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Abstract

A sequential-move version of a given normal-form game Γ is an extensi-
ve-form game of perfect information in which each player chooses his ac-
tion after observing the actions of all players who precede him and the pay-
offs are determined according to the payoff functions in Γ. A normal-form
game Γ is sequentially solvable if each of its sequential-move versions has a
subgame-perfect equilibrium in pure strategies such that the players' actions
on the equilibrium path constitute an equilibrium of Γ.
A crowding game is a normal-form game in which the players share

a common set of actions and the payoff a particular player receives for
choosing a particular action is a nonincreasing function of the total num-
ber of players choosing that action. It is shown that every crowding game
is sequentially solvable. However, not every pure-strategy equilibrium of
a crowding game can be obtained in the manner described above. A suf-
�cient, but not necessary, condition for the existence of a sequential-move
version of the game that yields a given equilibrium is that there is no other
equilibrium that Pareto dominates it.

�This work is based on Chapter One of the author's Ph.D. dissertation, written at the Center
for Rationality and Interactive Decision Theory of the Hebrew University of Jerusalem under the
supervision of Prof. B.Peleg, Prof. U. Motro, and Prof. S. Hart. A previous version of this paper
was circulated under the title �On backward induction paths and pure strategy Nash equilibria of
congestion games.�
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A crowding game (or a congestion game with player-speci�c payoff functions;
Milchtaich, 1996) is an n-person normal-form game Γwhere each player i chooses
one action j from a common �nite set A of actions, and receives a payoff which is
a nonincreasing function Si j of the total number n j of players choosing j. (n j) j2A
is called the congestion vector. The actions chosen by the players constitute a
(pure-strategy Nash) equilibrium of Γ if the action σ i chosen by each player i is a
best response for that player against the actions chosen by the other players. For-
mally, an action pro�le σ = (σ1;σ2; : : : ;σn) 2 An is an equilibrium if and only if,
for every player i and action j, Siσ i(nσ i)� Si j(n j+1). Every symmetric crowding
game is also a congestion game, as de�ned in Rosenthal (1973; see below). The
class of all congestion games coincides with the class of potential games (Mon-
derer and Shapley, 1996). This implies, in particular, that every such game has
at least one Nash equilibrium in pure strategies. Nonsymmetric crowding games,
however, generally do not admit a potential function.
Given any n-person normal-form game Γ, a sequential-move version of Γ is

an extensive-form game of perfect information in which the n players are put in
some �xed order, each player chooses his action after observing the choices of all
players who precede him, and the payoffs are determined according to the payoff
functions in Γ. There are n! ways of ordering the players, and each order de�nes a
different sequential-move version of Γ. As is well known, an extensive-form game
of perfect information always has at least one subgame-perfect equilibrium in
pure strategies. We will say that the (simultaneous-move) game Γ is sequentially
solvable if each of its sequential-move versions has at least one subgame-perfect
equilibrium in pure strategies such that the players' actions on the equilibrium
path constitute a (Nash) equilibrium of Γ.1 The main result of this paper is the
following:

Theorem 1. Every crowding game is sequentially solvable.

It follows, in particular, from Theorem 1 that every crowding game has a Nash
equilibrium in pure strategies. For a computationally ef�cient algorithm for �nd-
ing such an equilibrium, and for a discussion of convergence to an equilibrium, see
Milchtaich (1996). At least one of the (pure-strategy) equilibria of every crowding
game is a strong equilibrium (Konishi et al., 1997a). This is not generally true for

1An alternative term that comes to mind is �Stackelberg solvable�. However, this term was
used in another meaning by d'Aspremont and Gérard-Varet (1980). Stackelberg solvability, as
de�ned by these authors, neither implies nor is implied by sequential solvability.
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congestion games. See, however, Holzman and Law-Yone (1997), were suf�cient
conditions for the existence of a strong equilibrium in such games are obtained.

