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Abstract

A class of noncooperative games in which the players share a common
set of strategies is described. The payoff a player receives for playing a
particular strategy depends only on the total number of players playing the
same strategy and decreases with that number in a manner which is speci�c
to the particular player. It is shown that each game in this class possesses
at least one Nash equilibrium in pure strategies. Best-reply paths in which
players, one at a time, shift to best-reply strategies may be cyclic. But there
is always at least one such path that connects an arbitrary initial point to an
equilibrium.

1 Introduction
Rosenthal (1973) introduced a class of games in which each player chooses a
particular combination of factors out of a common set of primary factors. The
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payoff associated with each primary factor is a function of the number of players
who include it in their choice. The payoff a player receives is the sum of the
payoffs associated with the primary factors included in his choice. Each game
in this class possesses at least one pure-strategy Nash equilibrium. This result
follows from the existence of a potential (Monderer and Shapley, 1991)�a real-
valued function over the set of pure strategy-tuples having the property that the
gain (or loss) of a player shifting to a new strategy is equal to the corresponding
increment of the potential function.
The present report is concerned with games in which the payoff function as-

sociated with each primary factor is not universal but player-speci�c. This gen-
eralization is accompanied, on the other hand, by assuming these two limiting
assumptions: that each player chooses only one primary factor and that the payoff
received actually decreases (not necessarily strictly so) with the number of other
players selecting the same primary factor. These congestion games, while not
generally admitting a potential, nevertheless always possess a Nash equilibrium
in pure strategies.
Such congestion games may have certain realizations in such �elds as eco-

nomics, traf�c �ows, and ecology. Milinsky (1979) simulated two different drift
food patches in a stream by feeding six sticklebacks from two ends of a tank. On
average, the �sh distributed themselves between the two halves of the tank in the
ratio of the food supply rates. Thus no individual could achieve a higher feeding
rate by moving to the other patch. This Nash equilibrium is an example of an evo-
lutionary stable strategy (ESS) (Maynard Smith, 1982, p. 63) or more speci�cally
of an ideal free distribution (IFD) (Fretwell and Lucas, 1969). Where suitability
of food patches or habitats decreases with density, and where individuals are free
to enter any patch on an equal basis with residents, an IFD is said to occur when
each individual settles in the patch most suited for its survival or reproduction (for
a review of the effect of competition for resources on an individual's choice of
patch see Milinsky and Parker, 1991). Does such an equilibrium always exist?
The results of the present work suggest that a Nash equilibrium in pure strate-
gies, that is, an equilibrium assignment of individuals to patches, should exist
for any number of individuals and any number of patches, provided that, within
each patch, individuals have equal feeding rates (Theorem 2). This result holds
even if patches differ in the kind of food being offered in them and if individuals
differ in their food preferences and in the additional value they attach to patches
(taking, for example, predation risks into consideration). If, however, individuals
also differ in their relative feeding rates, and if there are more than two patches,
then a pure-strategy Nash equilibrium may not exist. Individual differences in
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competitive ability or in dominance were observed, under broadly similar exper-
imental conditions, in sticklebacks (Milinsky, 1984), in cichlid �sh (Godin and
Keenleyside, 1984), in mallards (Harper, 1982), and in gold�sh (Sutherland et al.,
1988). This case of differential individual effect of players upon the payoff of oth-
ers, which goes beyond the basic model portrayed above, is modeled in Section 8.
Such �weighted� congestion games, in contrast with the �unweighted� congestion
games considered above, do not always possess a pure-strategy Nash equilibrium.
The players of a game may reach an equilibrium by some sort of an adapta-

tion process (see, for example, Kandori et al., 1993, and Young, 1993). Perhaps
most simply, �myopic� players may react to the strategies played by the other
players by deviating to best-reply strategies. Considering the underlying time axis
to be a continuum, such deviations may be assumed to take place one at a time.
Does such a process always converge? For the congestion games under consider-
ation, the process always converges when there are only two common strategies
to choose from (Theorem 1), or when players have equal payoff functions. But
in the case of general �unweighted� congestion games counterexamples can be
found. Assuming, however, a stochastic order of deviators, a convergence almost
surely occurs (Theorem 3).

