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Congestion models may be studied from either the users’ point of view or the social one. 

The first perspective examines the incentives of individual users, who are only interested in 

their own, personal payoff or cost and ignore the negative externalities that their choice of 

resources creates for the other users. The second perspective concerns social goals such as 

the minimization of the mean travel time in a transportation network. This paper studies a 

more general setting, in which individual users attach to the social cost some weight 𝑟 that is 

not necessarily 0 or 1. It examines the comparative-statics question of whether higher 𝑟 

necessarily means higher social welfare at equilibrium.  
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1 Introduction 
Negative externalities are a potential source of inefficiency. In congested systems, such as 

road networks, inefficiency arises when users do not take into account the externalities that 

their own use of the public resources create for others. For example, slow traffic flow may 

be the result of drivers only considering the effect of their choice of routes on their own 

driving time and disregarding its effect on the other drivers. Advising means that would 

compel users to internalize the social effects of their decisions is a classic theme in 

economics. Tolls, in particular, may be used for this purpose. However, as a matter of fact, it 

is not uncommon for people to take social welfare into consideration even in the absence of 

a material impetus to do so. A simple way to describe such attitudes is to model decision 

makers as maximizers of a weighted sum of their personal, material payoff and the social 

payoff. This raises the question of what effect does the weight 𝑟 attached to the latter has 

on the actual social welfare at equilibrium. As shown elsewhere (Milchtaich 2012), the effect 

may actually be negative. In strategic contexts, or games (even symmetric ones), if everyone 

attaches the same small but positive weight 𝑟 to each of the other players’ payoff, the result 

may paradoxically be lower personal payoffs than in the case of complete selfishness, 𝑟 = 0. 

The main question this paper asks is whether and under what circumstances such an 

outcome is possible also in congestion games, where players affect others only through their 

use of common resources. 
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Two lines of research lead to the question outlined above. One line, already mentioned, is 

the general question of the comparative statics of altruism and spite (Milchtaich 2006a, 

2012), that is, the material consequences of attaching, respectively, an increasingly positive 

or negative weight 𝑟, called the altruism coefficient, to the social payoff. The other line of 

research concerns the effect of altruism or spite on the price of anarchy in congestion games 

(Chen and Kempe 2008, Hoefer and Skopalik 2013, and others).1 The price of anarchy in a 

game is the ratio between the largest social cost at any equilibrium and the smallest social 

cost at any strategy profile (that is, the social optimum). The social cost most commonly 

considered is the aggregate cost, the sum of the players’ personal costs. While the aggregate 

cost associated with any given strategy profile is unaffected by the altruism coefficient 𝑟, the 

price of anarchy is affected because the set of equilibria generally changes as 𝑟 changes. 

A surprising finding of this research is that the price of anarchy may actually increase with 

increasing 𝑟 (Caragiannis et al. 2010, Chen et al. 2014). That is, altruism may lead to system 

performance deterioration. Superficially, at least, this finding resembles the possibility of 

“negative” comparative statics mentioned above. However, the two approaches to the study 

of altruism and spite are fundamentally different. Comparative statics do not concentrate on 

the worst case, but either compare any two equilibria, each corresponding to a different 

level of 𝑟, or trace the effect of a gradual change of the altruism coefficient on the 

equilibrium behavior starting at a single, particular equilibrium. These two varieties are 

referred to as global and local comparative statics, respectively. Another difference between 

the two approaches is that the price of anarchy typically concerns not a single game but a 

family of games, such as all nonatomic congestion games with linear cost functions, for 

which the price of anarchy is defined as the maximum over all games in the family. For 

different values of the altruism coefficient 𝑟, the maximum may be attained at different 

games. Comparative statics, by contrast, always concern a single underlying game, with only 

the weight 𝑟 that players attach to the social cost changing. Therefore, they necessarily 

reflect actual behavioral consequences of that change. The differences between the two 

approaches raise the question of whether their predictions concerning the material 

consequences of a change in 𝑟 are similar or conflicting. As this paper shows, these 

predictions depend very much on the class of congestion games looked at.   

Three broad classes of games are considered below. The most basic one, studied in 

Section 3, is unweighted congestion games. Each of the 𝑁 players chooses a subset of the 

finite set 𝐸 of resources, and derives from each resource 𝑒 a (positive or negative) payoff 

that depends negatively on the total number of players that include 𝑒 in their choice. The 

game is not necessarily symmetric, as different players may have different collections of 

allowable subsets of 𝐸. However, even in the symmetric case, and with linear connections 

between numbers of users and payoffs, global comparative statics are not necessarily 

positive. In fact, it is possible for non-socially optimal equilibria to exist only for large 𝑟. This 

finding parallels the result alluded to above, that with linear cost functions, the price of 

anarchy is actually an increasing function of 𝑟. The main result in Section 3 is the 

                                                            
1 A related literature examines malicious users in congestion games (e.g., Karakostas and Viglas 2007, 
Gairing 2009). Malice is similar to spite except that it is restricted to a small number of exceptional 
users rather than reflecting a “bad” social norm.  
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identification of a condition that “amends” this and guarantees that, for unweighted 

congestion games that satisfy it, global comparative statics are positive and the price of 

anarchy is nonincreasing. The condition, dubbed the flow monotonicity property, does not 

concern the functional form of the cost functions but is a combinatorial condition on the 

players’ allowed choices of resources. In symmetric network congestion games, where the 

choice is between the different routes connecting the network’s origin and destination 

vertices, the flow monotonicity property spells a particular restriction on the network 

topology. Section 3.3 examines this restriction and identifies concrete networks that satisfy 

it, and consequently exhibit positive global comparative statics in all games defined on them.   

The second class of congestion games is games with splittable flow, where a player 𝑖 is not 

restricted to choosing a single subset of resources but can split his specified weight 𝑤𝑖 

among several allowable subsets (e.g., several alternative routes). Section 4 studies such 

games with linear cost functions. The main result is that for every −1 ≤ 𝑟 ≤ 1 the aggregate 

payoff at equilibrium has a unique value, which in different subintervals of [−1,1] is either a 

constant or a strictly increasing function of 𝑟. Thus, unlike their “unsplittable” kin, these 

games always exhibit positive comparative statics and nonincreasing price of anarchy.  

The same applies to the (local and global) comparative statics and the price of anarchy in the 

class of nonatomic congestion games (Section 5), where the finite set of players is replaced 

with a continuum, to model the limit case of a very large population of users who 

individually have only a very small effect on the others. Moreover, the results here do not 

require linear cost functions or splittable flow.  

A central insight emerging from the study of comparative statics of altruism and spite is that 

a negative relation between the altruism coefficient and the equilibrium level of the social 

payoff is associated with unstable equilibria (Milchtaich 2012). Conversely, stable equilibria 

guarantee positive, “normal” comparative statics. This finding moreover holds for any choice 

of social payoff function, not only the aggregate payoff or (the negative of the) cost. It refers 

to a general notion of static stability that is applicable to any game and generalizes a number 

of more special stability concepts (Milchtaich 2020). Section 6 presents this notion and 

several general results that connect it with comparative statics. The stability condition is not 

generally implied by the equilibrium condition (and vice versa). However, in some classes of 

games, the implication does hold, and in such games, which have the property that every 

equilibrium is automatically stable, altruism can only have a positive effect and spite only a 

negative effect on social welfare. As it turns out, the congestion games studied in the 

preceding sections have this property. This finding provides a general context to the above 

results (although it does not go as far as actually implying them), and also suggests a 

possible extension. 

The extension, explored in Sections 6.1 and 6.2, uses general results concerning stability and 

comparative statics in games where strategies are (real) vectors. In particular, these results 

are applicable to congestion games with splittable flow, including those with non-linear cost 

functions. A two-player example is presented which shows that even a very simple such 

game may exhibit both positive and negative comparative statics. That is, depending on the 

equilibria looked at, increasing altruism either increases or decreases the material payoffs of 

both players. The former equilibria as stable, and the latter are unstable. The example was 
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originally presented as a Cournot duopoly game. However, as shown in Section 6.3, the 

Cournot oligopoly model (that is, quantity competition) is a special case of congestion games 

with splittable flow. 

2 Preliminaries 
A strategic game ℎ specifies a (finite or infinite) set of players and, for each player 𝑖, a 

strategy set 𝑋𝑖 and a payoff function ℎ𝑖: 𝑋 ⟶ ℝ, where 𝑋 = ∏ 𝑋𝑖𝑖  is the set of all strategy 

profiles. A social payoff function is any function 𝑓: 𝑋 ⟶ ℝ. An important example in a game 

with a finite number of players is the aggregate payoff, 𝑓 = ∑ ℎ𝑖𝑖 . The altruism coefficient is 

an exogenously given parameter 𝑟 ≤ 1 that specifies a common degree of internalization of 

the social payoff by all players, reflecting, for example, a shared social norm. The coefficient 

defines the modified game ℎ𝑟, where the payoff of each player 𝑖 is not the original, personal 

(or material) payoff ℎ𝑖 but the modified (or perceived) payoff  

ℎ𝑖
𝑟 = (1 − 𝑟)ℎ𝑖 + 𝑟𝑓. 

Comparative statics concern the connection between 𝑟 and the value of 𝑓 at the (Nash) 

equilibria of the modified game ℎ𝑟. In the special case where 𝑓 is the aggregate payoff, so  

ℎ𝑖
𝑟 = ℎ𝑖 + 𝑟 ∑ ℎ𝑗

𝑗≠𝑖

, 

this connection expresses the effect on the actual equilibrium aggregate personal payoff 

when each of the players attaches the same weight 𝑟 to the personal payoff of each of the 

other players. Thus, 𝑟 in this case is the ratio between the marginal contributions of any 

other individual’s material utility and a player’s own material utility to the latter’s perceived 

utility. Positive, negative or zero 𝑟 may be interpreted as expressing altruism, spite or 

complete selfishness, respectively.2 

A (symmetric) population game is specified by a single strategy space3 𝑋 that is a convex set 

in a (Hausdorff real) linear topological space (for example, the unit simplex in a Euclidean 

space ℝ𝑛) and a payoff function 𝑔: 𝑋2 ⟶ ℝ that is continuous in the second argument 

(Milchtaich 2012). However, a population game is interpreted not as an interaction between 

two specific players but as one involving an (effectively) infinite population of individuals 

who are “playing the field”. This means that an individual’s payoff 𝑔(𝑥, 𝑦) depends only on 

his own strategy 𝑥 and on a suitability defined population strategy 𝑦, which in an element of 

𝑋 that encapsulates the choices of strategies in the population. For example, 𝑦 may be the 

population’s mean strategy with respect to some nonatomic (population) measure, or it may 

describe the distribution of (pure) strategies played.   

                                                            
2 In a more general setting, different individuals 𝑖 may have different altruism coefficients 𝑟𝑖 (see Chen 
and Kempe 2008, Hoefer and Skopalik 2013) or attach different weights 𝑟𝑖𝑗 to the personal payoffs of 

different other persons 𝑗 (see Rahn and Schäfer 2013, Anagnostopoulos et al. 2015). The present work 
does not cover these extensions. 
3 A strategy space is a strategy set that is endowed with a particular topology, with respect to which 
continuity and related terms are defined. 

(1) 



5 

A social payoff function for a population game is any continuous function 𝜑: �̂� ⟶ ℝ whose 

domain �̂� is the cone of the strategy space 𝑋. The cone consists of all elements of the form 

𝑡𝑥, with 𝑥 ∈ 𝑋 and 𝑡 > 0. Note that, unlike for “normal” games, where the argument of the 

social payoff function is a strategy profile, here the argument is a single strategy. The 

difference reflects an assumption that, in a population game, the social payoff 𝜑(𝑦) 

depends only on the population strategy 𝑦; the effect of any single player’s action on it is 

negligible. This assumption necessitates a reinterpretation of the notion of internalization of 

social payoff, which is understood here as consideration for the marginal effect of one’s 

actions on 𝜑 (Chen and Kempe 2008). Thus, an individual’s concern is not with the effect of a 

unilateral adoption of a strategy 𝑥 (which is null) but with the effect that adoption by a small 

but significant (and representative) proportion 𝑝 of the population would have. To formalize 

this idea, suppose that 𝜑 has a directional derivative in every direction �̂� ∈ �̂�, which 

depends continuously on the point �̂� ∈ �̂� at which it is evaluated. In other words, the 

assumption is that the differential 𝑑𝜑: �̂�2 ⟶ ℝ, defined by (the one-sided derivative) 

𝑑𝜑(�̂�, �̂�) =
𝑑

𝑑𝑡
|

𝑡=0+
𝜑(𝑡�̂� + �̂�), 

exists and is continuous in the second argument (Milchtaich 2012). For altruism coefficient 

𝑟 ≤ 1, the modified game 𝑔𝑟  is defined by  

𝑔𝑟(𝑥, 𝑦) = (1 − 𝑟)𝑔(𝑥, 𝑦) + 𝑟 𝑑𝜑(𝑥, 𝑦). 

Comparative statics concern the connection between the altruism coefficient 𝑟 and the 

value of the social payoff function 𝜑 at the equilibrium strategies in the modified game 𝑔𝑟, 

that is, those (population) strategies 𝑦 ∈ 𝑋 satisfying  

𝑔𝑟(𝑦, 𝑦) ≥ 𝑔𝑟(𝑥, 𝑦), 𝑥 ∈ 𝑋. 

2.1 Potential games 
A game ℎ is a potential game (Monderer and Shapley 1996) if it admits an (exact) potential, 

that is, a function 𝑃: 𝑋 ⟶ ℝ such that, whenever a single player 𝑖 changes his strategy, the 

resulting change in 𝑖’s payoff equals the change in 𝑃:  

ℎ𝑖( 𝑦 ∣∣ 𝑥𝑖 ) − ℎ𝑖(𝑦) = 𝑃( 𝑦 ∣∣ 𝑥𝑖 ) − 𝑃(𝑦), 𝑥𝑖 ∈ 𝑋𝑖 , 𝑦 ∈ 𝑋, 

where 𝑦 ∣ 𝑥𝑖  denotes the strategy profile that differs from 𝑦 only in that player 𝑖 uses 

strategy 𝑥𝑖.  

The concept of potential game may be adapted to population games, essentially by replacing 

the difference between the two values of the potential with a derivative (Milchtaich 2012). 

Specifically, a continuous function 𝛷: 𝑋 ⟶ ℝ is a potential for a population game 𝑔 with a 

strategy space 𝑋 if, for all 𝑥, 𝑦 ∈ 𝑋 and 0 < 𝑝 < 1, the derivative on the left-hand side of the 

following equality exists and the equality holds: 

𝑑

𝑑𝑝
𝛷(𝑝𝑥 + (1 − 𝑝)𝑦) = 𝑔(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦). 

A useful fact (Milchtaich 2020) is that any function 𝛷: 𝑋 ⟶ ℝ that can be extended to a 

(2) 

(3) 

(4) 
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continuous function on the cone of 𝑋, such that for the extended function (which is also 

denoted by 𝛷) the differential 𝑑𝛷 exists and is continuous in the second argument, satisfies 

the identity 

𝑑

𝑑𝑝
𝛷(𝑝𝑥 + (1 − 𝑝)𝑦) = 𝑑𝛷(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑑𝛷(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦), 

𝑥, 𝑦 ∈ 𝑋, 0 < 𝑝 < 1. 

Therefore, a sufficient condition for such 𝛷 to be a potential for 𝑔 is that 

𝑑𝛷(𝑥, 𝑦) = 𝑔(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑋. 

For a game ℎ with a potential 𝑃, and any social payoff function 𝑓 and altruism coefficient 

𝑟, the modified game ℎ𝑟 is also a potential game, as it is easy to see that the function  

𝑃𝑟 = (1 − 𝑟)𝑃 + 𝑟𝑓 

is a potential for ℎ𝑟. Similarly, for a population game 𝑔 with a potential 𝛷, and any social 

payoff function 𝜑 and altruism coefficient 𝑟, 

𝛷𝑟 = (1 − 𝑟)𝛷 + 𝑟𝜑 

is a potential for 𝑔𝑟. This follows from the fact 𝛷0 (= 𝛷) is a potential for 𝑔0 (= 𝑔) and, by 

the identity obtained by replacing 𝛷 with 𝜑 in (5), 𝛷1 (= 𝜑) is a potential for 𝑔1 (= 𝑑𝜑). 

The next two results are useful for studying the comparative statics of potential games. As 

their proofs are very similar, only that of the first result is presented. 

Proposition 1. For a game ℎ with a potential 𝑃, a social payoff function 𝑓, and altruism 

coefficients 𝑟 and 𝑠 with 𝑟 < 𝑠 ≤ 1, if two distinct strategy profiles 𝑦𝑟  and 𝑦𝑠 are (global) 

maximum points of 𝑃𝑟  and 𝑃𝑠, respectively, then  

𝑓(𝑦𝑟) ≤ 𝑓(𝑦𝑠). 

If moreover 𝑦𝑠 is a strict (equivalently, unique) maximum point, then the inequality is strict.  

Proof. The proof is based on the following identity, which follows immediately from (7): 

(1 − 𝑟)(𝑃𝑠(𝑥) − 𝑃𝑠(𝑦)) + (1 − 𝑠)(𝑃𝑟(𝑦) − 𝑃𝑟(𝑥)) = (𝑠 − 𝑟)(𝑓(𝑥) − 𝑓(𝑦)). 

