ; 𝑎2
1, 𝑎2

2, … ;… )}) = Pr(𝜎1(𝑡1
1,𝒎1(𝑡1

1, 𝑡−1
′ )) = 𝑎1

1, 𝜎1(𝑡1
2,𝒎1(𝑡1

2, 𝑡−1
′ ))

= 𝑎1
2, … ; 𝜎2(𝑡2

1,𝒎2(𝑡2
1, 𝑡−2

′ )) = 𝑎2
1, 𝜎2(𝑡2

2,𝒎2(𝑡2
2, 𝑡−2

′ )) = 𝑎2
2, … ;… ). 

For every type profile 𝑡 = (𝑡1
𝑗1 , 𝑡2

𝑗2 , … , 𝑡𝑛
𝑗𝑛) ∈ supp(𝜂𝑇) and action profile 𝑎 = (𝑎1, 𝑎2, … 𝑎𝑛), 

𝜇 ({ (𝑎1
1, 𝑎1

2, … ; 𝑎2
1, 𝑎2

2, … ;… ; 𝑎𝑛
1 , 𝑎𝑛

2 , … ) ∈ 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯× 𝐴𝑛
𝑇𝑛

∣∣ (𝑎1
𝑗1 , 𝑎2

𝑗2 , … , 𝑎𝑛
𝑗𝑛) = 𝑎 })

= Pr(𝜎1(𝑡1
𝑗1 ,𝒎1(𝑡1

𝑗1 , 𝑡−1
′ )) = 𝑎1, 𝜎2(𝑡2

𝑗2 ,𝒎2(𝑡2
𝑗2 , 𝑡−2

′ )) = 𝑎2, … )

= Pr( 𝒂 = 𝑎 ∣ 𝒕 = 𝑡 ), 

where the second equality uses (7) and the assumption that 𝒎 has property 𝑂. Thus, (25) holds, 

as had to be shown. ∎ 

Proof of Proposition 3. In view of Lemma 4, it suffices to show that the default mechanism 𝒎 of 

a CSD 𝜂 has property 𝑂̃ if and only if the condition that defines the conditional independence 

(23) 

(24) 

(25) 
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property (Definition 3) holds for the default random action profile 𝒂 = 𝒎(𝒕). That condition can 

be presented as follows: for every player 𝑖 and type 𝑡𝑖 for that player and all type profiles 𝑡′ and 

𝑡′′ with (𝑡𝑖 , 𝑡−𝑖
′ ), (𝑡𝑖, 𝑡−𝑖

′′ ) ∈ supp(𝜂𝑇), 

Pr( 𝒂𝑖 = 𝑎𝑖 ∣ 𝒕 = (𝑡𝑖, 𝑡−𝑖
′ ) ) = Pr( 𝒂𝑖 = 𝑎𝑖 ∣ 𝒕 = (𝑡𝑖, 𝑡−𝑖

′′ ) ) , 𝑎𝑖 ∈ 𝐴𝑖 . 

Since 𝒂 = 𝒎(𝒕), (26) is equivalent to 

𝒎𝑖(𝑡𝑖, 𝑡−𝑖
′ ) =

𝑑
𝒎𝑖(𝑡𝑖, 𝑡−𝑖

′′ ). 

It follows from property (5) of the default mechanism that (27) holds for all type profiles 𝑡′ and 

𝑡′′ with (𝑡𝑖 , 𝑡−𝑖
′ ), (𝑡𝑖, 𝑡−𝑖

′′ ) ∈ supp(𝜂𝑇) if and only if it holds for all 𝑡′, 𝑡′′ ∈ 𝑇. This is so for every 

player 𝑖 and type 𝑡𝑖 if and only if 𝒎 has property 𝑂̃. ∎ 

Proposition 4. A CSD 𝜂 is 𝐼-implementable if and only if the following holds for some 

(equivalently, every) random variable 𝒂 = (𝒂1, 𝒂2, … , 𝒂𝑛) such that the joint distribution of 𝒕 

and 𝒂 is equal to 𝜂: 

(i) 𝒂1, 𝒂2, … , 𝒂𝑛 are conditionally independent, given 𝒕.  

A CSD is 𝐷-implementable if and only if it satisfies the stronger condition in which (i) is replaced 

by: 

(ii) The conditional distribution of 𝒂 given 𝒕 is degenerate. 

Proof. In view of Lemma 4, it suffices to show that the default mechanism 𝒎 of 𝜂 has property 𝐼 

or 𝐷 if and only if (i) or (ii), respectively, holds for the default random action profile 𝒂 = 𝒎(𝒕). 

In other words, the condition that 𝒎(𝑡) satisfies (3) or the condition that its distribution is 

degenerate holds for all type profiles 𝑡 if and only if the condition holds for 𝑡 ∈ supp(𝜂𝑇). These 

equivalences are implied by properties (6) and (5), respectively, of the default mechanism.        ∎ 

A.2 Equivalences 
This subsection identifies a number of equivalent formulations for various attributes of CSDs. 

The first result establishes the irrelevance in the present context of the properties of 

mechanisms that concern the connections between the messages they send to a player and the 

player’s own type, namely, properties 𝑆 and 𝑆̃.  

Proposition 5. For CSDs, {𝑆} ⇔ {𝑆̃} ⇔ { }, {𝑆, 𝑂̃} ⇔ {𝑆̃, 𝑂̃} ⇔ {𝑂̃}, {𝑆, 𝑂} ⇔ {𝑆̃, 𝑂} ⇔ {𝑂}, 

{𝑆, 𝐼} ⇔ {𝑆̃, 𝐼} ⇔ {𝐼} and {𝑆, 𝐷} ⇔ {𝑆̃, 𝐷} ⇔ {𝐷}.  

Proof. Property 𝑆 of mechanisms implies 𝑆̃, and therefore {𝑆} ⇒ {𝑆̃} ⇒ { }. Hence, to prove that 

the three attributes are equivalent it suffices to show that every CSD is 𝑆-implementable.  

Consider the default mechanism 𝒎 of a CSD 𝜂. That mechanism does not necessarily have 

property 𝑆 (see Section 4.2.1). A mechanism 𝒎⃗⃗⃗  that does have that property is defined by 

𝒎⃗⃗⃗ 𝑖(𝑡) = (𝒎𝑖(𝑡𝑖
1, 𝑡−𝑖),𝒎𝑖(𝑡𝑖

2, 𝑡−𝑖), … ), 𝑖 ∈ 𝑁. 

This mechanism is similar to that defined in (18) in that the message that each player receives is 

a pure strategy, but differs from it in that the partial type profile on the right-hand side is 𝑡−𝑖 

rather than the constant one 𝑡−𝑖
1 . Therefore, the mechanism 𝒎⃗⃗⃗  satisfies 𝑆 but not 𝑂. To prove 

that it implements 𝜂, it only needs to be noted that the random action profile of the correlated 

strategy (𝒎⃗⃗⃗ , 𝜎̅), with 𝜎̅ defined by (21), coincides with the default one:  

𝜎̅𝑖(𝒕𝑖, 𝒎⃗⃗⃗ 𝑖(𝒕)) = 𝒎𝑖(𝒕), 𝑖 ∈ 𝑁. 

The proofs that {𝑆, 𝑂̃} ⇔ {𝑆̃, 𝑂̃} ⇔ {𝑂̃}, {𝑆, 𝐼} ⇔ {𝑆̃, 𝐼} ⇔ {𝐼} and {𝑆, 𝐷} ⇔ {𝑆̃, 𝐷} ⇔ {𝐷} 

are very similar, and only require the following additions to the above proof.  

If the CSD 𝜂 is 𝑂̃-, 𝐼- or 𝐷-implementable, then by Lemma 4 the default mechanism 𝒎 has 

property 𝑂̃, 𝐼 or 𝐷, respectively. It has to be shown that the mechanism 𝒎⃗⃗⃗  also has the same 

(26) 

(27) 

(28) 

(29) 
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property, in addition to 𝑆. When 𝒎 satisfies 𝑂̃, for every player 𝑖 and type profiles 𝑡′ and 𝑡′′ the 

equality (27) holds for all types 𝑡𝑖, which by (4) implies that 

(𝒎𝑖(𝑡𝑖
1, 𝑡−𝑖

′ ),𝒎𝑖(𝑡𝑖
2, 𝑡−𝑖

′ ), … ) =
𝑑

(𝒎𝑖(𝑡𝑖
1, 𝑡−𝑖

′′ ),𝒎𝑖(𝑡𝑖
2, 𝑡−𝑖

′′ ), … ). 

Thus, 𝒎⃗⃗⃗  has property 𝑂̃. When 𝒎 satisfies 𝐼 or 𝐷, (4) implies that the random variables  

൛𝒎𝑗(𝑡)ൟ𝑗∈𝑁,𝑡∈𝑇
 

are independent or have degenerate distributions, respectively. It follows that the same is true, 

for every type profile 𝑡, for the 𝑛 random variables 

൛𝒎⃗⃗⃗ 𝑗(𝑡)ൟ𝑗∈𝑁
 , 

each of which is a vector whose entries are a subset of the random variables in (30), such that 

these 𝑛 subsets are disjoint. Thus, the mechanism 𝒎⃗⃗⃗  satisfies 𝐼 or 𝐷, respectively.  

To prove that {𝑆, 𝑂} ⇔ {𝑆̃, 𝑂} ⇔ {𝑂}, it suffices to show that {𝑂} ⇒ {𝑆, 𝑂}. This is shown in the 

proof of Proposition 2, where it is proved that the existence of a measure 𝜇 as in that 

proposition, which is implied by 𝑂-implementability, in turn implies 𝑆, 𝑂-implementability.      ∎ 

Proposition 6. For CSDs, {𝑆, 𝑂, 𝐼} ⇔ {𝑆̃, 𝑂, 𝐼} ⇔ {𝑆, 𝑂̃, 𝐼} ⇔ {𝑆̃, 𝑂̃, 𝐼} ⇔ {𝑂, 𝐼} ⇔ {𝑂̃, 𝐼} ⇔

({𝑂̃} ∧ {𝐼}) and {𝑆, 𝑂, 𝐷} ⇔ {𝑆̃, 𝑂, 𝐷} ⇔ {𝑆, 𝑂̃, 𝐷} ⇔ {𝑆̃, 𝑂̃, 𝐷} ⇔ {𝑂,𝐷} ⇔ {𝑂̃, 𝐷} ⇔

({𝑂̃} ∧ {𝐷}). 

Proof. It clearly suffices to show that ({𝑂̃} ∧ {𝐼}) ⇒ {𝑆, 𝑂, 𝐼} and ({𝑂̃} ∧ {𝐷}) ⇒ {𝑆, 𝑂, 𝐷}. As 

shown in the last part of the proof of Proposition 1, every CSD 𝜂 that is both 𝑂̃- and 𝐼-

implementable, or both 𝑂̃- and 𝐷-implementable, is the joint distribution of 𝒕 and some random 

variable 𝒂 that satisfies condition (i) or (ii), respectively, in Proposition 1. Therefore, by that 

proposition, in the first case 𝜂 is also 𝑆, 𝑂, 𝐼-implementable, and in the second, it is 𝑆, 𝑂, 𝐷-

implementable.  ∎ 

A.3 Implications 
Propositions 5 and 6 identify seven attributes of correlated strategy distributions that are 

defined (in several equivalent ways) by subsets of the six fundamental properties of 

mechanisms. Figure 1 shows these attributes as well as certain trivial implications between 

them, which all follow immediately from relations between properties of mechanisms. To prove 

that the figure presents a complete picture of the implication relations between attributes of 

CSDs, it remains to prove that implications additional to those shown do not hold, so that, in 

particular, none of the seven attributes is equivalent to another. For this, the following four 

propositions are required. 

Proposition 7. For CSDs, {𝑆, 𝑂, 𝐼} ⇏ {𝐷}. 

Proof. It suffices to consider any complete information game (that is, a game where every player 

has only one type) with a mixed-strategy profile that is not pure.  ∎ 

Proposition 8. For CSDs, {𝑆, 𝐷} ⇏ {𝑂̃}. 