2 The model
In the present report, noncooperative games satisfying the following condition are
referred to as (unweighted) congestion games: The n players share a common
set of r strategies; the payoff the ith player receives for playing the jth strategy
is a monotonically nonincreasing function Si j of the total number n j of players
playing the jth strategy. Denoting the strategy played by the ith player by σ i, the
strategy-tuple σ =(σ1;σ2; : : :;σn) is a Nash equilibrium iff each σ i is a best-reply
strategy:

Siσ i(nσ i)� Si j(n j+1) for all i and j.

Here n j = #f1 � i � n j σ i = jg. (n1;n2; : : :;nr) is called the congestion vector
corresponding to σ .

3 The symmetric case
A congestion game is symmetric if and only if all players share the same set
of payoff functions, denoted by S1;S2; : : :;Sr. Rosenthal (1973) de�ned for such
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symmetric games the exact potential function

P(σ) =
r
∑
k=1

nk
∑
m=1

Sk(m):

When only the ith player shifts to a new strategy, the jth one, the potential changes
by

∆P= S j(n j+1)�Sσ i(nσ i);

which is equal to what the ith player gains (or loses). Any �local� maximum of P,
a strategy-tuple where changing one coordinate cannot result in a greater value of
P, hence corresponds to a pure-strategy Nash equilibrium.
The existence of an exact potential function further implies the �nite improve-

ment property (FIP) (Monderer and Shapley, 1991): Any sequence of strategy-
tuples in which each strategy-tuple differs from the preceding one in only one
coordinate (such a sequence is called a path), and the unique deviator in each step
strictly increases the payoff he receives (an improvement path), is �nite. The �rst
strategy-tuple of a path is called the initial point; the last one is called the termi-
nal point. Obviously, any maximal improvement path, an improvement path that
cannot be extended, is terminated by an equilibrium.
For later reference we note that the fact that congestion games with equal pay-

off functions possess the FIP can also be proved without invoking a potential func-
tion. If there exists an in�nite improvement path for such a game then there exists
an improvement path σ(0);σ(1); : : :;σ(M) (M > 1), where σ(0) = σ(M). Let
(n1(k);n2(k); : : :;nr(k)) be the congestion vector corresponding to σ(k) (0� k �
M). We can rearrange the indices in such a way that S1(n1(1)) � mink S j(n j(k))
holds for every strategy j for which n j(k) (0 � k � M) is not constant and in
such a way that n1(1) > n1(0). The latter assumption implies that for the unique
deviator at the �rst step, player i, σ i(1) = 1 but σ i(1) = j 6= 1. This implies
S1(n1(1))> S j(n j(0)), which contradicts the above minimality assumption.

4 The two-strategy case
Nonsymmetric congestion games do not generally admit an exact potential func-
tion. Nevertheless, in the special case r = 2 we have

THEOREM 1. Congestion games involving only two strategies possess the �-
nite improvement property.
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Proof. Suppose the contrary, that there exists an in�nite improvement path
σ(0);σ(1); : : : for some two-strategy congestion game. It may be assumed that,
for someM > 1, σ(0) = σ(M). Let (n1(k);n2(k)) be the congestion vector corre-
sponding to σ(k) (0 � k � M). Without loss of generality, it may be assumed
that n2(1) = maxk n2(k), and therefore n1(1) = n� n2(1) = mink n1(k). This
implies that the unique deviator in the �rst step, player i, deviate from 1 to 2;
hence Si2(n2(1)) > Si1(n1(1)+ 1). By the monotonicity of the payoff functions,
Si2(n2(k)) > Si1(n1(k)+1) holds for all 0 � k �M. Hence player i does not de-
viate back to strategy 1 in steps 2;3; :::;M. This contradicts the assumption that
σ i(M) = σ i(0) = 1. �

5 Games without the �nite improvement property
The �nite improvement property is equivalent to the existence of a generalized
ordinal potential for the game under consideration�a real-valued function over
the set of pure strategy-tuples that strictly increases along any improvement path
(Monderer and Shapley, 1991). Indeed, for a game that possesses the FIP the
integer-valued function that assigns to a strategy-tuple σ the number of strategy-
tuples which are the initial point of an improvement path with the terminal point
σ is easily seen to be a generalized ordinal potential.
Here is an example of a two-player congestion game which does not possess

the �nite improvement property. Three strategies (a minimal number, by Theo-
rem 1) are involved, numbered 1, 2, and 3. Assuming that S11(1) > S12(n2) >
S13(n3) > S11(2) and S22(1) > S21(n1) > S23(n3) > S22(2) hold for all n1, n2,
and n3, the path (3;2), (2;2), (2;3), (1;3), (1;1), (3;1), and back to (3;2) is an
improvement path, involving six strategy-tuples. The existence of such a cycle
demonstrates that the game under consideration does not admit even a general-
ized ordinal potential. Nevertheless, pure-strategy Nash equilibria do exist: these
are the strategy-tuples (1;2) and (2;1).
Paths in which in each step the unique deviator shifts to a strategy which is a

best reply against the strategies played by the other players are called best-reply
paths. A best-reply strategy need not be unique. If players deviate only when
the strategy they are currently playing is not a best-reply strategy then the path is
a best-reply improvement path. Clearly, the �nite improvement property implies
the corresponding property for best-reply improvement paths, the �nite best-reply
property (FBRP), but the converse is not true.
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The following argument shows that in�nite best-reply improvement paths in-
volve at least three players. At each step only one player, i, is changing his strat-
egy, by deviating to the jth strategy, say. Therefore only one coordinate of the
congestion vector, the jth one, is increased. Hence a second player is negatively
affected�his payoff is reduced�only if he too plays the jth strategy. Occasion-
ally, such reductions must take place: no player's payoff can increase inde�nitely.
If only two players are involved then it is this second player who makes the next
move, changing from j to a strategy which is a best reply against the strategy ( j)
played by i. As this can only result in a smaller n j (and greater nk, for some k 6= j)
the jth strategy remains a best reply for i, and thus an equilibrium is reached.
The path (2;1;1), (3;1;1), (3;3;1), (3;3;2), (2;3;2), (2;1;2), and back to

(2;1;1), where 1, 2, and 3 are three distinct strategies, is a best-reply improvement
path in a three-player congestion game where the inequalities S13(1) > S12(1),
S23(2)> S21(2), S32(1)> S31(1), S12(2)> S13(2), S21(1)> S23(1), and S31(2)>
S32(2) hold, and Si j's not listed here are minimal. This path is shown graphi-
cally in Fig. 1. Thus, a three-player congestion game for which these conditions
hold does not possess the �nite best-reply property and therefore does not ad-
mit a generalized ordinal potential. It does, however, possess two pure-strategy
Nash equilibria: (3;1;2) and (2;3;1). Note that this example involves a generic
game, a game where different strategies yield different payoffs. The existence of
best-reply cycles does not thus depend on multiplicity of best-reply strategies.
It can be shown (by extending the earlier argument concerning best-reply paths

involving two players) that for a generic three-player congestion game the above
inequalities are necessary conditions for an in�nite best-reply path to occur: every
in�nite best-reply path consists of a �nite path followed by an endless repetition
of a six strategy-tuple cycle having the form indicated above.

6 The existence of a pure-strategy Nash equilibrium
The above examples illustrate a general property of the class of games de�ned in
Section 2:

THEOREM 2. Every (unweighted) congestion game possesses a Nash equilib-
rium in pure strategies.

Before proving Theorem 2, we prove a lemma. Part (a) of the lemma is con-
cerned with paths where each deviator moves to the next deviator's present posi-
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tion. Part (b) is concerned with paths where each deviator takes the last deviator's
previous position.