The identity implies that the difference 𝑓(𝑥) − 𝑓(𝑦) has the same sign as the expression on 

the left-hand side. The latter is nonpositive for 𝑥 = 𝑦𝑟  and 𝑦 = 𝑦𝑠 if these strategy profiles 

maximize 𝑃𝑟  and 𝑃𝑠, respectively, and it is moreover negative if 𝑦𝑠 is a strict maximum 

point. ∎ 

Proposition 2. For a population game 𝑔 with a potential 𝛷, a social payoff function 𝜑, and 

altruism coefficients 𝑟 and 𝑠 with 𝑟 < 𝑠 ≤ 1, if two distinct strategies 𝑦𝑟  and 𝑦𝑠 are (global) 

maximum points of 𝛷𝑟 and 𝛷𝑠, respectively, then 

𝜑(𝑦𝑟) ≤ 𝜑(𝑦𝑠). 

If moreover 𝑦𝑠 is a strict maximum point, then the inequality is strict.   

(5) 

(6) 

(7) 
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In a game ℎ with a potential 𝑃, a strategy profile 𝑥 is an equilibrium if and only if no single 

player 𝑖 can increase 𝑃 by unilaterally deviating from his strategy 𝑥𝑖. In particular, every 

global maximum point of 𝑃 is an equilibrium. In a population game 𝑔 with a potential 𝛷, 

even a local maximum point of 𝛷 is an equilibrium strategy, and if the function 𝛷 is concave 

or strictly concave, then the converse also holds, in fact, an equilibrium strategy is 

necessarily a global maximum or strict global maximum point of 𝛷, respectively. These 

assertions easily follow from the following identity, which is a corollary of (4): 

𝑑

𝑑𝑝
|

𝑝=0+

𝛷(𝑝𝑥 + (1 − 𝑝)𝑦) = 𝑔(𝑥, 𝑦) − 𝑔(𝑦, 𝑦). 

2.2 The price of anarchy 
The price of anarchy is a measure of the distance of the equilibria from the social optimum, 

which is defined as the maximum of a specified social payoff function 𝑓. Assuming that 𝑓 is 

always nonpositive, equivalently, that the social cost – 𝑓 is nonnegative, the PoA in a game is 

the ratio between (i) the value of the social payoff function (or the social cost) at the 

equilibrium with the lowest such payoff (or the highest cost) and (ii) the optimal value. In 

this paper, the focus is on the effect that internalization of the social payoff or cost has on 

this ratio, in other words, its dependence on the altruism coefficient 𝑟. This dependence may 

be studied in a single game or, more generally, for a specified family of games ℌ, providing 

that 𝑓 is meaningful for all games in ℌ. Thus, the price of anarchy PoA𝑟  corresponding to 

altruism coefficient 𝑟 ≤ 1 is defined by  

PoA𝑟 = sup {
𝑓(𝑦𝑟)

𝑓(𝑥) ∣
∣
∣ ℎ ∈ ℌ,  𝑥 is a strategy profile in ℎ,

𝑦𝑟 is an equilibrium in ℎ𝑟                 
}, 

where the quotient is interpreted as 1 if the numerator and denominator are both 0 and as 

∞ if only the denominator is 0. A similar definition applies to a family of population games 

𝔊, with 𝑓 replaced by a specified nonpositive social payoff function 𝜑 that is meaningful for 

all games in 𝔊.  

3 Congestion Games 
In a (weighted) congestion game, there is a finite number 𝑁 of players, numbered from 1 to 

𝑁, and a finite set 𝐸 of resources (represented, for example, by the edges in a graph). Each 

player 𝑖 has a weight 𝑤𝑖 > 0 and a finite strategy set 𝑆𝑖 ⊆ ℝ𝐸, each element of which is a 

non-zero vector 𝑥𝑖 = (𝑥𝑖𝑒)𝑒∈𝐸  where each component 𝑥𝑖𝑒  is either 𝑤𝑖 (indicating that using 

resource 𝑒 is part of the strategy) or 0 (indicating that the strategy does not include resource 

𝑒). For a strategy profile 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁), the total use of resource 𝑒 is expressed by the 

flow (or load) on it, 𝑥𝑒 = ∑ 𝑥𝑖𝑒
𝑁
𝑖=1 . Two strategy profiles 𝑥′ and 𝑥″ are equivalent if 𝑥𝑒

′ = 𝑥𝑒
″  

for all 𝑒. The flow on 𝑒 determines the cost per unit weight of using the resource, which is 

given by 𝑐𝑒(𝑥𝑒), where 𝑐𝑒: [0, ∞) ⟶ ℝ is a nondecreasing (resource-specific) cost function. 

The total cost for each player 𝑖 is the sum of the (per unit) costs of the resources included in 

𝑖’s strategy multiplied by the player’s weight, and the payoff is the negative of the cost. 

Thus, player 𝑖’s payoff is given by 
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ℎ𝑖(𝑥) = − ∑ 𝑥𝑖𝑒𝑐𝑒(𝑥𝑒)

𝑒∈𝐸

. 

(Note that, as the cost may be positive or negative, so does the payoff.) The aggregate cost 

may be viewed as the social cost, and its negative, the aggregate payoff, as the social payoff 

function 𝑓. Thus,  

𝑓(𝑥) = − ∑ 𝑥𝑒𝑐𝑒(𝑥𝑒)

𝑒∈𝐸

. 

With altruism coefficient 𝑟 ≤ 1, the modified payoff of player 𝑖 is given by 

ℎ𝑖
𝑟(𝑥) = − ∑((1 − 𝑟)𝑥𝑖𝑒 + 𝑟𝑥𝑒)

𝑒∈𝐸

𝑐𝑒(𝑥𝑒) = − ∑ (𝑥𝑖𝑒 + 𝑟 ∑ 𝑥𝑗𝑒

𝑗≠𝑖

) 𝑐𝑒(𝑥𝑒)

𝑒∈𝐸

. 

3.1 Unweighted congestion games 
An unweighted congestion game is one where players have unity weights, 𝑤𝑖 = 1 for all 𝑖. 

Each strategy is thus a binary vector and the flow on each resource 𝑒 is simply the number of 

its users, which entails that, effectively, a cost function 𝑐𝑒 is completely specified by its 

restriction to the positive integers. An unweighted congestion game is symmetric if all 

players have the same strategy set. 

An unweighted congestion game ℎ is always a potential game (Rosenthal 1973), with the 

potential 

𝑃(𝑥) = − ∑ ∑ 𝑐𝑒(𝑡)

𝑥𝑒

𝑡=1𝑒∈𝐸

. 

(If 𝑥𝑒 = 0, the inner sum is interpreted as zero.) As in any potential game, the set of 

equilibria in ℎ includes the (nonempty) set of global maximum points of 𝑃. The following 

definition and Proposition 3 below identify a condition under which the reverse inclusion 

also holds, so the two sets are equal. The definition is inspired by the concept of “flow 

substitution” of Reshef Meir and David C. Parkes (personal communication).  

Definition 1. An unweighted congestion game has the flow monotonicity property if for 

every two non-equivalent strategy profiles 𝑥′ and 𝑥″ there is a strategy profile 𝑥 that differs 

from 𝑥′ only in the strategy of a single player and satisfies min(𝑥𝑒
′ , 𝑥𝑒

″) ≤ 𝑥𝑒 ≤ max(𝑥𝑒
′ , 𝑥𝑒

″) 

for all 𝑒. 

The flow monotonicity property is so called because it is equivalent to the possibility of 

changing the strategies prescribed by 𝑥′ sequentially, one player at a time, in such a way 

that the flow on each resource changes monotonically to that in 𝑥″.  

Lemma 1. The flow monotonicity property holds if and only if for every two strategy profiles 

𝑥′ and 𝑥″ there are strategy profiles 𝑥0, 𝑥1, … , 𝑥𝑁  such that 𝑥0 = 𝑥′, each of the following 

strategy profiles 𝑥𝑖  is either equal to its predecessor 𝑥𝑖−1 or differs from it only in the 

strategy of player 𝑖, the strategy profiles 𝑥𝑁 and 𝑥″ are equivalent, and the sequence of 

flows 𝑥𝑒
0, 𝑥𝑒

1, … , 𝑥𝑒
𝑁 is monotone for every resource 𝑒. 

(8) 

(9) 

(10) 
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Proof. The sufficiency of the condition (“if”) is proved by setting 𝑥 = 𝑥𝑖, where 𝑖 is the 

smallest index for which 𝑥𝑖 ≠ 𝑥′ (which must exist if 𝑥′ and 𝑥″ are non-equivalent). To prove 

necessity (“only if”), construct for given strategy profiles 𝑥′ and 𝑥″ a finite sequence 

�̅�0, �̅�1, … as follows: �̅�0 = 𝑥′, and for 𝑘 ≥ 1, �̅�𝑘  is a strategy profile that satisfies the 

conditions specified for 𝑥 in Definition 1 except that 𝑥′ there is replaced with �̅�𝑘−1. Note 

that �̅�𝑒
𝑘 ≠ �̅�𝑒

𝑘−1 for at least one resource 𝑒 and that, for each 𝑒, �̅�𝑒
0 ≤ �̅�𝑒

1 ≤ ⋯ ≤ 𝑥𝑒
″ or 

�̅�𝑒
0 ≥ �̅�𝑒

1 ≥ ⋯ ≥ 𝑥𝑒
″. These facts imply that the sequence cannot be extended indefinitely; 

for some 𝐾 ≥ 0, the strategy profiles �̅�𝐾 and 𝑥″ must be equivalent. Now, for 0 ≤ 𝑖 ≤ 𝑁, 

define 𝑥𝑖  as the strategy profile that prescribes the same strategies as �̅�𝐾 to all players with 

index 𝑖 or lower, and otherwise agrees with 𝑥′. It is not difficult to see that, because 

(𝑥𝑒
′ =)�̅�𝑒

0, �̅�𝑒
1, … , �̅�𝑒

𝐾(= 𝑥𝑒
″) is monotone for each 𝑒, the same is true for (𝑥𝑒

′ =)𝑥𝑒
0, 

𝑥𝑒
1, … , 𝑥𝑒

𝑁(= 𝑥𝑒
″). ∎ 

The significance of the flow monotonicity property lies in the following fact.  

Lemma 2. In an unweighted congestion game with the flow monotonicity property, for every 

two strategy profiles 𝑥 and 𝑦 there is a strategy profile 𝑧 that is equivalent to 𝑥 and satisfies  

𝑃(𝑥) − 𝑃(𝑦) ≤ ∑(𝑃( 𝑦 ∣∣ 𝑧𝑖 ) − 𝑃(𝑦))

𝑁

𝑖=1

. 

Proof. For 𝑥′ = 𝑦 and 𝑥″ = 𝑥, let 𝑥0, 𝑥1, … , 𝑥𝑁 be as in Lemma 1, and set 𝑧 = 𝑥𝑁. Thus, 𝑥 

and 𝑥𝑁 are equivalent and 𝑦 = 𝑥0, so 

𝑃(𝑥) − 𝑃(𝑦) = 𝑃(𝑥𝑁) − 𝑃(𝑥0) = ∑ (𝑃(𝑥𝑖  ) − 𝑃(𝑥𝑖−1))

𝑁

𝑖=1

. 

To prove (11), it suffices to show that  

𝑃(𝑥𝑖) − 𝑃(𝑥𝑖−1) ≤ 𝑃( 𝑥0 ∣ 𝑥𝑖
𝑁 ) − 𝑃(𝑥0), 1 ≤ 𝑖 ≤ 𝑁. 

As 𝑃 is a potential, both sides of the inequality express the effect on player 𝑖’s payoff of a 

unilateral deviation from 𝑥𝑖
𝑖−1 (= 𝑥𝑖

0) to 𝑥𝑖
𝑖  (= 𝑥𝑖

𝑁). The difference is whether the other 

players are playing according to 𝑥𝑖−1 or 𝑥0. In the first case (the left-hand side of the 

inequality), the change in payoff is given by  

− ∑ (𝑥𝑖𝑒
𝑖 𝑐𝑒(𝑥𝑒

𝑖 ) − 𝑥𝑖𝑒
𝑖−1𝑐𝑒(𝑥𝑒

𝑖−1))

𝑒∈𝐸

, 

and in the second case (the right-hand side), the summand is replaced with 𝑥𝑖𝑒
𝑖 𝑐𝑒(𝑥𝑒

0 + 𝑥𝑖𝑒
𝑖 −

𝑥𝑖𝑒
𝑖−1) − 𝑥𝑖𝑒

𝑖−1𝑐𝑒(𝑥𝑒
0). It is therefore sufficient to show that for all 𝑒  

𝑥𝑖𝑒
𝑖 𝑐𝑒(𝑥𝑒

𝑖 ) − 𝑥𝑖𝑒
𝑖−1𝑐𝑒(𝑥𝑒

𝑖−1) ≥ 𝑥𝑖𝑒
𝑖 𝑐𝑒(𝑥𝑒

0 + 𝑥𝑖𝑒
𝑖 − 𝑥𝑖𝑒

𝑖−1) − 𝑥𝑖𝑒
𝑖−1𝑐𝑒(𝑥𝑒

0). 

If 𝑥𝑖𝑒
𝑖 = 𝑥𝑖𝑒

𝑖−1, both sides of the last inequality are zero. If 𝑥𝑖𝑒
𝑖 = 1 and 𝑥𝑖𝑒

𝑖−1 = 0, then it 

follows from the monotonicity of 𝑥𝑒
0, 𝑥𝑒

1, … , 𝑥𝑒
𝑖  that 𝑥𝑒

0 ≤ 𝑥𝑒
𝑖−1 = 𝑥𝑒

𝑖 − 1, and if 𝑥𝑖𝑒
𝑖 = 0 and 

𝑥𝑖𝑒
𝑖−1 = 1, then by a similar argument 𝑥𝑒

0 ≥ 𝑥𝑒
𝑖−1 = 𝑥𝑒

𝑖 + 1. Since 𝑐𝑒 is nondecreasing, in both 

cases the inequality holds. ∎ 

(11) 
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If 𝑦 is an equilibrium, then the right-hand side of (11) is nonpositive for any 𝑧. This fact 

immediately gives the following.  

Proposition 3. In an unweighted congestion game with the flow monotonicity property, a 

strategy profile is an equilibrium if and only if it maximizes the potential 𝑃. 

The implications of this result are studied in the next subsection. 

3.2 Comparative statics of unweighted congestion games  
For an unweighted congestion game ℎ, consider the social payoff function 𝑓 defined as the 

aggregate payoff (and the social cost defined as the aggregate cost −𝑓). It follows from (7), 

(8) and (10) that, for altruism coefficient 𝑟 ≤ 1, the modified game ℎ𝑟 has the potential 

𝑃𝑟(𝑥) = − ∑ ((1 − 𝑟) ∑ 𝑐𝑒(𝑡)

𝑥𝑒

𝑡=1

+ 𝑟 𝑥𝑒  𝑐𝑒(𝑥𝑒))

𝑒∈𝐸

= − ∑ ∑ �̂�𝑒
𝑟(𝑡)

𝑥𝑒

𝑡=1𝑒∈𝐸

, 

where the function �̂�𝑒
𝑟  is defined by  

�̂�𝑒
𝑟 = (1 − 𝑟) 𝑐𝑒 + 𝑟 𝑀𝐶𝑒 , 

with 𝑀𝐶𝑒  denoting (the discrete version of) the marginal social cost, 

𝑀𝐶𝑒(𝑡) = 𝑡 𝑐𝑒(𝑡) − (𝑡 − 1) 𝑐𝑒(𝑡 − 1), 𝑡 = 1,2, …. 

The modified game ℎ𝑟 is generally not a congestion game. However, comparison of (10) and 

(12) shows that 𝑃𝑟  is also the potential for some congestion game, namely, the unweighted 

congestion game ℎ̂𝑟 that differs from (the original, unmodified one) ℎ only in that the cost 

function 𝑐𝑒 of each resource 𝑒 is replaced with �̂�𝑒
𝑟. A sufficient condition for this function to 

be nondecreasing (hence, a legitimate cost function) is that this is so for 𝑀𝐶𝑒  and 0 ≤ 𝑟 ≤ 1. 

This observation leads to the following comparative-statics result. 

Theorem 1. For an unweighted congestion game ℎ with nondecreasing marginal social costs, 

the aggregate payoff as the social payoff function 𝑓, and altruism coefficients 𝑟 and 𝑠 with 

0 ≤ 𝑟 < 𝑠 ≤ 1, let 𝑦𝑟  and 𝑦𝑠 be equilibria in the modified games ℎ𝑟 and ℎ𝑠, respectively. 

If ℎ has the flow monotonicity property, then   

𝑓(𝑦𝑟) ≤ 𝑓(𝑦𝑠). 

If, in addition, 𝑠 = 1, then moreover 𝑓(𝑥) ≤ 𝑓(𝑦𝑠) for every strategy profile 𝑥.  

Proof. As indicated, the modified games ℎ𝑟 and ℎ𝑠 share their potentials, 𝑃𝑟  and 𝑃𝑠, and 

therefore also their sets of equilibria, with the unweighted congestion games ℎ̂𝑟 and ℎ̂𝑠, 

respectively. Each of the latter differs from ℎ only in the cost functions, and therefore has 

the flow monotonicity property if and only if ℎ has it. In this case, it follows from Proposition 

3 that the equilibria 𝑦𝑟  and 𝑦𝑠 maximize 𝑃𝑟  and 𝑃𝑠, respectively. Inequality (13) now follows 

from Proposition 1. If 𝑠 = 1, then 𝑃𝑠 = 𝑓, so 𝑦𝑠 is a maximum point of the social payoff 

function. ∎ 

(12) 

(13) 
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For a game ℎ with nonnegative costs, Theorem 1 can be reformulated as follows. If the flow 

monotonicity property holds, then the price of anarchy (see Section 2.2) weakly decreases as 

the players increasingly internalize the social cost of their choice of strategies, and reaches 

the minimum value of 1 with complete internalization. Combining this observation with a 

simple bound on the price of anarchy gives the following corollary. 