Proof. In a two-player Bayesian game in which player 1 has a single type and two actions and 

player 2 has a single action and two types, consider a correlated strategy distribution in which 

player 1 takes his first or second action if player 2 is of the first or second type, respectively. This 

CSD is implementable by mechanism that simply tells player 1 the type of player 2, and thus 

satisfies 𝑆 and 𝐷. However, the CSD is not 𝑂̃-implementable, since a mechanism with property 𝑂̃ 

cannot possibly provide player 1 with any information about player 2’s type. ∎ 

Proposition 9. For CSDs, {𝑂̃} ⇏ {𝑂}.  

Proof. By Example 1, there exists a CSD that has the conditional independence property but is 

not 𝑂-implementable. By Proposition 3, that CSD is 𝑂̃-implementable. ∎ 

(30) 
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Proposition 10. For CSDs, {𝑆, 𝑂} ⇏ {𝐼}. 

Proof. In a complete information game, properties 𝑆 and 𝑂 automatically hold for every 

mechanism, but a CSD is 𝐼-implementable only if the players’ actions are independent. ∎ 

Proposition 7 proves that attribute VI only implies the other attributes in Figure 1 that the 

diagram indicates it implies (in other words, it does not imply III or VII). Proposition 8 proves the 

same for attribute III. These two results prove that attribute II (which is implied by both III and 

VI) only implies attribute I, and therefore the latter does not imply IV. Proposition 9 proves that 

IV does not imply V. Proposition 10 proves that attribute V only implies the (two) attributes that 

the diagram indicates it implies, which establishes the same for attribute IV and for attribute I. 

Since, for mechanisms, property 𝑆 implies 𝑆̃, property 𝑂 implies 𝑂̃, and 𝐷 implies 𝐼, there are 

only 27 relevant subsets of {𝑆, 𝑆̃, 𝑂, 𝑂̃, 𝐷, 𝐼}, which all appear in Figure 1. Therefore, there are no 

additional attributes of CSDs that can be described by single subsets of the six fundamental 

properties of mechanisms. The following lemma shows that the same is true for pairs (hence 

also triplets, etc.) of sets of properties of mechanisms: no additional attributes of CSDs can be 

defined by them. This is because, if a CSD is implementable both by a mechanism with one set of 

properties and by a mechanism with a second set of properties, then it is implementable by a 

single mechanism that has all the properties of the other two. 

Lemma 5. For CSDs, for every two subsets 𝒫,𝒬 ⊆ {𝑆, 𝑆̃, 𝑂, 𝑂̃, 𝐷, 𝐼},  

(𝒫 ∧ 𝒬) ⇔ 𝒫 ∪ 𝒬. 

Proof (an outline). Proposition 6 proves the two cases of (31) in which 𝒫 = {𝑂̃} and 𝒬 is {𝐼} 

or {𝐷}. By inspection of Figure 1, every other case follows from one of these two. ∎ 

It is shown in Section B.3 below that for correlated equilibrium distributions a similar result to 

Lemma 5 does not hold. In other words, the requirement of incentive compatibility may 

invalidate the equivalence (31).  

Appendix B Correlated Equilibrium Distributions 
The analysis of correlated strategy distributions in the previous appendix is a first step in the 

analysis of correlated equilibrium distributions. The former concerns qualitative differences 

between distributions that reflect the limitations of the implementing mechanisms. The latter 

also incorporates the constraints inherent in the incentive compatibility requirement. Whereas 

in the case of CSDs the limiting factor is the mechanism’s ability to transmit information to 

players (about the other players’ types and outside random events), in the case of CEDs its 

ability to do so selectively also comes into play.  

As for CSDs, each subset 𝒫 of the six fundamental properties of mechanisms defines an 

attribute of correlated strategy distributions, namely, 𝒫-implementability. A CED has this 

attribute if there is some mechanism with all the properties in 𝒫 that implements it. However, in 

the present context, implementability has a different meaning than for CSDs. Namely, the 

correlated strategy involved is required to be a correlated equilibrium. Thus, an expression like 

𝒫 ⇒ 𝒬 has a different meaning for CSDs and CEDs. Wherever confusion is possible, the generic 

implication sign may be replaced by the more explicit one ⇒
CSD

 or ⇒
CED

. As the following 

proposition shows, the second relation is in a sense stronger than the first one. 

Proposition 11. For every two subsets 𝒫,𝒬 ⊆ {𝑆, 𝑆̃, 𝑂, 𝑂̃, 𝐷, 𝐼}, 

𝒫 ⇒
CED

𝒬  implies  𝒫 ⇒
CSD

𝒬. 

The same is moreover true with 𝒫 replaced by by 𝒫′ ∧ 𝒫″ ∧ ⋯, for any list 𝒫′, 𝒫″, … of subsets 

of {𝑆, 𝑆̃, 𝑂, 𝑂̃, 𝑉, 𝐼}. 

(31) 

(32) 
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Proof. It has to be shown that (i) 𝒫 ⇒
CED

𝒬 and (ii) 𝒫 ⇏
CSD

𝒬 are contradictory. Condition (i) means 

that, in every Bayesian game, every 𝒫-implementable CED is also 𝒬-implementable. Condition 

(ii) means that there is some CSD in some Bayesian game that is 𝒫- but not 𝒬-implementable. 

Without loss of generality, the payoff functions in that game (which are irrelevant for CSD 

implementability) are identically zero. However, this means that every correlated strategy in the 

game is a correlated equilibrium and vice versa, which contradicts (i). 

The same argument applies virtually unchanged also to the more general version in which 𝒫 is 

replaced by 𝒫′ ∧ 𝒫″ ∧ ⋯. ∎ 

The converse of (32) does not generally hold. Consequently, not all attributes of CEDs that can 

be described in terms of the six fundamental properties of mechanisms correspond to attributes 

of CSDs. In other words, the former are not simply the restrictions of the latter to correlated 

equilibrium distributions. Rather, restriction is followed by refinement, which gives rise to 

additional attributes.  

Some of the attributes of CEDs, including the majority of those inherited from CSDs, are 

presented in the following subsection. The subsequent subsection describes additional 

attributes, by specifically identifying instances in which the converse of (32) does not hold. The 

last subsection completes the description of the implication relation ⇒
CED

 (henceforth written 

simply as ⇒) by considering implications involving conjunctions of attributes of CEDs.  

B.1 Equivalences 
The following propositions identify equivalent formulations for several attributes of CEDs. 

Proposition 12. For CEDs, {𝑆, 𝑂̃} ⇔ {𝑆̃, 𝑂̃} ⇔ {𝑂̃}. 

Proof. In view of Lemma 4, it suffices to show that if the default mechanism 𝒎 of a CED 𝜂 has 

property 𝑂̃, then the correlated strategy (𝒎⃗⃗⃗ , 𝜎̅) defined in the proof of Proposition 5 is a 

correlated equilibrium. As shown in that proof, if the default mechanism satisfies 𝑂̃ (or 𝐼 or 𝐷), 

then 𝒎⃗⃗⃗  satisfies both 𝑆 and 𝑂̃ (or 𝐼 or 𝐷, respectively).  

By Lemma 3, the default random action profile 𝒂 = 𝒎(𝒕) satisfies (11). By (29) and the 

definition of correlated equilibrium (Definition 1), (𝒎⃗⃗⃗ , 𝜎̅) is a correlated equilibrium if and only if  

𝐸(𝑢𝑖(𝒕, 𝒂) − 𝑢𝑖(𝒕, (𝑎𝑖
′, 𝒂−𝑖)) ∣ 𝒕𝑖, 𝒎⃗⃗⃗ 𝑖(𝒕)) ≥ 0, 𝑖 ∈ 𝑁, 𝑎𝑖

′ ∈ 𝐴𝑖. 

It follows that the latter condition holds if the conditional expectations in (11) and (33) are 

equal. The formal difference between the former and the latter is that player 𝑖’s action 𝒂𝑖, 

which coincides with the message 𝒎𝑖(𝒕) he receives from the default mechanism, is replaced by 

𝒎⃗⃗⃗ 𝑖(𝒕), which by (28) also specifies the messages the player would receive if his type were 

different. Therefore, the meaning of the above equality is that these messages do not provide 

player 𝑖 with any information that he could use for choosing a better action.  

Since 𝒂 = 𝒎(𝒕), if the conditional expectations in (11) and (33) are not equal, then by (28) there 

is some type of player 𝑖, say the first one 𝑡𝑖
1, and some messages 𝑚𝑖

1, 𝑚𝑖
2, … such that  

𝐸(𝑢𝑖(𝒕,𝒎(𝑡𝑖
1, 𝒕−𝑖)) − 𝑢𝑖(𝒕, (𝑎𝑖

′,𝒎−𝑖(𝑡𝑖
1, 𝒕−𝑖))) ∣ 𝒕𝑖 = 𝑡𝑖

1,𝒎𝑖(𝑡𝑖
1, 𝒕−𝑖) = 𝑚𝑖

1 )

≠ 𝐸(𝑢𝑖(𝒕,𝒎(𝑡𝑖
1, 𝒕−𝑖)) − 𝑢𝑖(𝒕, (𝑎𝑖

′,𝒎−𝑖(𝑡𝑖
1, 𝒕−𝑖))) ∣ 𝒕𝑖 = 𝑡𝑖

1,𝒎𝑖(𝑡𝑖
1, 𝒕−𝑖) = 𝑚𝑖

1,𝒎𝑖(𝑡𝑖
2, 𝒕−𝑖) = 𝑚𝑖

2, … ). 

The inequality implies that the pair of random variables 𝒕 and 𝒎(𝑡𝑖
1, 𝒕−𝑖) is not independent of 

𝒎𝑖(𝑡𝑖
2, 𝒕−𝑖),𝒎𝑖(𝑡𝑖

3, 𝒕−𝑖), …. However, if the default mechanism 𝒎 has property 𝑂̃, then it 

follows from (4) that such independence does in fact hold, so that the above inequality cannot 

hold, which proves that (𝒎⃗⃗⃗ , 𝜎̅) is a correlated equilibrium. ∎ 

Proposition 13. For CEDs, {𝑆̃, 𝑂} ⇔ {𝑂}. 

Proof. Let (𝒎, 𝜎) be a correlated equilibrium with a mechanism that satisfies 𝑂. It has to be 

shown that there is some correlated equilibrium (𝒎̂, 𝜎̂) with a mechanism that satisfies 𝑆̃ and 𝑂 

such that the two correlated equilibria have identical CEDs.  

(33) 



35 

The construction of (𝒎̂, 𝜎̂) is based on the idea of encoding the messages that the mechanism 

𝒎 sends to the players in a particular manner. Suppose, without loss of generality, that these 

messages are integers, more specifically, that the message space 𝑀𝑖 of each player 𝑖 consists of 

all integers between 1 and some number 𝐾𝑖. Since property 𝑂 of the mechanism implies 𝑂̃, the 

(random) message 𝒎𝑖(𝑡) that player 𝑖 receives has a distribution function 𝐹𝑖,𝑡𝑖 that only 

depends on the player’s own type 𝑡𝑖. That is, for any 𝑡−𝑖, 

𝐹𝑖,𝑡𝑖
(𝑠) = Pr(𝒎𝑖(𝑡𝑖, 𝑡−𝑖) ≤ 𝑠) , −∞ < 𝑠 < ∞.  

The mechanism 𝒎̂ combines the message 𝒎𝑖(𝑡) with a random variable 𝒓 that is uniformly 

distributed on the half-open interval (0,1] and is independent of 𝒎. (The assumption of uniform 

distribution is actually inconsistent with the definition of random variable in footnote 4, which 

requires a finite probability space. However, this assumption is only temporary; it is removed in 

the last part of the proof.) Specifically, for every player 𝑖 and type profile 𝑡, 

𝒎̂𝑖(𝑡) = 𝒓 𝐹𝑖,𝑡𝑖
(𝒎𝑖(𝑡)) + (1 − 𝒓)𝐹𝑖,𝑡𝑖

(𝒎𝑖(𝑡) − 1). 

