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Abstract 

In this paper we focus on saddle point matrices with two vector blocks and their applications 

in game theory. Necessary and sufficient conditions for the existence and uniqueness of a 

completely mixed Nash equilibrium in a bimatrix game are presented. These conditions and 

formulas for computing the equilibrium and equilibrium payoffs are expressed by saddle 

point matrices. 
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Introduction 
The first part of the paper presents several properties of saddle point matrices with two 

vector blocks. In these block matrices, the top-left block is a real square matrix  , the top-

right block is the column vector   with all entries  , the bottom-left block is   transposed, 

and the bottom-right block has the single entry  . If   is symmetric, the saddle point matrix 

can be interpreted as the bordered Hessian of a standard quadratic program over the 

standard simplex and it is usually called the Karush-Kuhn-Tucker matrix of the program. For 

a review of the many applications of such matrices, see [3]. 

Game theory models in mathematical language problems of strategic decision making arising 

in economics and other social sciences. A bimatrix, or finite two-player game is one of the 

fundamental constructs of game theory. In such a game, the payoff of each player is a 

bilinear function of the two players’ mixed strategies. In a game-theoretic application of 

saddle point matrices, the top-left block is the payoff matrix of one of the two players in a 

bimatrix game. 

The computational problem of finding a Nash equilibrium in a bimatrix game has received 

much attention (for example, see [9]). Completely mixed equilibria in such games, and 

especially in symmetric bimatrix games (sometimes called evolutionary games) have also 

been extensively studied. In a completely mixed equilibrium, all the entries in each player’s 

mixed strategy are strictly positive. Blackwell [2] used such equilibria to give an alternative 

proof of the Perron-Frobenius theorem. Raghavan [8] showed that several characterizations 

of  -matrices can be deduced from the theory of completely mixed equilibria.  
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Not every bimatrix game has a completely mixed Nash equilibrium. However, such equilibria 

always exist for certain classes of bimatrix games, for example, games with Minkowski-

Leontief payoff matrices and quasicyclic games [11], games in which the payoff matrix is an 

 -matrix [4], and generalized rock-scissors-paper games [5]. 

The prevalence of bimatrix games, and the fact that for at least some classes of games a 

completely mixed equilibrium is guaranteed to exist, mean that a quick method for checking 

whether a given game has a completely mixed equilibrium and simple formulas for 

computing the equilibrium and equilibrium payoffs may come in handy. Such closed-form 

formulas may also be useful for games involving unknown values or parameters. For 

example, in studies of comparative statics one is often interested in the way the equilibrium 

changes with changing underlying parameters. If the game has a unique completely mixed 

equilibrium, this remains so as long as the parameters do not change too much. Note, 

however, that if the number of pure strategies is not the same for the two players, then in a 

generic bimatrix game a completely mixed equilibrium does not exist. For this reason, the 

analysis below only concerns games with an equal number of pure strategies, that is, square 

payoff matrices. 

This paper complements and extends some earlier works of the authors. For bimatrix games, 

Milchtaich [6] presented a formula for computing the equilibrium payoffs when the support 

of the equilibrium is known. Ostrowski [7] presented formulas for computing the completely 

mixed strategy and the equilibrium payoff in a symmetric bimatrix game. 

Saddle Point Matrices 
In this section, some notation and basic properties of saddle point matrices are presented. 

The proofs are given in the Appendix. 

The column vector and the square matrix with all entries   are denoted by      and 

      , respectively. Thus,      . For a (real) matrix       , the saddle point matrix 

      is defined by 

      [
  
   

]  

(This is a shortened version of the notation           that is sometimes used to denote 

square partitioned matrices with four blocks.) If   is nonsingular, its Schur complement in (1) 

is given by 

                  

The matrices obtained from   by replacing the  -th column or row (          ) with 

the column vector   or row vector    are denoted by    or   , respectively. For square 

matrices   and  , the notation     means that the matrices are congruent, i.e., 

       for some nonsingular matrix  . 

(1) 

(2) 
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Theorem 1. For a square matrix        and scalars      , 

                                    

  ∑     

 

   

  ∑     

 

   

  

                          

and 

                                  

Theorem 2. For a nonsingular       , 

                       

and 

          {
                                

                 
 

If   is in addition symmetric, then moreover 

      [
  
        

]  

If   is symmetric and positive definite, then       is nonsingular and has one negative 

eigenvalue and   positive ones. 

Bimatrix Games 
A bimatrix, or finite two-player strategic game is given by an ordered pair of payoff matrices, 

        and        , with equal dimensions. If the row and column players choose their 

 -th and  -th pure strategies, respectively, the row player’s payoff is     and the column 

player’s payoff is    . A mixed strategy is a column probability vector        that specifies 

the probability with which each pure strategy is played. If all the probabilities are strictly 

positive,   is said to be completely mixed. This paper only concerns games in which the 

number of pure strategies is the same for both players, so that   and   are square,     

matrices, with    . 

A pair of mixed strategies       is a Nash equilibrium in a bimatrix game       if 

           for all strategies   for the row player and 

           for all strategies   for the column player. 