Corollary 1. For the family ℌ of all unweighted congestion games with the flow monotonicity 

property for which the cost functions are nonnegative and the marginal social costs are 

nondecreasing, as well as every subfamily or single game in ℌ, the price of anarchy PoA𝑟  is 

nonincreasing for 0 ≤ 𝑟 ≤ 1 and satisfies 1 ≤ PoA𝑟 ≤ 1/𝑟 (hence, PoA1 = 1).  

Proof. Consider any 𝑟 and 𝑠 with 0 ≤ 𝑟 ≤ 𝑠 ≤ 1, a game ℎ ∈ ℌ, a strategy profile 𝑥 in ℎ, and 

equilibria 𝑦𝑟  and 𝑦𝑠 in ℎ𝑟 and ℎ𝑠, respectively. By (8), (10) and the nonnegativity and 

monotonicity of the cost functions, 𝑓 ≤ 𝑃 ≤ 0, and therefore 𝑓 ≤ 𝑃𝑟 ≤ 𝑟𝑓 by (7). Since, as 

shown in the proof of Theorem 1, 𝑦𝑟  maximizes 𝑃𝑟, these inequalities give  

𝑓(𝑥) ≤ 𝑃𝑟(𝑥) ≤ 𝑃𝑟(𝑦𝑟) ≤ 𝑟𝑓(𝑦𝑟). 

Therefore, by (13), 𝑓(𝑦𝑠)/𝑓(𝑥) ≤ 𝑓(𝑦𝑟)/𝑓(𝑥) ≤ 1/𝑟. From theses inequalities the result 

easily follows. (By definition of PoA𝑟, the first inequality gives 𝑓(𝑦𝑠)/𝑓(𝑥) ≤ PoA𝑟.) ∎ 

The conclusion in Corollary 1 strongly contrasts with a previous result concerning a different 

family of unweighted congestion games, which also have nonnegative cost functions and 

nondecreasing marginal social costs, namely, the family of all unweighted congestion games 

with cost functions that are linear (more precisely, affine) with nonnegative coefficients. For 

this family (as well as for the subfamily where 𝑐𝑒(𝑡) = 𝑡 for all resources 𝑒), Caragiannis et 

al. (2010) and Chen et al. (2014) showed that for 0 ≤ 𝑟 ≤ 1 the price of anarchy (with the 

aggregate cost as the social cost function) is given by  

PoA𝑟 =
5 + 4𝑟

2 + 𝑟
, 

and is thus a strictly increasing function of 𝑟. The discrepancy shows the significance of the 

flow monotonicity property. In a game without this property, the price of anarchy is not 

necessarily nonincreasing,4 and it may be greater than 1 at 𝑟 = 1. As the next example 

shows, this may be so even in the special case of a symmetric unweighted congestion game 

with cost functions that are linear with positive coefficients.  

Example 1. A symmetric unweighted congestion game ℎ has two players, four resources and 

four strategies, which are: resource 𝑒1 alone, and any two of resources 𝑒2, 𝑒3 and 𝑒4. The 

cost functions are 𝑐𝑒1
(𝑡) = 𝑡 + 9, 𝑐𝑒2

(𝑡) = 𝑡 + 2.5 and 𝑐𝑒3
(𝑡) = 𝑐𝑒4

(𝑡) = 2𝑡 + 1. A strategy 

profile minimizes the aggregate cost if and only if one player uses 𝑒2 and 𝑒3 and the other 

player uses 𝑒2 and 𝑒4. Such a socially optimal strategy profile is also an equilibrium in the 

modified game for every 0 ≤ 𝑟 ≤ 1, and it is moreover the unique kind of equilibrium if 

                                                            
4 Obviously, the price of anarchy cannot be strictly increasing for any single game or a finite family of 
games. With finitely many games, there are only finitely many possible values for the social cost, 
which means that PoA𝑟 can be at most nondecreasing. 
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𝑟 < 0.75. However, for 0.75 ≤ 𝑟 ≤ 1 there is a second kind of equilibrium, where one 

player uses 𝑒1 and the other uses 𝑒3 and 𝑒4. Therefore, the price of anarchy satisfies PoA𝑟  

= 1 for 0 ≤ 𝑟 < 0.75 but is greater than 1 (specifically, = 16/15) for 0.75 ≤ 𝑟 ≤ 1.  

The game in Example 1 does not have the flow monotonicity property. For a strategy profile 

of the first kind (that is, a socially optimal one) the vector of edge flows is (0,2,1,1), and for 

the second kind, the vector is (1,0,1,1). It is not possible to move a single player from his 

first strategy to some other strategy in such a way that the flow on each resource lies 

between its first and second values (because any move changes the flow on 𝑒3 or 𝑒4).  

3.3 Network congestion games 
Whether a symmetric unweighted congestion game has the flow monotonicity property only 

depends on the number of players and the combinatorial structure of the strategy set. In a 

symmetric unweighted network congestion game, the combinatorial structure reflects the 

topology of a specified directed two-terminal network, whose edges represent the resources 

(see Figure 1). The network has designated origin and destination vertices, 𝑜 and 𝑑, and each 

of the edges and vertices belongs to at least one route, which is a (simple) path that starts at 

𝑜 and ends at 𝑑. Each route corresponds to a strategy, which is represented by the binary 

vector assigning 1 to every edge traversed by the route and 0 to every other edge. 

A symmetric unweighted network congestion game can equivalently be described in terms 

of an undirected two-terminal network 𝐺, where each vertex and each edge belongs to at 

least one route,5 and an assignment of an allowable direction to each edge 𝑒 in 𝐺, which 

must be that in which some route in 𝐺 traverses 𝑒 (Milchtaich 2013). The set of strategies 

                                                            
5 Since a route in an undirected network may traverse an edge in either direction, the meaning of this 
“non-redundancy” condition is slightly different than in the case of a directed network. However, it is 
shown in the Appendix that an undirected network satisfies the condition if and only if it is the 
undirected version of some directed network as above.  

𝑑 

𝑜 

(d) 

𝑒1 

𝑒3 

𝑒2 𝑢 

Figure 1. Symmetric unweighted network congestion games. 𝑵 players (with weight 𝟏) choose routes from 𝒐 

to 𝒅. The cost functions are: (a) 𝒄𝒆𝟏(𝒕) = 𝒄𝒆𝟒(𝒕) = 𝒕𝟐, 𝒄𝒆𝟐(𝒕) = 𝒄𝒆𝟑(𝒕) = 𝟑𝒕 and 𝒄𝒆∗(𝒕) = 𝟓𝒕, (b) the same, and 

𝒄𝒆𝟓(𝒕) = 𝟎.𝟓𝒕, (c) 𝒄𝒆(𝒕) = 𝒕 for all edges 𝒆, and (d) any cost functions for which the marginal social costs are 

nondecreasing. The edges’ directions are indicated only where they are ambiguous.   
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consists of all allowable routes in 𝐺, that is, routes that traverse all their edges in the 

allowable directions. It is assumed that at least one such route exists. This alternative 

formulation enables classification according to the underlying undirected network; games on 

the same undirected network 𝐺 that differ in the number of players, costs functions or edge 

directions are grouped together. Such a classification may be useful for identifying certain 

“topological” properties of network congestion games, that is, properties of individual 

games that are necessary consequences of the topology of the undirected network, 

regardless of the other data. This agenda motivates the following definition. 

Definition 2. An undirected two-terminal network 𝐺 has the flow monotonicity property if all 

symmetric unweighted network congestion games on 𝐺 have the flow monotonicity 

property.  

The monotonicity property is preserved under connection of networks in series. 

Lemma 3. If an undirected two-terminal network 𝐺 is obtained by connecting two or more 

such networks in series, then 𝐺 has the flow monotonicity property if and only if each of the 

constituent networks has the property.  

Proof. Assigning allowable directions to the edges in 𝐺 is equivalent to assigning directions in 

each of the constituent networks �̅�, and a route in 𝐺 is allowable if and only if the section 

that passes through each �̅� is allowable there. Therefore, 𝐺 has the flow monotonicity 

property if and only if, for every assignment of allowable directions, every number of players 

and every pair of non-equivalent strategy profiles 𝑥′ and 𝑥″, there is a strategy profile 𝑥 that 

differs from 𝑥′ only in the strategy of a single player, who only changes his route in one 

constituent network �̅�, such that min(𝑥𝑒
′ , 𝑥𝑒

″) ≤ 𝑥𝑒 ≤ max(𝑥𝑒
′ , 𝑥𝑒

″) for all 𝑒 in �̅�. It is easy to 

see that this condition holds if and only if every �̅� have the flow monotonicity property. ∎ 

A similar result does not hold for the connection of networks in parallel. Indeed, the flow 

monotonicity property does not generally hold even for series-parallel networks, which are 

those that can be constructed from single edges using only the operations of connecting 

networks in series or in parallel. Moreover, as the next example shows, for symmetric 

unweighted network congestion games with nonnegative cost functions and nondecreasing 

marginal social costs on a series-parallel network, it is not even true that PoA1 = 1 (cf. 

Corollary 1).  

By definition of the modified game with 𝑟 = 1, a strategy profile is an equilibrium in this 

game if and only if it is “locally” social optimal, in the sense that any single-player deviation 

either increases the aggregate cost or leaves it unchanged. PoA1 = 1 would mean that this 

condition automatically implies “global” social optimality, that is, the social cost cannot 

decrease even if two or more players deviate simultaneously. In an unpublished technical 

report, Singh (2008) found that this implication holds for games with cost functions as above 

on any series-parallel network. However, the example refutes this finding.  

Example 2. The series-parallel network in Figure 1a does not have the flow monotonicity 

property. For 𝑁 = 2, a strategy profile 𝑥 as in Definition 1 does not exist for a strategy 

profile 𝑥′ where one player uses the route 𝑒1𝑒3 and the other uses 𝑒2𝑒4 and a strategy 
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profile 𝑥″ where the routes are 𝑒1𝑒4 and 𝑒∗. Moreover, such 𝑥′ and 𝑥″ are equilibria in the 

game specified in Figure 1a, and since in each of them no edge is used by more than one 

player, they are also “local” social optima. However the aggregate cost in 𝑥′ is higher than in 

𝑥″, 8 instead of 7. An almost identical pair of equilibria exists in the game in Figure 1b 

(where the network is not series-parallel). The only difference is that, in 𝑥″, the first route is 

𝑒1𝑒5𝑒4. Similarly, in Figure 1c (again, a non-series-parallel network), only the equilibria 

where the two players’ routes are 𝑒1𝑒3 and 𝑒2𝑒4 are socially optimal. With the routes 𝑒1𝑒∗𝑒4 

and 𝑒2𝑒5𝑒3, the aggregate cost is higher, yet no player can unilaterally decrease it (or his 

own cost) by choosing a different route. 

A similar example does not exist for the network in Figure 1d, for any number of players 𝑁 

and any cost functions with nondecreasing marginal social costs. The reason is that, unlike 

the other networks in Figure 1, this one is an undirected extension-parallel network 

(Holzman and Law-Yone 2003).6 This subclass of the series-parallel networks is defined in a 

similar recursive manner except for the proviso that the connection in series of two 

networks is allowed only if one of them has only one edge (which makes their connection 

equivalent to the extension of a terminal vertex, 𝑜 or 𝑑, in the other network). Extension-

parallel networks satisfy a condition that is even stronger than the flow monotonicity 

property. A network 𝐺 has the augmented flow monotonicity property (AFMP) if the 

augmented network 𝐺∗ obtained by connecting 𝐺 in parallel with a single edge 𝑒∗ has the 

flow monotonicity property. The edge 𝑒∗ may be interpreted as representing a common 

outside option, an alternative to using the network 𝐺.  

Lemma 4. An undirected two-terminal network has the augmented flow monotonicity 

property if and only if it is extension-parallel. 

Proof. One direction of the proof is by induction on the structure of extension-parallel 

networks. For a single-edge network, the AFMP clearly holds. If a network 𝐺 is obtained by 

connecting in series an extension-parallel network �̅� that has the AFMP and a single edge 𝑒, 

then 𝐺 also has the AFMP. This is because the set of routes (equivalently, the allowable 

routes; see Corollary A2 in the Appendix, condition (ii)) in 𝐺 is obtained from that in �̅� simply 

by appending 𝑒 (and its non-terminal end vertex) to each route. Therefore, for every 

strategy profile in the augmented network �̅�∗, the flow on 𝑒 and the flow on 𝑒∗ sum up to 

the number of players 𝑁, which implies that the pair of inequalities in Definition 1 holds 

automatically for 𝑒 if it holds for 𝑒∗. It remains to consider a network 𝐺 that is obtained by 

connecting in parallel two extension-parallel networks �̅� and �̃� that have the AFMP, and 

show that the augmented network 𝐺∗ (consisting of �̅�, �̃� and a single edge 𝑒∗ all connected 

in parallel) has the flow monotonicity property. 

                                                            
6 The original meaning of extension-parallel network concerned directed networks. An alternative 
term for the undirected version of these networks, which is the version considered here, is networks 
with linearly independent routes. These undirected two-terminal networks are characterized by the 
property that each route includes at least one edge that does not belong to any other route 
(Milchtaich 2006b).  
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For any number of players 𝑁, consider two non-equivalent strategy profiles 𝑥′ and 𝑥″, where 

the players use routes in 𝐺∗. Let �̅�′ and �̅�″ be the strategy profiles obtained from 𝑥′ and 𝑥″ 

by replacing each route that lies outside �̅�∗ (that is, in �̃�) with the single-edge route 𝑒∗. In 

particular, for 𝑥′, the flow �̅�𝑒∗
′  gives the number of players who are not using a route in �̅�, 

and similarly for 𝑥″ and �̅�𝑒∗
″ . Since �̅� has the AFMP, if �̅�′ and �̅�″ are not equivalent, then 

applying Definition 1 to them (instead of 𝑥′ and 𝑥″) gives a strategy profile �̅�, which also 

involves only routes in �̅�∗. For �̃�, the strategy profiles �̃�′ and �̃�″ and (if the last two are not 

equivalent) a strategy profile �̃� are constructed analogously. Using these ingredients, a 

strategy profile 𝑥 satisfying the conditions in Definition 1 is constructed below.   

Note that �̅�′ and �̅�″ are not equivalent or �̃�′ and �̃�″ are not equivalent. Otherwise, both the 

flow on each edge in �̅� and the total number of players using routes in that network (which 

is 𝑁 minus the number of players not doing so) would be the same for 𝑥′ and 𝑥″, and 

similarly for �̃�. However, the conclusion implies that the number of players using 𝑒∗ is also 

the same for 𝑥′ and 𝑥″, which contradicts their assumed non-equivalence. By symmetry, it 

suffices to consider the case where �̅�′ and �̅�″ are not equivalent, so a strategy profile �̅� as 

above exists. Let 𝑖 be the unique player with �̅�𝑖 ≠ �̅�𝑖
′.  

Suppose, first, that �̅�𝑖
′ is a route in �̅� (hence, �̅�𝑖

′ = 𝑥𝑖
′). If the same is true for �̅�𝑖, then define 

𝑥 by 𝑥𝑖 = �̅�𝑖. (The other players’ strategies in 𝑥 are as in 𝑥′.) Otherwise, that is, if �̅�𝑖  is 𝑒∗, 

then by definition of the flow monotonicity property �̅�𝑒∗
″ > �̅�𝑒∗

′ . If also �̃�𝑒∗
″ ≥ �̃�𝑒∗

′ , then 

necessarily 𝑥𝑒∗
″ > 𝑥𝑒∗

′ , and in this case, set 𝑥𝑖  to be 𝑒∗. If �̃�𝑒∗
″ < �̃�𝑒∗

′ , then �̃�′ and �̃�″ are not 

equivalent and, for the unique player 𝑗 with �̃�𝑗 ≠ �̃�𝑗
′, strategy �̃�𝑗  is not 𝑒∗ (but rather a route 

in �̃�). In this case, define 𝑥 by 𝑥𝑗 = �̃�𝑗  if �̃�𝑗
′ is also a route in �̃� and by 𝑥𝑖 = �̃�𝑗  if �̃�𝑗

′ is 𝑒∗. (The 

assignment 𝑥𝑖 = �̃�𝑗  means that player 𝑖 moves to the route that player 𝑗, who may or may 

not be the same person, was supposed to move to.)  

Suppose now that �̅�𝑖
′ is 𝑒∗, which means that �̅�𝑖  is a route in �̅� and, by definition of the flow 

monotonicity property, �̅�𝑒∗
″ < �̅�𝑒∗

′ . If also �̃�𝑒∗
″ ≤ �̃�𝑒∗

′ , then necessarily 𝑥𝑒∗
″ < 𝑥𝑒∗

′ , and in this 

case, choose any player 𝑗 for whom 𝑥𝑗
′ is 𝑒∗ and define 𝑥 by 𝑥𝑗 = �̅�𝑖. If �̃�𝑒∗

″ > �̃�𝑒∗
′ , then �̃�′ and 

�̃�″ are not equivalent and, for the unique player 𝑗 with �̃�𝑗 ≠ �̃�𝑗
′, strategy �̃�𝑗

′ is not 𝑒∗ (but 

rather a route in �̃�). In this case, define 𝑥 by 𝑥𝑗 = �̃�𝑗  if �̃�𝑗 is also a route in �̃� and by 𝑥𝑗 = �̅�𝑖  if 

�̃�𝑗  is 𝑒∗.  