It is not difficult to see that 𝒎̂𝑖(𝑡) is uniformly distributed on the unit interval. Therefore, the 

mechanism 𝒎̂ satisfies 𝑆̃ as well as 𝑂.  

The next step is to define a strategy 𝜎̂𝑖 for each player 𝑖 by 𝜎̂𝑖(𝑡𝑖, 𝑚̂𝑖) = 𝜎𝑖(𝑡𝑖, 𝜓𝑖(𝑡𝑖 , 𝑚̂𝑖)), where 

𝜓𝑖 is a function that “decodes” the message 𝒎̂𝑖(𝑡) and recovers the original message 𝒎𝑖(𝑡): 

𝜓𝑖(𝑡𝑖 , 𝑥) = min൛𝑚𝑖 ∈ 𝑀𝑖 ∣∣ 𝐹𝑖,𝑡𝑖
(𝑚𝑖) ≥ 𝑥 ൟ. 

By virtue of this decoding, 𝜎̂𝑖 always specifies the same action as 𝜎𝑖. Since, in addition, the 

messages that the players receive from the mechanism 𝒎̂ convey precisely the same 

information about the other players’ types and actions as those from 𝒎, this proves that (𝒎̂, 𝜎̂), 

like (𝒎, 𝜎), is a correlated equilibrium.  

The above construction does not strictly conforms to the definition of mechanism since the 

message spaces in 𝒎̂ are infinite. This problem may be overcome by replacing the uniformly-

distributed random variable 𝒓 with one that has only finitely many possible values, specifically, a 

random variable of the form 𝜇(𝒓), where 𝜇 is a real-valued function with a finite range. The first 

step is to consider the (finite) set  

𝑋 = ൛𝐹𝑖,𝑡𝑖
(𝑚𝑖)ൟ𝑖,𝑡𝑖,𝑚𝑖

 

of all values that may appear in the first term in (34). The next step is to modify the definition of 

the mechanism 𝒎̂ by changing the message that it sends to each player 𝑖 from 𝒎̂𝑖(𝑡) (which is 

defined by (34)) to 𝜆(𝒎̂𝑖(𝑡)), where 𝜆: [0,1] → [0,1] is the non-decreasing left continuous 

function defined by 𝜆(𝑥) = min({ 𝑥′ ∈ 𝑋 ∣ 𝑥′ ≥ 𝑥 }). This change is inconsequential. Since 

always 𝒎̂𝑖(𝑡) ≤ 𝜆(𝒎̂𝑖(𝑡)) ≤ 𝐹𝑖,𝑡𝑖
(𝒎𝑖(𝑡)), applying the decoder 𝜓𝑖 to the modified message 

𝜆(𝒎̂𝑖(𝑡)) still recovers 𝒎𝑖(𝑡). Let the function 𝜇: (0,1] → (0,1] be defined by  

𝜇(𝑟) = max{0 < 𝑟′ ≤ 1

∣
∣
∣
∣
∣ 𝜆(𝑟′ 𝐹𝑖,𝑡𝑖

(𝑚𝑖) + (1 − 𝑟′)𝐹𝑖,𝑡𝑖
(𝑚𝑖 − 1))

= 𝜆(𝑟 𝐹𝑖,𝑡𝑖
(𝑚𝑖) + (1 − 𝑟)𝐹𝑖,𝑡𝑖

(𝑚𝑖 − 1)) 

for all 𝑖, 𝑡𝑖 , 𝑚𝑖

}. 

It is not difficult to see that the function 𝜇 is well defined and, as required, has only finitely many 

possible values. The final step is to replace 𝒓 in (34) with 𝜇(𝒓). By definition of 𝜇, this 

replacement does not change the message 𝜆(𝒎̂𝑖(𝑡)). ∎ 

Proposition 14. For CEDs, {𝑆, 𝐼} ⇔ {𝑆̃, 𝐼} and {𝑆, 𝐷} ⇔ {𝑆̃, 𝐷}.  

Proof. To prove that {𝑆̃, 𝐼} ⇒ {𝑆, 𝐼}, it has to be shown that every CED implementable by a 

mechanism 𝒎 with properties 𝑆̃ and 𝐼 is also implementable by a mechanism with properties 𝑆 

and 𝐼.  

Property 𝑆̃ of 𝒎 means that for every type profile 𝑡 and player 𝑖 the distribution of 𝒎𝑖(𝑡) does 

(34) 



36 

not change when only player 𝑖’s type 𝑡𝑖 changes. In other words, the distribution only depends 

on 𝑖 and on the partial type profile 𝑡−𝑖. Therefore, it is possible to construct a family ൛𝒓𝑖,𝑡−𝑖ൟ
𝑖,𝑡−𝑖

 

of independent random variables, indexed by the players and partial type profiles, such that 

each entry 𝒓𝑖,𝑡−𝑖 has the distribution described above. Define a mechanism 𝒎̃ by 

𝒎̃(𝑡) = (𝒓1,𝑡−1 , 𝒓2,𝑡−2 , … , 𝒓𝑛,𝑡−𝑛), 𝑡 ∈  𝑇. 

Thus, 

𝒎̃𝑖(𝑡) =
𝑑

𝒎𝑖(𝑡), 𝑖 ∈ 𝑁, 𝑡 ∈  𝑇. 

The mechanism 𝒎̃ has properties 𝑆 and 𝐼 by construction. Since 𝒎 also has property 𝐼, it follows 

from (35) that  

𝒎̃(𝑡) =
𝑑

𝒎(𝑡), 𝑡 ∈ 𝑇. 

It is not difficult to see that any correlated strategy of the form (𝒎, 𝜎) is a correlated 

equilibrium if and only if this is so for (𝒎̃, 𝜎). Therefore, the two mechanisms implement 

precisely the same CEDs.  

An almost identical proof shows that {𝑆̃, 𝐷} ⇒ {𝑆, 𝐷}. The only required change it to assume 

that the mechanism 𝒎 has properties 𝑆̃ and 𝐷. This assumption implies that for every 𝑡 the 

distribution of 𝒎(𝑡) is degenerate, which by (36) implies the same for 𝒎̃(𝑡). Thus, 𝒎̃ satisfies 𝐷.

 ∎ 

Proposition 15. For CEDs, {𝑆, 𝑂, 𝐼} ⇔ {𝑆̃, 𝑂, 𝐼} ⇔ {𝑆, 𝑂̃, 𝐼} ⇔ {𝑆̃, 𝑂̃, 𝐼} ⇔ {𝑂, 𝐼} ⇔ {𝑂̃, 𝐼} ⇔

({𝑂̃} ∧ {𝐼}) and {𝑆, 𝑂, 𝐷} ⇔ {𝑆̃, 𝑂, 𝐷} ⇔ {𝑆, 𝑂̃, 𝐷} ⇔ {𝑆̃, 𝑂̃, 𝐷} ⇔ {𝑂,𝐷} ⇔ {𝑂̃, 𝐷} ⇔

({𝑂̃} ∧ {𝐷}). 

Proof. In view of Lemma 4, it suffices to show that every CED 𝜂 whose default mechanism 𝒎 has 

property 𝑂̃ and, in addition, property 𝐼 or 𝐷 is 𝑆, 𝑂, 𝐼- or 𝑆, 𝑂, 𝐷-implementable, respectively. It 

is shown by Proposition 6 that such a CED is indeed thus implementable as a CSD. The proof of 

that proposition refers to the proof of Proposition 1, where it is shown that the mechanism 𝒎̅ 

defined by (18) has the required three properties, and the correlated strategy (𝒎̅, 𝜎̅), where 𝜎̅ is 

defined in (21), has the distribution 𝜂. Therefore, it only remains to show that (𝒎̅, 𝜎̅) is in fact a 

correlated equilibrium.  

As shown in proof of Proposition 12, the mechanism 𝒎⃗⃗⃗  defined by (28) satisfies 𝑂̃ and 𝐼, and the 

correlated strategy (𝒎⃗⃗⃗ , 𝜎̅) is a correlated equilibrium. Therefore, it suffices to prove that  

𝒎̅(𝑡) =
𝑑

𝒎⃗⃗⃗ (𝑡), 𝑡 ∈ 𝑇. 

Since both mechanisms satisfy 𝐼 and 𝑂̃, (37) is equivalent to  

𝒎̅𝑖(𝑡𝑖, 𝑡−𝑖
1 ) =

𝑑
𝒎⃗⃗⃗ 𝑖(𝑡𝑖, 𝑡−𝑖

1 ), 𝑖 ∈ 𝑁 , 𝑡𝑖 ∈ 𝑇𝑖. 

This condition holds by definition of the two mechanisms. ∎ 

B.2 Implications  
By Proposition 11, an implication relation that does not hold for CSDs also does not hold for 

CEDs. Therefore, an immediate corollary of Propositions 7, 8, 9 and 10 is the following result. 

Proposition 16. For CEDs, {𝑆, 𝑂, 𝐼} ⇏ {𝐷}, {𝑆, 𝐷} ⇏ {𝑂̃}, {𝑂̃} ⇏ {𝑂} and {𝑆, 𝑂} ⇏ {𝐼}.  

The next three propositions identify implication relations that do hold for CSDs but do not hold 

for CEDs. 

Proposition 17. For CEDs, {𝐷} ⇏ {𝑆̃}.  

Proof. This is demonstrated by Example 2. ∎ 

(35) 

(36) 

(37) 
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Proposition 18. For CEDs, {𝑆̃} ⇏ {𝑆}.  

Proof. This is demonstrated by Example 3. ∎ 

Proposition 19. For CEDs, {𝑆̃, 𝑂} ⇏ {𝑆, 𝑂}. 

Proof. This is demonstrated by Example 5. ∎  

Propositions 12, 13, 14 and 15 identify six attributes of correlated equilibrium distributions that 

are defined by subsets of the fundamental properties of mechanisms. These attributes plus 𝑆-

implementability are shown in Figure 2 as attributes Ia, IIa, IIIa, IV, V, VI and VII. The implication 

relations that are specified by the Hasse diagram among these attributes all hold trivially since 

they follow immediately from relations between properties of mechanisms. It follows from 

Proposition 16 that additional implications among the seven attributes do not hold, and in 

particular, none of them is equivalent to any of the others. (The more detailed argument given 

in Section A.3 also applies here, mutatis mutandis.) Three more attributes are defined by { }, {𝑆̃} 

and {𝐷} (I, Ib and III in Figure 2). The implication relations shown in Figure 2 among these 

attributes and between them and the other seven all hold trivially. It follows from Propositions 

17 and 18, and from {𝑆, 𝑂, 𝐼} ⇏ {𝐷} in Proposition 16, that additional such implications do not 

hold. Two more attributes are defined by {𝐼} and {𝑆, 𝑂} (II and Va). It follows from Proposition 

19, and from {𝑆, 𝑂} ⇏ {𝐼} in Proposition 16, that the implication relations shown in Figure 2 

between each of these attributes and each of the other ten are the only ones holding. This 

proves that there are precisely twelve distinct attributes of CEDs that can be defined by single 

subsets of the fundamental properties.  

Theorem 1 in Section 6.1 can now be proved. It follows immediately from it that attributes I, II, 

III, IV, V, VI and VII of CEDs are obtained from the similarly numbered attributes of CSDs by 

restriction. That is, a CED has any of these attributes if and only if it has the corresponding 

attribute as a CSD.  

Proof of Theorem 1. Suppose first that 𝒫 ⊆ {𝑂̃, 𝐷, 𝐼}, and let 𝜂 be a CED that is 𝒫-implementable 

as a CSD. By Lemma 4, the default mechanism of 𝜂 has all the properties in 𝒫. By Lemma 3, the 

default correlated strategy is a correlated equilibrium. Therefore, 𝜂 is 𝒫-implementable also as a 

CED. 

