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Abstract

A model of habitat use, or more generally of resource use in a
coarse-grained environment, is presented. Competitors are assumed
to respond to the combined competitive pressure of conspecifics and
heterospecifics by an ideal free distribution among (micro-)habitats—
“ideal” in the sense that individuals are choosing only habitats where
the negative effects of congestion are minimal and “free” in the sense
that no direct interference and no travel costs are involved. It is
shown that an ideal free habitat distribution generically has the fol-
lowing graph-theoretic property: when competitors and habitats are
represented by vertices and each competitor is connected with each
of the habitats in which it occurs, the resulting (undirected) graph
contains no cycles. This property has many implications. The fraction
of (micro-)habitats occupied by an average competitor should vary
inversely with the number of competing species. Pairwise overlap
between competitors should be limited to a maximum of one habi-
tat. Ideal free distribution of predators may promote stability of two-
trophic level communities. The chances that incipient species will be
able to complete their speciation process during secondary contact
are enhanced if their habitat distribution is ideal free.

Much of the evidence supporting the view that interspecific competi-
tion is important in shaping animal communities is concerned with the
patterns of distribution of actual or potential competitors among habitats
or microhabitats or with the ways the habitat distribution and the abun-
dance of species are changed in the presence of competitors (e.g., Lack
1971; Schoener 1974; Diamond 1978, 1986; Cody 1985, p. 36; Diamond and
Case 1986).
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One possible outcome of an interspecific competitive interaction that
is potentially important in determining the habitat distribution of com-
petitors is competitive exclusion (Hardin 1960). Competitive exclusion is
often observed in the laboratory: almost without exception, where two
species compete for identical food in a closed and homogeneous habitat
(laboratory universe), one species displaces the other completely within
relatively few generations (DeBach 1966). Interspecific competition may,
however, affect communities without necessarily leading to local extinc-
tions. The presence of competitors may have an influence on the optimal
use of a patchy environment (MacArthur and Pianka 1966) and may there-
fore affect habitat selection (Rosenzweig 1991). Habitat selection may be
limited in time or involve only one stage in the ontogenesis of the species
concerned (Werner 1986). The resulting habitat distribution may vary sea-
sonally or from year to year, reflecting regular or stochastic variations in
resource levels and other environmental fluctuations as well as population
changes.

A theory of habitat distribution and regulation of numbers (population
size) of bird communities in a seasonal environment was developed by
Fretwell and Lucas (1970) and Fretwell (1972). A key concept in this the-
ory is the ideal free distribution (IFD) of competitors (Milinsky and Parker
1991; Kacelnik et al. 1992). Where resources are limited, the suitability of
a habitat patch decreases with increasing competitor density. Congestion
may also catalyze the spread of disease or increase the risk of predation.
Hence, the optimal habitat selection of an “ideal” individual depends on
the habitat distribution of its conspecifics as well as on the habitat distri-
bution of other competitors. The IFD assumes that individuals are free to
enter any habitat patch on an equal basis with residents. This assumption
may not hold true where despotic or territorial behavior is involved. The
distribution may still be considered free if the territorial behavior does not
affect population density and only serves to space out the animals present
(see Lack 1954), but not if the number of territory holders is strictly con-
strained by, say, the number of available nesting sites. An IFD may apply
to any coarse-grained environment (MacArthur and Pianka 1966), where
each resource type is associated with a distinct habitat or microhabitat and
competitors cannot simultaneously search for two types of resources. The
only restriction on the size of habitat patches is put by the “free” assump-
tion, which implies that travel costs are negligible.

Rosenzweig (1981, 1985, 1991) used a graphical model for exploring
the habitat selection of two species in the whole two-dimensional space
of population sizes. If habitat selection is cost-free and animals choose
habitats where their density-dependent fitness is highest, then in different
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regions in this space the two competitors should occupy different sets of
habitats. The stationary, or equilibrium, population sizes correspond to
the intersection point of the zero isoclines of the two species. The shape
of these isoclines is affected by density-dependent habitat selection and,
unlike in the case of models based on Lotka-Volterra-type equations with
constant competition coefficients (MacArthur and Levins 1967; MacArthur
1969, 1972), is generally not linear.

The graphical approach of Rosenzweig (1981, 1985, 1991; see also Mor-
ris 1988) applies only to situations in which there are just two competing
species or just two habitats. The more general case of an arbitrary number
of competitors and of habitats requires a different approach. In the present
article I present a new analytical approach to the study of IFD, which ap-
plies to any number of competitors and habitats. It reveals new ways in
which the IFD of competitors may affect community structure.

My model, which is described in detail in section A, makes two as-
sumptions. The first, the optimality assumption, is that individuals of
each species occupy only those habitats that provide the greatest contri-
bution to expected individual fitness. The second, the congestion assump-
tion, is that every habitat becomes less suitable as the total density of the
competitors in it increases. The congestion assumption implies that com-
petitors do not partition resources in habitats: they utilize the same re-
sources, in exactly the same proportions. The optimality assumption says
that the distribution of competitors among habitats is an IFD. In particu-
lar, source-sink situations, where some individuals in the source habitat
do predictably better than others in terms of fitness (Pulliam 1988), are ex-
cluded. No specific assumptions are made concerning behavioral mecha-
nisms underlying habitat selection, kinds of resources that the competitors
utilize, or ways by which congestion affects fitness. Neither a particular
causal relation between the last two factors nor a particular functional one
(e.g., a linear relation or inverse proportionality) is assumed. In particular,
the model does not involve the concepts of competition coefficients and
carrying capacities. Correspondingly, the predictions of the model do not
involve such numerical quantities as competitor density, resource levels,
or intake rates (cf. Kacelnik et al. 1992). Rather, the predictions, described
in sections B and C, are concerned with patterns of habitat distribution
and with quantitative and qualitative relations between species diversity
and niche width and between habitat diversity and species overlap. The
phrase “interspecific competition of close competitors in a coarse-grained
environment” will be reserved for situations in which the above two as-
sumptions are met. It is acknowledged that these assumptions may cor-
respond only to a special, rather extreme case of interspecific competition.
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Any other case would require at least some modification of the assump-
tions. It is shown in section D, however, that the results deduced from the
above assumptions also hold true in certain previous models of interspe-
cific competitive interactions (e.g., Parker and Sutherland 1986) where the
differential impact of competitors on resources is allowed to vary across
habitats.

What this basic model does not tell us is whether, in a stable environ-
ment, coexistence of several close competitors in the same habitat is a po-
tentially durable condition or, alternatively, can only be a transient state
eventually giving way to the habitat segregation brought about by com-
petitive exclusion. Persistence of habitat distributions and stability of pop-
ulations can be studied only when the model is embedded in a wider pop-
ulation dynamics model where the positive connection between habitat
suitability and population growth is explicitly considered. This is done in
section E, where stationary equilibria are studied, and in section F, where
their local stability is examined. The potential importance of the partial
habitat separation that results from competition and habitat selection in
the process of animal speciation is discussed in section G.

A. THE MODEL

There are s species and h habitats. The population size of species i is ni.
An individual of species i spends on the average pi

j of its time in habitat j.
It is not specified whether individuals actually move between habitats or
whether a fixed part of the population always stays in habitat j. In either
case the (average) total density in j is nj = ∑i pi

jn
i. Since ∑i pi

j = 1, the sum

∑j nj is equal to ∑i ni. The populations are assumed to be large enough for
ni to be seen as a continuous, rather than a discrete, parameter and for a
single individual not to have an appreciable effect on the density. The case
where the number of individuals is small and each individual potentially
has a significant effect on others is analyzed elsewhere (Milchtaich 1996).