It is easy to verify that, in all cases, the strategy profile 𝑥 satisfies the inequalities in 

Definition 1 for all edges 𝑒 in 𝐺∗. This completes the first part of the proof: all undirected 

extension-parallel networks have the augmented flow monotonicity property. 

The reason why these networks are the only ones having the AFMP is that, by Proposition 4 

in Milchtaich (2006b), one (or more) of three specific undirected networks is embedded in 

every undirected network 𝐺 that is not extension-parallel (in other words, a network with 

linearly dependent routes; see footnote 6). These three networks are: the figure-eight 

network, which is the network in Figure 1a minus edge 𝑒∗, the “expanded” figure-eight 

network obtained from the previous network by replacing the vertex 𝑣 with two vertices 

connected by an edge, and the Wheatstone network, which is the (undirected) network in 

Figure 1b minus 𝑒∗. Therefore, connecting 𝐺 in parallel with a single edge 𝑒∗ results in an 
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undirected network 𝐺∗ for which there exists a two-player game as in Example 2, that is, one 

that does not have the flow monotonicity property. ∎ 

The (weaker) flow monotonicity property itself is not limited to undirected extension-

parallel networks and those, like the figure-eight network, that are obtained by connecting 

several such networks in series. It also holds for certain networks that are not even series-

parallel, in particular, the Wheatstone network. This can be seen by comparing (i) the 

directed Wheatstone network obtained by deleting edge 𝑒5 in Figure 1c with (ii) the network 

in Figure 1d. The latter is extension-parallel, and therefore has the flow monotonicity 

property. The operation of appending a new vertex 𝑣 and a new edge 𝑒4 to routes in 

network (ii) that include either 𝑒2 or 𝑒∗ defines a one-to-one correspondence between the 

set of routes in that network and the set of allowable routes in network (i). As the flow on 𝑒4 

is always equal to the number of players 𝑁 minus the flow on 𝑒3, it is easy to conclude that 

the undirected version of (i), the Wheatstone network, also has the flow monotonicity 

property. 

The last conclusion, Lemmas 3 and 4, Proposition 3 and Theorem 1 together give the 

following proposition, which is relevant, in particular, to the extension-parallel network in 

Figure 1d and contrasts with the “bad” Example 2. The part of the proposition concerning 

the potential is a slightly stronger version of a result originally proved by Fotakis (2010, 

Lemma 4; the author remarks that this result is also implicit in the work of Holzman and 

Law-Yone 1997).  

Proposition 4. Let 𝐺 be an undirected extension-parallel network, the Wheatstone network, 

or any network that is obtained by connecting two or more of these networks in series. 

Every symmetric unweighted network congestion game ℎ on 𝐺 has the flow monotonicity 

property. Therefore, every equilibrium in ℎ maximizes the potential, and if the marginal 

social costs are nondecreasing, then every equilibrium in the modified game ℎ1, with the 

aggregate payoff as the social payoff function, maximizes the latter.  

Undirected extension-parallel networks are special also with respect to two alternative 

notions of social optimality, or efficiency, and with respect to particular dynamics in 

symmetric unweighted network congestion games.  

An undirected two-terminal network satisfies strong-Nash equivalence if in every symmetric 

unweighted network congestion game on it every equilibrium is a strong equilibrium. 

Holzman and Law-Yone (1997, 2003) show that a network7 has this property if and only if it 

is extension-parallel. An equivalent way of stating this result is that, for a undirected two-

terminal network, being extension-parallel is a necessary and sufficient condition for weak 

Pareto efficiency of all equilibria in all games on a network, meaning that it is never possible 

to make everyone better off by altering the players’ equilibrium route choices. The 

equivalence holds because an equilibrium is strong if and only if the strategy choices of 

                                                            
7 These authors actually establish their results for directed networks (and nonnegative costs). 
However, it is not very difficult to conclude from these results that they hold also for undirected 
networks, for example, by using Proposition A1 and Corollary A2 in the Appendix.  
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every group of players constitute a weak Pareto efficient equilibrium in the subgame defined 

by fixing the strategies of the remaining players. That subgame is itself a symmetric 

unweighted network congestion game on the same network.  

Epstein et al. (2009) call an undirected two-terminal network efficient if in every symmetric 

unweighted network congestion game on it every equilibrium minimizes the makespan, that 

is, it is optimal with respect to the maximum (rather than the sum) of the players’ costs. 

They show that an undirected network is efficient if and only if it is extension-parallel.  

Kuniavsky and Smorodinsky (2013) study the relation between the set of equilibria in a 

symmetric unweighted congestion game and its set of greedy strategy profiles. The latter set 

consists of all strategy profiles that can be obtained in a dynamic setting where players join 

the game sequentially according to some pre-determined order and each player, upon 

arrival, myopically chooses a strategy that best responds to his predecessors’ choices. Their 

main result (Theorem 4.1) implies that the above two sets coincide in all symmetric 

unweighted network congestion games on an undirected two-terminal network if and only if 

it is extension-parallel. 

4 Congestion Games with Splittable flow 
A congestion game with splittable flow is obtained from a (weighted) congestion game as in 

Section 3 (hereafter, a game with unsplittable flow) by replacing the strategy set 𝑆𝑖 of each 

player 𝑖 with its convex hull conv 𝑆𝑖. Thus, a strategy 𝑥𝑖 = (𝑥𝑖𝑒)𝑒∈𝐸  is now any convex 

combination of elements of 𝑆𝑖 (hereafter, pure strategies), with coefficients that express the 

fraction of the player’s weight 𝑤𝑖 “shipped” on each pure strategy. The total amount of use 

by player 𝑖 of each resource 𝑒 is expressed by the corresponding component 𝑥𝑖𝑒  (∈ [0, 𝑤𝑖]).   

An important special case is that of linear cost functions, where for each resource 𝑒  

𝑐𝑒(𝑡) = 𝑎𝑒𝑡 + 𝑏𝑒 , 

with 𝑎𝑒 ≥ 0 (but not necessarily so for 𝑏𝑒). If 𝑎𝑒 > 0, the cost function is strictly increasing, 

and if 𝑎𝑒 = 0, it is constant. Two strategy profiles 𝑥 and 𝑦 are essentially equivalent if 

𝑥𝑒 = 𝑦𝑒 for every 𝑒 with 𝑎𝑒 > 0 and essentially equal if 𝑥𝑖𝑒 = 𝑦𝑖𝑒  for every 𝑖 and 𝑒 with 

𝑎𝑒 > 0. 

Linearity of the cost functions implies that the game is a potential game, as it is not difficult 

to check that the function 𝑃 defined as follows (Fotakis et al. 2005) is an (exact) potential: 

𝑃(𝑥) = − ∑ (𝑎𝑒

𝑥𝑒
2 + ∑ 𝑥𝑖𝑒

2𝑁
𝑖=1

2
+ 𝑏𝑒𝑥𝑒)

𝑒∈𝐸

. 

With the social payoff function 𝑓 defined by (8) (i.e., the aggregate payoff) and altruism 

coefficient 𝑟, the modified game has the following potential (see (7)): 

𝑃𝑟(𝑥) = − ∑ (𝑎𝑒

(1 + 𝑟)𝑥𝑒
2 + (1 − 𝑟) ∑ 𝑥𝑖𝑒

2𝑁
𝑖=1

2
+ 𝑏𝑒𝑥𝑒)

𝑒∈𝐸

 

(14) 
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= 𝑓(𝑥) + (1 − 𝑟) ∑ 𝑎𝑒 ∑ 𝑥𝑖𝑒𝑥𝑗𝑒

𝑖,𝑗
𝑖<𝑗

𝑒∈𝐸

. 

Lemma 5. For −1 ≤ 𝑟 ≤ 1, the potential 𝑃𝑟  is a concave function on the set of strategy 

profiles, and it is moreover strictly concave if the cost functions are strictly increasing and 

𝑟 ≠ 1. For every −1 ≤ 𝑟 ≤ 1 and strategy profiles 𝑥 and 𝑦,  

𝑃𝑟(𝑥) − 𝑃𝑟(𝑦) ≤ ∑
𝑑

𝑑λ
|

λ=0+
𝑃𝑟( 𝑦 ∣∣ λ𝑥𝑖 + (1 − 𝜆)𝑦𝑖 )

𝑁

𝑖=1

, 

and equality holds if and only if (i) 𝑥 and 𝑦 are essentially equal or (ii) they are essentially 

equivalent and 𝑟 = 1. 

Proof. The left-hand side of (15) is equal to 

− ∑ (𝑎𝑒

(1 + 𝑟)(𝑥𝑒
2 − 𝑦𝑒

2) + (1 − 𝑟) ∑ (𝑥𝑖𝑒
2 − 𝑦𝑖𝑒

2 )𝑁
𝑖=1

2
+ 𝑏𝑒(𝑥𝑒 − 𝑦𝑒))

𝑒∈𝐸

. 

The one-sided derivative on the right-hand side of (15) can be computed by replacing 𝑥 in 

(16) with the strategy profile 𝑦 ∣ λ𝑥𝑖 + (1 − 𝜆)𝑦𝑖  and using the definition  

𝑑

𝑑λ
|

λ=0+
𝑃𝑟( 𝑦 ∣∣ λ𝑥𝑖 + (1 − 𝜆)𝑦𝑖 ) = lim

λ→0+

𝑃𝑟(𝑦 ∣ λ𝑥𝑖 + (1 − 𝜆)𝑦𝑖) − 𝑃𝑟(𝑦)

λ
. 

This computation gives that the right-hand side of (15) is equal to 

− ∑ ∑(𝑎𝑒(1 + 𝑟)𝑦𝑒 + 𝑎𝑒(1 − 𝑟)𝑦𝑖𝑒 + 𝑏𝑒)(𝑥𝑖𝑒 − 𝑦𝑖𝑒)

𝑒∈𝐸

𝑁

𝑖=1

. 

The difference between (18) and (16) simplifies to  

∑ 𝑎𝑒 (
1 + 𝑟

2
(𝑥𝑒 − 𝑦𝑒)2 +

1 − 𝑟

2
∑(𝑥𝑖𝑒 − 𝑦𝑖𝑒)2

𝑁

𝑖=1

)

𝑒∈𝐸

. 

This sum is nonnegative, and is zero only in the two cases indicated. The concavity or strict 

concavity of 𝑃𝑟  now follows quite easily from the fact that for every 𝑦 expression (18) 

(hence, the right-hand side of (15)) is affine as a function of 𝑥 and vanishes at 𝑥 = 𝑦. ∎ 

Proposition 5. For a congestion game with splittable flow ℎ where the cost functions are 

linear, the aggregate payoff as the social payoff function, and altruism coefficient 

−1 ≤ 𝑟 ≤ 1, the set of equilibria in the modified game ℎ𝑟 is nonempty and coincides with 

the set of maximizers of the potential 𝑃𝑟. If 𝑟 ≠ 1, all the equilibria in ℎ𝑟 are essentially 

equal, and if in addition the cost functions are strictly increasing, then there is in fact only 

one equilibrium 𝑦𝑟  and the mapping 𝑟 ↦ 𝑦𝑟  is continuous on [−1,1).  

Proof. The function 𝑃𝑟  is continuous and its domain, the set of strategy profiles, is compact. 

Therefore, the set of all maximizers of 𝑃𝑟  is nonempty. By Lemma 5, this set 𝒳 includes the 

(15) 

(16) 

(17) 

(18) 
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set 𝒴 of all strategy profiles 𝑦 for which the right-hand side of (15) (equivalently, expression 

(18)) is nonpositive for all 𝑥. On the other hand, 𝒴 includes a superset of 𝒳, namely, the set 

𝒵 of all equilibria in ℎ𝑟. This is because, if 𝑦 is an equilibrium in ℎ𝑟, then the nominator on 

the right-hand side of (17) is nonpositive for all 𝑖, as it gives the change in player 𝑖’s payoff 

resulting from a unilateral deviation to λ𝑥𝑖 + (1 − 𝜆)𝑦𝑖 . The inclusions prove that 𝒳 = 𝒴 = 

𝒵. It follows that, for equilibria 𝑥 and 𝑦 in ℎ𝑟, the left-hand side of (15) is zero and its right-

hand side is nonpositive, which implies that this inequality holds as equality and therefore 

conditions (i) or (ii) in Lemma 5 hold. If 𝑟 ≠ 1 and all the cost functions are strictly 

increasing, the conclusion means that 𝑥 = 𝑦, which proves that ℎ𝑟 has a unique equilibrium, 

denoted 𝑦𝑟. To prove that 𝑟 ↦ 𝑦𝑟  is a continuous function on [−1,1), it suffices to show 

that the set  

𝒜 = { (𝑟, 𝑦) ∣∣ −1 ≤ 𝑟 ≤ 1, 𝑦 is an equilibrium in ℎ𝑟 } 

is compact. Expression (18) is continuous (indeed, a polynomial) as a function of 𝑥, 𝑦 and 𝑟. 

Therefore, for every strategy profile 𝑥, the set 

𝒜𝑥 = { (𝑟, 𝑦) ∣∣ −1 ≤ 𝑟 ≤ 1, expression (18) is nonpositive } 

is compact. Since, as shown at the beginning of the proof,  

𝒜 = ⋂ 𝒜𝑥

𝑥

, 

𝒜 is compact too. 

For later reference, note that, because for any 𝑟 and 𝑦 expression (18) is affine as a function 

of 𝑥, that expression is nonpositive for all strategy profiles 𝑥 if and only if this is so for all 

profiles of pure strategies. Therefore, the intersection in (19) would not be affected if the 

index set were replaced by the set of all pure strategy profiles, which is a finite set. ∎ 

With complete internalization of social welfare, 𝑟 = 1, the potential 𝑃1 coincides with the 

social payoff function. Proposition 5 therefore shows that, in this extreme case, all the 

equilibria in the modified game maximize social welfare. The next theorem extends this 

observation by also examining the connection between lower levels of altruism and the 

corresponding equilibrium levels of the aggregate payoff. As it shows, this connection (which 

is expressed in the theorem by the function 𝜋) is positive.  

Theorem 2. For a congestion game with splittable flow ℎ where the cost functions are linear, 

and the aggregate payoff as the social payoff function 𝑓, there is a function 𝜋: [−1,1] ⟶ ℝ 

such that, for every −1 ≤ 𝑟 ≤ 1, all the equilibria 𝑦𝑟  in the modified game ℎ𝑟 satisfy 

𝜋(𝑟) = 𝑓(𝑦𝑟). 

The function 𝜋 is absolutely continuous, and there is a partition of [−1,1] into finitely many 

intervals such that in each interval 𝜋 is either constant or strictly increasing.   

Proof. By Proposition 5, any two equilibria 𝑥 and 𝑦 in ℎ𝑟 satisfy 𝑃𝑟(𝑥) = 𝑃𝑟(𝑦), and if 𝑟 ≠ 1, 

they are also essentially equal. It follows, by (14), that 𝑓(𝑥) = 𝑓(𝑦). The conclusion proves 

that the projection on the first two coordinates of the set 

(19) 
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𝒜∗ = { (𝑟, 𝛼, 𝑦) ∣∣ −1 ≤ 𝑟 ≤ 1,  𝛼 = 𝑓(𝑦),  𝑦 is an equilibrium in ℎ𝑟 } 

is the graph of a function, 𝜋: [−1,1] ⟶ ℝ. By the Tarski–Seidenberg theorem, a sufficient 

condition for 𝜋 to be continuous and semialgebraic is that the set 𝒜∗ is closed (equivalently, 

compact) and semialgebraic. This condition holds because 𝛼 = 𝑓(𝑦) is a polynomial equality 

and, as shown in the proof of Proposition 5, 𝑦 is an equilibrium in ℎ𝑟 if and only if the 

polynomial (18) is nonpositive for every pure strategy profile 𝑥. Thus, 𝜋 is a continuous 

semialgebraic function. 

The last result implies that for every −1 ≤ 𝑟 ≤ 1 there is some 𝜖 > 0, a pair of positive 

integers 𝑝𝑅  and 𝑝𝐿 and a pair of analytic functions 𝜉𝑅 , 𝜉𝐿: (−2𝜖, 2𝜖) ⟶ ℝ such that 

𝜋(𝑠) = 𝜉𝑅((𝑠 − 𝑟)1/𝑝𝑅) for all 𝑠 ∈ [𝑟, min(𝑟 + 𝜖𝑝𝑅 , 1)] and 𝜋(𝑠) = 𝜉𝐿((𝑟 − 𝑠)1/𝑝𝐿) for all 

𝑠 ∈ [max(𝑟 − 𝜖𝑝𝐿 , −1) , 𝑟] (see Bochnak et al. 1998, Proposition 8.1.12). By decreasing 𝜖, if 

necessarily, it can be guaranteed that each of the two analytic functions 𝜉𝑅  and 𝜉𝐿 is either 

constant or strictly monotone in [0, 𝜖]. The collection of all intervals of the form (𝑟 − 𝜖𝑝𝐿 ,

𝑟 + 𝜖𝑝𝑅), where 𝑟 varies over all points in [−1,1] and 𝜖, 𝑝𝑅  and 𝑝𝐿 vary correspondingly, 

constitutes an open cover of [−1,1]. Any finite subcover yields a finite set of points, −1 = 𝑟0 

< 𝑟1 < ⋯ < 𝑟𝐿 = 1, such that for all 1 ≤ 𝑙 ≤ 𝐿 the restriction of 𝜋 to the interval [𝑟𝑙−1, 𝑟𝑙] is 

constant or strictly monotone and has a continuous derivative in (𝑟𝑙−1, 𝑟𝑙). These properties 

imply that the (continuous) function 𝜋 is absolutely continuous in the interval. It remains to 

observe that, by Proposition 1, the function cannot be strictly decreasing there. ∎ 

The next example illustrates the theorem.    

