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A generalization of mixed strategy equilibrium is proposed, where mixed strategies need 

only be finitely additive and payoff functions are not required to be integrable or bounded. 

This notion of best-response equilibrium is based on an extension of the idea that an 

equilibrium strategy is supported in the player’s set of best-response actions, but is 

applicable also when no best-response actions exist. It yields simple, natural equilibria in a 

number of well-known games where other kinds of mixed equilibrium are complicated, not 

compelling or do not exist.  

1 Introduction 
The simplest interpretation of mixed strategy, which is also the original one (von Neumann 

and Morgenstern 1953, Section 17.2.1), is that such a strategy reflects a player’s deliberate 

assignment of probabilities to his possible actions, or pure strategies. Randomization 

protects the player from his action being found out by an opponent, since the player does 

not know it himself. Finding out the probabilities would not help any of the other players if 

the profile of mixed strategies is an equilibrium, as the latter is defined by the condition that 

each player’s strategy is a best response in the sense that no unilateral deviation to an 

alternative mixed strategy can increase the player’s expected payoff. Checking whether this 

condition holds requires examining only pure strategies, because a mixed strategy is a best 

response if and only if it is supported in the set of best-response actions. This fact means 

that from the player’s point of view, the probabilities assigned to the actions in the support 

are unimportant. The conclusion suggests an alternative interpretation of mixed strategy as 

a commonly held external belief about the player’s choice of action rather than a deliberate 

choice of randomized strategy by the player. In addition, since the best-response condition 

can be stated in terms of actions, alternative mixed strategies play no essential role, which 

suggests that it may be unnecessary to even consider them.  

This paper presents a notion of mixed strategy equilibrium that makes no reference to 

alternative mixed strategies. For each player 𝑖, only one mixed strategy, the equilibrium 

strategy, is considered. This strategy 𝜎𝑖  is a finitely additive set function defined on some 

algebra 𝒜𝑖 of subsets of the player’s action set 𝑆𝑖. The algebra is not a priory given but is 

part of the strategy’s specification.1 Importantly, it is not required to be a sigma-algebra and 

𝜎𝑖  is not required to be sigma-additive. (For a short review of these and related terms, see 

Section 2.) This aligns with the interpretation of mixed strategy as a (possibly, incomplete) 

probabilistic description of the player’s choice of action rather than a recipe for actually 

choosing that action at random (as illustrated by the example in the next paragraph). The 

 
1 This contrasts with the usual definition of mixed strategy, where the domain is some pre-specified 
measurable structure on 𝑆𝑖, for example, the collection of all Borel sets. A conceptual problem with 
the latter approach is that, unless 𝑆𝑖 is finite, the choice of measurable structure is arguably arbitrary, 
as it is not indicated by the game itself. Yet choosing it is necessary for defining the mixed extension of 
the game, where players use mixed strategies rather than actions. In the framework presented here, 
there is no mixed extension.   
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essential element in the definition of mixed-strategy equilibrium, which is that it excludes 

the choice of actions yielding low payoff, is retained. However, this idea requires a 

somewhat more elaborate formulation than with sigma-additive strategies. The formulation 

constitutes the core of the formal definition of best-response equilibrium in Section 3.   

Best-response equilibrium significantly extends Nash equilibrium even in games with a single 

player. Consider, for example, the one-player game where the payoff is any real number 𝑠 

the player chooses. While 𝑠 = ∞ is not a legitimate choice, the following strategy 𝛿∞ may be 

viewed as coming close: 𝛿∞(𝐴) = 0 or = 1 if 𝐴 or its complement, respectively, is bounded 

from above. (It is not difficult to see that the collection of all sets 𝐴 ⊆ ℝ with the first or 

second property is an algebra.) This strategy is a best-response equilibrium. It describes the 

choice of a very large number, indeed, one exceeding any specified number 𝑥. This is clearly 

an impossibility for usual mixed strategies, which are probabilities, as taking 𝑥 = 1,2, … and 

using sigma-additivity leads to a contradiction.  

Theorem 1 below shows that every one-player game has a best-response equilibrium. The 

same is not true for “real”, 𝑛-player games, as Examples 1 (for 𝑛 = 3) and 2 (for 𝑛 = 2) 

demonstrate. Yet, as Section 4 shows, the concept does have interesting applications also in 

multiplayer games. In particular, an additive but not sigma-additive equilibrium strategy may 

be used for describing a choice of a decision variable (a price, say) that is just above or just 

below some specific value (zero, say). A strategy of this kind, which formalizes the idea of 

choosing “an epsilon,” is optimal for a buyer dealing with a seller who is willing to sell at any 

positive price. At the other extreme, similar strategies allow for an equilibrium in a Cournot 

competition where the expected price is the monopoly price – for any number 𝑛 of 

competing firms.  