The suitability of habitat j for species i, which is the average contribu-
tion to the fitness of an individual of species i that is attributable to its oc-
currence in j, is denoted Si

j. Since by the congestion assumption suitability
is negatively affected by congestion, Si

j is a strictly decreasing continuous
function of nj, denoted Si

j(nj). The suitability function is determined by
such attributes as the size of the habitat patch (which affects the rate by
which the suitability of the habitat declines with nj), its productivity, and
the efficiency with which the competitor in question uses the particular
habitat.
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The optimality assumption, the assumption that individuals of species
i occur in habitat j only if the suitability of this habitat is maximal, is writ-
ten analytically as

pi
j > 0 implies Si

j = max
k

Si
k. (1)

It is shown in Appendix A that there always exists at least one optimal
habitat distribution. The corresponding habitat densities n1 through nh,
called optimal densities, are always unique for a given set of population
sizes n1 through ns (appendix B). Furthermore, the optimal densities are
determined as a continuous and nondecreasing function by the population
sizes.

Species that differ, say, in size may contribute differently to the conges-
tion. So ni can more generally be interpreted not as the number of individ-
uals of species i but as the “equivalent number”: two species contribute
equally to the congestion in habitat j if their equivalent numbers there are
equal. The current model does not, however, cover the case where the dif-
ferential impact of competitors is not uniform across habitats: some com-
petitors affect the congestion more strongly in one habitat, others in other
habitats. This case is discussed in section D.

In a single biological species, groups of individuals that differ, for ex-
ample, in age, sex, reproductive status, physical condition (McNamara
and Houston 1990) or competitive ability (Parker and Sutherland 1986)
may have different suitability functions. However, as long as popula-
tion dynamics is not involved, such infraspecific competitor types may
be treated on equal footing with real species.

B. AVERAGE GENERALISM AND HABITAT OVERLAP

Consider a particular optimal distribution of s species among h habitats.
Let hi be the number of habitats where species i occurs. The equality of the
suitability of these hi habitats is expressed by a set of hi� 1 equations of the
form Si

j(nj) = Si
k(nk) (where j and k are two habitats in which species i is

found). In all, there are ∑i
�
hi � 1

�
such equations, in at most h unknowns,

namely, the optimal densities n1 through nh. No more than h� 1 of these
h unknowns are independent, for the quality ∑j nj = ∑i ni holds. Heuris-
tically, the number of equations cannot exceed the number of independent
unknowns. Thus,

∑
i

�
hi � 1

�
� h� 1. (2)
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It follows from this equation that when the number of competing species
is large, all but at most h � 1 species must be specialists (cf. Peleg et al.
1992).

Define the degree of generalism of species i as follows: the degree of
generalism is zero if i is a specialist, occurring in one habitat only, and
unity if i is a full generalist, occurring in all h habitats. Between these two
extremes it varies linearly with the number of habitats in which species i
occurs. The degree of generalism is thus (hi � 1)/(h � 1). The average
generalism, denoted Gen, is (1/s)∑i(hi � 1)/(h� 1). Equation (2) may be
rewritten as

Gen � 1
s

. (3)

Equation (3) expresses a relation between average habitat range and
the number of competitors. While a priori Gen may take any value from
zero to one, optimality considerations constrain this figure to be no greater
than 1/s. When the number of competing species increases, fractional
habitat ranges may have to decrease; conversely, where the number of
competitors is small, ecological release may take place. In a sense, the
maximal average niche width thus reflects the intensity of interspecific
competition. Note, however, that the parameter involved is the number
of types of competitors, not the total number of competing individuals.
This result depends critically, of course, on the assumption that conges-
tion affects habitat distribution at any level that is likely to be attained,
not only when some critical level is exceeded. It is consistent with the
observation that on islands, where the number of bird species is often sig-
nificantly smaller than on the neighboring mainland, birds tend to occupy
a larger variety of habitats and microhabitats, in comparison with birds on
the mainland (MacArthur and Wilson 1967; Lack 1969, 1971; MacArthur
1972).

MacArthur and Pianka (1966) argued that in a patchy environment an
optimal forager faced with competition should respond by changing its
patch utilization but not its diet. This is the “compression hypothesis”
(MacArthur and Wilson 1967). The value of a particular dietary item does
not depend on the presence or absence of competitors, and thus the range
of food taken in patches should not be affected by competition. But, in or-
der to avoid patches that are heavily foraged by competitors, the space
searched for food should shrink as more species invade. Occasionally,
however, the competitors may reduce the food in a species’ own favored
feeding location. In such situations, the effect would be to increase the
species’ range of foraging places (MacArthur 1972, p. 64). The model of
MacArthur and Pianka (1966) differs from the present model primarily in
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that the variety of habitats visited by an individual is assumed to be a fac-
tor affecting its success. In this model, a forager travels between suitable
habitat patches, crossing unsuitable patches in its way. Not all the patches
in the itinerary are equally suitable, but the inclusion of the less produc-
tive ones reduces the time spent in traveling and thus increases the total
number of food items consumed per unit of time. When competitors re-
duce food density in one kind of patch, it may no longer pay to include
these patches of scarce food in the itinerary. Therefore, the selection of
feeding places should normally be restricted by competitors. Equation (3)
may be considered a quantitative expression for the contraction of feeding
habitats predicted by MacArthur and Pianka (1966). It should, however,
be remembered that the underlying models are quite different.

If competitors occupy mutually disjoint habitat ranges, then equation
(3) is clearly satisfied: in this case an average competitor necessarily occu-
pies no more than 1/s of the habitats. Similarly, if each competitor occu-
pies an interval in a spectrum of resources or habitats—such as a range of
foraging heights in a tree—and if the average overlap between neighbor-
ing species is a constant fraction of the average interval length, then the
proportion of resources used by an average competitor is inversely pro-
portional to the number of competing species; the coefficient of propor-
tionality depends on the pairwise overlap between neighboring competi-
tors (MacArthur 1972, p. 171). This relation is formally similar to equation
(3), but its biological justification depends on the concept of a limiting sim-
ilarity between competitors: a maximal degree of overlap between the uti-
lization curves of neighboring competitors that would permit the persis-
tence of a sandwiched species (MacArthur and Levins 1967) or guarantee
the stability of the whole set of species against environmental fluctuation
(May 1974). In contrast, the present derivation of equation (3) is based on
optimality considerations in a model where competitors can adjust their
habitat selection (and hence their utilization curves) and persistence and
stability do not (yet) play a role. This equation and its qualitative im-
plications are therefore relevant and may be tested, even in cases where
competition is not year-round but takes place in one season only.

To see what degree of habitat overlap is consistent with equations (2) or
(3), let sj denote the number of species in habitat j and let (sj � 1)/(s� 1)
be called the overlap in habitat j. If only occupied habitats are considered,
the overlap in habitat j varies between zero (only one species occurs in
j—no overlap there) and unity (all species occur in habitat j). The aver-
age overlap, denoted Ovr, is (1/h)∑j(sj � 1)/(s� 1). It follows from the
identity ∑i hi = ∑j sj (where both sides express the number of subpopula-
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tions, or groups of animals of a particular species that occupy a particular
habitat) that equations (2) and (3) are both mathematically equivalent to
each of the following inequalities:

∑
j

�
sj � 1

�
� (s� 1) (4)

and
Ovr � 1

h
. (5)

Thus, with a constant number of species, an increase in the number of
habitats may result in a smaller number of species occupying an average
habitat. In the limit, when a continuum of habitats is approached, almost
all occupied habitats should be occupied by only one species. A testable
corollary of this result is that, as a general rule, spatial segregation of close
animal competitors should be more complete along a habitat gradient than
in an environment where habitats are few and distinct.