Example 3. In a three-player congestion game with splittable flow, 𝐸 is the set of all edges in 

the undirected graph shown in Figure 2. The weight of each player 𝑖 is 1, and the player’s 

two pure strategies are the short, three-edge path connecting 𝑖’s origin vertex 𝑜𝑖  with the 

Figure 2. A three-player congestion game with splittable flow. Each player 𝒊 has to ship a unit flow from 𝒐𝒊 to 

𝒅𝒊 through one or both connecting paths. The cost per unit weight for each edge is equal to the total flow on 

it, except for the three edges marked by thick lines, where there is an additional (per unit) fixed cost of 𝟐. 

𝑜1 

𝑑1 
𝑜2 

𝑑2 

𝑜3 

𝑑3 
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destination 𝑑𝑖 and the longer, four-edge path that reaches 𝑑𝑖 from the opposite direction.8 

The cost of each edge 𝑒 is equal to the flow on it 𝑥𝑒, except for the three “thick” edges, for 

which the cost is 𝑥𝑒 + 2. The minimal total cost of 9 is achieved when all three players use 

their short paths. If the altruism coefficient satisfies 1/3 ≤ 𝑟 ≤ 1, then this strategy profile 

is also the unique equilibrium in the modified game, where the payoffs are given by (9). 

However, for a lower altruism coefficient, −1 ≤ 𝑟 < 1/3, it is not an equilibrium. Instead, 

the unique equilibrium is for every player to ship only (9 − 𝑟)/(10 − 4𝑟) of the weight on 

the short path and the rest on the long path. The corresponding social payoff 𝜋(𝑟), which is 

the negative of the aggregate cost, is given by  

𝜋(𝑟) = − (169 (
1 − 𝑟

10 − 4𝑟
)

2

+ 8). 

As 𝑟 increases from −1 to 1/3, 𝜋(𝑟) increases to the maximum social payoff. Put differently, 

as the players increasingly internalize the social cost, the latter decreases, until it reaches its 

minimum and no longer changes. Thus, the price of anarchy is nonincreasing. 

Theorem 2 shows that nonincreasing price of anarchy with respect to the aggregate payoff 

actually holds for any game with linear, nonnegative cost functions (that is, 𝑏𝑒 ≥ 0 for every 

resource 𝑒). The following corollary combines this finding with an extension of the result 

that, without altruism or spite (that is, for 𝑟 = 0), the price of anarchy for such games does 

not exceed 3/2 (Cominetti et al. 2009). 

Corollary 2. For the family ℌ of all congestion games with splittable flow where the cost 

functions are linear and nonnegative, as well as every subfamily or single game in ℌ, the 

price of anarchy PoA𝑟  is nonincreasing for −1 ≤ 𝑟 ≤ 1 and satisfies 

1 ≤ PoA𝑟 ≤
1

1 + 𝑟
+

1

2
. 

Proof. Consider, more generally, any 𝑁-player congestion game with splittable flow ℎ where 

each cost function 𝑐𝑒 is nonnegative and differentiable. It follows as an immediate 

conclusion from Theorem 3.1 and Proposition 3.2 in Cominetti et al. (2009) that the 

(nonpositive) aggregate payoff 𝑓 satisfies  

𝑓(𝑥) ≤ (1 − max
𝑒∈𝐸

𝛣𝑁(𝑐𝑒))𝑓(𝑦) 

for every strategy profile 𝑥, every equilibrium 𝑦 and any assignment of a number 𝛣𝑁(𝑐𝑒) to 

each cost function 𝑐𝑒 such that 

𝑡𝑐𝑒(𝑡)𝛣𝑁(𝑐𝑒) ≥ 𝑠 (𝑐𝑒(𝑡) − 𝑐𝑒(𝑠)) + (𝑠2/4 − (𝑡 − 𝑠/2)2/𝑁) 𝑐𝑒
′ (𝑡),        𝑠, 𝑡 ≥ 0. 

A straightforward generalization of the proofs of these results yields a similar conclusion 

in the more general case where 𝑦 is an equilibrium in the modified game ℎ𝑟, for any 

−1 ≤ 𝑟 ≤ 1. The only difference is that the right-hand side of the inequality in (22) is 

                                                            
8 Note that this (asymmetric) game differs from the network congestion game considered in 
Section 3.3 in that edges can be traversed in both directions. 

(20) 

(21) 

(22) 



22 

replaced with 

𝑠 (𝑐𝑒(𝑡) − 𝑐𝑒(𝑠)) + (𝑟(𝑠 − 𝑡)𝑡 + (1 − 𝑟)(𝑠2/4 − (𝑡 − 𝑠/2)2/𝑁)) 𝑐𝑒
′ (𝑡). 

In the linear case, where the derivative 𝑐𝑒
′  is constant and therefore 𝑡𝑐𝑒(𝑡) ≥ 𝑡2𝑐𝑒

′ (𝑡), the 

modified inequality holds for  

𝛣𝑁(𝑐𝑒) = sup
𝑠,𝑡>0

 𝑠 (𝑡 − 𝑠) + 𝑟(𝑠 − 𝑡)𝑡 + (1 − 𝑟)(𝑠2/4 − (𝑡 − 𝑠/2)2/𝑁)

𝑡2
 

= sup
𝛾>0

(𝛾 (1 − 𝛾) + 𝑟(𝛾 − 1) + (1 − 𝑟)(𝛾2/4 − (1 − 𝛾/2)2/𝑁)) =
1 − 𝑟

3 + 𝑟 + 4/(𝑁 − 1)
. 

Substitution in (21) and rearrangement give 

(
1

1 + 𝑟 + (1 − 𝑟)/𝑁
+

1

2
) 𝑓(𝑥) ≤ 𝑓(𝑦). 

This inequality proves (20). (It also slightly improves the upper bound for fixed 𝑁.) ∎ 

Corollary 2 points to a striking difference between splittable and unsplittable flow. As 

indicated in Section 3.2, for unweighted congestion games with unsplittable flow that have 

linear, nonnegative cost functions, PoA𝑟  is strictly increasing for 0 ≤ 𝑟 ≤ 1, from 

PoA0 = 5/2 to PoA1 = 3. 

5 Nonatomic Congestion Games 
A nonatomic congestion game has an infinite set, or population, of players 𝐼 (modeled, e.g., 

as the unit interval [0,1]), endowed with a nonatomic probability measure 𝜇, the population 

measure (e.g., Lebesgue measure). The players share a finite set 𝐸 of resources and a finite 

strategy set 𝑆 ⊆ {0,1}𝐸  whose elements (referred to in the following as pure strategies) are 

non-zero binary vectors. A strategy profile is any assignment of a (pure) strategy 𝜎(𝑖) =

(𝜎𝑒(𝑖))𝑒∈𝐸 ∈ 𝑆 to each player 𝑖 such that, for each resource 𝑒, the set of all players 𝑖 with 

𝜎𝑒(𝑖) = 1 is measurable. The measure (or “size”) 𝑦𝑒 of this set, which can be written as 

𝑦𝑒 = ∫ 𝜎𝑒(𝑖) 𝑑𝜇(𝑖), 

is the flow on resource 𝑒. The flow vector 𝑦 = (𝑦𝑒)𝑒∈𝐸 = ∫ 𝜎(𝑖) 𝑑𝜇(𝑖), which represents the 

population’s mean strategy, is called the population strategy. It lies in conv 𝑆, the convex 

hull of 𝑆. The population strategy determines the cost of using each resource 𝑒, which is 

given by 𝑐𝑒(𝑦𝑒), where 𝑐𝑒: [0, ∞) ⟶ ℝ is a strictly increasing and continuously differentiable 

cost function. The total cost for each player 𝑖 is the sum of the costs of the resources 𝑒 with 

𝜎𝑒(𝑖) = 1, and the player’s payoff is the negative of the cost. A natural, linear extension 

assigns to each 𝑥 = (𝑥𝑒)𝑒∈𝐸 ∈ conv 𝑆 the payoff 

𝑔(𝑥, 𝑦) = − ∑ 𝑥𝑒  𝑐𝑒(𝑦𝑒)

𝑒∈𝐸

. 

This equation defines a population game 𝑔 (see Section 2), where the strategy space is 
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𝑋 = conv 𝑆. A corresponding social payoff function 𝜑 is given by the mean payoff 𝑔(𝑦, 𝑦):  

𝜑(𝑦) = − ∑ 𝑦𝑒  𝑐𝑒(𝑦𝑒)

𝑒∈𝐸

. 

(Note that this expression is meaningful also for elements of �̂�, the cone of 𝑋.) With altruism 

coefficient 𝑟, the modified game 𝑔𝑟  (which is defined by (2)) is given by 

𝑔𝑟(𝑥, 𝑦) = − ∑ 𝑥𝑒  (𝑐𝑒(𝑦𝑒) + 𝑟 𝑦𝑒  𝑐𝑒
′ (𝑦𝑒))

𝑒∈𝐸

= − ∑ 𝑥𝑒  �̂�𝑒
𝑟(𝑦𝑒)

𝑒∈𝐸

, 

where the function �̂�𝑒
𝑟  is defined by 

�̂�𝑒
𝑟 = (1 − 𝑟) 𝑐𝑒 + 𝑟 𝑀𝐶𝑒 , 

with 𝑀𝐶𝑒  denoting the marginal social cost, 

𝑀𝐶𝑒(𝑡) =
𝑑

𝑑𝑡
𝑡𝑐𝑒(𝑡) = 𝑐𝑒(𝑡) + 𝑡 𝑐𝑒

′ (𝑡), 𝑡 ≥ 0. 

If 𝑀𝐶𝑒  is strictly increasing and continuously differentiable for every resource 𝑒, and 

0 ≤ 𝑟 ≤ 1, then 𝑔𝑟  may also be viewed as a population game representing a nonatomic 

congestion game, namely, the one that differs from the original game in that each cost 

function 𝑐𝑒 is replaced with �̂�𝑒
𝑟. A sufficient condition for 𝑀𝐶𝑒  to be strictly increasing in any 

interval is that 𝑐𝑒 is convex there. 

The population game 𝑔 defined above is a potential game, with the (well known; see 

Milchtaich 2004, Section 5) potential 𝛷: 𝑋 ⟶ ℝ defined by  

𝛷(𝑥) = − ∑ ∫ 𝑐𝑒(𝑡) 𝑑𝑡

𝑥𝑒

0𝑒∈𝐸

. 

This is because the extension of 𝛷 to �̂�, which is defined by the same formula, satisfies 

condition (6). Since the cost functions 𝑐𝑒 are strictly increasing, 𝛷 is strictly concave. If the 

marginal social costs are strictly increasing in [0,1], then the mean payoff 𝜑 is also strictly 

concave. With 0 ≤ 𝑟 ≤ 1, the same then holds for 𝛷𝑟 = (1 − 𝑟)𝛷 + 𝑟𝜑, which as indicated 

(see Section 2.1) is a potential for 𝑔𝑟. This continuous and strictly concave function 

necessarily has a unique maximum point in 𝑋. 

Proposition 6. Consider a nonatomic congestion game where for each resource 𝑒 the 

marginal social cost 𝑀𝐶𝑒  is strictly increasing in [0,1]. For the corresponding population 

game 𝑔, and the mean payoff as the social payoff function, for every 0 ≤ 𝑟 ≤ 1 the unique 

maximizer 𝑦𝑟  of the potential 𝛷𝑟 is the unique equilibrium strategy in the modified game 

𝑔𝑟, and the mapping 𝑟 ↦ 𝑦𝑟  is continuous.  

Proof. Since, as indicated, 𝛷𝑟 is strictly concave, by the remarks that follow Proposition 2 its 

unique maximum point 𝑦𝑟  is also the unique equilibrium strategy in 𝑔𝑟. To prove that the 

function 𝑟 ↦ 𝑦𝑟  is continuous, it suffices to show that its graph is closed. A point (𝑟, 𝑦), with 

0 ≤ 𝑟 ≤ 1, lies on the graph if and only if the inequality in (3) holds for every strategy 𝑥. 

(23) 

(24) 

(25) 
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Since, for every 𝑥, both sides of the inequality are continuous as functions of 𝑟 and 𝑦 (see 

(24)), the set of all pairs (𝑟, 𝑦) satisfying the inequality is closed, which implies the same for 

the above graph. 

For later reference, note that, since 𝑔𝑟(𝑥, 𝑦) is linear in the first argument 𝑥, the 

requirement that the inequality in (3) holds for every strategy 𝑥 can be replaced by the 

requirement that it holds for every pure strategy, as the latter automatically implies the 

former. ∎ 

The next theorem shows that, like the congestion games with splittable flow with linear cost 

functions studied in Section 4, nonatomic congestion games with increasing marginal social 

costs always exhibit positive comparative statics. 

Theorem 3. For the population game 𝑔 corresponding to a nonatomic congestion game with 

increasing marginal social costs as in Proposition 6, the mean payoff as the social payoff 

function 𝜑, and altruism coefficients 𝑟 and 𝑠 with 0 ≤ 𝑟 < 𝑠 ≤ 1, let 𝑦𝑟  and 𝑦𝑠 be the 

equilibrium strategies in the modified games 𝑔𝑟  and 𝑔𝑠, respectively. If 𝑦𝑟 ≠ 𝑦𝑠, then 

𝜑(𝑦𝑟) < 𝜑(𝑦𝑠). 

If 𝑠 = 1, then moreover 𝜑(𝑥) < 𝜑(𝑦𝑠) for every strategy 𝑥 ≠ 𝑦𝑠.  

Proof. Since, by Proposition 6, each of the two equilibrium strategies is a strict maximum 

point of the corresponding potential, 𝛷𝑟 or 𝛷𝑠, the first inequality follows from Proposition 

2 and the second inequality follows from the fact that 𝛷1 = 𝜑. ∎ 

The next result provides a more specific description in a special case. 

Theorem 4. Consider a nonatomic congestion game where for each resource 𝑒 the cost 

function 𝑐𝑒 is a polynomial and the marginal social cost 𝑀𝐶𝑒  is strictly increasing in [0,1]. For 

the corresponding population game 𝑔, and the mean payoff as the social payoff function 𝜑, 

define the function 𝜋: [0,1] ⟶ ℝ by  

𝜋(𝑟) = 𝜑(𝑦𝑟), 

where 𝑦𝑟  is the unique equilibrium strategy in the modified game 𝑔𝑟. The function 𝜋 is 

absolutely continuous, and there is a partition of [0,1] into finitely many intervals such that 

in each interval 𝜋 is either constant or strictly increasing.  

Proof. The graph of 𝜋 is the projection on the first two coordinates of the set 

𝒜∗ = { (𝑟, 𝛼, 𝑦) ∣∣ 0 ≤ 𝑟 ≤ 1,  𝛼 = 𝜑(𝑦),  𝑦 is an equilibrium strategy in 𝑔𝑟 }. 

As indicated in the proof of Proposition 6, 𝑦 is an equilibrium in 𝑔𝑟  if and only if the 

inequality in (3) holds for all pure strategies 𝑥. As this requirement involves a finite number 

of polynomial inequalities (see (24)), and 𝛼 = 𝜑(𝑦) is a polynomial equality (see (23)), 𝒜∗ is 

a semialgebraic compact set. The rest of the proof is similar to the proof of Theorem 2, 

except that it relies on Theorem 3 rather than Proposition 1. ∎ 
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A slightly more special case is considered in the following corollary. The proof is similar to 

that of Corollary 1 expect that it employs Theorem 3 rather than Theorem 1.  

Corollary 3. Consider the family of all nonatomic congestion games where for each resource 

𝑒 the cost function 𝑐𝑒 is a (non-constant) polynomial with nonnegative coefficients. For the 

corresponding family of population games 𝔊, as well as every subfamily or single game in 𝔊, 

the price of anarchy PoA𝑟  is nonincreasing for 0 ≤ 𝑟 ≤ 1 and satisfies 1 ≤ PoA𝑟 ≤ 1/𝑟 

(hence, PoA1 = 1). 

The bound PoA𝑟 ≤ 1/𝑟, which was first established by Chen and Kempe (2008), can actually 

be improved upon. These authors (see also Meir and Parkes 2015) show that, for the 

subfamily where the cost functions are polynomials of degree at most 𝑘 (≥ 1), the price of 

anarchy can be determined precisely. Specifically, for 0 < 𝑟 ≤ 1,  

PoA𝑟 =
1

1 + 𝑟𝑘 − 𝑘 (
1 + 𝑟𝑘
1 + 𝑘

)
1+

1
𝑘

 . 

(This expression for the price of anarchy is obtained in the limit 𝑎 → 0+ in the Pigou 

example, where there are two resources, a pure strategy is choosing either resource, and 

the cost functions are 𝑐𝑒1
(𝑡) = 𝑡𝑘 and 𝑐𝑒2

(𝑡) = 1 + 𝑟𝑘 + 𝑎𝑡.) As 𝑘 increases, the above 

expression monotonically increases and tends to the limit  

1

𝑟(1 − ln 𝑟)
 

(and not to 1/𝑟, as Chen and Kempe 2008 and Chen et al. 2014 mistakenly assert). The latter 

is therefore the least upper bound, hence the PoA𝑟, for all polynomial cost functions with 

nonnegative coefficients. 

6 Comparative Statics and Stability 
Comparative statics are closely linked with the stability or instability of the concerned 

equilibria or equilibrium strategies in the corresponding modified games (Milchtaich 2012). 