Next, consider the case 𝒫 = {𝑂}. Let 𝜂 be a CED that is 𝑂-implementable as a CSD. By Lemma 3, 

the default correlated strategy (𝒎, 𝜎) of 𝜂 is a correlated equilibrium. However, as remarked, 

the default mechanism 𝒎 may not satisfy 𝑂. On the other hand, by assumption, 𝜂 is the CSD of 

some correlated strategy (𝒎′, 𝜎′) with a mechanism that satisfies 𝑂, but that correlated 

strategy may not be a correlated equilibrium. Consider the mechanism 𝒎̃ defined by  

𝒎̃𝑖(𝑡) = 𝜎𝑖
′(𝑡𝑖,𝒎𝑖

′(𝑡)), 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇. 

It clearly satisfies 𝑂. In addition, by (15),  

𝒎̃(𝑡) =
𝑑

𝒎(𝑡), 𝑡 ∈ supp(𝜂𝑇). 

These equalities imply that the correlated strategy obtained from the default one (𝒎, 𝜎) by 

replacing 𝒎 with a mechanism 𝒎̃ is also a correlated equilibrium, with the same CED. This 

proves that 𝜂 is 𝑂-implementable also as a CED. 

To complete the proof of the theorem it remains to note that, by Propositions 6 and 15, for both 

CSDs and CEDs, 𝑂, 𝐼-implementability is equivalent to 𝑂̃, 𝐼-implementability, and the same is 

true for 𝑂,𝐷- and 𝑂̃, 𝐷-implementability. ∎  

B.3 Conjunction of attributes 
The next step is to consider attributes of CEDs that are defined by pairs (or possibly triplets, etc.) 

of subsets of fundamental properties of mechanisms, that is, by conjunction of two (or more) of 

the twelve attributes identified in the previous subsection. Unlike for CSDs (see Lemma 5), 

genuinely new attributes can be defined this way. For example, it follows from the next example 

that the conjunction of 𝑆-implementability and 𝐷-implementability is a new attribute. 
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Example 6 A correlated equilibrium distribution that is 𝑺- as well as 𝑫-implementable 

but not 𝑺,𝑫-implementable 

In a two-player Bayesian game, player 1 has two types, 𝑡1
′  and 𝑡1

″, and two actions, 𝐿 and 𝑅. 

Player 2 has three types, 𝑡2
′ , 𝑡2

″ and 𝑡2
‴, and only one action, 𝐿. All type profiles except (𝑡1

′ , 𝑡2
′ ) 

may occur, and they have the same probability (1/5). If player 1 plays 𝑅, the payoff to both 

players is 0.5. If he plays 𝐿, the payoff vector is determined by the type profile according to the 

following table: 

 𝑡2
′       𝑡2

″       𝑡2
‴

𝑡1
′

𝑡1
″

N/A (1,0) (0,1)

(3,0) (0,0) (0,0)
 

The lowest possible expected payoff for player 2 in this game is 0.1. For this payoff to be 

reached, player 1 should play 𝑅 if and only if the type profile is (𝑡1
′ , 𝑡2

‴). This is in fact a 

correlated equilibrium distribution, which is implementable by a mechanism that sends to player 

1 the message 𝑅 if the type profile is (𝑡1
′ , 𝑡2

‴) and otherwise sends 𝐿. Acting according to the 

message is incentive compatible for player 1 since it always gives maximum payoff to type 𝑡1
′  

and gives 𝑡1
″ (who is always instructed to play 𝐿( an expected payoff of 1, which is greater than 

the 0.5 he would receive from playing 𝑅. An alternative implementing mechanism sends to 

player 1 the message 𝐿 or 𝑅 if player 2 has type 𝑡2
″ or 𝑡2

‴ respectively, and sends either message 

with probability 1/2 if the type is 𝑡2
′ . The correlated strategy with this mechanism that instructs 

player 1 to follow the mechanism’s instructions if his type is 𝑡1
′  but play 𝐿 if the type is 𝑡1

″ is a 

correlated equilibrium. This is because the message that type 𝑡1
″ of player 1 receives never 

changes the probability he assigns to player 2’s type being 𝑡2
′ , which remains 1/3 regardless of 

the received message.  

There is no implementing mechanism that, like the first mechanism above, does not randomize 

and, like the second mechanism, sends to player 1 a message that only depends on 2’s type, say 

𝑚1
′ , 𝑚1

″ or 𝑚1
‴ if the type is 𝑡2

′ , 𝑡2
″ and 𝑡2

‴, respectively. To see this, note that since the action 

that the given correlated equilibrium distribution specifies for type 𝑡1
′  of player 1 depends on 

whether 2’s type is 𝑡2
″ or 𝑡2

‴, the message 𝑚1
″ must be different from 𝑚1

‴. Therefore, one of 

them, say 𝑚1
″, must also be different from 𝑚1

′ . However, this means that the mechanism 

effectively tells player 1 whether or not 2’s type is 𝑡2
″. It follows that, for player 1, choosing 𝐿 

when the type profile is (𝑡1
″, 𝑡2

″) is not incentive compatible: 𝑅 would yield a higher payoff. 

Proposition 20. For CEDs, ({𝑆} ∧ {𝐷}) ⇏ {𝑆, 𝐷} but ({𝑆} ∧ {𝐷}) ⇔ ({𝑆̃} ∧ {𝐷}) ⇒ {𝑆, 𝐼}.25 

Proof. The first part of the proposition is proved by Example 6. To prove the second part, it 

suffices to show that ({𝑆̃} ∧ {𝐷}) ⇒ {𝑆, 𝐼}; the equivalence then follows immediately from the 

trivial implications {𝑆, 𝐼} ⇒ {𝑆} ⇒ {𝑆̃}.  

Consider a CED 𝜂 that is both 𝑆̃- and 𝐷-implementable. It has to be shown that 𝜂 is also 𝑆, 𝐼-

implementable. By the assumption of 𝐷-implementability and the second part of Proposition 4, 

there is a mapping 𝜙 = (𝜙1, 𝜙2, … , 𝜙𝑛): 𝑇 → 𝐴 such that 𝜂({(𝑡, 𝜙(𝑡))}) = 𝜂𝑇({𝑡}) for all type 

profiles 𝑡. By the assumption of 𝑆̃-implementability, there is a correlated strategy (𝒎, 𝜎) with a 

mechanism that satisfies 𝑆̃ such that 𝜂 is equal to the joint distribution of the random type 

profile 𝒕 and the random action profile 𝒂 defined by (7). In particular, for every 𝑡 ∈ supp(𝜂𝑇), 

Pr(𝜎𝑖(𝑡𝑖,𝒎𝑖(𝑡)) = 𝜙𝑖(𝑡) for all 𝑖) = Pr(𝒂 = 𝜙(𝑡) ∣ 𝒕 = 𝑡) =
𝜂(൛(𝑡, 𝜙(𝑡))ൟ)

𝜂𝑇({𝑡})
= 1. 

Therefore,  

𝒂𝑖 = 𝜎𝑖(𝒕𝑖,𝒎𝑖(𝒕)) = 𝜙𝑖(𝒕), 𝑖 ∈ 𝑁. 

Let the mechanism 𝒎̃ be as in the proof of Proposition 14. By (35) and (38), 

 
25 An argument broadly similar to that used in the proof of the proposition shows that ({𝑆} ∧ {𝐷}) ⇒
{𝑆, 𝐷} would hold if it were assumed that the type distribution 𝜂𝑇 has full support (i.e., supp(𝜂𝑇) = 𝑇), so 
that every type profile has positive probability. 

(38) 
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        Player 2 
   Type +𝟏   Type −𝟏  

Player 1 

  𝐿 𝑅   𝐿 𝑅  

Type +𝟏 
𝐿 2 0 2/3 𝐿 0 0 2/3 
𝑅 0 1 1/3 𝑅 1 0 1/3 

  1/2 1/2   1/2 1/2  
  𝐿 𝑅   𝐿 𝑅  

Type −𝟏 
𝐿 0 0 1/3 𝐿 0 0 1/2 
𝑅 0 0 2/3 𝑅 0 0 1/2 

  1/2 1/2   1/2 1/2  

Table 2. A correlated equilibrium distribution for Example 7. The four type profiles are equally probable. For each 
of them, the actions that players 1 and 2 take are independent. The probabilities that these actions are 𝑳 or 𝑹 are 
given at the margins of the corresponding box. The numbers inside the box are player 1’s payoffs. The payoff of 
player 2 is always 𝟎.  

𝜎𝑖(𝒕𝑖, 𝒎̃𝑖(𝒕)) = 𝜙𝑖(𝒕), 𝑖 ∈ 𝑁. 

Therefore, using the mechanism 𝒎̃ instead of 𝒎 gives a correlated strategy (𝒎̃, 𝜎) whose CSD is 

also 𝜂. Moreover, if 𝒎̃ is used and a single player 𝑖 changes his strategy from 𝜎𝑖 to some other 

strategy 𝜎𝑖
′, the player’s expected payoff changes to 𝐸(𝑢𝑖(𝒕, (𝜎𝑖

′(𝒕𝑖, 𝒎̃𝑖(𝒕)), 𝜙−𝑖(𝒕)))). By (35), 

this new payoff is equal to  

𝐸(𝑢𝑖(𝒕, (𝜎𝑖
′(𝒕𝑖,𝒎𝑖(𝒕)), 𝜙−𝑖(𝒕)))), 

which by (38) is also 𝑖’s expected payoff if he unilaterally changes his strategy from 𝜎𝑖 to 𝜎𝑖
′ in 

the correlated strategy (𝒎, 𝜎) (rather than (𝒎̃, 𝜎)). Since the latter is a correlated equilibrium, 

𝑖’s change of strategy cannot increase his expected payoff. This proves that (𝒎̃, 𝜎) is also a 

correlated equilibrium, with a mechanism that by construction satisfies 𝑆 and 𝐼.  ∎ 

It follows from the next example that the conjunction of 𝑆-implementability and 𝐼-

implementability is also a new attribute of CEDs.  

Example 7 A correlated equilibrium distribution that is 𝑺- as well as 𝑰-implementable 

but not 𝑺, 𝑰-implementable 

The game structure and common prior are as in Examples 1, 2 and 3. The payoff matrices of 

player 1 – one for each type profile – are shown in Table 2. Player 2 receives a constant payoff of 

zero. A mechanism randomly chooses for each type profile an action for each player according 

to the (marginal) probabilities shown in Table 2 in such a way that these eight choices are 

independent. It then informs each player of the action that was chosen for him for the actual 

type profile. The players’ strategy of always taking the indicated action is a correlated 

equilibrium. This is because a change of action by player 1 may affect his payoff only if his type is 

+1 and, in addition, (i) player 2 has type +1 and he plays 𝐿, (ii) player 2 has type +1 and he 

plays 𝑅, or (iii) player 2 has type −1 and he plays 𝐿. The effect in case (i) has the opposite sign 

and twice the magnitude of that in the other two cases. Since (i), (ii) and (iii) always have equal 

conditional probabilities, given that the type of player 1 is +1 and given his action, this relation 

between the effects means that the conditional expectation of the gain from changing action is 

always zero. Thus, the probabilities in Table 2 define a correlated equilibrium distribution, which 

the mechanism described above implements. By construction, the mechanism has property 

𝐼.The same correlated strategy distribution is also implementable by the following mechanism, 

which has property 𝑆. The mechanism first chooses two pairs of actions, 𝑎+ = (𝑎++, 𝑎−+) and 

𝑎− = (𝑎+−, 𝑎−−), independently of one another. The probability that the pair 𝑎+ equals (𝐿, 𝐿), 

(𝐿, 𝑅), (𝑅, 𝐿) or (𝑅, 𝑅) is 1/6, 1/2, 1/6 and 1/6, respectively, and for 𝑎− the corresponding 

probabilities are 1/3, 1/3, 1/6 and 1/6. Then, for each type profile 𝑡 = (𝑡1, 𝑡2), the mechanism 

chooses an action 𝑎2
𝑡  for player 2 with probabilities (for 𝐿 and 𝑅) that depend on (both 𝑡 and) 𝑎− 

(that was chosen in the first stage). Specifically, the probability that 𝑎2
𝑡 = 𝐿 is 1/2 unless 𝑡 =

(+1,−1) and, in addition, (i) 𝑎− = (𝐿, 𝐿), in which case the probability is 1/4, or (ii) 𝑎− =

(𝐿, 𝑅), in which case the probability is 3/4. Finally, the mechanism sends messages to the 

players, which depend on the choices made in the first two stages as well as the players’ actual 

type profile 𝑡 = (𝑡1, 𝑡2). The message to player 1 is 𝑎+ or 𝑎− if 2’s type is +1 or −1, 

respectively, and the message to player 2 is the pair of actions (𝑎2
(𝑡1,+1)

, 𝑎2
(𝑡1,−1)

). Thus, neither 
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message is affected by the player’s own type. It is not very difficult to check that the correlated 

strategy with this mechanism that instructs each player to choose the first or second action in 

his message if his type is +1 or −1, respectively, has the distribution in Table 2. For example, if 

𝑡 = (+1,+1), the action profile is (𝑎++, 𝑎2
(+1,+1)

), which is (𝐿, 𝐿), (𝐿, 𝑅), (𝑅, 𝐿) or (𝑅, 𝑅) with 

probability 1/3, 1/3, 1/6 and 1/6, respectively. Thus, the players’ actions are independent and 

are distributed as specified at the margins of the top-left box in Table 2.  

