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Abstract. The paper studies a class of resource-symmetric singleton congestion 
games with two types of players having diametrically opposite preferences. Conges-
tion-averse players wish to avoid congestion while congestion-seeking players favor it. 
We show that a pure-strategy Nash equilibrium may or may not exist, depending on 
the number of players of each type and the number of resources in the game. The 
same numbers also determine whether the game is acyclic with respect to unilateral 
best-improvement moves, that is, whether such moves always lead to an equilibrium. 
We also study the sequential-move versions of the game, in which the players choose 
resources one by one after observing the choices of all preceding players, and cannot 
later change them. The players’ choices in a subgame perfect equilibrium in this game 
do not necessary constitute an equilibrium in the original, simultaneous-move game. 
However, the converse does hold: every equilibrium in the simultaneous-move game 
is a sequential-move equilibrium, in the sense that it is obtained as the equilibrium 
path in some subgame perfect equilibrium for some entrance order.  

Keywords: Congestion Games, Congestion-Seeking Players, Weak Acyclicity, Weak Po-
tential, Sequential-Move Equilibrium, Pure-Strategy Equilibrium 

1. INTRODUCTION 

Congestion games are a class of non-cooperative games first introduced by Rosen-
thal (1973). In a congestion game, each strategy is a particular subset of a common 
set of resources. The utility associated with each resource is a function of the num-
ber of players who include it in their choice. Each player’s payoff is the sum of the 
utilities associated with the resources included in his choice. Every game in this 
class has at least one pure-strategy Nash equilibrium. This result follows from the 
existence of an exact potential (Monderer and Shapley, 1996)—a real-valued func-
tion over the set of (pure) strategy profiles having the property that the gain or loss 
of a player shifting to a new strategy is equal to the corresponding increment of the 
potential function. The existence of a potential moreover implies that the game has 
the finite improvement property, or FIP (Monderer and Shapley, 1996): any sequence 
of strategy profiles in which each entry differs from the preceding one only in the 
strategy of a single player, whose deviation strictly increases the payoff he receives, 
is finite.  
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Several variants and special cases of Rosenthal’s congestion games, making different 
assumptions about the players and resources, have been studied. These include sin-
gleton congestion games, in which each strategy is a single resource, and games in 
which the utility functions, which specify the dependence of the payoff from using 
each resource on the number of its users, are player-specific (Milchtaich, 1996). 
Many recent papers assume monotone utility functions: either decreasing or, less 
commonly, increasing (Rozenfeld and Tennenholtz, 2006). In this paper, we assume 
that the game has both congestion-averse players, who prefer to share their resource 
with as few others as possible, and congestion-seeking players, whose utility from 
using a resource increases as its number of users increases. On the other hand, the 
resources in our model are all identical. 

The presence of the two opposite kinds of players affects the existence of pure-
strategy Nash equilibrium. Unlike the cases of only congestion-averse or congestion-
seeking players, existence of equilibrium is not guaranteed even with identical re-
sources. As a simple example, consider a game with two players of opposite types 
and two (identical) resources. There is no equilibrium, since the congestion-seeking 
player would like to share a resource with the congestion-averse one while the lat-
ter would prefer to avoid him. However, as we show in this paper, the players’ oppo-
site preferences are not totally incompatible with equilibrium existence. We identify 
all combinations of the numbers of players of each type and of resources for which 
an equilibrium does exist. 

The existence of equilibrium raises the question of convergence to it, in particular, 
whether the game has the finite improvement property as in Rosenthal’s games. In 
fact, it is not difficult to see that, with three or more resources, our games never have 
that property (see Section 4). However, in some cases they possess the weaker finite 
best-improvement, or acyclicity, property. This means that an improvement path is 
necessary finite if in each step the unique deviator shifts to a strategy that is a best 
response against the strategies played by the other players. For the case in which 
the game has an equilibrium but is not acyclic, we prove that from any initial strate-
gy profile there is some best-improvement path that ends in an equilibrium. In other 
words, games with congestion-averse and congestion-seeking players are always 
weakly acyclic. These results are summarized in Table 1. 

An improvement path represents myopic behavior by players. In each step, one 
player chooses a resource that maximizes his current payoff, but does not consider 
the effect of his choice on the others’ future behavior. We also examine convergence 
to equilibrium for players who are “forward looking”. Specifically, we study sequen-
tial-move versions of the game, in which players enter the game one by one in a par-
ticular order. An entering player chooses his resource after observing the choices of 
the preceding players, and after the entrance of the last player, the payoffs are de-
termined according to the utility functions in the original, simultaneous-move game. 
In general, the equilibrium outcomes in a sequential-move version of a strategic 
game may be very different from those in the simultaneous-move game. For exam-
ple, the equilibrium payoffs in a Cournot competition are different from those in the 
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The quotient 
𝒏−𝟏

𝒎
 is: Property 

An integer Acyclic (Theorem 2) 

A non-integer less than 𝒏𝒔 − 𝟏 Weakly Acyclic (Theorem 3) 

Otherwise No Equilibrium (Theorem 1) 

Table 1. Whether a game with congestion-averse and congestion-seeking players possesses a 
pure-strategy Nash equilibrium, and whether the players may spontaneously converge to it, is 
completely determined by the number of players 𝒏, the number of congestion-seeking players 
𝒏𝒔 and the number of resources 𝒎. For each of the three cases on the left column, the right 
column gives the strongest property of the game. 

corresponding Stackelberg model. We show, however, that if the entrance order is 
such that congestion-seeking players precede the congestion-averse ones, there ex-
ists a subgame perfect equilibrium whose equilibrium path is an equilibrium in the 
original, simultaneous-move game. Moreover, all the equilibria in that game can be 
obtained this way. 