More specifically, stability is associated with “normal”, positive comparative statics, whereby 

an increase in the altruism coefficient increases social welfare, and (definite) instability is 

associated with negative comparative statics, in which the opposite relation holds. This 

association, which is detailed below, provides a general context to the results obtained in 

the previous sections, as it does not depend on the existence of a potential.  

The notion of stability relevant for comparative statics is static stability (Milchtaich 2020). 

This concept differs from dynamic stability in not involving an extraneous law of motion. 

Instead, stability is completely determined by the game itself, that is, by the players’ payoffs. 

In symmetric games, static stability generalizes a number of more special stability concepts 

such as evolutionarily stable strategy, or ESS. The definition of static stability in asymmetric 

𝑁-player games can be based on that in symmetric games, with the link between the two 

definitions provided by the concept of symmetrization of an asymmetric game (Milchtaich 

2012). However, that definition is equivalent to the following direct one (Milchtaich 2020), 
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where Π denotes the set of all permutation of (1,2, … , 𝑁) and, for a set of players 

𝑆 ⊆ {1,2, … , 𝑁}, 𝑦 ∣ 𝑥𝑆 is the strategy profile in which the players in 𝑆 play according to the 

strategy profile 𝑥 and everyone else plays according to 𝑦.  

Definition 3. A strategy profile 𝑦 in an 𝑁-player game ℎ is stable, weakly stable or definitely 

unstable if it has a neighborhood where, for every strategy profile 𝑥 ≠ 𝑦, the expression  

1

𝑁!
∑ ∑ (ℎ𝜋(𝑗)(𝑦 ∣ 𝑥{𝜋(1),𝜋(2),…,𝜋(𝑗)}) − ℎ𝜋(𝑗)(𝑥 ∣ 𝑦{𝜋(𝑗),𝜋(𝑗+1),…,𝜋(𝑁)}))

𝑁

𝑗=1𝜋∈Π

 

is negative, nonpositive or positive, respectively. If a similar condition holds for all strategy 

profiles 𝑥 ≠ 𝑦, then 𝑦 is globally stable, weakly stable or definitely unstable, respectively. 

The stability condition means that the players’ overall incentive to move from 𝑦 is negative. 

That is, if they change their strategies one-by-one, with each player 𝑖 moving from strategy 

𝑦𝑖  to a nearby alternative strategy 𝑥𝑖, the movers on average lose (with the average taking 

into consideration all 𝑁 players and all 𝑁! orders of moves). As the next lemma shows, this 

requirement can also be interpreted as the condition that, when players only play according 

to 𝑥 or according to 𝑦, those doing the former fare worse on average. For strategy profiles 𝑥 

and 𝑦, define the payoff of 𝑥 players when playing against 𝑦 players as the quantity 

ℋ(𝑥, 𝑦) = ∑ [
1

(𝑁
𝑗 )

∑ ℎ̅𝑆( 𝑦 ∣∣ 𝑥𝑆 )
𝑆

|𝑆|=𝑗

]

𝑁

𝑗=1

= ∑
1

( 𝑁
|𝑆|)

ℎ̅𝑆( 𝑦 ∣∣ 𝑥𝑆 )

𝑆

= ∑
1

( 𝑁
|𝑆|)

ℎ̅𝑆∁( 𝑥 ∣∣ 𝑦𝑆 )

𝑆

, 

where |𝑆| is the number of players in a set 𝑆 and ℎ̅𝑆 = (1/|𝑆|) ∑ ℎ𝑖𝑖∈𝑆  is their average 

payoff, which is defined as 0 if 𝑆 = ∅. (The third equality is obtained by replacing the 

summation variable 𝑆 with the complementary set 𝑆∁ and using the identity 𝑦 ∣ 𝑥𝑆∁ = 

𝑥 ∣ 𝑦𝑆.) 

Lemma 6 (Milchtaich 2020). Expression (26) is equal to ℋ(𝑥, 𝑦) − ℋ(𝑦, 𝑥). 

Static stability and instability are local concepts, defined with respect to a specified topology 

on each player’s strategy set 𝑋𝑖. The product topology on the set 𝑋 = ∏ 𝑋𝑖𝑖  of all strategy 

profiles gives a meaning to a neighborhood of a strategy profile 𝑥: it is any set of strategy 

profiles whose interior includes 𝑥. In principle, any topologies on the strategy sets may be 

chosen. However, in many games, there are unique natural ones, usually determined by the 

Euclidean distance between strategies. Global stability and instability correspond to the 

choice of the trivial topologies, where the only neighborhood of any strategy profile is the 

entire set 𝑋. These strong properties imply stability or instability with respect to any 

topologies. Global stability (and global weak stability) of a strategy profile moreover implies 

that it is an equilibrium, which is not generally true for stability.  

The concept of static stability has a somewhat different meaning in population games, 

where it applies to (population) strategies rather than strategy profiles (Milchtaich 2020). 

This difference from 𝑁-player games reflects the different interpretation of population 

games as describing a large crowd of interacting individuals.  

(26) 
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Definition 4. A strategy 𝑦 in a population game 𝑔 is stable, weakly stable or definitely 

unstable if it has a neighborhood where, for every strategy 𝑥 ≠ 𝑦, the integral  

∫ (𝑔(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦)) 𝑑𝑝
1

0

 

is negative, nonpositive or positive, respectively. If a similar condition holds for all strategies 

𝑥 ≠ 𝑦, then 𝑦 is globally stable, weakly stable or definitely unstable, respectively. 

In the special case of potential games, stability and instability have particularly simple 

characterizations in terms of the extremum points of the potential.  

Theorem 5 (Milchtaich 2020). A strategy profile 𝑦 in an 𝑁-player game with a potential 𝑃 is 

stable, weakly stable or definitely unstable if and only if 𝑦 is, respectively, a strict local 

maximum, local maximum or strict local minimum point of 𝑃. A global maximum point of 𝑃 

is both globally weakly stable (and if it is a strict global maximum point, globally stable) and 

an equilibrium.  

Theorem 6 (Milchtaich 2020). A strategy 𝑦 in a population game with a potential 𝛷 is stable, 

weakly stable or definitely unstable if and only if 𝑦 is, respectively, a strict local maximum, 

local maximum or strict local minimum point of 𝛷. In the first two cases, 𝑦 is in addition an 

equilibrium strategy. If the potential 𝛷 is strictly concave, then an equilibrium strategy is 

necessarily globally stable, and it is therefore the game’s unique stable strategy.  

Theorem 5 implies that the equilibria considered in Theorems 1 and 2 are globally weakly 

stable, and Theorem 6 implies that the equilibrium strategies in Theorems 3 and 4 are 

globally stable. The significance of these findings is elucidated by the next four theorems, 

which present fundamental links between static stability and the effect of altruism and spite 

on social welfare in general games. The first two theorems are similar to Theorems 1 and 3 

in that they concern global comparative statics (Milchtaich 2012, Sections 6 and 7.1), that is, 

comparison between two strategy profiles in two modified games corresponding to different 

altruism coefficients 𝑟 and 𝑠, without assuming that the strategy profiles or the coefficients 

are close or that it is possible to connect them in a continuous manner. The other two 

theorems are similar to Theorems 2 and 4 in that they concern local comparative statics, 

which involve small, continuous changes to the altruism coefficient 𝑟 and the corresponding 

strategies or strategy profiles, and may be thought of as tracing the players’ evolving 

behavior as they respond to the changing 𝑟. Note that, like Propositions 1 and 2, the four 

theorems hold for any choice of social payoff functions.  

Theorem 7 For a game ℎ, a social payoff function 𝑓, and altruism coefficients 𝑟 and 𝑠 with 

𝑟 < 𝑠 ≤ 1, if two distinct strategy profiles 𝑦𝑟  and 𝑦𝑠 are globally weakly stable in the 

modified games ℎ𝑟 and ℎ𝑠, respectively, then  

𝑓(𝑦𝑟) ≤ 𝑓(𝑦𝑠). 

If moreover 𝑦𝑠 is globally stable, then the inequality is strict. A strategy profile that is 

globally weakly stable or globally stable in ℎ1 is a maximum or strict maximum point, 

respectively, of 𝑓 in the set of all strategy profiles.  
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Proof. The proof uses the following identity, which holds for all (𝑟, 𝑠 and) strategy profiles 𝑥 

and 𝑦: 

(1 − 𝑟) ∑
1

( 𝑁
|𝑆|)

(ℎ̅𝑆
𝑠( 𝑦 ∣∣ 𝑥𝑆 ) − ℎ̅

𝑆∁
𝑠 ( 𝑦 ∣∣ 𝑥𝑆 ))

𝑆

+ (1 − 𝑠) ∑
1

( 𝑁
|𝑆|)

(ℎ̅
𝑆∁
𝑟 ( 𝑦 ∣∣ 𝑥𝑆 ) − ℎ̅𝑆

𝑟( 𝑦 ∣∣ 𝑥𝑆 ))

𝑆

 

         = (1 − 𝑟)(1 − 𝑠) ∑
1

( 𝑁
|𝑆|)

((ℎ̅𝑆( 𝑦 ∣∣ 𝑥𝑆 ) − ℎ̅𝑆∁( 𝑦 ∣∣ 𝑥𝑆 )) + (ℎ̅𝑆∁( 𝑦 ∣∣ 𝑥𝑆 ) − ℎ̅𝑆( 𝑦 ∣∣ 𝑥𝑆 )))

𝑆

 

                        +(1 − 𝑟)𝑠 (𝑓(𝑥) − 𝑓(𝑦)) + (1 − 𝑠)𝑟 (𝑓(𝑦) − 𝑓(𝑥)) = (𝑠 − 𝑟)(𝑓(𝑥) − 𝑓(𝑦)). 

The identity implies that the difference 𝑓(𝑥) − 𝑓(𝑦) is nonpositive or negative if the first 

term on the left-hand side is nonpositive or negative, respectively, and the second term is 

nonpositive. It follows from Lemma 6 that this condition holds with 𝑥 = 𝑦𝑟  and 𝑦 = 𝑦𝑠 if the 

latter strategy profile is globally weakly stable or globally stable, respectively, in ℎ𝑠 and the 

former is globally weakly stable in ℎ𝑟. For 𝑠 = 1, the condition also holds with any other 

𝑥 ≠ 𝑦𝑠. ∎ 

Theorem 8. For a population game 𝑔, a social payoff function 𝜑, and altruism coefficients 𝑟 

and 𝑠 with 𝑟 < 𝑠 ≤ 1, if two distinct strategies 𝑦𝑟  and 𝑦𝑠 are globally weakly stable in the 

modified games 𝑔𝑟  and 𝑔𝑠, respectively, then  

𝜑(𝑦𝑟) ≤ 𝜑(𝑦𝑠). 

If moreover 𝑦𝑠 is globally stable, then the inequality is strict. A strategy that is globally 

weakly stable or globally stable in 𝑔1 is a maximum or strict maximum point, respectively, of 

𝜑 in the set of all strategies.  

Proof. The proof uses the following identity, which holds for all (𝑟, 𝑠 and) strategies 𝑥 and 𝑦: 

(1 − 𝑟) ∫ (𝑔𝑠(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔𝑠(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦)) 𝑑𝑝
1

0

+ (1 − 𝑠) ∫ (𝑔𝑟(𝑦, 𝑝𝑦 + (1 − 𝑝)𝑥) − 𝑔𝑟(𝑥, 𝑝𝑦 + (1 − 𝑝)𝑥)) 𝑑𝑝
1

0

          

         = (1 − 𝑟)(1 − 𝑠) ∫ (𝑔(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦)) 𝑑𝑝
1

0

+ (1 − 𝑠)(1 − 𝑟) ∫ (𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦)) 𝑑𝑝
1

0

+ (𝑠 − 𝑟) ∫ (𝑑𝜑(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑑𝜑(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦)) 𝑑𝑝
1

0

 

         = (𝑠 − 𝑟) ∫
𝑑

𝑑𝑝
𝜑(𝑝𝑥 + (1 − 𝑝)𝑦) 𝑑𝑝

1

0

= (𝑠 − 𝑟)(𝜑(𝑥) − 𝜑(𝑦)). 

(The first equality employs a change of integration variable, from 𝑝 to 1 − 𝑝, in the second 

integral. The second equality uses (5), with 𝛷 replaced by 𝜑.) The identity implies that the 

difference 𝜑(𝑥) − 𝜑(𝑦) is nonpositive or negative if the first term on the left-hand side is 

nonpositive or negative, respectively, and the second term is nonpositive. This condition 

holds with 𝑥 = 𝑦𝑟  and 𝑦 = 𝑦𝑠 if the latter strategy is globally weakly stable or globally 

stable, respectively, in 𝑔𝑠 and the former is globally weakly stable in 𝑔𝑟. For 𝑠 = 1, the 

condition also holds with any other 𝑥 ≠ 𝑦𝑠. ∎ 
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Theorem 9 (Milchtaich 2012). For a game ℎ and a social payoff function 𝑓 such that the 

payoff functions and the social payoff function are Borel measurable,9 and altruism 

coefficients 𝑟0 and 𝑟1 with 𝑟0 < 𝑟1 ≤ 1, suppose that there is a continuous and finitely-many-

to-one10 function assigning to each 𝑟0 ≤ 𝑟 ≤ 𝑟1 a strategy profile 𝑦𝑟  such that the function 

𝜋: [𝑟0, 𝑟1] ⟶ ℝ defined by 

𝜋(𝑟) = 𝑓(𝑦𝑟) 

is absolutely continuous.11 If the strategy profile 𝑦𝑟  is stable, weakly stable or definitely 

unstable in the modified game ℎ𝑟 for every 𝑟0 < 𝑟 < 𝑟1, then 𝜋 is strictly increasing, 

nondecreasing or strictly decreasing, respectively. 

Theorem 10 (Milchtaich 2012). For a population game 𝑔 and a social payoff function 𝜑 such 

that the payoff function and 𝑑𝜑 are Borel measurable, and altruism coefficients 𝑟0 and 𝑟1 

with 𝑟0 < 𝑟1 ≤ 1, suppose that there is a continuous and finitely-many-to-one function 

assigning to each 𝑟0 ≤ 𝑟 ≤ 𝑟1 a strategy 𝑦𝑟  such that the function 𝜋: [𝑟0, 𝑟1] ⟶ ℝ defined by 

𝜋(𝑟) = 𝜑(𝑦𝑟) 

is absolutely continuous. If the strategy 𝑦𝑟  is stable, weakly stable or definitely unstable in 

the modified game 𝑔𝑟  for every 𝑟0 < 𝑟 < 𝑟1, then 𝜋 is strictly increasing, nondecreasing or 

strictly decreasing, respectively. 

The last four theorems present a broader perspective than Theorems 1, 2, 3 and 4 do. First, 

they consider almost completely general games and social payoff functions. Second, they are 

not restricted to equilibria or equilibrium strategies. Correspondingly, the last two theorems, 

which concern local comparative statics, consider, not specific relations between altruism 

coefficients and strategies or strategy profiles, but any mapping 𝑟 ↦ 𝑦𝑟  that is reasonably 

“smooth” (the continuity and absolute continuity conditions) and “responsive” (the finitely-

many-to-one condition). In this general setting, they show that social welfare necessary 

(weakly) increases with increasing 𝑟 if each 𝑦𝑟  is (respectively, weakly) stable, and decreases 

in case of definite instability. As indicated, for the strategy profiles and strategies considered 

in Theorems 2 and 4, weak stability or stability, respectively, holds automatically. It is shown 

below that the same is true also in some other games of interest, which include kinds of 

congestion games not covered by the previous sections.  

6.1 Games with differentiable payoffs 
Consider an 𝑁-player game ℎ where the strategy space of each player 𝑖 is a set in a Euclidean 

space ℝ𝑛𝑖  (where the topology is given by the Euclidean distance). With strategies written as 

column vectors, a strategy profile 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁) is an 𝑛-dimensional column vector, 

where 𝑛 = ∑ 𝑛𝑖𝑖 . It is an interior strategy profile if each 𝑥𝑖  is an interior strategy in the sense 

that it lies in the relative interior of player 𝑖’s strategy space. The gradient with respect to 

the components of player 𝑖’s strategy is denoted ∇𝑖 and is written as an 𝑛𝑖-dimensional row 

                                                            
9 A sufficient condition for Borel measurability of a function is that it is continuous. 
10 A function is finitely-many-to-one if the inverse image of every point is a finite set. 
11 A sufficient condition for absolute continuity is that the function is continuously differentiable. 
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vector (of first-order differential operators). Correspondingly, for each 𝑖 and 𝑗, ∇𝑖
T∇𝑗  is an 

𝑛𝑖 × 𝑛𝑗 matrix (of second-order differential operators). In particular, ∇𝑖
T∇𝑖ℎ𝑖 is the Hessian 

matrix of player 𝑖’s payoff function with respect to the player’s own strategy. These Hessian 

matrices are the diagonal blocks in the 𝑛 × 𝑛 block matrix  

𝐻 = (
∇1

T∇1ℎ1 ⋯ ∇1
T∇𝑁ℎ1

⋮ ⋱ ⋮
∇𝑁

T ∇1ℎ𝑁 ⋯ ∇𝑁
T ∇𝑁ℎ𝑁

). 

The value that the matrix 𝐻 attains when its entries are evaluated at a strategy profile 𝑥 is 

denoted 𝐻(𝑥).  

Theorem 11 (Milchtaich 2020). If 𝑦 is an interior equilibrium at which the players’ payoff 

functions are twice continuously differentiable,12 then a sufficient condition for it to be 

stable is that the matrix 𝐻(𝑦) is negative definite.13 If the players’ strategy spaces are 

convex, then the same is true also with the qualifier ‘interior’ dropped.  