Eric Pianka proposed the “niche overlap hypothesis,” which asserts
that maximal tolerable niche overlap should vary inversely with the inten-
sity of competition. He showed (Pianka 1974, 1975) that the mean overlap
between pairs of species of desert lizards is strongly negatively correlated
(though overall overlap is positively correlated) with the number of lizard
species in the community. Mean pairwise overlap in trophic, spatial, and
temporal niche dimensions were incorporated. This raises the question
of whether or not existence of an upper limit to the permissible degree of
pairwise overlap, as distinct from overall and average (per habitat) over-
lap, is predicted by the present model. An affirmative answer to this ques-
tion is provided by the following graph-theoretic characterization of per-
missible habitat distributions.

C. THE HABITAT DISTRIBUTION GRAPH

Equations (3) and (5) can be analyzed further with the aid of the habitat
distribution graph. This is a bipartite (two-sided) graph having one ver-
tex corresponding to each of the s species and one vertex corresponding
to each of the h habitats. A particular habitat distribution is represented
qualitatively by joining each species to each of the habitats in which it oc-
curs (Figure 1). Unlike food web graphs (Cohen 1978), this graph is by
definition undirected.

It may be assumed that the habitat distribution graph is connected.
(If not, a single connected component, representing a detached group of
species and habitats, should be considered.) A well-known result in graph
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Figure 1: Habitat distribution graphs. The edges connect species with the
habitats in which they occur. A, Acyclic graph. This graph is not con-
nected. It has two connected components. Each connected component is a
tree. B, Graph possessing a four-cycle. This graph is connected.

theory (see Berge 1962) is that the number of vertices of a connected graph
is either smaller than or equal to the number of edges plus one. An equal-
ity implies that the graph is a tree. (A tree is a connected graph without
cycles; it is not possible to walk along the edges of a tree in a closed path,
started and terminated by the same vertex, without crossing any other ver-
tex more than once and without walking along any edge more than once.)
There are s+ h vertices in the habitat distribution graph; hi edges are in-
cident with the vertex corresponding to species i, and the total number of
edges is thus ∑i hi. Hence, s+ h � ∑i hi + 1, or h� 1 � ∑i

�
hi � 1

�
, must

hold. Since equation (2) asserts the converse of this inequality, an equality,
s+ h = ∑i hi + 1 (as well as equalities in each of the equivalent equations
(2)–(5)), holds. The graph is therefore a tree and, thus, acyclic. We will
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say that the habitat distribution represented by the graph is acyclic. It is
possible to substitute a formal analysis for the heuristic arguments given
in section B (based on counting equations and unknowns) and to establish
rigorously that, for any given ordered set of population sizes, a unique,
acyclic optimal habitat distribution indeed corresponds to a generic or-
dered set of suitability functions (Milchtaich 2000).

The result, that an optimal habitat distribution should be cyclic, has
the following corollary, concerning the maximum permissible degree of
pairwise overlap: no two competitors should occur together in more than
one habitat. Indeed, joining two species to two common habitats results
in a (forbidden) four-cycle (Figure 1B). This result may help to explain the
spatial niche shifts observed in the overlap zone of partly allopatric closely
related bird species (Diamond 1986; see also section G).

Since two species are predicted to overlap in no more than one habitat,
the species combination in any habitat in which there is more than one
species must be unique. Since each such combination of (two or more)
species makes a positive contribution to the left-hand side of equation (4),
the number of species combinations is constrained by that equation to be
less than the number of species. The number should be even smaller if
large combinations occur.

One of the empirical assembly rules found by Diamond (1975) for the
bird communities of New Guinea and its satellite islands is that only cer-
tain combinations of related species exist in any of these islands. Although
superficially similar, the above theoretical result is probably more relevant
to the assembly rules for habitat communities within islands, close enough
to each other so that physical barriers to dispersal are negligible (Diamond
1975, p. 417).

D. HABITAT-DEPENDENT DIFFERENTIAL COMPETITIVE WEIGHTS

Parker and Sutherland (1986) considered a model where there is a contin-
uous arrival of food or mates into habitat patches. Each competitor has
a certain competitive weight in each patch, and the individual’s share of
the gain in a patch is equal to its competitive weight there divided by the
total competitive weight of all the individuals in the patch. The model of
Parker and Sutherland (1986) differs from my model in two respects. First,
the species-specific contribution of individual competitors to the conges-
tion (as quantified by the total competitive weight) varies across patches.
Second, the payoffs are inversely proportional to the parameter that quan-
tifies congestion; other functional relations are excluded. In spite of these
differences, it turns out that all of the results derived in the last two sec-
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tions (i.e., equations (2)–(5) and their graph-theoretic implications) also
hold, in the generic case, for the model of Parker and Sutherland. This
follows from the fact that in this model, too, an optimal distribution is
generically acyclic (and unique). This result, which is proved in appendix
C, extends a previous, more particular, result of Peleg et al. (1992). Heuris-
tically, it is not difficult to see how this result follows from the arguments
given in sections B and C. By assumption, the gain of a competitor in a
patch is inversely proportional to the congestion parameter there (the to-
tal competitive weight). Thus, the relative gains of a competitor in any two
habitat patches remain the same when the congestion parameters are all
multiplied by an arbitrary common positive factor; only the proportions
among the h congestion parameters matter. These proportions can be ex-
pressed by a set of h� 1 variables. As shown in section B, this fact leads
to equation (2), from which the rest of the results in sections B and C are
deduced.

Parker and Sutherland (1986) showed that if there are only two patch
types and two competitor types, and if competitive weights for the two
types of competitors do not alter in the same proportion when individu-
als are switched between patches (in the present terminology, this is the
generic case), then there is always a unique evolutionarily stable strategy
(ESS) distribution. At the ESS (i.e., at the IFD), at least one of the patches
is not occupied by both types of competitors; only one of the two species
can be a generalist. This result follows as a special case from our result
in section C, that competitors should not occur together in more than one
habitat. It also follows from equation (3), which in the present special case
reads Gen � 1/2.

Since the two models give similar results, it is natural to ask to what
extent these results also hold for their greatest common denominator: a
model where, as in the model of Parker and Sutherland (1986), the contri-
bution of individual competitors to the congestion parameter (the variable
nj that determines the suitability of habitat j) is both patch and species
specific and where, as in my model, the suitability functions are arbitrary
continuous and strictly decreasing functions of nj. The above heuristic ar-
gument is not valid for this more general model: all of the h congestion
parameters matter, not just the h� 1 proportions among them. Therefore,
the term �1 must be deleted from the right hand side of equations (2) and
(4), and equations (3) and (5) must be correspondingly modified. These
modifications do not, however, affect the qualitative implications of these
equations, with one exception: the habitat distribution graph may con-
tain, in each of its connected components, a single cycle. In particular, two
species may occur in two common habitats, but not in three.
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E. STATIONARY EQUILIBRIA

Under an ideal free distribution of competitors, all habitats in which species
i occurs are equally suitable for that species. The common suitability of
these habitats, Si, is equal to maxj Si

j, where j ranges over all habitats. The
Si measures the contribution that habitat selection makes to the expected
fitness of an individual of species i. However, since habitats may be occu-
pied in only one season or may provide only one class of resources (breed-
ing sites and feeding sites are examples), expected reproductive success or
survival may be affected by intraspecific controlling factors additional to
those which are associated with habitat selection. Thus, not only suitabil-
ity of habitats Si but also population size ni may be a factor affecting the
growth or decline of species i.