The next section formally describes our model. The equilibrium existence theorem 
is presented in Section 3. Convergence to equilibrium is examined in Section 4, 
where the proofs of the results in Table 1 are given. In Section 5 we explore the se-
quential-move versions of the game and the relations between their subgame per-
fect equilibria and the equilibria in the original game. 

2. THE MODEL 

A (singleton) congestion model with congestion-averse and congestion-seeking play-
ers is defined as follows. There are 𝑛 players (𝑖 = 1,2, … , 𝑛), who must each choose 
one of 𝑚 (≥ 2) identical common resources. The payoff of a player who chooses re-
source 𝑗 (𝑗 = 1,2, … , 𝑚) is a function of the number 𝑛𝑗 of players using that resource. 

Depending on the player, this utility function is either 𝑢𝑎 or 𝑢𝑠. The first function is 
monotonically decreasing, 

𝑢𝑎(𝑘) > 𝑢𝑎(𝑘 + 1), 1 ≤ 𝑘 ≤ 𝑛 − 1, 

and the second function is monotonically increasing, 

𝑢𝑠(𝑘) < 𝑢𝑠(𝑘 + 1), 1 ≤ 𝑘 ≤ 𝑛 − 1. 

A player with utility function 𝑢𝑎 is said to be congestion-averse and a player to 
whom 𝑢𝑠  applies is congestion-seeking. We assume that the numbers 𝑛𝑎  and 
𝑛𝑠 (= 𝑛 − 𝑛𝑎) of players of each kind are both at least 1. Otherwise, the game would 
reduce to a special case of Rosenthal’s classic model. 
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Figure 1. An equilibrium in (A) a game with many congestion-seeking players (condition (𝒊) in 
Theorem 1 holds) and (B) a game with fewer such players (condition (𝒊𝒊) holds). 

Note that in our model, unlike Rosenthal’s one, all resources are identical. Conse-
quently, the model would not have been more general if we allowed different con-
gestion-averse or congestion-seeking players to have different utility functions. This 
is because allowing this would not change the preferences of each kind of player: a 
change of resource benefits a congestion-averse or congestion-seeking player if and 
only if the resource he moves to has fewer or more users, respectively, than the one 
he leaves.  

A congestion model as above defines a (simultaneous-move) congestion game Γ, in 
which players choose resources simultaneously and receive their payoffs according 
to their utility functions. Together with a specified ordering of the players, it also 
defines a sequential-move version of Γ, which is the perfect-information extensive-
form game in which the players choose resources one after the other according to 
the specified order rather than simultaneously. Whereas for the simultaneous-move 
game the basic solution concept we employ is pure-strategy Nash equilibrium, for 
the sequential-move one it is subgame perfect equilibrium. 

3. EXISTENCE OF EQUILIBRIUM 

As shown above, games with congestion-averse and congestion-seeking players do 
not generally admit a pure-strategy Nash equilibrium. The next theorem identifies 
necessary and sufficient condition for equilibrium existence. 

Theorem 1. A game with congestion-averse and congestion-seeking players has a 

pure-strategy Nash equilibrium if and only if the quotient 
𝑛−1

𝑚
 is (𝑖) less than 𝑛𝑠 − 1 

or (𝑖𝑖) an integer. 

Condition (𝑖), 𝑛𝑠 >
𝑛−1

𝑚
+ 1, means that the number of congestion-seeking players in 

the game is relatively large. Condition (𝑖𝑖) means that division of the total number of 
players (of either type) by the number of resources leaves a remainder of one, that 
is, 𝑛 ≡ 1 mod 𝑚. Figure 1 shows a typical equilibrium configuration for each case. 
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Proof. Suppose that 
𝑛−1

𝑚
 satisfies condition (𝑖). Let all congestion-seeking players be 

concentrated on the first resource and the congestion-averse players distributed as 
equally as possible on the 𝑚 − 1 other resources (which means they all have at least 

⌊
𝑛−𝑛𝑠

𝑚−1
⌋ users but some of them may have one additional user; see Figure 1(A)). Since 

all congestion-seeking players use the resource with the largest number of users, 
none of them would benefit from changing resource. The congestion-averse players 
also do not have an incentive to move, since the number of users of any alternative 
resource is smaller by at most 1. Therefore, this configuration is an equilibrium. 

Suppose now that condition (𝑖) does not hold but (𝑖𝑖) holds. This means that the 
players can be distributed among the resources in such a way that 𝑛1 − 1 = 𝑛2 =

⋯ = 𝑛𝑚 =
𝑛−1

𝑚
. Considering that (𝑖) does not hold, we can moreover place all con-

gestion-seeking players on the first resource, which has the largest number of users. 
By the same argument used in the previous case, this configuration is an equilibri-
um.  

Finally, suppose that both (𝑖) and (𝑖𝑖) do not hold. We have to show that an equilib-
rium does not exist. In any equilibrium, all congestion-seeking players must use a 
resource that has a larger number of users than any other resource. Suppose this is 

resource 1, so that 𝑛1 − 1 ≥ 𝑛2, … , 𝑛𝑚, and therefore 𝑛1 − 1 ≥
𝑛−1

𝑚
. On the other 

hand, since by assumption both (𝑖) and (𝑖𝑖) do not hold, 
𝑛−1

𝑚
> 𝑛𝑠 − 1. It follows that 

𝑛1 > 𝑛𝑠, so that at least one congestion-averse player uses resource 1. Since, by the 
equilibrium condition, that player does not want to move to one of the other re-
sources, which have fewer users, it must be that 𝑛2 = ⋯ = 𝑛𝑚 = 𝑛1 − 1. However, 
this means that the total number of players satisfies (𝑖𝑖), a contradiction. This con-
tradiction proves that an equilibrium actually does not exist. ∎ 

When an equilibrium does exist, it is unique up to permutations of resources and of 
players of the same type. This assertion is a corollary of the following three observa-
tions, which pertain to any equilibrium and follow immediately from the definition. 
See Figure 1. 