Sequential-move equilibria
By Theorem 1, every sequential-move version of a given crowding game Γ has a
subgame-perfect equilibrium in pure strategies such that the action pro�le played
on the equilibrium path is an equilibrium of Γ. Such an action pro�le will be said
to be a sequential-move equilibrium of Γ. The question naturally arises, whether
all equilibria of a given crowding game are sequential-move equilibria. The fol-
lowing example shows that the answer, in general, is �no.�
Consider a two-person, two-action crowding game where S11(1) > S12(1) >

0, S22(1) > S21(1) > 0, and 0 > Si j(2) for every i and j. This game has two
equilibria: (1;2) and (2;1). However, only the �rst equilibrium is a sequential-
move equilibrium; there is no subgame-perfect equilibrium of a sequential-move
version of this game in which the second action pro�le is played.
The second equilibrium of the above game is Pareto dominated by the �rst

one.2 As we will presently see, this is no accident: every equilibrium of a crowd-
ing game which is not Pareto dominated by another equilibrium of the game is a
sequential-move equilibrium.
In every crowding game, an equilibrium which is not Pareto dominated by an-

other equilibrium is strong in the sense of Aumann (1959): there exists no group
of players who can increase their payoffs by simultaneously changing their ac-
tions, if the rest of the players do not change their actions. This follows from
the fact that if an equilibrium σ is not strong, so that there is an action pro-
�le σ 0 6= σ such that, for every player i for which σ 0i 6= σ i, player i's payoff
when σ 0 is played is strictly higher than his payoff when σ is played, then σ 0

is an equilibrium and it Pareto dominates σ . To prove this fact, note �rst that
the congestion vector (n0j) j2A corresponding to σ 0 is equal to the congestion vec-
tor (n j) j2A corresponding to σ . Indeed, n0j > n j for some j would imply that
there is a player, i, for which σ 0i = j and σ i 6= j. But it follows from our as-
sumption concerning σ 0 and from the monotonicity of Si j that in such a case
Siσ i(nσ i) < Si j(n0j) � Si j(n j+ 1)�a contradiction to the assumption that σ is an
equilibrium. Since the two congestion vectors are equal, for every player i for

2An action pro�le is Pareto dominated by another action pro�le if there is no player whose
payoff is strictly higher when the �rst action pro�le is played and there is at least one player
whose payoff is strictly higher when the second action pro�le is played.
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which σ 0i = σ i, player i's payoff when σ 0 is played is equal to his payoff when σ

is played. It follows that σ 0 Pareto dominates σ . Also, since σ is an equilibrium,
Siσ 0i(n

0
σ 0i
) � Siσ i(nσ i) � Si j(n j+ 1) = Si j(n0j+ 1) for every player i and action j.

Hence, σ 0, too, is an equilibrium.
For generic3 crowding games the converse is also true: an equilibrium σ that

is Pareto dominated by another equilibrium σ 0 is not strong. The reason is that,
in such a case, for every player i for which σ 0i 6= σ i, player i's payoff when σ 0 is
played cannot be equal to, and is therefore strictly higher than, his payoff when σ

is played.

Theorem 2. Every strong equilibrium of a crowding game Γ is a sequential-
move equilibrium of Γ.

The converse of Theorem 2 is false; not every sequential-move equilibrium of
a crowding game is strong. Consider, for example, the sequential-move version
of a three-person, three-action generic crowding game where S11(1) > S12(1) >
S12(2) > 0, S22(1) > S23(1) > 0, S32(1) > S31(1) > S31(2) > 0, and 0 > Si j(m)
otherwise and the players move in the order 1, 2, 3. If player 1 plays 1, then
player 2 will play 2 and player 3 will play 1. If player 1 plays 2, then player 2
will play 3 and player 3 will play 1. Player 1's payoff is negative in the former
case and positive in the latter case. The unique sequential-move equilibrium cor-
responding to this sequential-move version is therefore (2;3;1). However, this
equilibrium is not strong; and it is Pareto dominated by the other equilibrium of
the simultaneous-move game, (1;3;2).
When a crowding game has only one sequential-move equilibrium, that equi-

librium may be said to be commitment robust (Rosenthal, 1991). It follows as
a corollary from Theorem 2 that a necessary condition for an equilibrium of a
crowding game to be commitment robust is that it Pareto dominates all other
equilibria. However, as the last example shows, this condition is not suf�cient
for commitment robustness.