The population size of species i is stationary when the (annual) per
capita increase rate Φi of species i vanishes. We assume that Φi is a con-
tinuous function of Si and ni. Since Si itself depends on n1 through ns, the
increase rate of species i is determined by the population sizes of all the
competitors. The population sizes that correspond to a zero increase rate,
Φi = 0, constitute the zero isocline of species i. An intersection point of
the s zero isoclines represents a set of stationary population sizes. Such an
equilibrium point is said to be saturated (Hofbauer and Sigmund 1988) if
it corresponds to an uninvadable species assembly. (This suggests that the
zero isocline of species i is best defined as the set of points where either
ni > 0 and Φi = 0 or ni = 0 and Φi � 0; see appendix A.) It is shown in
appendix A that if population sizes cannot exceed some finite upper limit,
then at least one saturated equilibrium exists. The corresponding habitat
densities are called stationary densities. Two special functional forms of
Φi are now considered.

If each Φi actually depends only on Si and vanishes for a unique critical
value Si

crt, then the stationary densities are unique. In this special case
species should generally occupy non-overlapping habitats. The reason for
this is that species i and k may both occur in habitat j only in the unlikely
case where Si

crt is attained by Si
j(nj) and Sk

crt is attained by Sk
j (nj) for the

same stationary density nj. More likely, only one species will occur in j,
that species whose critical value is attained at the highest value of nj. This,
in fact, is the standard argument for competitive exclusion (Hardin 1960).
Furthermore, since the identity of the single occupant of each habitat and
its stationary density there are uniquely determined, the total stationary
population size of each species is unique, too.

If the per capita increase rate Φi of every competitor i increases with
habitat suitability Si (holding ni constant) and decreases with population
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size ni (holding Si constant), then the equilibrium condition Φi(ni, Si) = 0
can be solved for ni, which can be expressed as a continuously increas-
ing function of Si. It is shown in appendix B that in this case (as in the
case where Φi depends only on Si) the stationary habitat densities—and
therefore also habitat suitabilities and stationary population sizes—which
correspond to a saturated equilibrium are unique. Stationary densities can
only increase when new competitors are introduced into the community,
and habitat suitabilities and stationary population sizes can correspond-
ingly only decrease. Thus, none of the previously present species may
benefit from the introduction. In this respect, the present model differs
from competition models based on Lotka-Volterra equations where com-
petition coefficients are constants. In those models, it may be possible that
a species benefits from the introduction of a new competitor. As shown
by Levine (1976) and Lawlor (1979), this is possible since the introduction
may induce changes in the population of a third species, changes that may
indirectly help the species in question and outweigh the direct detrimental
effects of the introduction. Conversely, when one population is removed
or is otherwise artificially held at a lower population size, the stationary
density in every habitat either decreases or remains the same. Therefore,
the other competitors can only benefit from such a manipulation, and their
populations may increase. However, since there is no density increase in
any habitat, the sum of the population sizes after the manipulation does
not exceed the sum before the manipulation; there is no density overcom-
pensation (MacArthur et al. 1972; Wright 1980) in ecological time.

Fretwell (1972, p. 5) expressed stability of a bird population by an
equality between the density-dependent increase in the breeding season
and the density-dependent mortality in the winter. He hypothesized (p.
132) that breeding success is influenced by the total breeding density of all
bird species that build similar nests, possibly because this affects predation
rate. If suitability is identified with average breeding success, measured as
the ratio between population size before and after the breeding season (in-
corporating breeder mortality), then IFD of breeders implies that average
breeding success Si is the same in all the breeding habitats used by species
i, provided that these habitats are close enough for the birds to move freely
from one to another. The population size thus increases from ni at the be-
ginning of the breeding season to niSi at its end. Density-dependent win-
ter mortality di (a function of niSi) in the common winter habitat of the
species reduces this figure to niSi �

�
1� di� at the beginning of the next

breeding season. The population size of species i is stationary if and only
if the net annual per capita increase rate Φi(ni, Si) = Si �

�
1� di(niSi)

�
� 1

vanishes. (To account for the observed lower breeding success of those
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field sparrows Spizella pusilla that also breed in the winter habitat, Fretwell
actually hypothesized that winter mortality is differential: a higher winter
survival rate for those birds compensates for their lower breeding success.
The possibility of a differential winter mortality is not considered in the
present discussion.)

In this example, both density-dependent winter mortality di(niSi) and
breeding success Si are (respectively, intra- and interspecific) controlling
factors that affect the population size of species i. The net annual per
capita increase rate of the species cannot be expressed as a function of Si

alone. This would be the case only if winter mortality di were density-
independent; the equilibrium condition in such a case would be Si =
1/
�
1� di� (which equals Si

crt). If (fractional) winter mortality is nega-
tively density dependent but the absolute number of birds surviving the
winter is nevertheless an increasing function of the population size at the
beginning of winter (this is the case if the latter function is increasing and
concave downward), then Φi(ni, Si) decreases with ni and increases with
Si. The results of the previous paragraphs show that in this case, as well as
in the case of density-independent winter mortality, the stationary habitat
densities are unique.

F. STABILITY

It is more difficult to study the dynamics of the present model than to
study its statics. The two equilibrium conditions, optimal habitat distrib-
ution (section B) and stationary populations (section E), could be investi-
gated one after the other. The dynamics, on the other hand, potentially in-
volve simultaneously changing habitat distribution and population sizes.
Another complication with nonequilibrium analysis is that suitability of
habitats, which, for example, reflects prey abundance within them, may
depend, not only on the current density of consumers but also on history.
Local stability of a community depends, however, only on population dy-
namics in a vicinity of an equilibrium point. Therefore, if the equilibrium
habitat selection of competitors is genetically fixed (see next section), or
is otherwise slow to change in comparison with the time it takes the per-
turbed community to return to equilibrium, then for the purpose of sta-
bility analysis it can be assumed that competitors do not occupy habitats
that they did not occupy at the equilibrium and that their populations
are therefore not directly affected by the abundance of prey in those habi-
tats. The dynamics of consumer and prey populations may still depend in
intricate ways on the interplay between population changes and habitat
selection adjustments. However, at least in the case that is presently de-

14



scribed, the exact form and magnitude of the nonequilibrium intraspecific
and consumer-prey interactions do not matter: if at equilibrium suitabil-
ity of habitats is density dependent and habitat selection by consumers is
optimal, then the equilibrium is (locally) stable.

The community under consideration is one in which the only relevant
resource in every habitat is a single self-regulated prey population. It is
immaterial whether these populations belong to the same or to different
species; we assume that the second possibility holds. Intraspecific con-
trolling factors tend to decrease the size of each prey population when it
exceeds its equilibrium, or stationary, size and to increase it when it falls
below equilibrium size, everything else being equal. In addition to being
self-regulated, the prey populations are negatively affected by predation.
The competing predator species are also assumed to be self-regulated, and
they are positively affected by the prey populations on which they depend.
(These two controlling factors correspond respectively to ni and Si). One
predator species does not directly interact with another but affects it only
via its effect on the prey populations. The different prey populations are
assumed to be physically confined to their respective habitats and, hence,
not to interact directly with one another.

The stability of this two-trophic-level community is a consequence of
the sign, or qualitative, stability of its community matrix (May 1973, p.
70). The stability of the community matrix follows from the assumed op-
timality of the equilibrium habitat (and hence prey) selection by preda-
tors. As shown in section C, an optimal habitat distribution is generically
acyclic. It is proved in appendix D that acyclic distribution of competitors
and self-regulation of predator and prey populations together guarantee
sign stability of the community matrix. In fact, the second condition, self-
regulation of all the populations involved, is not absolutely necessary. If
it is possible to choose for every predator one of its prey population in
such a way that different predators are assigned different prey popula-
tions, then the second condition can be replaced by the weaker condition
that every prey population be self-regulated and that predators do not ex-
hibit a destabilizing positive feedback in their intraspecific interactions.
For example, when the competing predators are not self-regulated but are
regulated only by the abundance of their prey (which determines the suit-
ability of habitats), self-regulation of the prey populations should be suf-
ficient for community stability. The reason is that, as shown in section E,
in such a case there should normally be no overlap in habitat (and hence
prey) selection.