Observation 1. All congestion-seeking players use the same resource, which is the 
unique resource 𝑗𝑚𝑎𝑥 with a maximal number of players:  

𝑛𝑗𝑚𝑎𝑥
≥ 𝑛𝑗 + 1, 𝑗 ≠ 𝑗𝑚𝑎𝑥 . 

Observation 2. For any two resources 𝑗 and 𝑗′ such that at least one congestion-
averse player uses 𝑗, 

𝑛𝑗 − 𝑛𝑗′ ≤ 1. 

Observation 3. As a corollary of Observations 1 and 2, the inequality  
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𝑛𝑗𝑚𝑎𝑥
> 𝑛𝑠 

holds (that is, some congestion-averse player uses 𝑗𝑚𝑎𝑥) if and only if 𝑛𝑠 ≤
𝑛−1

𝑚
. In 

this case, each of the resources other than 𝑗𝑚𝑎𝑥 has precisely 𝑛𝑗𝑚𝑎𝑥
− 1 (congestion-

averse) users. 

One may wonder whether the conditions in Theorem 1 actually imply a stronger 
property than the existence of equilibrium, namely, existence of a strong or (at least) 
coalition-proof equilibrium. In a strong equilibrium (Aumann, 1959), beneficial devi-
ations do not exist, not only for individual players but also for coalitions. Coalition-
proof equilibrium (Bernheim et. al., 1987) is a weaker solution concept in which 
beneficial coalitional deviations may exist but they are not self-enforcing.  

Holzman and Law-Yone (1996) study the conditions for the existence of strong equi-
librium in congestion games with congestion-averse players (i.e., decreasing utility 
functions) in which strategies are sets of resources. They observe that a strong equi-
librium always exists in the singleton case (where, as in our model, all strategies are 
singletons). They moreover prove that, in this case, every Nash equilibrium is 
strong. Rosenfeld and Tennenholtz (2006) consider the case of congestion-seeking 
players (increasing utility functions) and show that, essentially, the only strategy 
spaces that guarantee existence of strong equilibrium are those with singleton strat-
egies. The necessity of the singleton condition is due to the extremely strong sense 
of “guaranteeing” in their model. For a given collection of strategies, they consider 
all ways of deciding which strategies are allowed for each player, and require that all 
corresponding congestion games possess strong equilibria. In summary, in the sin-
gleton-strategies case of both models, the set of strong equilibria is nonempty. Kon-
ishi et al. (1997) prove that, moreover, this set coincides with that of all coalition-
proof equilibria. 

The next proposition shows that, formally, the same coincidence also holds in our 
model, which differs in considering singleton congestion games with both conges-
tion-averse and congestion-seeking players. However, it holds largely vacuously. 
With the exception of the special case of a single congestion-seeking player, strong 
and coalition-proof equilibria actually do not exist in our games.  

Proposition 1. Consider a game 𝐺 with congestion-averse and congestion-seeking 
players. 

1. If 𝑛𝑠 = 1, then every pure-strategy Nash equilibrium is strong. 
2. If 𝑛𝑠 > 1, then the game does not have a strong, or even coalition-proof, equilib-

rium. 

In the following, we use the notation 𝑛𝑗
𝑎 and 𝑛𝑗

𝑠 for the number of congestion-averse 

and congestion-seeking users, respectively, of a resource 𝑗. 
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Proof. 1. Suppose that 𝑛𝑠 = 1, and consider any Nash equilibrium. We have to show 
that, in the equilibrium, a coalitional deviation that is profitable to every coalition 
member does not exist. Suppose the contrary, that such a deviation does exist. As we 
show below, this assumption leads to a contradiction whether the coalition is heter-
ogeneous, that is, consisting of both congestion-averse and congestion-seeking play-
ers, or homogeneous, and includes congestion-averse players only. 

Suppose that the deviating coalition is heterogeneous. By Observation 1, its single 
congestion-seeking member deviates from the unique resource 𝑗𝑚𝑎𝑥 with a maximal 
number of players to another resource 𝑗′. Since the deviation is profitable, 

 �̃�𝑗′ > 𝑛𝑗𝑚𝑎𝑥
 , (1)  

where 𝑛𝑗 and �̃�𝑗 are the number of players using a resource 𝑗 before and after the 

coalitional deviation, respectively. Since 𝑛𝑠 = 1, it follows from (1) and the defini-
tion of 𝑗𝑚𝑎𝑥 that at least one congestion-averse player also moved to 𝑗′, from another 
resource 𝑗″. Since this deviation is also profitable, necessarily  

 �̃�𝑗′ < 𝑛𝑗″ . (2)  

However, inequalities (1) and (2) together contradict the maximality of 𝑛𝑗𝑚𝑎𝑥
. 

Suppose now that the deviating coalition consists of congestion-averse players only. 
The assumption implies that the coalitional deviation did not increase the number of 
players using any resource. This is because a congestion-averse player who moved 
to a resource where the number of users increased could have achieved at least as 
much by moving alone to that resource, contradicting the equilibrium assumption. 
Since the total number of players did no change, the number of users of each re-
source did not decrease either. Therefore, the coalitional deviation must be a per-
mutation of its members’ choice of resources, which implies that their total payoff 
did not change. However, this conclusion contradicts the assumption the deviation 
benefited them all. A similar argument is used in the proof of Holzman and Law-
Yone’s (1996) Theorem 2.1. 

2. Suppose now that 𝑛𝑠 > 1, and consider any equilibrium. To show that the equilib-
rium is not coalition-proof, it suffices to prove the same for the congestion-seeking 
players’ strategies in the (𝑛𝑠-player) subgame defined by fixing the strategies of the 
congestion-averse players. The strategies of the congestion-seeking players do not 
constitute a coalition-proof equilibrium because, as we show below, they can in-
crease their payoffs to the maximum possible payoff in the subgame by deviating 
together from their common resource 𝑗𝑚𝑎𝑥 (see Observation 1) to a resource 𝑗′ with 
a maximal number of congestion-averse players: 

 𝑛𝑗′
𝑎 = max

𝑗
𝑛𝑗

𝑎.  