3A crowding game will be said to be generic if, for every i, j, j0, and 1 � m;m0 � n, j 6= j0
implies Si j(m) 6= Si j0(m0).
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Other games
Rosenthal (1973) introduced a class of (congestion) games that are similar in some
respects to the games considered here. In this class of games, the set of strategies
of each player is not the set A of actions but some subset of the power set of A;
each player chooses a combination of actions. A player's payoff is the sum of
the payoffs associated with each of the actions included in his choice. The payoff
associated with action j is an arbitrary function c j of the number n j of players who
include j in their choice. Rosenthal (1973) proved that each game in this class has
a Nash equilibrium in pure strategies. Nevertheless, the following example shows
that in this class of games Theorems 1 and 2 do not hold.
Consider a three-person symmetric game where the set of actions is A =

f1;2;3;4g and the common set of strategies is ff1g;f2g;f3g;f1;4g;f2;3;4gg.
Suppose that c1(1) = 10, c1(2) = 0, c2(1) = 3, c3(1) = 2, c4(1) = �1, and
c j(m) < �10 otherwise. A sequential-move version of this game has a unique
subgame-perfect equilibrium, in which the �rst player plays f1;4g, the second
player plays f2g, and the third player plays f3g. This, however, is not an equi-
librium of the simultaneous-move game: the �rst player can increase his payoff
from 9 to 10 by unilaterally shifting to f1g. And (f1g;f2g;f3g) is a strong equi-
librium of the simultaneous-move game. But if the �rst player played f1g in the
sequential-move version of the game then the second player would play f2;3;4g
and the third player would play f1g, and so the payoff of the �rst player would in
this case be zero.
Another closely related class of games in which the main result of the present

paper does not hold is games in which crowding has a positive effect on players'
payoffs (Konishi et al., 1997b). Consider, for example, a three-player, three-action
game where the following inequalities hold: S11(3)> S12(3)> S12(2)> S11(2)>
S11(1) > S12(1) > 0, S22(3) > S23(3) > S23(2) > S22(2) > S22(1) > S23(1) > 0,
S33(3) > S31(3) > S31(2) > S33(2) > S33(1) > S31(1) > 0, and 0 > Si j(m) oth-
erwise. As can be readily veri�ed, this game does not even have a pure-strategy
Nash equilibrium.

Proofs
It suf�ces to prove Theorems 1 and 2 for generic crowding games. The reason
is that, for every crowding game Γ, every sequential-move version �Γ of Γ, and
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every generic crowding game Γ0 close enough to Γ,4 the unique subgame-perfect
equilibrium of the sequential-move version of Γ0 in which the order of players is
the same as in �Γ is also a subgame-perfect equilibrium of �Γ, and every equilibrium
of Γ0 is also an equilibrium of Γ. Also, for every strong equilibrium σ of Γ, Γ0
can be chosen in such a way that σ is also a strong equilibrium of Γ0. Notice,
however, that a sequential-move version of a non-generic crowding game may
possess pure-strategy subgame-perfect equilibria whose equilibrium paths do not
correspond to equilibria of the simultaneous-move game.
Every subgame of a sequential-move version �Γ of a given generic crowd-