To show that the above correlated strategy is a correlated equilibrium, it suffices to prove that, 

given that the type of player 1 is +1 and given the message he receives (which can be (𝐿, 𝐿), 

(𝐿, 𝑅), (𝑅, 𝐿) or (𝑅, 𝑅)), the conditional probabilities of the following three events are equal: (i) 

player 2 has type +1 and he plays 𝐿, (ii) player 2 has type +1 and he plays 𝑅, and (iii) player 2 

has type −1 and he plays 𝐿. As indicated above, such equality means that player 1 is indifferent 

between his two actions. The equality can be viewed as the conjunction of two equalities: (a) 

events (i) and (ii) have equal conditional probabilities, which are necessarily one-half the 

conditional probability that 𝑡2 = +1, and (b) the latter is also equal to twice the conditional 

probability of (iii). To prove (a), it suffices to note that, given that 𝑡 = (+1,+1), the message 𝑎+ 

that player 1 receives and the action 𝑎2
(+1,+1)

 that player 2 takes are conditionally independent, 

and the probability that the latter is 𝐿 is 1/2. To prove (b), note, first, that by the specification of 

the mechanism and Bayes’ rule, the conditional probability that 𝑡2 = +1, given that player 1’s 

type is +1 and that he receives the message (𝐿, 𝐿), (𝐿, 𝑅), (𝑅, 𝐿) or (𝑅, 𝑅), is equal to 1/3, 3/5, 

1/2 or 1/2, respectively. It is therefore sufficient to show that the conditional probability, given 

the same information, that 𝑡2 = −1 and 𝑎2
(+1,−1)

= 𝐿 is 1/6, 3/10, 1/4 or 1/4, respectively. 

This conditional probability is equal to the product of two terms: the condition probability that 

𝑡2 = −1, given that 𝑡1 = +1 and player 1’s message has the specified value, and the condition 

probability that 𝑎2
(+1,−1)

= 𝐿, given that 𝑡 = (+1,−1) and 𝑎− has that value. The first term is 

the complement of the conditional probability that 𝑡2 = +1, and is hence 2/3, 2/5, 1/2 or 1/2 

if the message is (𝐿, 𝐿), (𝐿, 𝑅), (𝑅, 𝐿) or (𝑅, 𝑅), respectively; and by the specification of the 

mechanism, the second term is 1/4, 3/4, 1/2 or 1/2, respectively. Therefore, the product of 

the two terms is 1/6, 3/10, 1/4 or 1/4, respectively, as had to be shown.   

There does not exist any implementing mechanism for the CED specified by Table 2 that has 

both properties 𝑆 and 𝐼. Note that this is so despite the fact that, according to Table 2, for each 

type profile, the two players’ actions are independent. To see this, suppose that such a 

mechanism does exist. Consider a correlated equilibrium with that mechanism that has the 

above CED. Partition all the messages that player 1 may receive from the mechanism into four 

groups, (𝐿, 𝐿), (𝐿, 𝑅), (𝑅, 𝐿) and (𝑅, 𝑅), according to the actions that player 1’s strategy 

prescribes to him when he receives the message and his type is +1 (first entry) or −1 (second 

entry). Since the mechanism satisfies 𝑆, and hence also 𝑆̃, the probability of receiving a message 

that belongs to a particular group when player 2 has type +1 is the same for both types of 

player 1. Denote these probabilities by 𝑝𝐿𝐿
+ , 𝑝𝐿𝑅

+ , 𝑝𝑅𝐿
+  and 𝑝𝑅𝑅

+ . Let 𝑝𝐿𝐿
− , 𝑝𝐿𝑅

− , 𝑝𝑅𝐿
−  and 𝑝𝑅𝑅

−  be the 

corresponding probabilities for the case in which player 2’s type is −1. Since for each type 

profile the probability that player 1 plays 𝐿 is as specified by Table 2, the following equalities 

hold: 

𝑝𝐿𝐿
+ + 𝑝𝐿𝑅

+ =
2

3
 , 𝑝𝐿𝐿

− + 𝑝𝐿𝑅
− =

2

3
 , 

𝑝𝐿𝐿
+ + 𝑝𝑅𝐿

+ =
1

3
 , 𝑝𝐿𝐿

− + 𝑝𝑅𝐿
− =

1

2
 .  

By definition, in a correlated equilibrium, taking the prescribed action is always incentive 

compatible. In particular, type +1 of player 1 cannot increase the conditional expectation of his 

payoff when the message he receives belongs to group (𝐿, 𝐿), (𝐿, 𝑅), (𝑅, 𝐿) or (𝑅, 𝑅) by playing 

𝑅, 𝑅, 𝐿 or 𝐿, respectively (instead of the opposite action he is supposed to take). Since the 

mechanism satisfies 𝐼, for every type profile the message that player 1 receives is independent 

of player 2’s message, and hence of his action: player 2 always plays 𝐿 with probability 1/2. The 

above incentive compatibility condition is therefore expressed by the following four inequalities:  

(𝐿+) 

(𝐿−) 



41 

𝑝𝐿𝐿
+ (−

1

2
⋅ 2 +

1

2
⋅ 1) + 𝑝𝐿𝐿

− (
1

2
⋅ 1 +

1

2
⋅ 0) ≤ 0, 

𝑝𝐿𝑅
+ (−

1

2
⋅ 2 +

1

2
⋅ 1) + 𝑝𝐿𝑅

− (
1

2
⋅ 1 +

1

2
⋅ 0) ≤ 0, 

𝑝𝑅𝐿
+ (

1

2
⋅ 2 −

1

2
⋅ 1) + 𝑝𝑅𝐿

− (−
1

2
⋅ 1 −

1

2
⋅ 0) ≤ 0, 

𝑝𝑅𝑅
+ (

1

2
⋅ 2 −

1

2
⋅ 1) + 𝑝𝑅𝑅

− (−
1

2
⋅ 1 −

1

2
⋅ 0) ≤ 0. 

All inequalities must in fact hold as equalities. If any of the first two inequalities or any of the last 

two were strict, then −(𝑝𝐿𝐿
+ + 𝑝𝐿𝑅

+ ) + (𝑝𝐿𝐿
− + 𝑝𝐿𝑅

− ) < 0 or (𝑝𝑅𝐿
+ + 𝑝𝑅𝑅

+ ) − (𝑝𝑅𝐿
− + 𝑝𝐿𝑅

− ) < 0 

would hold. These two inequalities are equivalent (since the probabilities in each quartet sum 

up to 1), and they contradict (𝐿+). Therefore, in particular, the first and third equalities above 

hold as equalities, which implies that −(𝑝𝐿𝐿
+ + 𝑝𝑅𝐿

+ ) + (𝑝𝐿𝐿
− + 𝑝𝑅𝐿

− ) = 0. This equation 

contradicts (𝐿−). The contradiction proves that no implementing mechanism for the CED 

specified in Table 2 has both property 𝑆 (or even only 𝑆̃) and 𝐼. 

Proposition 21. For CEDs, ({𝑆} ∧ {𝐼}) ⇏ {𝑆, 𝐼}. 

Proof. This is demonstrated by Example 7. ∎ 

Whether the conjunction of 𝑆̃-implementability and 𝐼-implementability is also a new attribute of 

CEDs is not known. It depends on the answer to the following question. 

Open Question. For CEDs, does ({𝑆̃} ∧ {𝐼}) ⇒ {𝑆}?  

This question corresponds to the question mark in Figure 2. The marked attribute is different 

from the one below it (attribute IIb) if and only if the answer is negative, that is, if there exists a 

CED in some Bayesian game that is both 𝑆̃- and 𝐼-implementable but not 𝑆-implementable. If the 

answer is affirmative, the two attributes of CEDs are actually one and the same, that is, they are 

equivalent.  

Depending on the answer to the Open Question, there are two or three attributes of CEDs that 

can be defined as the conjunction of a pair of incomparable attributes of the twelve ones 

presented in Section B.2. Thus, there are in total 14 or 15 attributes of CEDs, which are related 

to one another as in Figure 2. The following lemma shows that this list is complete in that there 

are no additional, nonequivalent attributes that can be defined as the conjunction of two or 

more of those in Figure 2. This result holds regardless of the answer to the Open Question.  

Lemma 6. The conjunction of any number of the attributes of CEDs in Figure 2 is equivalent to 

one of the attributes in the same figure.  

Proof (an outline). It has to be shown that for every list 𝒫′, 𝒫″, … ⊆ {𝑆, 𝑆̃, 𝑂, 𝑂̃, 𝐷, 𝐼} the 

conjunction 𝒫′ ∧ 𝒫″ ∧ ⋯ is equivalent to one of the attributes in Figure 2. It suffices to consider 

lists with three or fewer entries, since in any longer list at least two elements represent 

comparable attributes. Proposition 15 proves the two cases of the conjunction of 𝑂̃-

implementability and either 𝐷- or 𝐼-implementability. All the other cases follow quite easily 

from these two.  ∎  

Appendix C Communication Equilibrium Distributions 
As for correlated strategy distributions and correlated equilibrium distributions, different kinds 

of mechanisms implement different kinds of communication equilibrium distributions. 

Specifically, for each subset 𝒫 of the six fundamental properties of mechanisms, a MED is 𝒫-

implementable if it is the CSD of some communication equilibrium with a mechanism that has all 

the properties in 𝒫. This appendix, like the previous two, is mainly concerned with the 

implication relation between these attributes, and conjunctions of several attributes. 

Implication is denoted by the generic symbol ⇒ when it is clear from the context that it refers to 

attributes of MEDs. Otherwise, the more explicit symbol ⇒
MED

 is used.  



42 

The following proposition shows that a necessary condition for the last relation to hold is that a 

similar relation holds for CEDs. The propositions in Section C.1 prove that this condition is also 

sufficient, as long as only attributes that are defined by single sets of properties of mechanisms 

are involved. Thus, the reverse of implication (39) below holds too. However, this result does 

not extend to attributes that are defined by conjunction (compare Proposition 33 below with 

the second part of Proposition 20). Hence the differences between the Hasse diagram of the 

implications relations between attributes of MEDs (Figure 3) and the corresponding diagram for 

CEDs (Figure 2). 

Proposition 22. For every two subsets 𝒫,𝒬 ⊆ {𝑆, 𝑆̃, 𝑂, 𝑂̃, 𝐷, 𝐼}, 

𝒫 ⇒
MED

𝒬   implies  𝒫 ⇒
CED

𝒬. 

Moreover, the same is true with 𝒫 replaced by by 𝒫′ ∧ 𝒫″ ∧ ⋯, for any list 𝒫′, 𝒫″, … of subsets 

of {𝑆, 𝑆̃, 𝑂, 𝑂̃, 𝑉, 𝐼}. 

The proof of Proposition 22, which is given at the end of this appendix, uses the results in the 

following two subsections. 

C.1 Equivalences 
The following propositions parallel those in Section B.1.   