To prove this assertion, it suffices to show that  
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 𝑛𝑗′
𝑎 > 𝑛𝑗𝑚𝑎𝑥

𝑎 . (3)  

If 𝑛𝑗𝑚𝑎𝑥

𝑎 = 0, inequality (3) holds trivially, since 𝑛𝑎 ≥ 1. Assume then that 𝑛𝑗𝑚𝑎𝑥

𝑎 > 0. 

By Observation 2, 𝑛𝑗𝑚𝑎𝑥
− 𝑛𝑗′

𝑎 ≤ 1. Rearranging and using 𝑛𝑗𝑚𝑎𝑥
= 𝑛𝑗𝑚𝑎𝑥

𝑎 + 𝑛𝑠 gives 

𝑛𝑗′
𝑎 − 𝑛𝑗𝑚𝑎𝑥

𝑎 ≥ 𝑛𝑠 − 1. 

Considering the assumption 𝑛𝑠 > 1, this inequality proves (3). ∎ 

4. CONVERGENCE TO EQUILIBRIUM 

This section studies convergence to equilibrium under the assumption that players 
change their choice of resources one after the other. A finite sequence of strategy 
profiles obtained by such unilateral deviations is called a path. If the first and last 
strategy profiles are identical, the path is called a cycle. An improvement path or cy-
cle is defined by the minimal rationality requirement that each deviation along the 
path is an improvement: it increases the deviating player’s payoff. A best-(response) 
improvement path or cycle is one that satisfies the additional requirement that each 
deviating player’s move is a best-improvement move: his choice of resource is a best 
response to the other players’ choices. Non-existence of improvement cycles is a 
stronger property than non-existence of best-improvement ones. In a finite game, 
the first property is equivalent to the finite improvement property (see Section 1). 
The second property is referred to in this paper simply as acyclicity. Thus, a finite 
game is acyclic (with respect to best-improvement moves) if it does not have any 
best-improvement cycle. (Note that this definition is different from that of Young, 
1993. The same applies to the definition of weak acyclicity below.) 

A game with congestion-averse and congestion-seeking players with more than two 
resources does not have the finite improvement property. Indeed, such a game al-
ways has an improvement cycle similar to the one in the following example. 

Example 1. Suppose that 𝑛𝑎 = 1, 𝑛𝑠 = 3 and 𝑚 = 3. The congestion-averse player 
uses resource 1, one congestion-seeking player uses resource 2, and the other two 
use resource 3. The following is a better-response cycle: The first congestion-
seeking player moves to resource 1, the congestion-averse player moves to resource 
2, the congestion-seeking player returns there, and the congestion-seeking player 
returns to resource 1, thus completing the cycle. 

In Example 1, the congestion-seeking player never chooses his best-response strate-
gy, which is moving to the resource with the other two congestion-seeking players. 
If he did so, the cycle would be broken and an equilibrium would be reached. This 
observation leads to the question of whether the existence of cycles persists under 
best improvements, which is addressed by the following theorem. 
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Theorem 2. A game with congestion-averse and congestion-seeking players is acy-
clic if and only if condition (𝑖𝑖) in Theorem 1 holds, that is, 𝑛 ≡ 1 mod 𝑚. 

An immediate corollary of the theorem is that, in the special case of only two re-
sources, the game has the finite improvement property if and only if the number of 
players is odd. 

Proof. (⟸) Suppose that 𝑛 ≡ 1 mod 𝑚, so that 𝑘 =
𝑛−1

𝑚
 is an integer. For each strat-

egy profile, let 𝐾− = { 𝑗 ∣ 𝑛𝑗 ≤ 𝑘 } be the set of resources with 𝑘 or fewer users and 

𝐾+ = { 𝑗 ∣ 𝑛𝑗 > 𝑘 } the resources with more than 𝑘 users. These sets cannot be emp-

ty. 𝐾− = ∅ would mean that the number of players in the game is at least 
(𝑘 + 1) ∙ 𝑚 = 𝑛 − 1 + 𝑚, which is higher than the actual number 𝑛 since 𝑚 > 1. Sim-
ilarly, 𝐾+ = ∅ would mean that the number of players is at most 𝑘 ∙ 𝑚 = 𝑛 − 1.  

Claim 1 In a best-improvement path, no congestion-averse player moves to a re-
source in 𝐾+ and no congestion-seeking player moves to a resource in 𝐾−. 

This result in an immediate corollary of the non-emptiness of 𝐾− and 𝐾+. 

Claim 2. In a best-improvement path, no resource shifts from the set 𝐾− to 𝐾+. In a 
best-improvement cycle, the sets 𝐾+ and 𝐾− moreover never change. 

A resource 𝑗 can shift from 𝐾− to 𝐾+only as the result of a move to 𝑗 of some player 𝑖 
who becomes the (𝑘 + 1)-th user of 𝑗. By claim 1, player 𝑖 is necessarily congestion-
averse. Since the deviation is a best-improvement move, there must be at least 𝑘 + 1 
other players in the resource that 𝑖 comes from and at least 𝑘 players in every other 
resource. However, this means that the total number of players is at least 𝑘 ∙ 𝑚 + 2, 
which contradicts the fact that 𝑛 = 𝑘 ∙  𝑚 + 1. The contradiction proves that no re-
source shifts from 𝐾− to 𝐾+. 

To complete the proof of Claim 2, it only remains to note that, in a best-
improvement cycle, no resource 𝑗 can shift also in the opposite direction, from 𝐾+ to 
𝐾−. This is because, later in the cycle, 𝑗 would have to return from 𝐾− to 𝐾+.  

By a similar argument, Claims 1 and 2 imply the following. 