ing game Γ is itself a sequential-move version of some generic crowding game.
Speci�cally, suppose that the players move in the order 1;2; : : : ;n. The subgame
of �Γ determined by a given path (σ1;σ2; : : : ;σ i) (1 � i � n) is a sequential-
move version of a unique (n� i)-person generic crowding game, which will be
called the subgame of Γ determined by (σ1;σ2; : : : ;σ i). The equilibrium path
(σ i+1;σ i+2; : : : ;σn) of the unique subgame-perfect equilibrium of the subgame
of �Γ determined by (σ1;σ2; : : : ;σ i) will be called the subgame equilibrium path
determined by (σ1;σ2; : : : ;σ i). The congestion vector corresponding to the ac-
tion pro�le (σ1;σ2; : : : ;σn) will be referred to as the congestion vector deter-
mined by (σ1;σ2; : : : ;σ i). Note that, since in a crowding game a player's payoff
is affected only by the number of other players playing each action, the same
subgame, subgame equilibrium path, and congestion vector are determined by
(σ τ(1);σ τ(2); : : : ;σ τ(i)), where τ is an arbitrary permutation of f1;2; : : : ; ig. The
proof of Theorem 1 depends on the following lemma:

Lemma. In a generic crowding game, let (n j) j2A be the congestion vector
determined by (σ1) and let (n0j) j2A be the congestion vector determined by (σ 01)
(σ1;σ 01 2 A). Then, for every j, n0j � n j+1, and equality holds for at most one j,
which is not σ1.

Proof of Theorem 1. Let Γ be a generic crowding game. It suf�ces to show that
the action pro�le σ played on the equilibrium path of the unique subgame-perfect
equilibrium of the sequential-move version of Γ in which the players move in the
order 1;2; : : : ;n is an equilibrium of Γ. If σ is not an equilibrium then, for some i
and j, Si j(n j+1)> Siσ i(nσ i), where (nk)k2A is the congestion vector correspond-

4It suf�ces to assume that strict preferences are not reversed in Γ0, i.e., that Si j(m) > Si j0(m0)
implies S0i j(m) � S0i j0(m0) for every i, j, j0, m, and m0, where (S0i j) j2A are the functions that
determine player i's payoff in Γ0.
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ing to σ . Without loss of generality, i = 1. (If not, then consider not Γ but the
subgame determined by (σ1;σ2; : : : ;σ i�1).) Set σ 01 = j, and let (n0k)k2A be the
congestion vector determined by (σ 01). By the lemma, and the monotonicity of
S1 j, S1 j(n0j)� S1 j(n j+1)> S1σ1(nσ1). But this contradicts the assumption that σ
is played on the equilibrium path: player 1 could have achieved more by playing
j (instead of σ1). �

Proof of the lemma. The proof proceeds by induction on the number n of
players. The lemma is evidently true if n = 1. Assume that it holds true for
every (n�1)-person generic crowding game, and let an n-person (n� 2) generic
crowding game be given. It is always possible to view the game as a subgame of an
(n+1)-person generic crowding game, more speci�cally the subgame determined
by (σ0), the play of the 0-th player. Moreover, it may be assumed that σ1 and σ 01
are different from σ0, and that σ0 is such that Siσ0(1)< Si j(n+1) for every i and
j 6= σ0. The latter assumption implies that, in every equilibrium of every subgame
of the (n+1)-person game, no player plays σ0.
Let (n1j) j2A be the congestion vector determined by (σ0;σ1), and let (n1

0
j ) j2A

be the congestion vector determined by (σ0;σ 01). For every j 6= σ0, n1j = n j and
n10j = n0j. If (σ2; : : : ;σn) is the subgame equilibrium path determined by (σ0;σ1)
and (σ 02; : : : ;σ

0
n) is the subgame equilibrium path determined by (σ0;σ 01) then

(n1j) j2A is also the congestion vector determined by (σ0;σ2;σ1) and (n1
0
j ) j2A is

also the congestion vector determined by (σ0;σ 02;σ
0
1). If σ2 = σ 02 then it follows

from the induction hypothesis, applied to the (n�1)-person subgame determined
by (σ0;σ2), that

n1
0
j � n1j +1 for every j, equality holds for at most one j, but n1

0
σ1 � n

1
σ1: (1)