In view of the general connection between static stability and the effect of altruism and 

spite on social welfare established above, the last result suggests a link between positive 

comparative statics and negative definiteness of the matrix 𝐻𝑟  obtained from 𝐻 by replacing 

the payoff function ℎ𝑖 of each player 𝑖 with the modified payoff ℎ𝑖
𝑟. The next result, which is 

a generalization of Proposition 8 in Milchtaich (2012), makes good on this suggestion by 

establishing such a direct link. As it shows, the effect of changing the altruism coefficient 𝑟 is 

determined by the negative of a quadratic form whose matrix is 𝐻𝑟. Therefore, if 𝐻𝑟  is 

negative definite at the corresponding equilibria, and the latter change at all when 𝑟 

increases or decreases, then social welfare necessarily also increases or decreases, 

respectively. 

Theorem 12. For a game ℎ where the strategy space of each player is a set in a Euclidean 

space, a social payoff function 𝑓, and altruism coefficients 𝑟0 and 𝑟1 with 𝑟0 < 𝑟1 ≤ 1, 

suppose that there is a continuously differentiable function assigning to each 𝑟0 < 𝑟 < 𝑟1 an 

interior equilibrium 𝑦𝑟  in the modified game ℎ𝑟 at which the payoff functions and social 

payoff function are twice continuously differentiable. The corresponding rate of change of 

the social payoff is given by 

 
𝑑

𝑑𝑟
𝑓(𝑦𝑟) = −(1 − 𝑟) (

𝑑𝑦𝑟

𝑑𝑟
)

T

𝐻𝑟(𝑦𝑟)  
𝑑𝑦𝑟

𝑑𝑟
. 

Proof. For each of the 𝑁 players 𝑖, whose strategy space is a subset of ℝ𝑛𝑖 , let 𝑣𝑖 be any 

vector in the subspace of ℝ𝑛𝑖  that is spanned by all vectors of the form 𝑥𝑖 − 𝑦𝑖, where 𝑥𝑖  

and 𝑦𝑖  are strategies of 𝑖. (Note that, for all 𝑟, 𝑑𝑦𝑖
𝑟/ 𝑑𝑟 lies in this subspace.) Since 𝑦𝑖

𝑟  is an 

                                                            
12 Technically, this assumption means that there is an extension of each payoff function to an open 
neighborhood of 𝑦 in the 𝑛-dimensional Euclidean space where it has continuous second-order partial 
derivatives. 
13 A square matrix 𝐴 is said to be positive or negative definite if the symmetric matrix (1/2)(𝐴 + 𝐴T) 
has the same property, equivalently, if the latter’s eigenvalues are all positive or negative, 
respectively. 

(27) 
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interior strategy, for sufficiently small 𝜖 > 0 the expressions (1/𝜖)(ℎ𝑖( 𝑦𝑟 ∣∣ 𝑦𝑖
𝑟 + 𝜖𝑣𝑖 ) −

ℎ𝑖(𝑦𝑟)) and −(1/𝜖)(ℎ𝑖( 𝑦𝑟 ∣∣ 𝑦𝑖
𝑟 − 𝜖𝑣𝑖 ) − ℎ𝑖(𝑦𝑟)) are well defined. Since 𝑦𝑟  is an 

equilibrium in ℎ𝑟, the first expression is nonpositive and the second one is nonnegative. 

However, as 𝜖 → 0, both expressions tend to ∇𝑖ℎ𝑖
𝑟(𝑦𝑟) 𝑣𝑖, and therefore this expression 

must be zero: 

∇𝑖ℎ𝑖
𝑟(𝑦𝑟) 𝑣𝑖 = ∇𝑖((1 − 𝑟)ℎ𝑖 + 𝑟𝑓)(𝑦𝑟) 𝑣𝑖 = 0. 

Total derivation with respect to 𝑟 gives 

𝑑

𝑑𝑟
∇𝑖ℎ𝑖

𝑟(𝑦𝑟) 𝑣𝑖 = ∇𝑖(−ℎ𝑖 + 𝑓)(𝑦𝑟) 𝑣𝑖 + ∑ (
𝑑𝑦𝑗

𝑟

𝑑𝑟
)

T

∇𝑗
T∇𝑖ℎ𝑖

𝑟(𝑦𝑟)

𝑁

𝑗=1

𝑣𝑖 = 0. 

Summation over 𝑖 of both sides of the right equality, choice of 𝑣𝑖 = (1 − 𝑟) 𝑑𝑦𝑖
𝑟/ 𝑑𝑟 and use 

of the equality ∇𝑗
T∇𝑖ℎ𝑖

𝑟 = (∇𝑖
T∇𝑗ℎ𝑖

𝑟)T (which holds because the first-order partial derivatives 

commute) give  

∑ ∇𝑖(−(1 − 𝑟)ℎ𝑖 + (1 − 𝑟)𝑓)(𝑦𝑟)
𝑑𝑦𝑖

𝑟

𝑑𝑟

𝑁

𝑖=1

+ (1 − 𝑟) (
𝑑𝑦𝑟

𝑑𝑟
)

T

𝐻𝑟(𝑦𝑟) 
𝑑𝑦𝑟

𝑑𝑟
= 0. 

It follows from the second equality in (28) that the first term on the left-hand side (the sum) 

is equal to 𝑑𝑓(𝑦𝑟)/ 𝑑𝑟.  ∎ 

6.2 Games with splittable flow revisited 
The results presented above can be used for extending the study of congestion games with 

splittable flow beyond the linear case examined in Section 4. The extension adds all cost 

functions 𝑐𝑒 that are twice continuously differentiable and satisfy  

−𝑐𝑒
′ (𝑡) <

1

2
𝑡 𝑐𝑒

″(𝑡) <
𝑁 + 1

𝑁 − 1
𝑐𝑒

′ (𝑡), 𝑡 ≥ 0. 

This pair of inequalities can be written also as   

0 < (𝑀𝐶𝑒)′ <
4𝑁

𝑁 − 1
𝑐𝑒

′ , 

where 𝑀𝐶𝑒  is the marginal social cost defined in (25). In the proof of the following result, 

player 𝑖’s strategies are viewed as vectors in ℝ𝐸𝑖  (rather than ℝ𝐸), where 𝐸𝑖  is the set of all 

resources 𝑒 that player 𝑖 may actually use, in the sense that 𝑥𝑖𝑒 > 0 for some strategy 𝑥𝑖. 

Thus, irrelevant coordinates are ignored.  

Proposition 7. For a congestion game with splittable flow ℎ where the cost functions are 

twice continuously differentiable and satisfy (29), the aggregate payoff as the social payoff, 

and altruism coefficient 0 ≤ 𝑟 < 1, the matrix 𝐻𝑟(𝑥) is negative definite for every strategy 

profile 𝑥 and the modified game ℎ𝑟 has at most one equilibrium, which is necessarily stable.   

Proof. By (9), for a strategy profile 𝑥 and players 1 ≤ 𝑖, 𝑗 ≤ 𝑁  

(28) 

(29) 

(30) 
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∇𝑗ℎ𝑖
𝑟(𝑥) = − (((1 − 𝑟)1𝑖=𝑗 + 𝑟) 𝑐𝑒(𝑥𝑒) + ((1 − 𝑟)𝑥𝑖𝑒 + 𝑟𝑥𝑒) 𝑐𝑒

′ (𝑥𝑒))
𝑒∈𝐸𝑗

, 

∇𝑖
T∇𝑗ℎ𝑖

𝑟(𝑥) = − ((((1 − 𝑟)1𝑖=𝑗 + 𝑟 + 1) 𝑐𝑒
′ (𝑥𝑒) + ((1 − 𝑟)𝑥𝑖𝑒 + 𝑟𝑥𝑒) 𝑐𝑒

″(𝑥𝑒)) 1𝑒′=𝑒)
𝑒′∈𝐸𝑖,𝑒∈𝐸𝑗

. 

Therefore, for any column vector 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑁) with 𝑎𝑖 ∈ ℝ𝐸𝑖  for all 𝑖,  

𝑎T𝐻𝑟(𝑥) 𝑎 = − ∑ ∑ 𝑎𝑖𝑒𝑎𝑗𝑒 (((1 − 𝑟)1𝑖=𝑗 + 𝑟 + 1) 𝑐𝑒
′ (𝑥𝑒) + ((1 − 𝑟)𝑥𝑖𝑒 + 𝑟𝑥𝑒) 𝑐𝑒

″(𝑥𝑒))

𝑒∈𝐸𝑖∩𝐸𝑗

𝑁

𝑖,𝑗=1

 

= −(1 − 𝑟) ∑ 𝑐𝑒
′ (𝑥𝑒) ∑ 𝑎𝑖𝑒𝑎𝑗𝑒 (1𝑖=𝑗 +

1 + 𝑟

1 − 𝑟
+ 2 (𝑥𝑖𝑒 +

𝑟

1 − 𝑟
𝑥𝑒) 𝛾𝑒  )

𝑖,𝑗∈𝐼𝑒𝑒

, 

where 𝐼𝑒  is the set of all players 𝑖 with 𝑒 ∈ 𝐸𝑖  and 𝛾𝑒 = (1/2)𝑐𝑒
″(𝑥𝑒)/𝑐𝑒

′ (𝑥𝑒). (Condition (29) 

implies that 𝑐𝑒
′ (𝑥𝑒) > 0.) It follows that 𝐻𝑟(𝑥) is negative definite if and only if for every 

resource 𝑒 ∈ ⋃ 𝐸𝑖𝑖  the matrix  

(1𝑖=𝑗 + 1 + 2𝑟
1 + 𝑥𝑒𝛾𝑒

1 − 𝑟
+ 2𝑥𝑖𝑒𝛾𝑒)

𝑖∈𝐼𝑒,𝑗∈𝐼𝑒

 

is positive definite. The (symmetric) matrix with all entries equal to 2𝑟(1 + 𝑥𝑒𝛾𝑒)/(1 − 𝑟) is 

positive semidefinite, because 1 + 𝑥𝑒𝛾𝑒 > 0 by (29). Therefore, a sufficient condition for 

positive definiteness of (31) is that all eigenvalues of the symmetric matrix 

𝐶 = (1 + (𝑥𝑖𝑒 + 𝑥𝑗𝑒)𝛾𝑒)
𝑖∈𝐼𝑒,𝑗∈𝐼𝑒

 

are greater than −1. Since every vector 𝑣 ∈ ℝ𝐼𝑒  orthogonal to both (1,1, … ,1) and (𝑥𝑖𝑒)𝑖∈𝐼𝑒
 

satsifies 𝐶𝑣 = 0, the matrix 𝐶 has at most two eigenvectors with non-zero eigenvalues. If 

𝛾𝑒 = 0 or 𝑥𝑖𝑒 = 𝑥𝑒/𝑁𝑒 for all 𝑖 ∈ 𝐼𝑒, where 𝑁𝑒 = |𝐼𝑒|, then there is in fact no more than one 

such eigenvector, with eigenvalue 𝑁𝑒 + 2𝑥𝑒𝛾𝑒, which (since 2 + 2𝑥𝑒𝛾𝑒  > 0) is greater than 

−1. Assume, then, that neither of these conditions holds, and consider for a variable 𝜆 the 

(non-zero) vector 𝑣 = (𝑁𝑒𝑥𝑖𝑒 + 𝜆/𝛾𝑒 − 𝑥𝑒)𝑖∈𝐼𝑒
. The condition that 𝑣 is an eigenvector with 

eigenvalue 𝜆 (that is, 𝐶𝑣 = 𝜆𝑣) simplifies to 𝑄(𝜆) = 0, where 

𝑄(𝜆) = 𝜆(𝜆 − 2𝑥𝑒𝛾𝑒 − 𝑁𝑒) − 𝑥𝑒
2𝛾𝑒

2𝑍 

and 𝑍 = 𝑁𝑒(∑ 𝑥𝑖𝑒
2

𝑖∈𝐼𝑒
)/𝑥𝑒

2 − 1 = 𝑁𝑒 ∑ (𝑥𝑖𝑒/𝑥𝑒 − 1/𝑁𝑒)2
𝑖∈𝐼𝑒

. By the assumption that 

𝑥𝑖𝑒 ≠ 𝑥𝑒/𝑁𝑒 for some 𝑖 ∈ 𝐼𝑒, 𝑍 > 0, so 𝑄(0) < 0. Therefore, the quadratic, convex 

polynomial 𝑄 has one positive root and one negative root, which are the remaining two 

eigenvalues of 𝐶. The negative one is greater than −1 if and only if 𝑄(−1) > 0. Solving this 

inequality for 𝑥𝑒𝛾𝑒  gives 

−
𝑁𝑒 + 1

√1 + (𝑁𝑒 + 1)𝑍 + 1
< 𝑥𝑒𝛾𝑒 <

𝑁𝑒 + 1

√1 + (𝑁𝑒 + 1)𝑍 − 1
. 

As, clearly, 𝑍 ≤ 𝑁𝑒 − 1, the right-hand side in (32) is greater than or equal to   

𝑁𝑒 + 1

√1 + (𝑁𝑒 + 1)(𝑁𝑒 − 1) − 1
=

𝑁𝑒 + 1

𝑁𝑒 − 1
≥

𝑁 + 1

𝑁 − 1
 

(31) 

(32) 
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and the left-hand side is smaller than or equal to −1. Therefore, (32) is implied by (29). This 

proves that 𝐻𝑟(𝑥) is negative definite. 

By Theorem 11, the negative definiteness and the fact that the strategy spaces are convex 

imply that every equilibrium in ℎ𝑟 is stable. The same two facts also imply that the game has 

at most one equilibrium (Rosen 1965, Milchtaich 2020). ∎ 

Inspection of the proof of Proposition 7 shows that a very similar result holds for a 

somewhat larger class of cost functions, namely, those that are twice continuously 

differentiable outside the origin and satisfy (30) there (equivalently, satisfy the pair of 

inequalities in (29) for 𝑡 > 0). The only difference is that, in this case, ‘strategy profile’ and 

‘equilibrium’ need to be replaced with ‘interior strategy profile’ and ‘interior equilibrium’. In 

a congestion game with splittable flow, a strategy of a player 𝑖 is an interior strategy if and 

only if it is “completely mixed” in the sense that it can be expressed as a convex combination 

with positive coefficients of all of 𝑖’s pure strategies.  

In the special case of cost functions of the form  

𝑐𝑒(𝑡) = 𝑎𝑒𝑡𝑑𝑒 + 𝑏𝑒 , 

with 𝑎𝑒 , 𝑑𝑒 > 0, the first inequality in (30) holds automatically outside the origin and the 

second one holds there if and only if   

𝑑𝑒 <
3𝑁 + 1

𝑁 − 1
. 

This is the same bound on the exponent obtained by Altman el at. (2002) as a sufficient 

condition for the uniqueness of equilibrium.14  (Cf. Proposition 7.) It holds not only in the 

linear case, where 𝑑𝑒 = 1 for all resources 𝑒, but also in the quadratic, cubic and other 

cases. This is a significant extension, as a game where even only one cost function is non-

linear is generally not a potential game.  

Corollary 4. If the game ℎ in Theorem 12 is a congestion game with splittable flow with cost 

functions that are twice continuously differentiable outside the origin and satisfy (30) there, 

and the social payoff function 𝑓 is the aggregate payoff, then the latter’s rate of change (27) 

is nonnegative at every nonnegative 𝑟0 < 𝑟 < 𝑟1 and is moreover positive where 𝑑𝑦𝑟/ 𝑑𝑟 

≠ 0.  

With cost functions that do not satisfy (30), comparative statics are not necessarily positive. 

Example 4 (Milchtaich 2012). A symmetric congestion game with splittable flow has two 

resources and two players, whose identical weights are some large number and whose two 

pure strategies are choosing either resource. One resource 𝑒 has cost function  

𝑐𝑒(𝑡) = −
1

((𝑡 + 0.4) ln(𝑡 + 1.4))
1.5   

                                                            
14 Because of a typo, the condition is presented in the paper in a slightly altered, stronger form 
(Nahum Shimkin, personal communication).  



34 

(negative, and thus contributing positively to the payoff) and the other’s is identically zero. 

Computation shows that, for every value of 𝑟 in some interval straddling the origin (but 

longer on the positive side), the corresponding modified game has precisely two equilibria, 

𝑥𝑟  and 𝑦𝑟 , which are both symmetric, so the two players ship an identical quantity on 

resource 𝑒. Both flows on 𝑒, 𝑥𝑒
𝑟  and 𝑦𝑒

𝑟, are higher than the socially optimal flow. However, 

the first flow is smaller than the second one, and correspondingly the players’ (identical) 

payoff in 𝑥𝑟  is higher than in 𝑦𝑟. As 𝑟 increases along the interval, 𝑥𝑒
𝑟  continuously 

decreases, and the corresponding payoff increases, while for 𝑦𝑟  the opposite trends hold. 

Thus, local comparative statics are positive for the “good” equilibria 𝑥𝑟  and negative for the 

“bad” ones 𝑦𝑟. This shows that, even in such a very simple game, both kinds of local 

comparative statics may occur, global comparative statics need not be positive, and the 

payoff at the worst equilibrium may strictly decrease with increasing 𝑟. 

Theorem 9 can be used to infer that the bad equilibria in Example 4 are unstable. 

Computation shows that the good equilibria are stable: they satisfy the condition in 

Theorem 11, with ℎ replaced by the modified game ℎ𝑟. (For an equilibrium 𝑦 in ℎ𝑟, the 

negative definiteness condition is equivalent to 𝑦𝑒𝑐𝑒
″(𝑦𝑒)/𝑐𝑒

′ (𝑦𝑒) > −(3 + 𝑟)/(1 + 𝑟).)    