Claim 3. In a best-improvement cycle, no congestion-averse or congestion-seeking 
player moves from a resource in 𝐾+ or in 𝐾−, respectively. 

By the above claims, in any best-improvement cycle, congestion-averse and conges-
tion-seeking players move only within 𝐾− and 𝐾+, respectively. As we show below, 
this means that the following expression must increase after each move: 

𝑃 = ∑ 𝑛𝑗
2

𝑗∈𝐾+

− ∑ 𝑛𝑗
2

𝑗∈𝐾−

. 
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Suppose that a congestion-averse player moves from a resource 𝑗′ ∈ 𝐾− to a re-
source 𝑗″ ∈ 𝐾−. Since the player’s move is an improvement, the following inequality 
must holds before it is performed:  

𝑛𝑗′ > 𝑛𝑗″ + 1. 

The inequality implies that 

 𝑛𝑗′
2 + 𝑛𝑗″

2 > 𝑛𝑗′
2 + 𝑛𝑗″

2 − 2(𝑛𝑗′ − 𝑛𝑗″ − 1) = (𝑛𝑗′ − 1)
2

+ (𝑛𝑗″ + 1)
2

, (4)  

which proves that the change in 𝑃 is positive. 

Similarly, a move of a congestion-seeking player from a resource 𝑗′ ∈ 𝐾+ to a re-
source 𝑗″ ∈ 𝐾+ is an improvement only if, before the move, 

𝑛𝑗′ < 𝑛𝑗″ + 1, 

which again implies that the corresponding change in 𝑃 is positive. Thus, 𝑃 increas-
es after each player’s move along the cycle. However, this conclusion contradicts the 
fact that 𝑃 must have the same value at the beginning of the cycle and at its end. The 
contradiction proves that the game is acyclic. 

(⟹) Suppose that 𝑛 ≢ 1 mod 𝑚. We have to show that a best-improvement cycle 
exists. Distribute the players among resources as equally as possible, so that, for 
some integer 𝑘, either all resources have 𝑘 users or some of them have 𝑘 and the 
others 𝑘 + 1 users. From the assumption 𝑛 ≢ 1 mod 𝑚 it follows that there must be 
at least two resources, 𝑗′ and 𝑗″, with a maximal number of players (either 𝑘 or 𝑘 +
1). Assuming, without loss a generality, that some congestion-seeking player 𝑖′ uses 
𝑗′ and some congestion-averse player 𝑖″ uses 𝑗″ (see example in Figure 2(A)), the 
following is a best-improvement cycle: 𝑖′ moves to 𝑗″, 𝑖″ moves to 𝑗′, 𝑖′ returns to 𝑗′, 
and 𝑖″returns to 𝑗″, thus completing the cycle. ∎ 

The cycle presented at the last part of the proof can be broken. For example, in Fig-
ure 2, if all the congestion-seeking players followed player 𝑖′ and moved to resource 
𝑗″ (Figure 2(B)), and only then the congestion-averse players moved, an equilibrium 
would necessarily be reached (Figure 2(D)). Thus, the initial strategy profile in this 
example is connected to an equilibrium by some best-improvement path. The follow-
ing theorem shows that this observation can be generalized. A game is said to be 
weakly acyclic if, starting at any strategy profile, there is some best-improvement 
path that ends in an equilibrium.  

Theorem 3. Every game with congestion-averse and congestion-seeking players 
that has an equilibrium is weakly acyclic. Moreover, in such a game, every strategy 
profile is the starting point of some best-improvement path that ends in an equilib-
rium and in which each player moves at most once. 
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Figure 2. A best-improvement path in a game with 𝒏𝒂 = 𝟒, 𝒏𝒔 = 𝟒 and 𝒎 = 𝟑. Beginning with 
the initial state (A), three congestion-seeking players move one after the other and join the 
fourth one in the left-most resource, which becomes the one with the largest number of play-
ers (B). Their place is then taken by one of the congestion-averse players not using that re-
source (C). Finally, the two congestion-averse players in the left-most resource leave it and 
move to other resources. The outcome (D) is an equilibrium. 

Proof. We define a prioritizing algorithm (or a scheduler; see Apt and Simon, 2012) 
and show how it helps players to avoid cycles and reach an equilibrium. At each 
step, the algorithm assigns a priority, 𝑎 (the highest), 𝑏 or 𝑐, to each player according 
to the following criteria: 

𝑎)  Congestion-seeking players.  
𝑏)  Congestion-averse players not sharing a resource with congestion-seeking ones. 
𝑐)  Congestion-averse players sharing a resource with at least one congestion-

seeking player. 

One player then makes a best-improvement move. His identity is constrained only 
by the condition that no higher-priority player wants to move (that is, has a best-
improvement move). The algorithm stops when no player wants to move, which 
means that an equilibrium was reached. See example in Figure 2.  

To prove that the algorithm necessarily stops, it suffices to present a function 𝑃 over 
the set of strategy profiles that increases at each step in the process. Such a function 
is defined by 

𝑃 = 𝑛 𝑗𝑚𝑎𝑥

𝑠
▁            

+
1

∑ 𝑛𝑗
2𝑚

𝑗=1

 , 

where 𝑛 𝑗𝑚𝑎𝑥

𝑠
▁            

 is the number of congestion-seeking players using the resource with 

the largest number of users, and if there are several resources with a maximal num-
ber of users, the one with the smallest number of congestion-seeking users. 
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There are three cases to consider, 𝑎, 𝑏 and 𝑐, according to the priority of the moving 
player. 

𝑎) A congestion-seeking player moves to a resource 𝑗𝑚𝑎𝑥, which necessarily has a 

maximal number of users and, by definition, at least 𝑛 𝑗𝑚𝑎𝑥

𝑠
▁            

 congestion-seeking ones. 