It also follows from the induction hypothesis that, symmetrically,

n1j � n1
0
j +1 for every j, equality holds for at most one j, but n1σ 01 � n

10
σ 01
: (10)

We have to show that (1) and (10) also hold if σ2 6= σ 02. In what follows, we will
assume that the last inequality holds. In the course of the proof we will consider
several subgames, each one determined by a particular triplet of actions, as well as
the congestion vectors determined by these triplets. The triplets, preceded by the
index of the congestion vector they determine, are shown in Fig. 1. A straight line
in this �gure indicates that the two triplets connected by the line differ in exactly
one of the three actions. The roman number near the line refers to the equation
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which, in the sequel, is deduced from this relation between the two triplets by
means of the induction hypothesis, applied to the subgame determined by the two
common actions.

Figure 1: For an explanation see text.

Let (n2j) j2A be the congestion vector determined by (σ0;σ 01;σ2). This is the
congestion vector that would result if player 2 did not change his action as a
response to the change of player 1's action from σ1 to σ 01. (n2j) j2A is also the
congestion vector determined by (σ0;σ2;σ 01). It hence follows from the induction
hypothesis that either

n2σ2 = n
1
σ2+1 and n

2
j � n1j for every j 6= σ2 (ia)

or
n2σ2 � n

1
σ2: (ib)

We will consider each of these two cases separately. It also follows from the
induction hypothesis that

n1
σ 01
� n2

σ 01
(ii)
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and n2σ1 � n
1
σ1 . In light of the latter inequality, (ia) is possible only if σ2 6= σ1.

CASE (ia). Let (n3j) j2A be the congestion vector determined by (σ0;σ 01;σ0).
Since the congestion vector determined by (σ0;σ 01;σ

0
2) is (n1

0
j ) j2A, by the induc-

tion hypothesis

n1
0
j � n3j +1 for every j, and equality holds for at most one j: (iii)

Since n3σ0 = n
10
σ0+1, by the induction hypothesis

n3j � n1
0
j for every j 6= σ0: (iv)

Similarly, since n3σ0 = n
2
σ0+1,

n3j � n2j for every j 6= σ0: (v)

Let (n4j) j2A be the congestion vector determined by (σ0;σ 01;σ1). By the induction
hypothesis,

n1
0

σ1 � n
4
σ1: (vi)

Since n3σ0 = n
4
σ0+1,

n3j � n4j for every j 6= σ0: (vii)

Since (n4j) j2A is also the congestion vector determined by (σ0;σ1;σ 01), and since
the congestion vector determined by (σ0;σ1;σ2) is (n1j) j2A, by the induction hy-
pothesis

n4σ2 � n
1
σ2: (viii)

It follows from (ia), (v), (vii), and (viii) that n3j � n1j for every j 6= σ0. Hence,
by (iii), n10j � n1j + 1 for every j and equality holds for at most one j. Since
∑ j n1

0
j = ∑ j n1j = n+1, it follows that n1j � n1

0
j +1 for every j and equality holds

for at most one j. To complete the proof of (1) and (10) in the case that (ia) holds,
it remains to show that n10σ1 � n

1
σ1 and n

1
σ 01
� n10

σ 01
.

Let (n5j) j2A be the congestion vector determined by (σ 01;σ1;σ2). Since n4σ0 =
n5σ0+1,

n4σ1 � n
5
σ1: (ix)

Since n2σ0 = n
5
σ0+1,

n2σ2 � n
5
σ2; (x)
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and hence n5σ2 � n
1
σ2+1 by (ia). Since, as shown above, (ia) implies σ2 6= σ1, by

the induction hypothesis
n5σ1 � n1σ1: (xi)

In conjunction with (vi) and (ix) this gives n10σ1 � n
1
σ1 .