6.3 Cournot oligopoly 
Example 4 is presented in Milchtaich (2012, Example 1) not as a congestion game with 

splittable flow but as a (symmetric) Cournot competition. The alternative presentation used 

here is made possible by the fact that quantity competition among 𝑁 firms producing an 

identical good is a special kind of congestion game with splittable flow. Specifically, suppose 

that each firm 𝑖 has a maximum output of 𝑤𝑖 and a convex cost function 𝐶𝑖: [0, 𝑤𝑖] ⟶ ℝ+ 

with 𝐶𝑖(0) = 0, and has to choose an output level 0 ≤  𝑞𝑖 ≤ 𝑤𝑖. The price of the good is 

𝑃(𝑄), where 𝑄 = ∑ 𝑞𝑖
𝑁
𝑖=1  is the aggregate output and 𝑃: [0, ∑ 𝑤𝑖

𝑁
𝑖=1 ] ⟶ ℝ+ is a 

nonincreasing price (or inverse demand) function. The profit of firm 𝑖 is therefore 

𝑞𝑖𝑃(𝑄) − 𝐶𝑖(𝑞𝑖), or 𝑞𝑖(𝑃(𝑄) − 𝐴𝐶𝑖(𝑞𝑖)), where 𝐴𝐶𝑖 is the firm’s average cost function (with 

𝐴𝐶𝑖(0) = 𝐶𝑖
′(0)). The corresponding congestion game has 𝑁 + 2 resources, numbered from 

0 to 𝑁 + 1. Firm 𝑖’s weight is its maximum output 𝑤𝑖  and it has two pure strategies: 

choosing resource 0, which is interpreted as being idle, and choosing resources 𝑖 and 𝑁 + 1, 

which represents full production. The cost function of resource 0 is identically zero, that of 

𝑁 + 1 is given by 𝑐𝑒𝑁+1
(𝑡) = −𝑃(𝑡), and for 1 ≤ 𝑖 ≤ 𝑁 the cost is 𝑐𝑒𝑖

(𝑡) = 𝐴𝐶𝑖(min(𝑡, 𝑤𝑖)). 

(Example 4 corresponds to the special case of production at zero cost, for which resources 1 

through 𝑁 are redundant.) When each firm 𝑖 ships quantity 𝑞𝑖 on “full production” and 

𝑤𝑖 − 𝑞𝑖  on “idle”, the payoff of firm 𝑖, which is the negative of its total cost, is 𝑞𝑖(𝑃(𝑄) −

 𝐴𝐶𝑖(𝑞𝑖)), the profit. 

In this congestion game, the marginal social costs of resources 1 through 𝑁 have a simple 

meaning. Namely, they coincide with the marginal costs of production for the corresponding 

firms (in the relevant ranges). The marginal social cost 𝑀𝐶𝑒𝑁+1
 is the negative of the 

marginal aggregate revenue. Thus, it is nondecreasing if and only if the aggregate revenue is 

a concave function of the aggregate output. This fact and the findings in the previous 

subsection hint at a possible link between such concavity and positive local comparative 

statics with respect to the firms’ aggregate profit. In fact, in the special case of a Cournot 

competition between two identical firms, concavity is known to guarantee an even stronger 
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property, namely, positive global comparative statics. (This result, too, has to do with global 

weak stability.) In view of the alternative presentation described above, the result can also 

be interpreted as concerning (a very special kind of) congestion games with splittable flow. 

Proposition 8 (Milchtaich 2012, Section 6.2). For a Cournot oligopoly game ℎ as above with 

only two, identical firms, the aggregate profit as the social payoff function 𝑓, and altruism 

coefficients 𝑟 and 𝑠 with −1 < 𝑟 < 𝑠 ≤ 1, let 𝑦𝑟  and 𝑦𝑠 be equilibria in the modified games 

ℎ𝑟 and ℎ𝑠, respectively. If the aggregate revenue is a concave function of the aggregate 

output, then  

𝑓(𝑦𝑟) ≤ 𝑓(𝑦𝑠). 

7 Summary and Discussion 
Users of common resources often exert negatives externalities on the other users, and are 

similarly affected by them. Their own experience with the ill effects of congestion may make 

it easier for people to sympathize with its other sufferers. It may seem only logical that if this 

sympathy led all users to internalize the others’ welfare and to exert a certain, common 

degree of altruism in their choice of resources, everyone would be better off. However, as 

this paper shows, this is so only in some circumstances. Internalization of social welfare does 

not have to be socially beneficial. In fact, it may make everyone worse off. 

The analysis presented here only concerns the expected material consequences (hence, the 

social desirability) of internalization of social welfare, that is, its effect on the actual level of 

the social payoff at equilibrium. The questions of the origin of such attitudes, their 

prevalence and evolution (e.g., Heifetz el al. 2007) lie outside the scope of the present work. 

In some contexts, altruism may have a biological basis. If the individuals involved are related, 

then the effect of the use of a common resource on the inclusive fitness of individual 𝑖 is 

measured by the effect on 𝑖’s own fitness plus 𝑟 times the effect on each of the other 

individuals 𝑗, where 𝑟 is the coefficient of relatedness between 𝑖 and 𝑗 (Milchtaich 2006a). In 

a social context, a similar parameter 𝑟 may express individual 𝑖’s level of empathy towards 𝑗. 

Edgeworth (1881) called this parameter the coefficient of effective sympathy. More 

generally, the altruism coefficient 𝑟 may specify the weight a person attaches to some 

completely general social payoff, like the degree of global warming, that is not necessarily 

expressible in terms of the individuals’ personal, material payoffs but is a function of 

everyone’s actions. Some of the results in this paper apply to such general social payoff 

functions while others are specific to a particular function, the aggregate personal payoff (or 

the negative of the aggregate cost). In addition, some results also apply to negative 𝑟, which 

may be interpreted as spite.  

A strong simplifying assumption made in this paper is that all the individuals involved are 

equally altruistic: they have the same 𝑟. This may be so, for example, if all users of the 

common resources share similar values or a similar upbringing. A second assumption, which 

is implicit in the functional form of the modified payoff, is that the latter incorporates the 

social payoff linearly. A non-linear effect would require adding higher-order terms to the 

function. However, these terms may be expected to be relatively unimportant if the effect is 

weak, that is, the personal payoff predominates. In this case, a linear relation with a small 
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coefficient 𝑟 may be a good approximation. Many of the phenomena described in this paper 

are evident already for arbitrarily small 𝑟.15    

The simplest scenario where the use of common resources gives rise to negative 

externalities is that of an unweighted congestion game. As shown, it is generally not true in 

this setting that altruism necessarily has a positive effect on the aggregate personal payoff. 

In fact, even with linear cost functions, inefficient equilibria may exist only for altruism 

coefficients close to 1, which reflect complete or almost complete selflessness. In other 

words, as the altruism coefficient 𝑟 increases, the price of anarchy in the game may (weakly) 

increase. The main results in Section 3 concern the characterization of the games for which 

this is never so. A sufficient condition for nonincreasing price of anarchy is the flow 

monotonicity property. This is because this property guarantees that equilibria must 

maximize the game’s potential function. The flow monotonicity property only concerns the 

“congestion game form”; the cost functions are irrelevant. For symmetric unweighted 

network congestion games, this fact translates to a condition on the topology of the 

undirected network on which the game is defined. In particular, if that network is extension-

parallel, then the flow monotonicity property automatically holds for the game, and 

therefore altruism can only increase social welfare or leave it unchanged. The same it not 

true for general series-parallel networks. 

Allowing users to split their demand among several strategies has a significant effect on 

comparative statics. In particular, with linear cost functions, the aggregate personal payoff 

at equilibrium is uniquely determined by the altruism coefficient 𝑟 and is nondecreasing in 

[−1,1]. That is, an increasingly positive or negative 𝑟 can only increase or decrease, 

respectively, the social welfare or leave it unchanged. The highest aggregate payoff is 

attained with complete selflessness, 𝑟 = 1. 

Internalization of social payoff may occur even if a single person’s ability to affect the social 

payoff is practically nonexistent. For example, people may care about their carbon footprint 

even while acknowledging its insignificance on a global scale. They may justify their attitude 

by saying that the effect would not be insignificant if sufficiently many people acted on these 

concerns. Put differently, the emphasis is on the marginal effect of an act on the social 

payoff, that is, the effect per unit mass of actors. (In the special case where the total effect is 

proportional to the size of the set of actors, the marginal effect of an action expresses the 

outcome if everybody switched to that action.) In this context, the altruism coefficient 𝑟 is 

the weight attached to the marginal effect, and comparative statics concern the relation 

between this weight and the actual level of the social payoff at equilibrium. For congestion 

games, the relevant model is that of a population game arising from a nonatomic congestion 

game, where the set of players is modeled as a continuum. The social payoff function is the 

mean payoff, which is analogous to the aggregate personal payoff in games with a finite 

number of players. As shown, comparative statics are qualitatively quite similar to those in 

                                                            
15 The modified payoff is linear also in 𝑟. However, this linearity does not represent a very strong 
assumption because multiplying the expression on the right-hand side of (1) by any positive-valued 
function of 𝑟 would not affect the preferences expressed by it. In other words, only the ratio 
(1 − 𝑟): 𝑟, which gives the marginal rate of substitution of personal payoff for social payoff, matters.  
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the case of a finite number of users with splittable flow. For 𝑟 between 0 and 1, the mean 

payoff at equilibrium is uniquely determined by the altruism coefficient as a nondecreasing 

function, which reaches its peak at 𝑟 = 1.  

The results presented above rely to a large extent on the fact that the games considered are 

potential games and the equilibria or equilibrium strategies involved are necessarily 

maximizers of the potential. However, Section 6 points to a deeper link underlying the 

connection between comparative statics and the potential function. Specifically, it shows 

that a strict maximum point of the potential is necessarily (statically) stable, and that 

stability or definite instability, respectively, necessarily brings about positive or negative 

comparative statics. Moreover, the last connection holds not only for the aggregate or mean 

payoff but for general social payoff functions. This connection may be used for determining 

the effect of altruism in congestion games to which the previous results do not apply, in 

particular, congestion games with splittable flow that are not potential games because the 

cost functions are not linear (but, say, quadratic or cubic). A nice fact is that such games can 

model Cournot oligopoly. The meaning of negative comparative statics in this context is that 

two duopolists that internalize their competitor’s profit to some degree may have lower 

profits at equilibrium than they would have if they only cared about their own profit. This 

finding is surprising in view of the fact that complete internalization would turn the duopoly 

into a monopoly, and drive the profits up.     
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Appendix: Networks 
A directed or undirected two-terminal network is, respectively, a directed or undirected 

multigraph (where a pair of vertices may be joined by more than one edge) that is endowed 

with two terminal vertices, 𝑜 and 𝑑, and satisfies the following “non-redundancy” condition: 

each edge 𝑒 and each vertex 𝑣 is included in at least one route in the network. In the 

undirected case, a route is defined as a (simple) path of the form 𝑜𝑒1𝑣1 ⋯ 𝑣𝑛−1𝑒𝑛𝑑 (𝑛 ≥ 1), 

that is, one that begins at the origin vertex 𝑜 and ends at the destination vertex 𝑑. (An 

alternative, simpler notation is 𝑒1𝑒2 ⋯ 𝑒𝑛.) In the directed case, a route also has to traverse 

each of its edges 𝑒 in the direction assigned to 𝑒, that is, the tail and head vertices of 𝑒 must 

be its immediate predecessor and successor, respectively, in the route. This difference 

means that the set of routes in a directed two-terminal network is a subset of the set of 

routes in the network’s undirected version, which is obtained by ignoring the edge 

directions.  

An arbitrary assignment of directions to the edges of an undirected two-terminal network 𝐺 

does not necessarily give a directed network, as the non-redundancy condition may fail to 

hold. If the non-redundancy condition does hold, the resulting directed two-terminal 

network is said to be a directed version of 𝐺. Such a version always exists. 

Proposition A1. Every undirected two-terminal network has at least one directed version. 

Proof. The proof is by induction on the number of edges in the network. If there is only one 

edge, the assertion is trivial. To establish the inductive step, consider a network 𝐺 with more 

than one edge, and some edge 𝑒 incident with the origin 𝑜. If no other edge is incident with 

𝑜, then by the induction hypothesis there exists at least one directed version of the network 

obtained from 𝐺 by contracting 𝑒, that is, eliminating the edge and its non-terminal vertex 𝑣 

and replacing 𝑣 with 𝑜 as the terminal vertex of all the edges originally incident with 𝑣. Any 

such directed version gives a directed version of 𝐺, in which 𝑒 is directed from 𝑜 to 𝑣. 

Suppose, then, that 𝑒 is not the only edge incident with 𝑜, and consider the subnetwork 𝐺𝑒  

of 𝐺 whose edges and vertices are all those that belong to some route in 𝐺 where the first 

edge is 𝑒.    

http://ece.iisc.ernet.in/~chandra/publications.html
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Claim. If a route 𝑟 in 𝐺 includes a non-terminal vertex 𝑢 that is in 𝐺𝑒, then every edge 

(hence, also every vertex) that follows 𝑢 in 𝑟 is also in 𝐺𝑒. 

It clearly suffices to consider the edge 𝑒′ that immediately follows 𝑢 in 𝑟. Suppose that 𝑒′ is 

not in 𝐺𝑒. Let 𝑣 the first vertex in 𝑟 that follows 𝑒′ and is in 𝐺𝑒. (Possibly, 𝑣 = 𝑑.) All the 

edges and vertices in 𝑟 between 𝑢 and 𝑣 are not in 𝐺𝑒. Adding them to it creates a new 

subnetwork of 𝐺, since the addition is equivalent to adding to 𝐺𝑒  a single edge with end 

vertices 𝑢 and 𝑣 and then subdividing the edge, if needed, one or more times (Milchtaich 

2015, Section 2.2). By definition, there exists in the new subnetwork a route 𝑟′ that includes 

𝑒′. Necessarily, 𝑟′ also includes 𝑒. The conclusion contradicts the assumption that 𝑒′ is not in 

𝐺𝑒, and thus proves the claim.  

Consider now the collections of all edges and vertices that are obtained from those in 𝐺 by 

(i) eliminating all edges that are in 𝐺𝑒  and (ii) identifying with 𝑑 all non-terminal vertices that 

are in 𝐺𝑒. It follows from the Claim that these collections constitute a network 𝐺′ (with the 

terminal vertices 𝑜 and 𝑑). To see this, consider any edge or non-terminal vertex in them and 

a route 𝑟 in 𝐺 that includes it. It follows from the Claim that the inclusion still holds if 𝑟 is 

replaced with its section 𝑟𝑜𝑢, which is the path obtained from 𝑟 by deleting all edges and 

vertices that follow 𝑢, where 𝑢 is the first vertex in 𝑟, other than 𝑜, that is in 𝐺𝑒. As 𝑢 is one 

of the vertices identified with 𝑑, 𝑟𝑜𝑢 is a route in 𝐺′. 

By the induction hypothesis, both 𝐺𝑒  and 𝐺′ have directed versions, which together specify 

directions for all edges in 𝐺. It remains to show that these directions define a directed 

version of 𝐺, that is, the non-redundancy condition holds. Any edge or vertex that is or is not 

in 𝐺𝑒  is included in some route 𝑟 in the directed version of 𝐺𝑒  or some route 𝑟′ in the 

directed version of 𝐺′, respectively. By construction, 𝑟 is automatically a route also in 𝐺 and 

it honors the directions specified for its edges. Only the second assertion is necessarily true 

for 𝑟′, which is a path that starts at 𝑜, ends at some vertex 𝑢 in 𝐺𝑒, and does not include any 

other vertex or edge that is in 𝐺𝑒. However, it is possible to extend 𝑟′ to a route in 𝐺 that 

honors the edges’ directions by replacing the vertex 𝑢 with the section 𝑟𝑢𝑑
″  of some route 𝑟″ 

in the directed version of 𝐺𝑒  that includes 𝑢, where 𝑟𝑢𝑑
″  is obtained from 𝑟″ by deleting all 

the edges and vertices that precede 𝑢.  ∎ 

Corollary A1. The collection of the undirected versions of all directed two-terminal networks 

coincides with the collection of all undirected two-terminal networks. 

Clearly, an assignment of directions to the edges of an undirected two-terminal network 𝐺 

defines a directed version of 𝐺 only if it satisfies the condition mentioned in Section 3.3, 

which is that the direction of each edge 𝑒 coincides with the direction in which some route 

in (the undirected network) 𝐺 traverses 𝑒. However, this necessary condition is not 

sufficient. For example, it is not difficult to see that an assignment satisfying the condition 

may render a non-terminal degree-two vertex the head vertex of both edges incident with it, 

which means that the non-redundancy condition for directed networks is violated. However, 

it follows from Proposition A1 that if there is only one assignment of directions that satisfies 

the above condition, then that assignment necessarily does give a directed version of 𝐺. 

Such uniqueness is rather special. Indeed, the following result can easily be deduced from 

Proposition 1 in Milchtaich (2006b). 
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Corollary A2. For an undirected two-terminal network 𝐺, the following conditions are 

equivalent: 

(i) For every edge 𝑒, all routes in 𝐺 that include 𝑒 traverse it in the same direction. 

(ii) For every assignment of allowable directions to the edges in 𝐺 such that the 

direction of each edge 𝑒 is that in which some route in 𝐺 traverses 𝑒, all routes in 

𝐺 are allowable. 

(iii) 𝐺 is series-parallel. 
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