Lawlor and Maynard Smith (1976) addressed the question, How might
the stability of a community of several coevolved species differ from the
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stability of a community of randomly chosen species? They considered a
model in which the patch selection of two consumer species in a coarse-
grained environment with two resources, each found in a distinct patch
type, is an “evolutionary variable.” The optimality of patch selection is
brought about by coevolution. An evolutionarily stable strategy for species
i, in the presence of its competitor, is to consume only the resource or re-
sources j that provide the highest expected intake rate, weighted by the
value wj of a unit of the resource. The intake rate is equal to the instanta-
neous number of resource items Rj times the probability βi

j that consumer
i will find and capture a resource item j per unit of time spent searching
in the relevant resource patch. In the terminology of the present article,
Si

j = βi
jwjRj is the suitability of resource patch j for species i. An individ-

ual of species i spends on the average pi
j of its time in j. The dynamics of

the ith consumer population size ni and of the jth resource are given by

1
ni

dni

dt
= ∑

j
pi

jβ
i
jwjRj � Ti, i = 1, 2, (6a)

and
1
Rj

dRj

dt
= φj(Rj)�∑

i
pi

jβ
i
jn

i, j = 1, 2, (6b)

where Ti is the threshold food requirement for consumer i to maintain
itself and φj is the renewal rate of resource j, which is a strictly decreas-

ing function of Rj. The per item consumption rate of j, nj = ∑i pi
jβ

i
jn

i,
may be identified with the congestion parameter in resource patch j. At
equilibrium (dRj/dt = 0) nj determines Rj (which equals φ�1

j (nj)). Thus,

at equilibrium, Si
j is density dependent. The optimality assumption im-

plies that Si
j should have a common, maximal value Si in all the patches j

visited by consumer species i. The equilibrium condition for consumer i
(derived from equation (6a)) is therefore 0 = Si � Ti. This condition does
not involve ni (i.e., the consumers are not self-regulated) and therefore, as
indicated in section E, the stationary patch distributions of the consumers
should normally be nonoverlapping. In the present two-patch case this
says that the two consumers should coevolve to become specialists. This
was the conclusion that Lawlor and Maynard Smith (1976) reached.

Since in this model the resources are self-regulated (φj is decreasing)
and the consumers are not, by the above general results the coevolved
community is locally stable. Lawlor and Maynard Smith (1976) examined
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the stability of the community to small perturbations by means of a nu-
merical investigation of the eigenvalues of the community matrix, which
is the Jacobian matrix of the system of four differential equations (6) calcu-
lated at equilibrium. They found that the system is locally stable with or
without coevolution; changes in pi

j’s have negligible effects on the real part
of the dominant eigenvalue. Their conclusion was that the coevolved di-
vergence of the consumers do not lead to a significantly greater Lyapunov
stability of the community. This was considered to be a special case of the
general point derived by May (1971) for a similar but somewhat more gen-
eral two-predator, two-prey model: stability at one trophic level (the lower
one in this case) tends to go along with stability of the entire community.
It turns out, however, that this result depends critically on the assumption
that the value of a resource item is the same for the two consumers.

Mathematically, the stability of the system of equations (6) depends on
the fact that the Jacobian determinant of this system is always nonnega-
tive. A negative determinant would imply instability, for the matrix would
then admit a positive eigenvalue. (May (1971) explicitly assumes that the
Jacobian determinant is positive.) If species 1, say, were more efficient (i.e.,
spent less energy) than species 2 in capturing and consuming resource
item j, then the value of j would not be the same for the two species: w1

j
would be greater than w2

j . In such a case the Jacobian determinant would
not necessarily be nonnegative. Suppose, for example, that species 1 is
twice as quick as species 2 in finding and capturing resource 1 (β1

1 = 2β2
1)

and also twice as efficient in capturing and consuming it (w1
1 = 2w2

1) and
that the reverse relations hold for resource 2 (β2

2 = 2β1
2 and w2

2 = 2w1
2).

Suppose also that each species spends between two to four times more
time searching for the resource to which it is least adapted than it spends
searching for the resource to which it is better adapted (2 < p1

2/p1
1 < 4 and

2 < p2
1/p2

2 < 4). Then the Jacobian determinant is negative, and therefore
the corresponding equilibrium is locally unstable.

It is intuitively clear (and not too difficult to prove) that although it
can sometimes be optimal for a species, in the absence of its competi-
tor, to spend most of its time searching for the resource to which it is
least adapted, such a strategy can never be optimal simultaneously for
both competitors. Two coevolved competitors would therefore not exhibit
such a behavior. The last example, which goes only a short way beyond
the original model of Lawlor and Maynard Smith, thus demonstrates that
nonoptimality of patch selection may result in community instability, and
therefore, in general, a coevolved community is indeed more stable, in the
sense of local stability, than a community of randomly chosen species.
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G. HABITAT SELECTION AND SPECIATION

Consider two (sub)species, derived from one ancestral species, which re-
establish contact after a period in which they have been geographically
isolated. Being phylogenetically close and morphologically similar, the
two forms are probably similar in the kinds of resources that they can po-
tentially utilize. In a coarse-grained environment they are therefore af-
fected by common parameters of congestion. But, because of their origin
in different geographical areas, the two (sub)species are likely to differ in
their adaptations to different types of habitats, in their tolerance of differ-
ent climatic conditions, and so forth. In the terminology of the present
model, their suitability functions may be different. If these differences are
small, then allopatric populations of the two forms may still be found in
broadly similar habitats. But it is suggested by the present model that even
small differences should result in largely nonoverlapping habitat distrib-
utions of sympatric populations and thus in niche shifts in at least one of
the populations. Ecological shifts are indeed characteristic of such zones
of secondary contact (Mayr 1963, p. 493). Different authors have, however,
expressed different opinions regarding their origin.

David Lack postulated that two closely related species of birds “could
persist in the same area only if they differ sufficiently in ecology for one
not to eliminate the other through competition. Their ecological differ-
ences might be small when they first meet, but since those individuals
with such differences will tend to survive better than those which lack
them, they will be intensified by natural selection until the two species
no longer compete effectively for essential resources. This explained the
otherwise puzzling point that, though closely related species of birds arise
only through geographical isolation, they often occupy separate habitats”
(Lack 1971, p.6). Lack’s (1944) view was that habitat segregation probably
results from natural selection operating over a long period. In contrast,
Grant (1972), considering the reverse phenomenon of ecological release,
remarked that in none of the cases cited by him has the role of selection
been demonstrated: all the cases can be interpreted as purely phenotypic
responses to the absence of competitor species. Diamond (1986, p. 109)
hypothesized that when two closely related species with similar diets and
foraging techniques first come into contact, the resulting spatial segrega-
tion is likely to be phenotypic, based on reversible choices of habitat made
during the lifetime of each individual, and brought about “probably by ex-
aggeration of slight differences in allopatry that cannot be detected with
confidence.” Diamond based his argument on the demonstration that spa-
tial segregation, the most common mode of ecological segregation among
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sympatric New Guinea montane bird species, usually develops, or at least
becomes more marked, during early stages of sympatry and on the theory
of habitat selection developed by Rosenzweig (1981). It follows as a corol-
lary from this hypothesis that largely nonoverlapping habitat distributions
may develop in sympatry well before coevolution—involving the modifi-
cation of genetically determined attributes—had time to take place. The
habitat distributions may, however, be reinforced by subsequent differen-
tial evolution of behavioral, physiological and morphological adaptations
to lives in the different habitats. Diamond (1986) supported the hypothe-
sis that coevolution in sympatry produces genetic fixation of the (initially
phenotypic) habitat selection by the demonstration of an evolutionary loss
of niche elasticity in New Guinea montane avifauna: the more advanced
the inferred stage of speciation is, the less likely is the spatial niche of one
bird species to expand in absence of the related taxon.