LEMMA. (a) If j(0), j(1),. . . , j(M) is a sequence of strategies, σ(0),σ(1),. . . ,
σ(M) is a best-reply improvement path, and σ(k) results from the deviation of
one player from j(k� 1) (the strategy which he played in σ(k� 1)) to j(k) (k =
1;2;. . . ;M), then M� n (n is the number of players).
(b) Similarly, if the deviation in the kth step is from j(k) to j(k� 1) (k =

1;2; . . . ;M) then M � n � (r�1) (r is the number of strategies).

Proof. (a) Let (n1(k);n2(k); . . . ;nr(k)) be the congestion vector corresponding
to σ(k) (0� k �M), and set (n j)min =mink n j(k) (1� j � r). Clearly (n j)min �
n j(k)� (n j)min+1 holds for all j and k. Equality on the right holds for j = j(k);
equality on the left holds for j 6= j(k). Hence by deviating to j(k) the unique
deviator in the kth step brings n j(k) to its maximum and all other n j's to their
minimum. Therefore, by the monotonicity of the payoff functions, j(k) remains
a best reply for that player in all subsequent steps. Thus each player deviates at
most once.
(b) Here too (n j)min � n j(k) � (n j)min+ 1, but equality on the left holds for

j = j(k). By deviating from j(k), the unique deviator in the kth step thus brings
n j(k) to its minimum. This implies that his payoff in σ(k) is not only greater than
in σ(k�1) (which is the case by de�nition of a best-reply improvement path) but
also greater than his payoff when he deviated to j(k), if he did, or the payoff he
will get by deviating to j(k) at some later stage. Therefore a player will not return
to a strategy he deviated from; each player thus deviates at most r�1 times. �

Proof of Theorem 2. The proof proceeds by induction on the number n of
players. For n = 1 the proof is trivial. We assume that the theorem holds true
for all (n�1)-player congestion games and prove it for n-player games. A given
n-player congestion game Γ can be reduced into an (n� 1)-player game Γ by
�deleting� the last player. The reduced game is also a congestion game; the payoff
functions Si j in this game are de�ned by

Si j(n j) = Si j(n j) for 1� i� n�1 and all j;

where n j = #f1 � i � n� 1 j σ i = jg. By the induction hypothesis, there ex-
ists in Γ a pure-strategy Nash equilibrium σ = (σ1(0);σ2(0); : : :;σn�1(0)). Let
(n1;n2; : : :;nr) be the congestion vector corresponding to σ . Going back to Γ, let
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σn(0) be a best reply of player n against σ . Note that Siσ i(0)(nσ i(0))� Si j(n j+1)
holds for all i and j. Starting with j(0) = σn(0) and with σ(0) = (σ1(0);σ2(0);
. . . ;σn�1(0);σn(0)), we can �nd a sequence j(0); j(1); : : : ; j(M) of strategies,
and a best-reply improvement path σ(0);σ(1); : : : ;σ(M) connected to it as in
part (a) of the lemma, such that M (� 0) is maximal. We claim that σ(M) =
(σ1(M);σ2(M); : : : ;σn(M)) is an equilibrium. For every player i who has de-
viated from the strategy he played in σ(0), the strategy σ i(M) is a best reply
against σ(M)�this is shown in the proof of the lemma. It remain to show that
σ i(M) = σ i(0) is a best-reply strategy for every player i who has not deviated.
If σ i(M) = j(M) and j(M) is not a best-reply strategy for player i then by de-
viating from j(M) to a best-reply strategy j(M+ 1) player i changes σ(M) into
a new strategy-tuple σ(M+ 1), which may be appended to the above best-reply
improvement path and thus contradict the assumed maximality of M. If, on the
other hand, σ i(M) 6= j(M) then the number of players playing σ i(M) = σ i(0) is
the same in σ(M) and in σ ; all other strategies are being played by at least as
many players (for n j(M) � n j holds for all j, and equality holds for j 6= j(M)).
As remarked above, Siσ i(0)(nσ i(0))� Si j(n j+1) holds for all j. In the case under
consideration these inequalities imply Siσ i(M)(nσ i(M)(M)) � Si j(n j(M)+ 1), for
all j, and thus σ i(M) is a best reply for i against σ(M). �

7 Convergence to an equilibrium
The proof of Theorem 2 is a constructive one: an algorithm is given for �nding an
equilibrium in a given n-player congestion game�by adding one player after the
other�in at most

�n+1
2
�
steps. The question arises, can an equilibrium be reached

in the given game itself, when the constant presence of all n players is being taken
into consideration? The next theorem gives an af�rmative answer to this question.

THEOREM 3. Given an arbitrary strategy-tuple σ(0) in a congestion game Γ,
there exists a best-reply improvement path σ(0);σ(1); : : : ;σ(L) such that σ(L) is
an equilibrium and L� r

�n+1
2
�
.

Proof. Suppose �rst that σ(0) = (σ1(0);σ2(0); : : : ;σn(0)) is �almost� an
equilibrium: σ i(0) is a best-reply strategy against σ(0) for all 1 � i � n� 1,
but not necessarily for i = n. Starting with j(0) = σn(0) and with σ(0), we
can �nd a sequence j(0); j(1); : : : ; j(M) of strategies, and a best-reply improve-
ment path σ(0);σ(1); : : : ;σ(M) connected to it as in part (a) of the lemma, such
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that M is maximal. Clearly the �rst deviator in this path is the nth player. If
j(M) 6= σn(0) then, starting with �j(M) = σn(0) and with σ(M), we can �nd a
sequence �j(M); �j(M+ 1); : : : ; �j(N) (N � M) of strategies, and a best-reply im-
provement path σ(M);σ(M+ 1); : : : ;σ(N) connected to it as in part (b) of the
lemma, such that N is maximal. If j(M) = σn(0) then we set N =M. We claim
that σ(N) = (σ1(N);σ2(N); : : : ;σn(N)) is an equilibrium. Suppose the contrary,
that σ i(N) is not a best reply against σ(N) for some player i. Suppose that j is
a best-reply strategy for that player. If σ i(N) = σ i(N� 1) = � � � = σ i(k) and k
is minimal (i.e., k = 0 or σ i(k� 1) 6= σ i(k)), then, by construction of the above
best-reply improvement path, σ i(k) is a best reply for i against σ(k). There can be
two reasons why j, but not σ i(N) = σ i(k), is a best reply against σ(N). Either (i)
nσ i(N)(N) > nσ i(N)(k), (ii) n j(N) < n j(k), or both. By construction, (ii) can hold
only if j = �j(N). But this contradicts the maximality of N: by deviating from
σ i(N) to �j(N), player i changes σ(N) into a new strategy-tuple, σ(N+1), which
may be appended to the above best-reply improvement path. The other possibility,
(i), can hold only if σ i(N)= j(M) and k= 0, i.e., if σ i(0)=σ i(1)= � � �=σ i(N)=
j(M). By the maximality ofM, σ i(N) = σ i(M) = j(M) must then be a best reply
strategy for i against σ(M) (the argument is the same as in the proof of Theorem
2). Returning again to the above two possibilities, the assumption that this strategy
is not a best reply for i against σ(N) implies that either nσ i(N)(N) > nσ i(N)(M),
which is impossible by construction, or else n j(N) < n j(M), which is possible
only if j = �j(N). But, again, the latter possibility contradicts the maximality of
N. Thus σ i(N) must be a best-reply strategy for i against σ(N).
The theorem is evidently true for one-player games. To complete the proof,