A completely mixed Nash equilibrium is one in which both players’ strategies are completely 

mixed. In the special case of a symmetric bimatrix game, i.e., a game of the form       , a 

mixed strategy   is a symmetric Nash equilibrium strategy if 

           for all strategies  . 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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Theorem 3. For          with                    , the bimatrix game       has at 

most one completely mixed Nash equilibrium. The equilibrium strategies of the row player 

and the column player, respectively, are equal to the vectors      and      defined by 

       
     

        
              

     

        
                

The equilibrium payoffs of the row player and the column player, respectively, are the 

scalars      and      defined by 

      
    

        
             

    

        
   

In the special case     , i.e., a symmetric bimatrix game       , the completely mixed 

equilibrium is symmetric: both players use the strategy      and receive the payoff     . 

If       or       are singular, the game       may have multiple completely mixed Nash 

equilibria, possibly with different payoffs. For example, in the symmetric bimatrix game 

       with 

  [

    
    
    
    

]  

 

 

the strategy                        is a completely mixed symmetric equilibrium 

strategy for any          , with the equilibrium payoff  . However, even if       or 

      are singular, multiplicity of completely mixed Nash equilibria is possible only if   or  , 

respectively, are also singular. Otherwise, a completely mixed equilibrium does not exist. For 

example, this is so for the symmetric bimatrix game        with 

  [
  
  

]  

which satisfies 

            [
   
   
   

]            [
  
  

]     

Clearly, a completely mixed equilibrium does not exist in this game, in which one strategy is 

dominating. 

Theorem 4. A necessary and sufficient condition for the existence of a unique completely 

mixed Nash equilibrium in a bimatrix game       is that the following inequalities hold: 

                                                 

(9) 

(10) 

(11) 
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Appendix 
Proof of Theorem 1. The first and second equalities in (3) are special cases of (5), obtained by 

setting     and      and rearranging. They therefore follow from the general case, 

which is considered below. The third equality is obtained by computing the determinant of 

      using Laplace expansion about the last row and changing the order of columns in the 

resulting determinants, keeping in mind the resulting changes of signs. The fourth equality is 

similarly obtained by expanding       about the last column. 

Eq. (4) holds trivially if    . If    , then 

                [
      

   
]     [

   
   

]

      [  
 

 
 

   

]         [
  
   

]                

where the second equality is obtained by subtracting the last column multiplied by   from 

each of the other columns in           and the third and fourth equalities use the 

multilinearity of the determinant. 

To prove (5), we differentiate its left-hand side with respect to  : 

 

  
           ∑           

 

   

  ∑        

 

   

             

Since                     for    , this gives that 

                                                    

where the second inequality uses (4).  ■ 

Proof of Theorem 2. For a nonsingular matrix  , Eq. (6) follows from the Schur determinant 

formula and (2). Eq. (7) follows immediately from (6), or alternatively from the Guttman rank 

additivity formula (see [12]). If   is in addition symmetric, direct computation (see also [10]) 

gives that 

        [
  
        

]    

where 

  [     
  

]  

This proves (8). If   is symmetric and positive definite, then the same holds for    , and 

therefore         . It then follows from (8) (see also [1]) that       is nonsingular and 

has a single negative eigenvalue, which is        .  ■ 
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Proof of Theorem 3. In an equilibrium in       in which the row player’s strategy   is 

completely mixed, every pure strategy would give that player the same (equilibrium) payoff 

  against the column player’s strategy  . Thus, 

       

Since   is a probability vector, 

       

In matrix form, these equations can be written as 

[
  
   

] [
 

  
]  [

 
 
]  

Since by assumption           , it follows almost immediately from (12) by Cramer’s rule 

that 

   
         

        
              

and 

   
    

        
  

The row player’s equilibrium strategy and the column player’s equilibrium payoff satisfy 

similar equations, in which   is replaced with   . This is because transposition of the payoff 

matrix   makes the row player a column player and vice versa. Since, by (3), for all   

                                  

and 

   (  )
 
    (  )

 
        

this proves (9) and (10).  ■ 

Proof of Theorem 4. Suppose that (11) holds. By (3), this implies that both saddle point 

matrices       and       are nonsingular and that the vectors      and      defined by 

(9) are strictly positive probability vectors. As shown in the proof of Theorem 3,      and 

the scalar      defined in (10) together solve (12), and      and      together solve a 

similar matrix equation in which   is replaced with   . This shows that             is a 

completely mixed Nash equilibrium in      . By Theorem 3, it is in fact the unique such 

equilibrium. 

It remains to prove the necessity of condition (11). If the game has a completely mixed 

equilibrium      , then as shown in the proof of Theorem 3,   and the row player’s 

equilibrium payoff   solve (12). If the equilibrium is unique, then   and   moreover 

(12) 
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constitute an isolated solution of (12). This is because replacing them with any other pair of 

a strictly positive vector    and a scalar    that satisfy (12) would give a different completely 

mixed Nash equilibrium       , which by assumption does not exist. The existence of an 

isolated solution implies that           . Similar considerations give that           . 

Therefore, by Theorem 3,                  . Condition (11) now follows from (9). ■ 
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