Proposition 23. For MEDs, {𝑆, 𝑂̃} ⇔ {𝑆̃, 𝑂̃} ⇔ {𝑂̃}. 

Proof. It has to be shown that the MED 𝜂 of any communication equilibrium (𝒎 , 𝜎) with a 

mechanism that has property 𝑂̃ is 𝑆, 𝑂̃-implementable. Unlike in the proof of Proposition 12, it 

cannot be assumed that the mechanism 𝒎 is the default one. Nevertheless, without loss of 

generality, it may be assumed that it satisfies (4). Otherwise, 𝒎 could be replaced by any 

mechanism 𝒎̃ satisfying (4) such that 

𝒎̃(𝑡) =
𝑑

𝒎(𝑡), 𝑡 ∈ 𝑇. 

These equalities mean that, for any profile of reported types 𝑡, the messages that 𝒎̃ sends are 

indistinguishable from those of 𝒎. This implies that 𝒎̃ also has property 𝑂̃, and (𝒎̃ , 𝜎) is also a 

communication equilibrium. 

Consider the correlated strategy (𝒎⃗⃗⃗ , 𝜎̅) defined by (21) and the following generalization of (28): 

𝒎⃗⃗⃗ 𝑖(𝑡) = (𝜎𝑖(𝑡𝑖
1,𝒎𝑖(𝑡𝑖

1, 𝑡−𝑖)), 𝜎𝑖(𝑡𝑖
2,𝒎𝑖(𝑡𝑖

2, 𝑡−𝑖)), … ), 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇. 

Arguments similar to those used in the proof of Proposition 5 show that 𝒎⃗⃗⃗  has properties 𝑆 and 

𝑂̃. To prove that (𝒎⃗⃗⃗ , 𝜎̅) is a communication equilibrium, is has to be shown that, for every 

player 𝑖, type 𝑡𝑖
′ for that player and strategy 𝜎̅𝑖

′: 𝑇𝑖 × 𝐴𝑖
𝑇𝑖 → 𝐴𝑖, 

𝐸(𝑢𝑖(𝒕, 𝒂) − 𝑢𝑖(𝒕, 𝒂
′) ∣∣ 𝒕𝑖 ) ≥ 0, 

where 𝒂 is the random action profile corresponding to 𝜎̅, that is, 

𝒂𝑗 = 𝜎̅𝑗(𝒕𝑗, 𝒎⃗⃗⃗ 𝑗(𝒕)) = 𝜎𝑗(𝒕𝑗,𝒎𝑗(𝒕)), 𝑗 ∈ 𝑁, 

and 𝒂′ = (𝒂1
′ , 𝒂2

′ , … , 𝒂𝑛
′ ) is defined by  

𝒂𝑖
′ = 𝜎̅𝑖

′(𝒕𝑖, 𝒎⃗⃗⃗ 𝑖(𝑡𝑖
′, 𝒕−𝑖)) = 𝜎̅𝑖

′(𝒕𝑖, (𝜎𝑖(𝑡𝑖
1,𝒎𝑖(𝑡𝑖

1, 𝒕−𝑖)), 𝜎𝑖(𝑡𝑖
2,𝒎𝑖(𝑡𝑖

2, 𝒕−𝑖)),… )), 

𝒂𝑗
′ = 𝜎̅𝑗(𝒕𝑗, 𝒎⃗⃗⃗ 𝑗(𝑡𝑖

′, 𝒕−𝑖)) = 𝜎𝑗(𝒕𝑗,𝒎𝑗(𝑡𝑖
′, 𝒕−𝑖)), 𝑗 ≠ 𝑖. 

Suppose that, for example with 𝑖 = 1 and 𝑡𝑖
′ = 𝑡1

1, (40) does not hold. This implies that there are 

some 𝑡1
″ and 𝑚1

2,𝑚1
3, … such that  

𝐸(𝑢1(𝒕, 𝒂) ∣∣ 𝒕1 = 𝑡1
″ ) < 𝐸(𝑢1(𝒕, 𝒂

′) ∣∣ 𝒕1 = 𝑡1
″,𝒎1(𝑡1

2, 𝒕−1) = 𝑚1
2,𝒎1(𝑡1

3, 𝒕−1) = 𝑚1
3, … ). 

It follows from properties 𝑂̃ and (4) of 𝒎 that the pair of random variables 𝒕 and 𝒎(𝑡1
1, 𝒕−1) is 

independent of 𝒎1(𝑡1
2, 𝒕−1),𝒎1(𝑡1

3, 𝒕−1),…. Therefore, the last inequality is equivalent to 

(39) 

(40) 

(41) 
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𝐸( 𝑢1(𝒕, 𝒂) ∣∣ 𝒕1 = 𝑡1
″ )

< 𝐸(𝑢1(𝒕, (𝜎1
′(𝒕1,𝒎1(𝑡1

1, 𝒕−1)), 𝜎2(𝒕2,𝒎2(𝑡1
1, 𝒕−1)),… , 𝜎𝑛(𝒕𝑛,𝒎𝑛(𝑡1

1, 𝒕−1)))) ∣∣ 𝒕1 = 𝑡1
″ ), 

where 𝜎1
′: 𝑇1 × 𝑀1 → 𝐴1 is the function defined by 

𝜎1
′(𝑡1,𝑚1) = 𝜎̅1

′(𝑡1, (𝜎1(𝑡1
1,𝑚1), 𝜎1(𝑡1

2,𝑚1
2), 𝜎1(𝑡1

3,𝑚1
3), … )). 

However, in conjunction with (41), inequality (42) contradicts the assumption that (𝒎 , 𝜎) is a 

communication equilibrium, since it shows that when player 1’s type is 𝑡1
″, he can gain from 

misreporting it as 𝑡1
1 and switching from 𝜎1 to 𝜎1

′. The contradiction proves that (40) must in fact 

hold, so that (𝒎⃗⃗⃗ , 𝜎̅) is a communication equilibrium. ∎   

Proposition 24. For MEDs, {𝑆̃, 𝑂} ⇔ {𝑂}. 

Proof. Identical to the proof of Proposition 13. ∎ 

Proposition 25. For MEDs, {𝑆, 𝐼} ⇔ {𝑆̃, 𝐼} and {𝑆, 𝐷} ⇔ {𝑆̃, 𝐷}. 

Proof. Identical to the proof of Proposition 14. ∎ 

Proposition 26. For MEDs, {𝑆, 𝑂, 𝐼} ⇔ {𝑆̃, 𝑂, 𝐼} ⇔ {𝑆, 𝑂̃, 𝐼} ⇔ {𝑆̃, 𝑂̃, 𝐼} ⇔ {𝑂, 𝐼} ⇔ {𝑂̃, 𝐼} ⇔

({𝑂̃} ∧ {𝐼}) and {𝑆, 𝑂, 𝐷} ⇔ {𝑆̃, 𝑂, 𝐷} ⇔ {𝑆, 𝑂̃, 𝐷} ⇔ {𝑆̃, 𝑂̃, 𝐷} ⇔ {𝑂,𝐷} ⇔ {𝑂̃, 𝐷} ⇔

({𝑂̃} ∧ {𝐷}). 

Proof. It suffices to show that ({𝑂̃} ∧ {𝐼}) ⇒ {𝑆, 𝑂, 𝐼} and similarly with 𝐼 replaced by 𝐷. By 

Proposition 15, both implications hold for CEDs. The result that they also hold for MEDs follows 

immediately from the fact that an 𝑆, 𝑂-implementable CED is automatically a MED.  ∎ 

C.2 Implications  
Implication (39) in Proposition 22 can equivalently be expressed by its counterpositive: if an 

example of a 𝒫-implementable CED that is not 𝒬-implementable exists, then a similar 

counterexample can be found for MEDs. Finding the latter may or may not be easy. The former 

holds if the CED example employs a correlated equilibrium (with a mechanism with the 

properties in 𝒫) that is also a communication equilibrium, that is, players have no incentive to 

lie about their types. In this case, the same example can be used for MEDs, since a CED that is 

not 𝒬-implementable a fortiori does not have that attribute as a MED. The proofs of the 

following two propositions use this simple observation. 

Proposition 27. For MEDs, {𝑆, 𝑂, 𝐼} ⇏ {𝐷}, {𝑆, 𝐷} ⇏ {𝑂̃}, {𝑂̃} ⇏ {𝑂} and {𝑆, 𝑂} ⇏ {𝐼}.  

Proof. Proposition 16, which establishes the same for CEDs, relies on Proposition 11. Therefore, 

it suffices to show that a result similar to the latter holds with communication equilibrium 

(distribution) replacing correlated equilibrium (distribution). This can be shown by simply 

making this replacement throughout the proof of Proposition 11. ∎  

Proposition 28. For MEDs, {𝐷} ⇏ {𝑆̃}.  

Proof. The correlated equilibrium with the mechanism with property 𝐷 that is described in 

Example 2 is in fact a communication equilibrium. If player 1 lies about his type, player 2 gets as 

a message an incorrect type profile and will consequentially choose an action with which a 

positive payoff for 1 is impossible. For a similar reason, player 2 cannot gain from lying; in this 

case, the lie will only affect type +1 of player 2. The MED of this communication equilibrium in 

not 𝑆̃-implementable since, as shown, it does not have that attribute even as a CED. ∎ 

Even if the correlated equilibrium that is used for demonstrating that a certain implication does 

not hold for CEDs is not a communication equilibrium, not all hope is necessarily lost. It may be 

possible to make truthful type reports incentive compatible by augmenting the original game 

with a suitable auxiliary game and modifying the correlated strategy accordingly.  

(42) 
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Suppose, for example, that each of the two players in a Bayesian game can have type +1 or −1, 

and all four type profiles are equally probable. The game can then be modified by adding to it an 

auxiliary game that requires each player to push one of three buttons, 𝐵1, 𝐵2 or 𝐵3. Depending 

on both players’ choice of button and on their types, a very large number 𝐾 > 0 is either added 

to or subtracted from their payoffs in the original game. Specifically, the change in payoffs (+𝐾 

or −𝐾) is determined according to the following table, where the rows and columns correspond 

to the choices of player 1 and 2, respectively, and 𝜏 = 𝑡1𝑡2 is the product of their types:  

 𝐵1    𝐵2     𝐵3

𝐵1

𝐵2

𝐵3

𝜏𝐾 −𝜏𝐾 −𝐾
−𝐾 𝜏𝐾 −𝜏𝐾
−𝜏𝐾 −𝐾 𝜏𝐾

 . 

Thus, for both 𝜏 = +1 and −1, three cells in the table represent reward and six cells represent 

punishment. Any mechanism in the original game can be turned into a mechanism in the 

augmented game by appending to the message it sends to each player, which pertains to the 

original game, a recommendation of button in the auxiliary game. The recommendation is 

determined in the following way. The mechanism attempts to identify the “rewarding” cells by 

calculating the product of the players’ reported types. It then randomly selects one of these 

cells, each with probability 1/3, and recommends its row and column to player 1 and 2, 

respectively. As detailed below, the feature of the mechanism that encourages truth telling is 

that misreporting will result in misidentification of the rewarding cells. Note that, for any pair of 

reported types, the recommendation to each player is equally likely to be 𝐵1, 𝐵2 or 𝐵3. 

Therefore, the modified mechanism has property 𝑆̃ or 𝑂̃ if the original mechanism has the same 

property. It cannot, however, have any of the other four fundamental properties. (However, 

with a somewhat more complicated auxiliary game, it is possible to also retain property 𝑆.)  

To any correlated equilibrium in the original game, there corresponds a communication 

equilibrium in the augmented game. In that equilibrium, the mechanism appends 

recommendations as described above, and then each player pushes the recommended button 

and plays in the original game according to the original correlated equilibrium. To see that 

truthful type reports are incentive compatible, suppose that, for example, button 𝐵1 is 

recommended to type +1 of player 1. The player can infer from the recommendation that, if 

both players reported their types truthfully and they will follow the mechanism’s 

recommendations, player 2 will choose 𝐵1 or 𝐵2 if his type is +1 or −1, respectively, and in both 

cases, the players will get the reward of 𝐾. However, if (only) he, player 1, misreported his type 

as −1, then player 2’s choice of button will have the opposite relation with his type. 