After the move, resource 𝑗𝑚𝑎𝑥 becomes the unique resource with a maximal number 
of players,  

 𝑛𝑗𝑚𝑎𝑥
> max

𝑗≠𝑗𝑚𝑎𝑥 
𝑛𝑗  , (5)  

which implies that 𝑛 𝑗𝑚𝑎𝑥

𝑠
▁            

 has increased by at least 1. Since the second term in 𝑃 is 

always positive and less than 1, the total change in 𝑃 must be positive. 

𝑏) Since, by assumption, no congestion-seeking player wants to move, all of them 
are using the unique resource 𝑗𝑚𝑎𝑥 with a maximal number of players. Therefore, 
the first term in 𝑃 is equal to 𝑛𝑠. A congestion-averse player 𝑖 moves from a resource 
𝑗′ ≠ 𝑗𝑚𝑎𝑥 to some resource 𝑗″ with 𝑛𝑗′ > 𝑛𝑗″ + 1. After the move, inequality (5) still 

holds, which implies that the first term in 𝑃 did not change. The change in the sec-
ond term is given by the following expression, which by (4) is positive: 

1

(𝑛𝑗′ − 1)
2

+ (𝑛𝑗″ + 1)
2

+ ∑ 𝑛𝑗
2𝑚

𝑗≠𝑗′,𝑗″

−
1

∑ 𝑛𝑗
2𝑚

𝑗=1

 . 

𝑐) A congestion-averse player 𝑖 moves from the resource 𝑗𝑚𝑎𝑥 used by all the con-
gestion-seeking players to some other resource, with has less than 𝑛𝑗𝑚𝑎𝑥 − 1 users. 

Before the move, inequality (5) holds. As we show below, the same is true after 𝑖’s 
move, which implies that the first term in 𝑃 did not change. By the same argument 
used in case 𝑏, the second term increased, and therefore the same is true also for 𝑃 
itself. 

By assumption, no congestion-averse player using a resource different from 𝑗𝑚𝑎𝑥 
wants to move, and since the move of (the congestion-averse) player 𝑖 is a best-
response one, the same is true after his move. Therefore, after the move,  

 |𝑛𝑗″ − 𝑛𝑗‴| ≤ 1 (6)  

for all 𝑗″,  𝑗‴ ≠ 𝑗𝑚𝑎𝑥. Suppose that (5) does not hold after 𝑖’s move, so that there are 
then 𝑟 > 1 resources where the number of players is maximal, and equal to  

𝑞 ≝ 𝑛𝑗𝑚𝑎𝑥 − 1 ≥ 𝑛𝑠. 

It then follows from (6) that the other 𝑚 − 𝑟 resources have 𝑞 − 1 users each. Sum-
ming up the numbers of users, we get that 
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 𝑛 = (𝑞 − 1) ∙ 𝑚 + 𝑟. (7)  

Since 𝑟 > 1, it follows from (7) that condition (𝑖𝑖) in Theorem 1 does not hold. Con-
dition (𝑖) also does not hold, since  

𝑛𝑠 ≤ 𝑞 =
𝑛−𝑟

𝑚
+ 1 <

𝑛−1

𝑚
+ 1. 

This contradicts the assumption that an equilibrium exists. The contradiction proves 
that (5) does in fact hold after player 𝑖’s move, and completes the analysis of case 𝑐. 

The analysis of the three possible cases proves that, if the players move according to 
the prioritizing algorithm, 𝑃 always increases. As indicated, this implies that the al-
gorithm necessarily stops, and ends in an equilibrium. We can now complete the 
proof of the theorem by showing that, moreover, each player moves at most once.  

The first to move are the congestion-seeking players, who gather at a single re-
source 𝑗𝑚𝑎𝑥. After the last of their moves, inequality (5) holds. (The inequality holds 
also if the congestion-seeking players are at a single resource 𝑗𝑚𝑎𝑥 already at the be-
ginning and they do not want to move.) Then, the congestion-averse players move. 
As shown above, (5) still holds after each such move, and therefore the congestion-
seeking players never have an incentive to move again. It remains to show that any 
congestion-averse player who moves also never wants to move again. The argument 
below is similar to that used by Fotakis (2010, Lemma 1). 

Consider a congestion-averse player 𝑖 that has just performed a best-improvement 
move to a resource 𝑗, and thus has no incentives at the current time to move again. 
We will show that player 𝑖 will not have any incentives to move also at any later 
time. Suppose this is not so, and consider the first time resource 𝑗 is not player 𝑖’s 
optimal choice, but some other resource 𝑗′ is optimal. This means that another con-
gestion-averse player 𝑖′ has either just moved to resource 𝑗 or moved from 𝑗′ to 
some third resource 𝑗″ ≠ 𝑗. However, in the first case, player 𝑖′ also would be better 
off choosing 𝑗′ rather than 𝑗, a contradiction to the assumption that his choice of 𝑗 
was a best response. The second case contradicts the assumption that the move of 
player 𝑖′ was an improvement, since it implies that player 𝑖 would also be better off 
moving to 𝑗″. Indeed, the increase in the payoff of player 𝑖 from doing so would be 
the sum of the increase in the payoff of player 𝑖′ from moving from 𝑗′ to 𝑗″ and the 
increase in his own payoff from his subsequent move from 𝑗 to 𝑗′. These contradic-
tions prove that player 𝑖 will not in fact have an incentive to move again. ∎ 

The proof of Theorem 3 presents a so-called weak potential: a real-valued function 𝑃 
over the set of strategy profiles with the property that, at every strategy profile that 
is not an equilibrium, some player has a best-improvement move that increases 𝑃. In 
a finite game, the existence of a weak potential implies weak acyclicity (since every 
best-improvement path along which 𝑃 increases cannot visit the same strategy pro-
file twice), and the converse implication holds as well (Kukushkin, 2004). 
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Figure 3. A subgame perfect equilibrium path in a sequential-move version of a game with one 
congestion-averse and two congestion-seeking players. The congestion-averse player enters 
first. Then a congestion-seeking player enters, and correctly predicts that if he chooses the 
same resource the first player chose, the third player will also do so. The result (A) is not an 
equilibrium in the simultaneous-move game, since a move of the congestion-averse player to 
the second resource would increase his payoff – and result in an equilibrium (B). 