Phenotypic habitat segregation may help incipient species complete
their speciation process in sympatry by reducing interbreeding where the
ranges of these taxa overlap. If the (sub)species involved have not yet
acquired an effective reproductive isolation, hybridization between them
may be limited if they differ in their habitat preferences (Mayr 1942). It
is suggested by the present model that such differences, though having
their roots in allopatric speciation, may be fully expressed only in sympa-
try, where the optimal habitat use of each species depends on that of the
other species. This is congruous with the partly allopatric model of animal
speciation (Grant and Grant 1983): speciation is initiated through morpho-
logical divergence in isolation and completed when the two populations
come together; the differences between the previously separated popula-
tions are enhanced during secondary contact. It would be interesting to
check whether there are consistent differences between large taxonomic
groups in the prevalence of niche shifts and the frequency of hybridiza-
tion in areas of secondary contact that are correlated with the degree to
which habitat selection is possible for these organisms.
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APPENDIX A

EXISTENCE OF AN OPTIMAL HABITAT DISTRIBUTION AND STATION-
ARY POPULATIONS

The habitat distribution of s species among h habitats is described by an
s � h matrix N = (ni

j) whose nonnegative elements ni
j are equal to ni pi

j,
the number of individuals of species i times the fraction of the population
that occurs in habitat j. The elements in the ith row of N sum up to the
population size ni of species i. The elements in the jth column sum up to
the density nj in habitat j. Clearly, ∑j nj = ∑i ni. The distribution is said
to be optimal if, for every i and j,

ni
j > 0 implies Si

j(nj) = max
k

Si
k(nk), (A1)

where Si
j(nj) is the continuously decreasing suitability function of species

i in habitat j. We show that an optimal distribution exists for every given
s-tuple of population sizes (ni) = (n1, n2, . . . , ns).

Consider the ith row Ni of N; Ni is an element of the simplex ∆i defined
by the equation ∑j ni

j = ni. The optimality condition (equation (A1)) re-
quires Ni to lie in the subsimplex Mi(N) spanned by those j’s where Si

j(nj)

is maximal; the distribution of i is optimal if and only if Ni 2 Mi(N). The
distribution of all s species is optimal if and only if

N 2
s

∏
i=1

Mi(N). (A2)

Because of the assumed continuity of the suitability functions, the corre-
spondence N 7!∏i Mi(N), defined on ∏i ∆i, is closed. Kakutani’s fixed-
point theorem (see, e.g., Border 1985) hence guarantees the existence of
a matrix N for which equation (A2) holds. Thus there exists at least one
optimal distribution.

It is shown in appendix B that the optimal habitat densities (nj) =

(n1, n2, . . . , nh), corresponding to (ni) via some optimal distribution, are
unique and that the mapping (ni) 7! (nj) is continuous. Denoting maxj Si

j(nj)

by Si, the composed mapping (ni) 7! (nj) 7! (Si) is therefore continuous,
too.

The per capita increase rate Φi(ni, Si) of population i is assumed to be
a continuous function of ni and Si. The population is stationary when
Φi = 0. A set of stationary populations constitute a saturated equilibrium
(Hofbauer and Sigmund 1988) if none of the remaining species, those for
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which ni = 0, can invade; for every species i in this complementary set,
Φi � 0. We now show that such a saturated equilibrium always exists.

The first step is to express the two different conditions for the two sets
of species by the single equation Ψi = 0, where Ψi is the maximum be-
tween Φi and �ni. This equation asserts that either ni > 0 and Φi = 0
or ni = 0 and Φi � 0. The value of Ψi depends continuously on ni and
Si. As discussed in a previous paragraph, the latter is itself a continu-
ous function of the population sizes of all the competitors. Therefore, Ψi,
too, can be expressed as a continuous function of the population sizes,
denoted Ψi(n1, n2, . . . , ns). Geometrically, the set of points where Ψi = 0
constitutes the zero isocline of species i. Next we make the assumption
that, regardless of the sizes of the other populations, population i cannot
exceed some upper limit ni

max; beyond that limit the population increase
rate either vanishes or becomes negative. Thus, for all i, it is always the
case that Ψi(n1, n2, . . . , ni�1, ni

max, ni+1, . . . , ns) � 0. As Ψi is, by defini-
tion, nonnegative when ni = 0 and, by assumption, nonpositive when
ni = ni

max, there is no point on the faces of the box ∏s
i=1
�
0, ni

max
�

where
the vector field (Ψ1, Ψ2, . . . , Ψs) points outward. It follows that there exists
at least one point (n1, n2, . . . , ns) in the box where this continuous vector
field vanishes (see Border 1985, p. 80). This point corresponds to a satu-
rated equilibrium. Geometrically, it is an intersection point of the s zero
isoclines Ψi(n1, n2, . . . ns) = 0, i = 1, 2, ..., s.

The optimal habitat densities that correspond to the stationary popu-
lations of a saturated equilibrium are called stationary densities.

APPENDIX B

UNIQUENESS OF OPTIMAL DENSITIES AND STATIONARY DENSITIES

Let (n̄i
j) and (ñi

j) be two optimal distributions. The corresponding optimal
densities are (n̄j) and (ñj), respectively, and the population sizes are (n̄i)

and (ñi), respectively. We show that if (n̄i) = (ñi) then (n̄j) = (ñj)—
optimal densities are unique. In fact, we prove a stronger result:

∑
j

��n̄j � ñj
�� � ∑

i

���n̄i � ñi
��� . (B1)

Denoting maxj Si
j(n̄j) by S̄i and maxj Si

j(ñj) by S̃i, we first show that

∑
j

n̄j>ñj

�
n̄j � ñj

�
� ∑

i
S̃i>S̄i

�
n̄i � ñi

�
. (B2a)
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Consider the difference between the two sides of (B2a):

∑
i

S̃i>S̄i

�
n̄i � ñi

�
� ∑

j
n̄j>ñj

�
n̄j � ñj

�
= ∑

S̃i>S̄i
∑
j

�
n̄i

j � ñi
j

�
� ∑

n̄j>ñj

∑
i

�
n̄i

j � ñi
j

�

= ∑
S̃i>S̄i

∑
n̄j�ñj

�
n̄i

j � ñi
j

�
� ∑

n̄j>ñj

∑
S̃i�S̄i

�
n̄i

j � ñi
j

�
� � ∑

S̃i>S̄i
∑

n̄j�ñj

ñi
j � ∑

n̄j>ñj

∑
S̃i�S̄i

n̄i
j.