Consequently, player 1 can get a reward rather than a penalty of 𝐾 only by choosing 𝐵2 or 𝐵3 if 

2’s type is +1 or −1, respectively. However, since the players’ types are independent, this 

means that player 1 cannot get more than zero in expectation. Hence, misreporting the type 

does not pay. 

Proposition 29. For MEDs, {𝑆̃} ⇏ {𝑆}.  

Proof. Consider the Bayesian game and the 𝑆̃- but not 𝑆-implementable CED presented in 

Example 3. That CED is not a MED. However, a communication equilibrium with a mechanism 

that has property 𝑆̃ can be obtained by modifying the game and the correlated equilibrium 

described in the original example by adding an auxiliary game as above. The corresponding MED 

is not 𝑆-implementable even as CED. It is not difficult to see that, if it were 𝑆-implementable, the 

same would be true for the original CED. ∎ 

The proofs of the next two propositions involve more special modifications of the original 

counterexamples, i.e., those pertaining to CEDs. 

Proposition 30. For MEDs, {𝑆̃, 𝑂} ⇏ {𝑆, 𝑂}. 

Proof. Consider the following modification of the game and CED in Example 5. Both players can 

have type +1 or −1, and all four type profiles are equally probable. If the players’ types are 

different or identical, respectively, they both receive the payoff specified by the matrix  
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  𝐿 𝑅 
𝐿
𝑅

(
0 0
0 1.5

)   or   
  𝐿 𝑅 
𝐿
𝑅

(
1 0
0 1

) .  

The correlated strategy described in the original example is a correlated equilibrium also in the 

modified game. For a player of any type who receives the message 𝐿 and takes that action, the 

expected payoff is 1/2 × 0 + 1/2 × 1 = 0.5, whereas playing 𝑅 instead would only yield 

1/2 × 1/2 × 1.5 + 1/2 × 0 = 0.375. If the message is 𝑅, taking that action yields 0.875, while 

playing 𝐿 would yield 0. This correlated equilibrium is moreover a communication equilibrium. If 

a player misreports his type, he will maximize his payoff by taking the recommended action, 

since this is also the action that the other player will take if the (real) types differ (and if the 

types are identical, then the expected payoff from any action is 0.5). Thus, a dishonest player 

cannot get more than 1/2 × 1/2 × 1.5 + 1/2 × 0.5 = 0.625, which is less than the 1/2 × 0.5 +

1/2 × 0.875 = 0.6875 that a truthful report would yield him.  

It remains to show that the corresponding MED is different from the distribution of any 

communication (or even correlated) equilibrium (𝒎, 𝜎) with a mechanism that has properties 𝑆 

and 𝑂. The messages that 𝒎 sends to the players can be written as 𝒎1(𝑡
′) and 𝒎2(𝑡

′), for 

arbitrary type profile 𝑡′. Since the players’ actions are identical if their types are identical, 

necessarily 

(𝜎1(+1,𝒎1(𝑡
′)), 𝜎1(−1,𝒎1(𝑡

′))) = (𝜎2(+1,𝒎2(𝑡
′)), 𝜎2(−1,𝒎2(𝑡

′))). 

If 𝒎1(𝑡
′) is such that the left- (and, hence, also the right-) hand side equals (𝐿, 𝑅) or (𝑅, 𝐿), 

respectively, then type +1 or −1 of player 1 will get 1/2 × 1 from taking the action 𝐿 he is 

supposed to take but 1/2 × 1.5 from playing 𝑅. Therefore, the probability that the four actions 

in (43) are not all the same must be zero, which shows that the above MED, in which the 

players’ actions may differ, cannot be attained. ∎ 

Proposition 31. For MEDs, ({𝑆, 𝐼} ∧ {𝐷}) ⇏ {𝑆, 𝐷}. 

Proof. Consider the following modification of the game and CED in Example 6. Unlike in the 

original example, player 2 has the constant payoff 0, and he is allowed to choose action 𝑅 as 

well as 𝐿. Choosing 𝑅 rather than 𝐿 reduces by 3 the payoff of type 𝑡1
″ of player 1 but has no 

effect on the other payoffs. The two mechanisms considered in the original example and the 

corresponding correlated equilibria are modified as follows. Both mechanisms instruct player 2 

to play 𝑅 if player 1 reports the type 𝑡1
′  and to play 𝐿 otherwise, and player 2 obeys. Clearly, this 

means that type 𝑡1
″ of player 1 has an incentive to report his type truthfully. The same is true for 

type 𝑡1
′ , for whom the CED gives the highest possible payoff.  ∎ 

An alternative proof for the last proposition can be obtained by using the following simple and 

generally applicable modification of the game and correlated equilibria in the original example. 

Instead of changing the players’ action spaces, a new player is added to the game. This “player 

0” has a single type, and his action space is the collection 𝑇 of all type profiles of the original 

players. If the action that player 0 chooses coincides with the other players’ actual type profile, 

everyone gets a huge bonus. Any correlated equilibrium in the original game can be modified as 

follows. The mechanism sends to player 0 the type reports of the other players, and he chooses 

the corresponding action. This obviously creates an incentive for the players to report their 

types truthfully, and thus turns the correlated equilibrium into a communication equilibrium (in 

the modified game). If property 𝑆, 𝑆̃, 𝐼 or 𝐷 holds for the original mechanism, the modified 

mechanism also has the same property. 

The following proposition uses this construction to show that if the answer to the Open 

Question presented in Section B.3 is negative, then the same is true for MEDs. Note that if the 

answer will turn out to be affirmative, the proposition is technically correct but uninformative, 

since its assertion holds vacuously.  

Proposition 32. If, for MEDs, ({𝑆̃} ∧ {𝐼}) ⇒ {𝑆}, then the same is true for CEDs. 

(43) 



46 

Proof. Suppose that, in some Bayesian game, there is a CED 𝜂 that is 𝑆̃-implementable and 𝐼-

implementable but not 𝑆-implementable. It has to be shown that a MED with similar properties 

also exists. 

Consider two correlated equilibria whose CED is 𝜂, one with a mechanism that satisfies 𝑆̃ and 

the other with a mechanism that satisfies 𝐼, and modify the game and the two correlated 

equilibria by adding a new player, player 0, as detailed above. The modification turns the two 

correlated equilibria into communication equilibria, whose common MED assigns nonzero 

probability only to pairs of type and action profiles in which the former coincides with the action 

of player 0, and the probability in this case is equal to that assigned by 𝜂 to the pair obtained by 

omitting player 0’s action. Any communication, or even just correlated, equilibrium whose 

distribution is this MED can be turned into a correlated equilibrium in the original game (in 

which 𝜂 is a CED) simply by omitting the message to player 0 and that player’s strategy. If the 

mechanism in that equilibrium had property 𝑆, the same would be true after the omission. It 

therefore follows from the assumption concerning the CED 𝜂 that a mechanism implementing 

the MED cannot in fact have property 𝑆.  ∎  

Proposition 32 precludes the possibility that the implication under consideration holds for MEDs 

but not for CEDs. However, it is mute about the opposite possibility. The following example, by 

contrast, considers a (different) implication for which the latter definitely holds, as comparison 

with the second part of Proposition 20 shows. 

Example 8 A communication equilibrium distribution that is 𝑺- as well as 𝑫-

implementable but not 𝑺, 𝑰-implementable 

In a three-player Bayesian game, each player has two types: 𝑡1
′  and 𝑡1

″ for player 1, and 𝑡′ and 𝑡″ 

for players 2 and 3. All type profiles except (𝑡1
′ , 𝑡′, 𝑡′) may occur, and they have the same 

probability (1/7). Each player can choose to play 𝐿 or 𝑅. Player 1’s payoff depends only on the 

type profile 𝑡 and on the other players’ actions. Specifically, the payoff is 0 if 𝑡 ≠ (𝑡1
″, 𝑡′, 𝑡′), and 

if an equality holds, it is given by the following symmetric matrix, where the rows and columns 

correspond to the actions of player 2 and 3:  

  𝐿  𝑅 
𝐿
𝑅

(
0 −1

−1 6
) . 

For players 2 and 3 the payoff is the sum of two numbers. The first number, which is the same 

for both players, is: (i) 4 if player 1 plays 𝐿 and players 2 and 3 have identical types, (ii) 4 also if 

player 1 plays 𝑅 and players 2 and 3 have different types, and (iii) 0 otherwise. The second 

number depends on whether the player’s own action is 𝑅 or 𝐿. In the first case, it is equal to 

1/2, and in the second, it is given by the following table, in which the rows correspond to the 

player’s type and the columns correspond to the types of the other two players: 

 𝑡1
′ , 𝑡′ 𝑡1

″, 𝑡′ 𝑡1
′ , 𝑡″ 𝑡1

″, 𝑡″

𝑡′

𝑡″
N/A     1     0     0     
3     0     0     0     

 . 

Consider the mechanism with property 𝐷 that, for each type profile 𝑡, instructs player 1 to play 

𝐿 or 𝑅 if the (reported) types of players 2 and 3 are identical or different, respectively, and 

instructs players 2 and 3 to take the actions specified by the following table, in which the rows 

and columns correspond to the player’s own type and to that of the other player, respectively: 

 𝑡′ 𝑡″

𝑡′

𝑡″
𝐿 𝑅
𝐿 𝐿

 . 

This mechanism and the strategies of following the instructions together constitute a 

communication equilibrium. Player 1 cannot increase his payoff of 0 since there is no way he can 

make players 2 and 3 play 𝑅 when they both have type 𝑡′. And for these players, a truthful type 

report is incentive compatible, since if (only) one of them lies, they both lose the 4 they would 

get from a match between their types (either identical or different) and player 1’s action (𝐿 or 𝑅, 

respectively). In addition, for players 2 and 3, acting according to their strategy is incentive 
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compatible. For a player of type 𝑡′, doing so always guarantees maximum payoff, and for type 

𝑡″, playing 𝑅 instead of the action 𝐿 he is instructed to take would decrease the expected payoff 

by (1/4 × 3 − 1/2 =) 1/4. 

The MED of the above communication equilibrium is also implementable by a mechanism with 

property 𝑆. That mechanism sends to player 1 the same messages as the mechanism described 

above, and sends to each of the other two players 𝑖 (= 2,3) a message that depends on the 

others’ types according to the table 

 𝑡1
′ , 𝑡′ 𝑡1

″, 𝑡′ 𝑡1
′ , 𝑡″ 𝑡1

″, 𝑡″

   𝒁𝑖      𝐿      𝑅       𝑅    
 , 

where (𝒁2, 𝒁3) is a pair of (dependent) random variables that equals (𝐿, 𝑅) with probability 0.5 

and (𝑅, 𝐿) with probability 0.5. A communication equilibrium with this mechanism that has the 

same MED as the previous one is defined as follows. The strategy of each player is to play 

according to the message he receives, unless he is of type 𝑡″, in which case he plays 𝐿. For a 

player of type 𝑡″, playing 𝑅 would not increase the conditional expectation of the payoff, 

regardless of the message he receives. This is because, given that the received message is 𝐿 or 

𝑅, the conditional probability that the other players have types 𝑡1
′  and 𝑡′ is 1/3 or 1/5, 

respectively. Since both 1/3 × 3 and 1/5 × 3 are greater than 1/2, deviations to 𝑅 are 

unprofitable. The incentive compatibility of truthful type reports is proved by arguments similar 

to those used for the previous equilibrium. 

There is no communication equilibrium with a mechanism with properties 𝑆 and 𝐼 that has the 

above MED. To see this, suppose that such a communication equilibrium exists. Since property 𝑆 

implies 𝑆̃, the distribution of the mechanism’s messages to player 3 only depends on the other 

players’ types, so that it can be described by the table  

 𝑡1
′ , 𝑡′ 𝑡1

″, 𝑡′ 𝑡1
′ , 𝑡″ 𝑡1

″, 𝑡″

   𝑃1    𝑃2    𝑃3    𝑃4    
 , 

where 𝑃1, 𝑃2, 𝑃3, 𝑃4 are four probability measures on player 3’s message space 𝑀3. If the type 

of player 3 is 𝑡′, he is supposed to play 𝐿 or 𝑅 if he receives any message in supp(𝑃2) or in 

supp(𝑃3) ∪ supp(𝑃4), respectively. Therefore, these two subsets of 𝑀3 must be disjoint. If the 

type of player 3 is 𝑡″, he is supposed to play 𝐿 regardless of the message 𝑚3 he receives. 