5. THE SEQUENTIAL MOVE GAME 

The previous section is concerned with games where players choose resources my-
opically, that is, they maximize their payoff right after making the choice but do not 
consider the possible responses of the other players. In addition, each player may 
change resources multiple times. In this section, we explore the ability of players to 
reach an equilibrium by choosing resources sequentially and irrevocably: once a re-
source is selected, it cannot be changed. After all the players have chosen their re-
sources, each player’s payoff is determined according to his utility function. Crucial-
ly, we assume that players are forward looking, and strive to predict the choices of 
their followers. Specifically, we look for a subgame perfect equilibrium in a sequen-
tial-move version of the game (see Section 1). That game, and therefore also its set 
of subgame perfect equilibria (which in nonempty, as is the case for any finite per-
fect-information extensive form game), is determined by the players’ entering order. 
Our main concern is with the equilibrium paths of these equilibria, that is, the play-
ers’ actual choice of resources. 

As the example in Figure 3 shows, the equilibrium path of a subgame perfect equi-
librium is not necessarily an equilibrium in the simultaneous-move game. Moreover, 
for the sequential-move version considered in that example, no subgame perfect 
equilibrium gives an equilibrium in the simultaneous-move game. (Therefore, that 
game is not sequentially solvable; see Milchtaich, 1998.) However, such a subgame 
perfect equilibrium would exist if we changed the entering order by letting the two 
congestion-seeking players enter first. The equilibrium in Figure 3(B) would then be 
a subgame perfect equilibrium outcome. As we show below, an entering order 
whereby congestion-seeking players precede congestion-averse ones always guar-
antees the existence of some subgame perfect equilibrium whose equilibrium path is 
an equilibrium in the original game, if the set of equilibria in that game is nonempty. 
Moreover, every equilibrium in that set can be obtained this way. 

 

 

 

Congestion-seeking player Congestion-averse player   

(A) 

 

 

 

(B) 
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Figure 4. The depicted configuration is an equilibrium in the (simultaneous-move) game. It is 
also the equilibrium path of a subgame perfect equilibrium in the sequential-move version of 
the game where the players’ entering order is that indicated by the arrows (so that, in particu-
lar, the first to choose their resources are the congestion-seeking players). 

An equilibrium in a strategic game is said to be a sequential-move equilibrium 
(Milchtaich, 1998) if it coincides with the equilibrium path of some subgame perfect 
equilibrium in some sequential-move version of the (simultaneous-move) game. 

Theorem 4. Every pure-strategy Nash equilibrium in a game with congestion-
averse and congestion-seeking players is a sequential-move equilibrium. 

The players’ forward-looking behavior in the sequential-move game may seem to be 
at odds with the simple, myopic response of choosing an optimal resource given the 
choices of the preceding players (that is, a resource with a minimal or maximal 
number of users, depending on the entering player’s type). However, the proof of 
the theorem shows that the two different manners of choosing resources may be 
reconciled. Specifically, the subgame perfect equilibrium strategies constructed in 
the proof always specify that an entering player reacts optimally to his predeces-
sors’ choices. Moreover, this is so also off-equilibrium, that is, after one or more of 
the previous players does not act according to his strategy. The players’ strategies 
nevertheless incorporate an effective punishing mechanism, which guarantees that 
no single player can gain from choosing a different resource than that specified by 
his strategy.  

Proof of Theorem 4. Let an equilibrium in the game be given. Without loss of gen-
erality, it may be assumed that the resources are indexed in such a way that 
𝑛1 ≥ 𝑛2 ≥ ⋯ ≥ 𝑛𝑚. It may also be assumed that the players are indexed as follows. 
Players 1, 2, … , 𝑛𝑠 are congestion-seeking (and therefore, by Observation 1, use re-
source 1). The congestion-averse players 𝑛𝑠 + 1, … , 𝑛𝑠 + 𝑚 − 1  use resources 
2, … , 𝑚, respectively, as do players 𝑛𝑠 + 𝑚, … , 𝑛𝑠 + 2𝑚 − 2, and so on. This number-
ing scheme continues up to player min{𝑛, 𝑚𝑛𝑠}. The remaining congestion-averse 
players, if any, are indexed in such a way that players 𝑚𝑛𝑠 + 1, … , 𝑚𝑛𝑠 + 𝑚 use re-
sources 1, … , 𝑚, respectively, and so on (see Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Congestion-seeking player Congestion-averse player   
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In the sequential-move version of the game in which the players enter in the order 
1, 2, … , 𝑛, the following two rules recursively define a strategy for each player. As we 
show below, this strategy profile is a subgame perfect equilibrium whose equilibri-
um path coincides with the given equilibrium (in the simultaneous-move game). 

BEST-RESPONSE RULE. Given the choice of resources by the preceding players, consider 
the set 𝐽 of all resources yielding maximum payoff (which, for a congestion-averse or 
congestion-seeking player, are the resources with a minimal or maximal number of 
users, respectively). Choose the “left-most” resource in 𝐽, that is, the one with the 
smallest index. 

PUNISHMENT RULE. This rule describes an exception to the previous one, which only 
applies if |𝐽| ≥ 2 and at least one of the preceding players who use a resource in 𝐽 is 
a congestion-averse player who violated his strategy by choosing that resource. In 
this case, choose the same resource as the last such violator.  