By (ia), (vii), and (viii), n2σ2 � n
3
σ2 + 1. Therefore, if σ 01 6= σ2 then by the

induction hypothesis
n2

σ 01
� n3

σ 01
; (xii)

and hence n1
σ 01
� n10

σ 01
by (ii) and (iv). If σ 01 = σ2 then by the induction hypothesis

n2
σ 01
= n3

σ 01
+ 1, and by (ia) n2

σ 01
= n1

σ 01
+ 1. It hence follows from (iv) that in this

case, too, n1
σ 01
� n10

σ 01
.

CASE (ib). Since the action of player 2 in the subgame equilibrium path de-
termined by (σ0;σ 01) is σ 02, it must be that S2σ 02(n

10
σ 02
)� S2σ2(n2σ2). Since we have

assumed that σ 02 6= σ2, the assumed genericity of the game implies that this in-
equality is in fact strict. Similarly, since the action of player 2 in the subgame equi-
librium path determined by (σ0;σ1) is σ2, it must be that S2σ2(n1σ2)> S2σ 02(n

20
σ 02
),

where (n20j ) j2A is the congestion vector determined by (σ0;σ1;σ 02). Note that,
formally, the last triplet is obtained from the triplet (σ0;σ 01;σ2) that determines
(n2j) j2A by taking the prime off σ1 and adding a prime to σ2; hence the index
20: By (ib) and the monotonicity of S2σ2 , S2σ 02(n

10
σ 02
) > S2σ2(n2σ2) � S2σ2(n

1
σ2) >

S2σ 02(n
20
σ 02
). Hence, by the monotonicity of S2σ 02 , n

10
σ 02
< n20

σ 02
. It follows, by the

induction hypothesis, that

n2
0

σ 02
= n1

0
σ 02
+1 and n2

0
j � n1

0
j for every j 6= σ

0
2: (xiii)

Formally, (xiii) is a �primed� version of (ia). More precisely, the transfor-
mation that interchanges σ1 with σ 01 and σ2 with σ 02 transforms (ia) into (xiii).
Hence, our analysis of case (ia) implies at once that the formal transforms of (1)
and (10) hold true. But these transforms are (10) and (1), respectively. Thus, (1)
and (10) hold in the present case, too. �

Proof of Theorem 2. The proof proceeds by induction on the number n of play-
ers. The theorem is evidently true if n = 1. Assume that it holds true for every
(n� 1)-person generic crowding game, and let σ be a strong equilibrium of an
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n-person (n� 2) generic crowding game. Consider the directed graph, with n ver-
tices corresponding one-to-one to the players in the game, where an arc is going
from vertex i to vertex i0 if and only if player i envies player i0 when σ is played,
that is, if and only if Siσ i(nσ i)< Siσ i0 (nσ i0 ), where (n j) j2A is the congestion vector
corresponding to σ . The assumption that σ is a strong equilibrium implies that
this graph has no cycles. Indeed, if the graph had a cycle then the players involved
could change their actions�each player shifting to the action played by the player
he envies�and they all would gain. Therefore, there exists a player, i, who envies
no other player; Siσ i(nσ i)> Si j(maxf1;n jg) holds for every j 6= σ i. Without loss
of generality, i= 1. (σ2;σ3; : : : ;σn) is a strong equilibrium of the subgame deter-
mined by (σ1). Hence, by the induction hypothesis, it is also a sequential-move
equilibrium of that subgame, say the sequential-move equilibrium corresponding
to the sequential-move version in which the players move in the order 2;3; : : : ;n.
To prove that σ is a sequential-move equilibrium of the n-person game, it suf�ces
to show that, in the sequential-move version of that game in which the players
move in the order 1;2; : : : ;n, player 1 cannot gain from choosing an action j dif-
ferent from σ1. Let (n0k)k2A be the congestion vector determined by ( j). By the
lemma, n0j � n j (and, of course, n0j � 1). It therefore follows from our assumption
concerning player 1 that S1 j(n0j) � S1 j(maxf1;n jg) < S1σ1(nσ1). Thus, playing
σ1 is indeed the best option for player 1. �
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