Deviation to 𝑅 should not increase the conditional expectation of the player’s payoff, which 

means that  

(
1

2
− 3)𝑃1({𝑚3}) +

1

2
𝑃2({𝑚3}) +

1

2
𝑃3({𝑚3}) +

1

2
𝑃4({𝑚3}) ≤ 0. 

Summing over all 𝑚3 ∈ supp(𝑃3) ∪ supp(𝑃4) gives  

−
5

2
𝑃1(supp(𝑃3) ∪ supp(𝑃4)) + 0 +

1

2
+

1

2
≤ 0. 

It follows that if the type profile is (𝑡1
′ , 𝑡′, 𝑡′), the probability that player 3 plays 𝑅 is at least 2/5. 

The same is true for player 2. Therefore, by the assumed independence of the messages 

(property 𝐼), the probability that both 2 and 3 play 𝑅 when the type profile is (𝑡1
′ , 𝑡′, 𝑡′) is at 

least 4/25. Since 4/25 × 6 + 12/25 × (−1) > 0, this means that player 1 has an incentive to 

misreport his type as 𝑡1
′  when it is really 𝑡1

″, which contradicts the equilibrium assumption.  

Proposition 33. For MEDs, ({𝑆} ∧ {𝐷}) ⇏ {𝑆, 𝐼}. 

Proof. This is demonstrated by Example 8. ∎  

Propositions 23, 24, 25 and 26 identify six attributes of communication equilibrium distributions 

that are defined by subsets of the fundamental properties of mechanisms. Figure 3 shows these 

attributes, marked IIa, IIIa, IV, V, VI and VII, as well as eleven additional ones. The implication 

relations that are specified by the Hasse diagram among these 17 attributes all hold trivially, 

since they follow immediately from relations between properties of mechanisms. For two of the 
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implications, it is not known whether the reverse implication also holds. The uncertainty is 

indicated in Figure 3 by a question mark. If the reverse implication does hold, then the marked 

box and the one below it should be coalesced, as they represent equivalent attributes. The 

following arguments show that none of the other attributes in Figure 3 are equivalent, and more 

generally, that the diagram shows all the implication relations between the attributes. 

If attributes that involve conjunctions were removed from Figure 2 and Figure 3, the two Hasse 

diagrams would become identical. In Appendix B it is shown that, among the remaining twelve 

attributes of CEDs, the implications shown in the diagram are the only ones holding. Essentially 

the same arguments prove the same for MEDs, except that Propositions 27, 28, 29 and 30 

replace 16, 17, 18 and 19, respectively. For each of the attributes in Figure 3 that does involve 

conjunction, it follows from Propositions 31 and 33 that the only other attributes that imply or 

are implied by it are those indicated as such by the Hasse diagram. This proves that the diagram 

is complete in terms of implication relations.  

Like the Hasse diagram for CEDs (Figure 2), that for MEDs (Figure 3) is complete also in that it is 

closed under conjunctions. The proof is similar to that of Lemma 6 except that is uses 

Proposition 26 instead of 15. Since it follows from Lemma 5 that closedness under conjunctions 

also holds for CSDs (Figure 1), this gives Theorem 2. Thus, for any given collection of attributes in 

one of the three Hasse diagrams, there is an attribute in the same diagram that that is 

equivalent to their conjunction. That attribute can easily be identified. Since it clearly implies 

each of the attributes and it is implied by every other attribute with the same property, it must 

be the meet, or greatest lower bound, of the given attributes (see Section 8). For example, 

Figure 3 shows that the conjunction of 𝑂-implentability and 𝐼-implementabiltiy is equivalent to 

𝑆, 𝑂, 𝐼-implentability. In other words, the only MEDs with both attributes are the mixed-

equilibrium distributions.  

It is now possible to give the proof of the result presented at the beginning of this appendix, 

namely, that the implication relation between attributes of MEDs is in a sense stronger than that 

for CEDs. 

Proof of Proposition 22. As indicated, if attributes that involve conjunctions were removed from 

Figure 2 and Figure 3, they would become identical. This means that (39) as well as the reverse 

implication hold for all 𝒫 and 𝒬 that belong to the collection of 27 subsets shown in these 

diagrams, which clearly implies the same for all subsets of the six fundamental properties of 

mechanisms.  

To prove the more general implication in which 𝒫 is replaced by 𝒫′ ∧ 𝒫″, it suffices to consider 

the case in which 𝒫′- and 𝒫″-implementability (of CEDs, or equivalently MEDs) are 

incomparable; the case in which they are comparable reduces to the version just analyzed. A 

straightforward examination shows that, with a single possible exception, for all 𝒬 ⊆

{𝑆, 𝑆̃, 𝑂, 𝑂̃, 𝐷, 𝐼}, if the meet of 𝒫′-implementability and 𝒫″-implementability implies 𝒬-

implementability in Figure 3, this is so also in Figure 2 (but not conversely). The possible 

exception is the case where 𝒫′ = ൛𝑆̃ൟ, 𝒫″ = {𝐼} and 𝒬 = {𝑆}, which is however covered by 

Proposition 32. This proves the generalization of (39) in which 𝒫 is replaced by 𝒫′ ∧ 𝒫″. 

To prove the further generalization in which the list 𝒫′, 𝒫″, … has three or more elements it 

again suffices to consider the case in which no two elements describe comparable attributes. 

However, it is not difficult to check that this means that, in both diagrams, 𝒫′ ∧ 𝒫″ ∧ ⋯ is 

(equivalent to) attribute VII. Therefore, the version of (39) in which 𝒫 is replaced by 𝒫′ ∧ 𝒫″ ∧

⋯ holds trivially. ∎ 

Appendix D Correlated Strategy, Correlated Equilibrium and 

Communication Equilibrium Payoffs 
Correlated strategy payoffs (CSPs), correlated equilibrium payoffs (CEPs) and communication 

equilibrium payoffs (MEPs) in Bayesian games can be classified in a manner similar to the 

classification of CSDs (Figure 1), CEDs (Figure 2) and MEDs (Figure 3). Each subset 𝒫 of the 
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fundamental properties of mechanisms defines an attribute of CSPs, CEPs and MEPs, namely, 𝒫-

implementability. A payoff vector 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛) ∈ ℝ𝑛 in a specified 𝑛-player Bayesian 

game is 𝒫-implementable if it coincides with the players’ (expected) payoffs in some correlated 

strategy, correlated equilibrium or communication equilibrium with a mechanism that has all 

the properties in 𝒫 (equivalently, if 𝑣 is obtained in some CSD, CED or MED, respectively, that is 

implementable by such a mechanism). For two subsets 𝒫, 𝒬 ⊆ {𝑆, 𝑆̃, 𝑂, 𝑂̃, 𝐷, 𝐼}, 𝒫-

implementability of CSPs implies 𝒬-implementability if in every Bayesian game every CSP that is 

implementable by some mechanism with the properties in 𝒫 is also implementable by a 

mechanism with the properties in 𝒬. This relation is written as 𝒫 ⇒
CSP

𝒬. For CEPs and MEPs, the 

relations ⇒
CEP

 and ⇒
MEP

 are defined similarly.  

The main result concerning implementability of payoff vectors is Theorem 3 in Section 8.2, 

which asserts that the effects of the properties of the implementing mechanisms on the payoffs 

mirror the effects on the joint distributions of types and actions. Thus, there is similarity in this 

respect between these two possible notions of “outcome” in a Bayesian game.  

Proof of Theorem 3. The proofs for correlated equilibria and for communication equilibria are 

nearly identical. Only the former is presented below; the latter can be obtained from it 

essentially by replacing ‘correlated’ with ‘communication’ throughout. The proof for correlated 

strategies can also be easily obtained from the proof below by simplifying it in the obvious 

manner.  

It has to be shown that, for every 𝒫,𝒬 ⊆ {𝑆, 𝑆̃, 𝑂, 𝑂̃, 𝐷, 𝐼}, 

𝒫 ⇒
CEP

𝒬  if and only if  𝒫 ⇒
CED

𝒬. 

One direction of (44) (“if”) is easy. 𝒫 ⇏
CEP

𝒬 and 𝒫 ⇒
CED

𝒬 are contradictory, since the former 

means that, in some Bayesian game, there is a 𝒫-implementable CED 𝜂 with a payoff vector that 

is different from that of every 𝒬-implementable CED in the same game, whereas the latter 

implies that 𝜂 itself is 𝒬-implementable. 

To prove the nontrivial direction of (44) (“only if”), define the extension of a Bayesian game as 

the game obtained by the addition of dummy players — one for each element of 𝑇 × 𝐴. 

A dummy player has only one possible type and one action, which are therefore insignificant in 

that they cannot affect the payoff of any player. In the following, the types and actions of the 

dummy players are ignored, and the collections of type profiles and action profiles in the 

extended game are thus identified with those in the original game, namely, 𝑇 and 𝐴, 

respectively. The significance of the dummy players lies in their payoff functions. The payoff 

function 𝑢𝑡,𝑎: 𝑇 × 𝐴 → ℝ of the dummy player representing the types-actions pair (𝑡, 𝑎) ∈

𝑇 × 𝐴 is defined as the indicator function 1{(𝑡,𝑎)}. It returns 1 if the argument is equal to (𝑡, 𝑎) 

and 0 otherwise. Thus, the dummy players’ payoffs indicate the types and actions of the 

original, real players. In particular, for every correlated equilibrium distribution 𝜂 and every 

element (𝑡, 𝑎) of 𝑇 × 𝐴, the expected payoff of the corresponding dummy player is equal to 

𝜂({(𝑡, 𝑎)}). It follows that two CEDs in the extended game, 𝜂 and 𝜂̃, give the same CEP if and 

only if they are equal, 𝜂 = 𝜂̃.  

Every mechanism in the original game can be extended in a natural way to a mechanism in the 

extended game by sending arbitrary constant messages to the dummy players. The original and 

the extended mechanisms have the exact same fundamental properties, and in the following, 

they are identified. Using this identification, every correlated strategy in the original game can 

be extended in a natural way to a correlated strategy with the same mechanism in the extended 

game by assigning to each of the dummy players his single possible strategy. Observe that:   

1. the original correlated strategy has the same distribution as the extended one (recall the 

above comment regarding the identification of profiles in the original and the extended 

games), and  

2. one of them is a correlated equilibrium if and only if this is so for the other.  

(44) 
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Moreover, every CED in the extended game can be obtained in the above manner from some 

CED in the original game. The former may be the distribution of a correlated strategy with a 

mechanism that sends variable messages to some dummy players. However, these messages are 

inconsequential (since a dummy player has only one possible action) and hence can be replaced 

by constant messages. Such replacement preserves each of the fundamental properties. 

Suppose now that 𝒫 ⇒
CEP

𝒬. Then, for every 𝒫-implementable CED 𝜂 in the extended game there 

is a 𝒬-implementable CED 𝜂̃ in the same game with an identical payoff vector. As indicated, 

necessarily 𝜂̃ =  𝜂, so that 𝜂 is also 𝒬-implementable. It follows, by Observations 1 and 2 above, 

that every 𝒫-implementable CED in the original game is also 𝒬-implementable. This proves that 

𝒫 ⇒
CED

𝒬. ∎  

Note that the proof of the “only if” direction of (44) applies virtually unchanged also to the more 

general version in which 𝒫 is replaced by 𝒫′ ∧ 𝒫″ ∧ ⋯, for any list 𝒫′, 𝒫″, … of subsets of 

{𝑆, 𝑆̃, 𝑂, 𝑂̃, 𝑉, 𝐼}. 
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