If the players follow these rules, then by Observations 1, 2 and 3 in Section 3 the re-
sult is the given equilibrium. It remains to show that the strategy profile specified by 
the rules is a subgame perfect equilibrium. Thus, it has to be shown that, regardless 
of the choices of the previous players, an entering player cannot benefit from violat-
ing the rules and choosing a resource 𝑗″ different from the resource 𝑗′ prescribed by 
them, assuming that all later entrants will follow the rules. 

For a resource 𝑗, set 𝑛𝑗(0) = 0 and, for 1 ≤ 𝑙 ≤ 𝑛, let 𝑛𝑗(𝑙) and 𝑛𝑗
𝑠(𝑙) be the number 

of players and congestion-seeking players, respectively, using resource 𝑗 right after 
player 𝑙 enters the game, if player 𝑖 chooses resource 𝑗′. Let �̃�𝑗(𝑙) and �̃�𝑗

𝑠 (𝑙) be de-

fined similarly, accept that now player 𝑖 chooses resource 𝑗″. 

Assume first that player 𝑖 is congestion-averse. To prove that 𝑖 will not gain from 
choosing 𝑗′ instead of 𝑗″, we have to show that the inequality  

 𝑛𝑗′(𝑙) ≤ �̃�𝑗″(𝑙) (8)  

holds for 𝑙 = 𝑛. For 𝑙 = 𝑖, (8) holds by the Best-Response Rule. If this is not so for 
some larger 𝑙, then the largest 𝑖 ≤ 𝑙 ≤ 𝑛 − 1 for which (8) does hold satisfies  

𝑛𝑗′(𝑙) = �̃�𝑗″(𝑙) 

and 

𝑛𝑗′(𝑙 + 1) = �̃�𝑗″(𝑙 + 1) + 1. 

The two equalities means that (𝑖) if player 𝑖 chooses resource 𝑗′, then player 𝑙 + 1 
also chooses 𝑗′, but (𝑖𝑖) if 𝑖 chooses 𝑗″, then 𝑙 + 1 does not choose 𝑗″. It follows from 
(𝑖) and the Best-Response Rule that 𝑛𝑗′(𝑙) ≤ 𝑛𝑗(𝑙) for all 𝑗. Therefore, the number of 
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players among 𝑖, 𝑖 + 1, … , 𝑙 who chose each resource 𝑗 is at least [𝑛𝑗′(𝑙) − 𝑛𝑗(𝑖 − 1)]+ 

(where [𝑥]+ = max{𝑥, 0} denotes the positive part of a number 𝑥). Summing up over 
all resources, we obtain: 

 ∑[𝑛𝑗′(𝑙) − 𝑛𝑗(𝑖 − 1)]
+

𝑗

≤ 𝑙 − 𝑖 + 1. (9)  

It follows from (𝑖𝑖) and the Best-Response and Punishment Rules that there is some 
resource 𝑗‴ with �̃�𝑗‴(𝑙) < �̃�𝑗″(𝑙). Again by the Best-Response Rule, each resource 𝑗 

chosen by one or more of the players 𝑖, 𝑖 + 1, … , 𝑙  satisfies �̃�𝑗(𝑙) ≤ �̃�𝑗‴(𝑙) + 1 

(≤ �̃�𝑗″(𝑙)). These inequalities give  

 ∑[�̃�𝑗″(𝑙) − �̃�𝑗(𝑖 − 1)]
+

𝑗

> 𝑙 − 𝑖 + 1 (10)  

(where the strict inequality reflects the strict inequality that refers to resource 𝑗‴). 
However, since �̃�𝑗(𝑖 − 1) = 𝑛𝑗(𝑖 − 1) for all 1 ≤ 𝑗 ≤ 𝑚 and 𝑛𝑗′(𝑙) = �̃�𝑗″(𝑙), inequali-

ties (9) and (10) contradict one another. The contradiction proves that (8) in fact 
does hold for all 𝑙 ≥ 𝑖, and in particular for 𝑛. This proves that a congestion-averse 
player cannot gain from deviating from his strategy. 

Suppose now that player 𝑖 is congestion-seeking. If he follows his strategy and 
chooses resource 𝑗′, it becomes the unique resource with a maximal number of us-
ers, so that every congestion-seeking player who enters after 𝑖 also chooses 𝑗′. If 𝑖 
chooses 𝑗″, the following congestion-seeking players may still choose 𝑗′ but they 
may also choose 𝑗″. Thus, whether player 𝑖 chooses 𝑗′ or 𝑗″, no resource ends up 
having more than 𝑛𝑗′

𝑠 (𝑛) congestion-seeking users. There are now two cases to con-

sider, according to the size of this bound. 

CASE 1: 𝑛𝑗′
𝑠 (𝑛) > 𝑛/𝑚.  

To prove that, in this case, the congestion-seeking player 𝑖 does not gain from choos-
ing resource 𝑗″ instead of 𝑗′ it suffices to show that  

 max
𝑗

�̃�𝑗(𝑛) ≤ 𝑛𝑗′
𝑠 (𝑛).  

If this inequality does not hold, then by the Best-Response Rule, applied to the con-
gestion-averse players,  

min
𝑗

�̃�𝑗(𝑛) ≥ 𝑛𝑗′
𝑠 (𝑛). 

However, this inequality contradicts the assumption that 𝑛𝑗′
𝑠 (𝑛) > 𝑛/𝑚.  
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CASE 2: 𝑛𝑗′
𝑠 (𝑛) ≤ 𝑛/𝑚. 

Whether player 𝑖 chooses 𝑗′ or 𝑗″, the assumed inequality and the Best-Response 
Rule imply that, right before or at some point after the congestion-averse players 
start entering the game, the following situation occurs: all the resources have the 
same number of users, and that number is 𝑛𝑗′

𝑠 (𝑛). Then, the remaining congestion-

averse players, if any, enter the game according to the Best-Response and Punish-
ment Rules. From the latter it follows that �̃�𝑗″(𝑛) ≤ 𝑛𝑗′(𝑛). ∎ 
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