by induction on the number n of players, we assume that the theorem holds
true for all (n� 1)-player congestion games and show that it must then hold for
all n-player congestion games. Let Γ be an n-player congestion game and let
σ(0) = (σ1(0);σ2(0); : : :;σn(0)) be given. The game �Γ derived from Γ by re-
stricting the strategy set of the nth player to the single strategy σn(0) is effectively
an (n� 1)-player congestion game. It therefore follows from the induction hy-
pothesis that there exists in �Γ a best-reply improvement path σ(0);σ(1); : : :;σ(L),
where the terminal point σ(L) is an equilibrium of �Γ. Clearly in Γ too this path
is a best-reply improvement path and σ(L) is �almost� an equilibrium of Γ. As
shown above, this path may be extended to reach an equilibrium. By the lemma,
the extension need not be more than rn steps long. This estimate gives r

�n+1
2
�

as an upper bound to the length of the shortest best-reply improvement path that
connects an arbitrary initial point to an equilibrium. �
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Games in which every strategy-tuple is connected to some pure-strategy Nash
equilibrium by a best-reply path are called weakly acyclic (WA). (This de�ni-
tion is slightly more general than the de�nition given in Young (1993), where
the equilibrium reached is also required to be strict. The de�nitions coincide
for generic games.) Assuming that the number of strategies is �nite, WA games
have the property that if the order of deviators is decided more-or-less randomly,
and if players do not deviate simultaneously, then a best-reply path almost surely
reaches an equilibrium. More precisely, suppose that the process of forming
a best-reply path, starting from a �xed initial point, is a stochastic process in
which each player who is not currently playing a best-reply strategy has a posi-
tive probability�which may depend on history�of being the next deviator and
that these probabilities are bounded away from zero by some positive constant
ε . If there are several best-reply strategies for a player then each one is played
with a probability of at least ε . If each strategy-tuple is connected to some
equilibrium by a best-reply path of length L or less then the probability that at
least one of the strategy-tuples σ(k);σ(k+ 1);σ(k+ 2); : : :;σ(k+L) is an equi-
librium, given σ(0);σ(1); : : :;σ(k), is at least εL, for all k and for all histories
σ(0);σ(1); : : :;σ(k). It follows that the probability that an equilibrium is not
reached within the �rst mL (m � 1) steps of a best-reply path is no more than
(1� εL)m and thus tends to zero as m goes to in�nity. In particular, it follows
from Theorem 3 that a best-reply improvement path in an (unweighted) conges-
tion game converges to an equilibrium with probability one. For example, an
in�nite path in the game shown in Fig. 1 can persist only if the order of the devi-
ators is exactly as shown. Any deviation from that order would result in reaching
an equilibrium. Similarly, Young (1993) showed that, in WA games, an equilib-
rium is almost surely reached when simultaneous deviations of several players are
allowed, and the strategy played by each player is a best-reply strategy against
some k strategy-tuples out of the most recent m strategy-tuples played, provided
that these k strategy-tuples are randomly chosen and the sampling by each player
is suf�ciently incomplete (in the precise sense that k=m� 1=(L+2)).
If players occasionally make mistakes, deviating to strategies which are not

best reply strategies, then the concept of an equilibrium strategy-tuple should be
replaced by that of a stationary distribution of strategy-tuples. Such mistakes can
be made at random (Kandori et al., 1993; Young, 1993) or may result from the
players' lack of information. According to the Bayesian approach applied by
Cézilly and Boy (1991) players start with some a priori estimates concerning the
payoffs associated with each strategy, these estimates are later modi�ed to best �t
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the actual gains, and the modi�ed a posteriori estimates are then used for deciding
whether and to what strategy the player should deviate. Cézilly and Boy (1991)
simulated a situation similar to that experimentally studied by Milinsky (1979,
1984). Their model is based on a six-player, two-strategy game with two types of
players. The two types differ in competitive ability: players of one type have a
relative feeding rate which is twice that of the other players and thus have a double
effect on the congestion vector. There is a unique congestion vector correspond-
ing to the pure-strategy Nash equilibria of this game, namely the one where the
congestion in a patch is proportional to the food supply rate (Parker and Suther-
land, 1986). The mean congestion vector, based on 500 independent computer
simulations, apparently quickly converged to this equilibrium congestion vector.
The variance of the congestion vector apparently converged as well, suggesting a
convergence in distribution.
In the following section the model introduced in Section 2 is generalized in

order to allow for such player-speci�c contributions to the congestion.