Section 5 examines two-player zero-sum games. Such games may admit a best-response 

equilibrium even if they do not have a value in the usual sense. 

In Section 6, best-response equilibrium is compared with other solution concepts that also 

employ finitely additive strategies, in particular, optimistic equilibrium (Vasquez 2017) and 

legitimate equilibrium (Flesch et al. 2021). These solution concepts are not compatible with 

the principles underlying best-response equilibrium, as described above, and may produce 

different equilibrium predictions. Specifically, Theorem 2 shows that, with bounded payoff 

functions, every best-response equilibrium is a legitimate equilibrium but not conversely. 

Thus, the former is essentially the stronger, more demanding solution concept. 

2 Preliminaries 
An algebra (or field) 𝒜 on a set 𝑆 is any collection of subsets of 𝑆 that includes the empty set 

and, for all 𝐴, 𝐵 ∈ 𝒜, also includes the complement 𝐴∁ and the union 𝐴 ∪ 𝐵. If moreover the 

union ⋃ 𝐴𝑘
∞
𝑘=1  is in 𝒜 for every sequence 𝐴1, 𝐴2, … ∈ 𝒜, then 𝒜 is a sigma-algebra. A real-

valued function 𝜇 defined on an algebra 𝒜 is finitely additive if 𝜇(𝐴) + 𝜇(𝐵) = 𝜇(𝐴 ∪ 𝐵) for 

all disjoint 𝐴, 𝐵 ∈ 𝒜 and is sigma-additive if ∑ 𝜇(𝐴𝑘)
∞
𝑘=1 = 𝜇(⋃ 𝐴𝑘

∞
𝑘=1 ) for all disjoint 

𝐴1, 𝐴2, … ∈ 𝒜 with ⋃ 𝐴𝑘
∞
𝑘=1 ∈ 𝒜. If in addition 𝜇 only takes values in [0,1] and 𝜇(𝑆) = 1, 

then 𝜇 is called a finitely additive probability or a probability (measure), respectively. The 

elements of 𝒜 are referred to in this context as the measurable sets. If 𝒜 = 𝒫(𝑆), the 

entire power set of 𝑆, then 𝜇 is said to be total.  

For a finitely additive probability 𝜇 on an algebra 𝒜, a finitely additive probability �̃� on an 

algebra �̃� ⊇ 𝒜 is an extension of 𝜇 if �̃�(𝐴) = 𝜇(𝐴) for all 𝐴 ∈ 𝒜. The Carathéodory 
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extension theorem states that every (sigma-additive) probability defined on an algebra 𝒜 

has a unique extension to a probability defined on the smallest sigma-algebra containing 𝒜.  

The outer measure of a finitely additive probability 𝜇 is the function 𝜇∗: 𝒫(𝑆) ⟶ [0,1] 

defined by 

𝜇∗(𝐶) = inf  { 𝜇(𝐴) ∣∣ 𝐴 ⊇ 𝐶, 𝐴 ∈ 𝒜 } . 

A set 𝐶 ⊆ 𝑆 with 𝜇∗(𝐶) = 0 is said to be 𝜇-null. A property of elements of 𝑆 is said to hold 

𝜇-almost surely if it holds outside some 𝜇-null set. If all 𝜇-null sets are measurable (hence, 

𝜇∗(𝐶) = 0 ⟺ 𝜇(𝐶) = 0), then 𝜇 is said to be complete.  

For a finitely additive probability 𝜇 defined on an algebra 𝒜 of subsets of a set 𝑆, a simple 

measurable function is any function 𝑓: 𝑆 ⟶ ℝ that takes only finitely many values and 

satisfies 𝑓−1({𝑥}) ∈ 𝒜 for all 𝑥 ∈ ℝ. The integral of such a function 𝑓 is defined by  

∫𝑓(𝑠) ⅆ𝜇(𝑠)
𝑆

= ∑𝑥 𝜇(𝑓−1({𝑥}))

𝑥∈ℝ

. 

More generally, a function 𝑓: 𝑆 ⟶ ℝ is 𝜇-integrable (Dunford and Schwartz 1988, Definition 

III.2.17) if there is a sequence (𝑓𝑛)𝑛∈ℕ of simple measurable functions such that  

lim
𝑛→∞

𝜇∗({𝑠 ∈ 𝑆 ∣ |𝑓(𝑠) − 𝑓𝑛(𝑠)| > 𝜖}) = 0 

for every 𝜖 > 0 (meaning that 𝑓𝑛 → 𝑓 in 𝜇-probability) and  

lim
𝑚,𝑛→∞

∫|𝑓𝑚(𝑠) − 𝑓𝑛(𝑠)| ⅆ𝜇(𝑠)
𝑆

= 0. 