The last two sums actually vanish, for if n̄j > ñj and S̃i � S̄i, then since
Si

j(nj) is strictly increasing, Si
j(n̄j) < Si

j(ñj) � S̃i � S̄i. Since n̄i
j satisfies

(A1), it must be zero. Similarly, S̃i > S̄i and n̄j � ñj together imply S̃i >

S̄i � Si
j(n̄j) � Si

j(ñj), and therefore ñi
j = 0. Now, to complete the proof of

(B1), we switch between (n̄i
j) and (ñi

j). Equation (B2a) becomes

∑
j

ñj>n̄j

�
ñj � n̄j

�
� ∑

i
S̄i>S̃i

�
ñi � n̄i

�
. (B2b)

The sum of equations (B2a) and (B2b) implies equation (B1).
It follows from equation (B1) that the function that maps population

sizes into optimal densities is continuous, even Lipschitz continuous. It
follows from equation (B2a) that this function is nondecreasing: If ñi � n̄i

for all i, then the right-hand side of equation (B2a) is nonpositive, and
therefore the left-hand side must vanish, or ñj � n̄j for all j. Furthermore,
in such a case, (B2b) reads ∑j

�
ñj � n̄j

�
� ∑S̄i>S̃i

�
ñi � n̄i�. But ∑j

�
ñj � n̄j

�
is equal to ∑i

�
ñi � n̄i�, and all the terms in the latter sum are, by assump-

tion, nonnegative. Hence, S̄i > S̃i must hold for every species i for which
ñi � n̄i > 0. Thus, a species whose population strictly increases occupies
habitats where the suitability is strictly lower than the suitability in the
habitats that were occupied by the species before its population increased.

With one further assumption concerning stationary populations, the
uniqueness of stationary densities (the optimal densities that correspond
to a saturated equilibrium) can also be deduced from the above equations.
The assumption, which is discussed in section E, is that for every species i
the stationary population size ni is an increasing, or at least a nondecreas-
ing, function of Si. If n̄i and ñi are two stationary population sizes that
correspond respectively to S̄i and S̃i, then S̃i > S̄i implies that ñi � n̄i.
The sum on the right-hand side of equation (B2a) is therefore nonpos-
itive. Hence, the left-hand side must vanish. For a similar reason, the
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left-hand side of equation (B2b) must vanish. Thus, n̄j = ñj holds for all
j—stationary densities are unique.

The effect of the introduction of a new competitor or, conversely, the
removal of a competitor on the stationary population sizes of the other
species can be studied in a similar way. Let (n̄i

j) and (ñi
j), respectively,

be the habitat distribution before and after the introduction of species i0.
Further, ñi0 is the stationary population size which the introduced species
reaches; n̄i0 is zero. Thus, n̄i0 � ñi0 is nonpositive. Assuming that the con-
dition spelled out in the last paragraph holds for all i 6= i0, all the terms on
the right-hand side of equation (B2a) are nonpositive, and therefore, the
left-hand side must vanish. Thus, following the introduction of the new
competitor, the density in all habitats either increases or remains the same;
ñj � n̄j holds for all j. Hence (by the monotonicity of the suitability func-
tions), none of the other species benefits from the introduction; S̃i � S̄i

holds for all i. Reversing the course of events, let ñi0 be the original pop-
ulation size of species i0, which is removed from the community, or its
population size is otherwise artificially lowered and held at a new level
n̄i0 . Let (n̄i

j) be the new habitat distribution that is established after the
manipulation. It was just shown that ñj � n̄j holds for all j. Thus, there is
no density increase in any habitat, and therefore there is no density over-
compensation.

APPENDIX C

A MODEL OF HABITAT-DEPENDENT DIFFERENTIAL COMPETITIVE
WEIGHTS

In the continuous-input model of Parker and Sutherland (1986) there are
s competitor types and h habitat patches where the competitors search for
food or for mates. The number of individuals of competitor type i search-
ing in habitat patch j is ni

j. The payoff Si
j of competitor type i in habitat

patch j is βi
j/nj. The competitive weight, βi

j, is a positive constant that ex-
presses the effect of congestion in habitat patch j on competitor type i. The
congestion parameter, nj, is in Parker and Sutherland’s model the total
competitive weight in patch j, ∑i βi

jn
i
j, divided by the resource input rate

into j. But, in what follows, it need only be assumed that nj is some contin-
uous and strictly increasing nonnegative function of n1

j through ns
j . (There-

fore, if Si
j is proportional not to the reciprocal of nj as assumed here but

to some other continuous, strictly decreasing, and positive patch-specific
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function φj of nj [i.e., if Si
j = βi

jφj(nj)], then Si
j can be made inversely pro-

portional to the congestion parameter simply by calling 1/φj(nj), rather
than nj, the congestion parameter.)

For each competitor i, ∑j ni
j is equal to the population size ni. But ∑i ni

j
is generally different from the congestion parameter nj. In this, the present
model differs from the model introduced in section A. The proof of the ex-
istence of an optimal distribution (appendix A) depends only on the con-
tinuity of nj as a function of n1

j through ns
j . Hence, the same proof works

for the present model as well. The uniqueness of the optimal distribution
is discussed below. We first show that a generic optimal distribution is
acyclic.

A particular patch distribution of competitors is described qualitatively
by the habitat distribution graph defined in section C. It is an (undirected)
bipartite graph with s vertices (competitors) on one side and h vertices
(patches) on the other side. Competitor i and patch j are connected if
and only if i occurs in j. For a generic matrix of competitive weights
B = (βi

j) we show that if the patch distribution is optimal, then the graph
is acyclic. A cycle in a bipartite graph consists of 2k (k � 2) distinct ver-
tices, j1, i1, j2, i2, . . . , jk, ik, and 2k distinct edges. The first edge connects
patch j1 and competitor i1, the second edge connects competitor i1 and
patch j2, and so forth. The last edge connects competitor ik and patch j1.

LEMMA (Peleg et al. 1992). If a patch distribution is optimal and its
graph has a 2k-cycle, then the following (nontrivial) equality holds:

βi1
j1

βi2
j2
� � � βik

jk
= βi1

j2
βi2

j3
� � � βik�1

jk
β

ik
j1

. (C1)

Proof. Since competitor im occurs in both patch jm and patch jm+1 (m =
1, 2, . . . , k; jk+1 = j1), both patches must yield maximal payoffs. Hence,
βim

jm /njm = βim
jm+1

/njm+1 must hold. Multiplying and canceling out identical
factors, these k equalities yield equation (C1). This equality is nontrivial,
in the sense that it is not an identity: the two sets of entries of B, those on
the right-hand side of equation (C1) and those on the left-hand side, are
different (actually disjoint). This completes the proof of the lemma.

The matrix B corresponds to a point in the s� h dimensional positive
orthant. For a particular k and 2k particular indices j1, i1, j2, i2, . . . , jk, ik, the
points where (the nontrivial) equation (C1) holds lie on a manifold of di-
mension s� h� 1, having Lebesgue measure zero. Hence, in the measure-
theoretic sense, almost every B does not admit any nontrivial equality of
the form in equation (C1). For such a generic B, an optimal patch distrib-
ution always corresponds to an acyclic graph.
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Under the same genericity condition that implies that an optimal patch
distribution is acyclic, the distribution is also unique: for any given s-
tuple (ni

j) of population sizes, only one distribution of competitors among
patches is consistent with the optimality assumption (equation (A1)). We
now prove this result.