8 Weighted congestion games
In the model considered thus far all players have a similar in�uence upon the
congestion. This model may be generalized by introducing weights, which are
positive constants β 1;β 2; : : :;β n, and modifying the de�nition of the congestion
vector by setting

n j = ∑
i

σ i= j

β i; j = 1;2; : : :;r:

Inspection of the argument in Section 5, the proof of Theorem 1, and the
remark at the end of Section 3 shows these three to hold good, mutatis mutandis,
for the case in hand. Thus weighted congestion games involving only two players,
involving only two strategies, or where the players have equal payoff functions
possess the �nite improvement property or (at least) the �nite best-reply property
and therefore possess a Nash equilibrium in pure strategies, which may be reached
by constructing a maximal best-reply improvement path.
This, however, is not the case in general. Even a three-player, three-strategy

weighted congestion game may not possess a pure-strategy Nash equilibrium. For
an example, refer to the game in Fig. 2. For each player in this game there are
effectively only two strategies (the third strategy invariably yields a minimal pay-
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off). Let the �rst of these strategies be called the left strategy of the player under
consideration and the second one the right strategy. Referring to the inequalities
in Fig. 2, it is readily veri�ed that it is always optimal for a player to play the
strategy which is diametrically opposite to the strategy played by the player who
precedes him (in the sense that the second player precedes the third one, the �rst
player precedes the second one, and the third player precedes the �rst one). For
example, if the third player plays left (�rst strategy) then right (third strategy) is a
unique best-reply strategy for the �rst player, and if he plays right (third strategy)
then left (second strategy) is the best reply. As the number of players is odd, an
equilibrium clearly does not exist.
Weighted congestion games are compared with unweighted congestion games

(equal weights) in the table below. Recall that FIP (the �nite improvement prop-
erty) implies FBRP (the �nite best-reply property), which implies WA (the game
is weakly acyclic). No property implies the preceding one. All three proper-
ties imply the existence of a pure-strategy Nash equilibrium. In each case, the
strongest property is given.

Unweighted
congestion games

Weighted
congestion games

Equal sets of payoff functions FIP FIP
Two strategies FIP FIP
Two players FBRP FBRP
General case WA �
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Figure 1: An in�nite best-reply improvement path in a three-player, three-strategy
unweighted congestion game. The path is generated by the six strategy pro�les
shown, endlessly repeated. The payoff functions satisfy S13(1)> S12(1)> S12(2)
> S13(2) > S11(n1) (�rst player), S21(1) > S23(1) > S23(2) > S21(2) > S22(n2)
(second player), and S32(1)> S31(1)> S31(2)> S32(2)> S33(n3) (third player),
for all n1, n2, and n3. The inequality relevant to each step, the one that guarantees
that the unique deviator strictly increases the payoff he receives, is shown on the
left. The strategy-tuples (3;1;2) and (2;3;1) are equilibria of this game. (Numer-
ical example: Si j(n j) = (( j� i)mod3) � (1=n j�2=3) for i 6= j; Sii(ni) =�10 for
all i.)
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Figure 2: An in�nite best-reply improvement path in a three-player, three-strategy
weighted congestion game with weights β 1 = 1, β 2 = 2, and β 3 = 3. Assum-
ing that the inequalities on the left hold and that S11(n1), S21(n1), and S32(n2)
are minimal, pure-strategy Nash equilibria do not exist. (Numerical example:
S12(n2) = 1=15n2+1=4, S22(n2) = 1=n2�3=20, S31(n1) = 2=3n1, Si3(n3) = 1=n3
(i= 1;2;3), Si j(n j) =�10 otherwise.)
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