Suppose the contrary, that there exist two optimal patch distributions,
(n̄i

j) and (ñi
j), such that

n̄i
j1 > ñi

j1 holds for some i (C2a)

and some j1. For every i, both ∑j n̄i
j and ∑j ñi

j are equal to the the given
population size of competitor i. Hence, equation (C2a) implies that

n̄i
j2 < ñi

j2 holds for some i (C2b)

and some j2 6= j1 and that there exists some i1 for which both the inequality
in (C2a) and the inequality in (C2b) hold. Since n̄i1

j1
(and ñi1

j2
) is strictly

greater than zero, the assumed optimality of the first (respectively, second)
distribution implies that patch j1 (respectively, j2) is optimal for competitor
i1. Hence, in particular,

βi1
j1

/n̄j1 � βi1
j2

/n̄j2 (C3a)

and
βi1

j1
/ñj1 � βi1

j2
/ñj2 . (C3b)

Dividing equation (C3a) by (C3b) yields

ñj1/n̄j1 � ñj2/n̄j2 . (C4)

It is impossible that n̄i
j1
� ñi

j1
and n̄i

j2
� ñi

j2
hold for all i. The reason is

that, by assumption, nj1 is a strictly increasing function of n1
j1

through ns
j1

,
and therefore the first set of inequalities, with strict inequality for some
i (equation (C2a)), implies that the value of this congestion parameter is
greater for the first distribution (n̄i

j) than it is for the second distribution
(ñi

j), that is, n̄j1 > ñj1 . Similarly, the second set of inequalities (together
with equation (C2b)) implies that n̄j2 < ñj2 . But these two inequalities
together contradict (C4). Hence, it must be that

n̄i
j1 < ñi

j1 holds for some i (C5a)

or
n̄i

j2 > ñi
j2 holds for some i. (C5b)
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There is no loss of generality in assuming that equation (C5b) holds. The
reason is that equation (C5a) can be transformed into equation (C5b) by
reindexing: swooping j1 with j2 and (n̄i

j) (the first distribution) with (ñi
j)

(the second distribution). It is immediate to check that this transforma-
tion does not affect equation (C2) (whose two parts are transformed into
one another), (C3) (the same as with equation (C2)), or (C4). The formal
similarity between equation (C2a), which asserts that

n̄i
j1 > ñi

j1 holds for some i, (C6a)

and equation (C5b) allows us to conclude at once that the analog of equa-
tion (C2b) holds:

n̄i
j3 < ñi

j3 holds for some i

and some j3 6= j2, and there exists some i2 for which both the inequality in
(C5b) and the inequality in (C6b) hold. Hence,

βi2
j2

/n̄j2 � βi2
j3

/n̄j3 (C7a)

and
βi2

j2
/ñj2 � βi2

j3/ñj3 , (C7b)

and therefore ñj2/n̄j2 � ñj3/n̄j3 . Together with equation (C4) the last in-
equality yields

ñj1/n̄j1 � ñj2/n̄j2 � ñj3/n̄j3 .
Since the inequalities in (C2b) and (C5b) cannot both hold for the same i,
it must be that i2 6= i1.

The arguments that lead from equations (C2) and (C4) to equations
(C6) and (C8) can now be applied to equations (C6) and (C8). Continuing
in this manner k times, a chain of inequalities,

ñj1/n̄j1 � ñj2/n̄j2 � � � � � ñjk+1/n̄jk+1 , (C9)

of an arbitrary length k is generated; jm 6= jm+1 for m = 1, 2, . . . , k. These
inequalities cannot all be strict inequalities, for there are only h distinct
values that the index jm can take. If, for example, j1, j2, . . . , jk are distinct
but jk+1 = j1 (k � 2), then all k inequalities in (C9) must, in fact, be equal-
ities. The first of these equalities implies equalities in (C3), the second
implies equalities in (C7), and so forth. Thus, βi1

j1
/n̄j1 � βi1

j2
/n̄j2 , βi2

j2
/n̄j1 �

βi2
j3

/n̄j3 , . . . , β
ik
jk

/n̄j1 � β
ik
j1

/n̄j1 , where im 6= im+1 for m = 1, 2, . . . , k � 1.
These equalities imply equation (C1), which is a nontrivial equality: ex-
cept perhaps for βi1

j1
and β

ik
j1

(which may have the same indices), no entry
of B appears in this equality more than once. As explained above, a matrix
B for which such a nontrivial equality holds is nongeneric.
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APPENDIX D

STABILITY OF A TWO-TROPHIC-LEVEL COMMUNITY

The linearized population dynamics of a two-trophic-level community in
the neighborhood of an equilibrium point is

dxk(t)
dt

= ∑
l

aklxl(t), (D1)

where xk(t) is the (initially small) difference between the size of popula-
tion k at time t and its equilibrium size and A = (akl) is the community
(or interaction) matrix (May 1973). The matrix is made of four blocks:

A =

�
A11 A12
A21 A22

�
.

The two square matrices A11 and A22 describe, respectively, the effect of s
predators upon predators and the effect of h prey populations upon prey
populations. It is assumed that no direct interaction between different
populations on the same trophic level takes place and, thus, that these
matrices are diagonal. It is also assumed that no population exhibits a
destabilizing positive feedback in its intraspecific interactions and, thus,
that all diagonal elements of A are either negative (the population is self-
regulated) or zero (no self-regulation). The s� h matrix A12 describes the
effect of prey populations upon their predators; entry j in row i is positive
if predator i consumes prey population j, and zero otherwise. The matrix
A21 describes the reverse effect of predators upon their prey; it has the
opposite sign pattern to that of A12 transposed (entry i in row j is negative
if entry j in row i of A12 is positive, and zero otherwise). It follows that for
every off-diagonal (k 6= l) element akl of A, aklalk � 0.

A cycle of A of length r (Maybee and Quirk 1969) is a product of the
form al1l2 al2l3 � � � alr l1 , where l1, l2, . . . , lr are r distinct indices. A nonzero
cycle of length greater than two corresponds to a cycle in the habitat dis-
tribution graph, which in the present case is just an undirected version of
the food web graph: l1, one of the prey populations, say, is consumed by
predator l2, which also consumes prey population l3, and so forth; preda-
tor lr consumes both prey population lr�1 and prey population l1. If, as we
now assume, the graph is acyclic (see section C), then A has no nonzero
cycles of length greater than two. As explained above, all cycles of A of
length two are nonpositive.

If all predator and prey populations are self-regulated, then all the di-
agonal elements of A are negative. In this case, the indicated signs of the
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cycles of A of length two and of length greater than two (nonpositive and
zero, respectively) are necessary and sufficient conditions for sign, or qual-
itative, stability of A: by virtue of its sign pattern, and regardless of the
magnitude of the matrix elements, all eigenvalues of A have a negative
real part (Quirk and Ruppert 1965; Hofbauer and Sigmund 1988). Zero
(no deviation from equilibrium population sizes) is therefore a stable so-
lution of the system of linear differential equations (D1); the equilibrium
under consideration is stable.

Self-regulation of all the populations involved is not, however, a nec-
essary condition for sign stability. It is sufficient for sign stability that the
prey populations be self-regulated and that every s0 predators together
consume at least s0 prey populations (for s0 = 2, 3, . . . , s). (The second part
of this condition is satisfied if and only if it is possible to choose for every
predator one of its prey population in such a way that different preda-
tors are assigned different prey populations.) If this condition is satisfied,
then there is a nonzero term in the expansion of the determinant of A.
This term has the form �

�
ak1l1 al1k1 � � � aksls alsks

� �
als+1ls+1 � � � alhlh

�
, where

k1, k2, . . . , ks are the s predators, l1, l2, . . . , lh are the h prey populations,
and, for m = 1, 2, . . . , s, lm is consumed by km. The existence of such a
nonzero term, together with the above conditions concerning the signs of
the cycles of A, are necessary and sufficient conditions for sign stability
of a matrix with nonpositive diagonal elements that fails the “color test”
for the arrangement of its negative diagonal elements (Jefferies 1974). The
community matrix does not pass the color test: it is not possible to color
the vertices of the habitat distribution graph black and white in such a way
that all self-regulated species (and hence in particular all prey population)
are colored black, at least one species is colored white, and every vertex
colored white is connected by an edge to at least one other vertex colored
white. This matrix is therefore sign stable.
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