(If 𝑓 is bounded, then the second condition is redundant as it is implied by the first one.) The 

integral of 𝑓 with respect to 𝜇 is then (well) defined by 

∫𝑓(𝑠) ⅆ𝜇(𝑠)
𝑆

= lim
𝑛→∞

∫𝑓𝑛(𝑠) ⅆ𝜇(𝑠)
𝑆

, 

and the limit is necessarily finite. 

It is easy to see that, if the integral of a function 𝑓: 𝑆 ⟶ ℝ with respect to a finitely additive 

probability 𝜇 exists (that is, 𝑓 is 𝜇-integrable), then the integral of 𝑓 with respect to any 

extension of 𝜇 also exists and the two integrals are equal.  

For a bounded function 𝑓, the upper integral with respect to 𝜇 is defined by  

∫
𝑆

𝑓(𝑠) ⅆ𝜇(𝑠)  ≔ inf{ ∫ 𝑔(𝑠) ⅆ𝜇(𝑠)
𝑆 ∣∣ 𝑔 a simple measurable function, 𝑔 ≥ 𝑓 }  

and the lower integral by 

∫
𝑆

𝑓(𝑠) ⅆ𝜇(𝑠) ≔ sup{ ∫ 𝑔(𝑠) ⅆ𝜇(𝑠)
𝑆 ∣∣ 𝑔 a simple measurable function, 𝑔 ≤ 𝑓 } . 

The former is always greater than or equal to the latter, and equality holds if and only if 𝑓 is 

𝜇-integrable, in which case the common value is the integral of 𝑓.   

In the linear space ℱ of all bounded functions 𝑓: 𝑆 ⟶ ℝ, the subset of 𝜇-integrable 

functions is easily seen to be a subspace. The integral is a linear functional on this subspace 

and satisfies |∫ 𝑓(𝑠) ⅆ𝜇(𝑠)
𝑆

| ≤ sup|𝑓| (= sup{ |𝑓(𝑠)| ∣∣ 𝑠 ∈ 𝑆 }). By the Hahn–Banach 

theorem, there is a (generally, non-unique) extension of this linear functional to a linear 

functional 𝜓 that is defined on the whole space ℱ and satisfies a similar inequality, |𝜓(𝑓)| ≤

sup|𝑓|. It may be viewed as an extension of integration with respect to 𝜇; for any bounded 

function 𝑓, 𝜓(𝑓) is the integral of 𝑓. In particular, the function 𝜇𝜓: 𝒫(𝑆) ⟶ [0,1] defined by 

𝜇𝜓(𝐴) = 𝜓(1𝐴) is an extension of 𝜇 and, by the linearity of 𝜓 and the above inequality, is 

also a finitely additive probability. Thus, 𝜇𝜓 is a total extension of 𝜇. This proves that every 
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finitely additive probability has a total extension (Bhaskara Rao and Bhaskara Rao 1983, 

Theorem 3.2.10; see that book for further reading on finitely additive measures). 

Note that, with respect to a total finitely additive probability, every bounded function is 

integrable because it is the uniform limit of a sequence of simple measurable functions (as 

all sets are measurable). The linear functional 𝜓 considered above is actually integration 

with respect to 𝜇𝜓. 

2.1 Products of finitely additive probabilities 
For an integer 𝑛 ≥ 2 and a finitely additive probability 𝜇𝑖 on an algebra 𝒜𝑖 of subsets of a 

set 𝑆𝑖 for each 1 ≤ 𝑖 ≤ 𝑛, the product 𝜇 = ∏ 𝜇𝑖𝑖  is a finitely additive probability defined on 

the product algebra 𝒜 = ∏ 𝒜𝑖𝑖 , whose elements are all the sets in the Cartesian product 

𝑆 = ∏ 𝑆𝑖𝑖  that are finite unions of measurable rectangles, that is, sets 𝐴 ⊆ 𝑆 of the form 𝐴 =

∏ 𝐴𝑖𝑖  with 𝐴𝑖 ∈ 𝒜𝑖 for each 𝑖. For such a measurable rectangle, the product probability is 

given by 𝜇(𝐴) = ∏ 𝜇𝑖(𝐴𝑖)𝑖 . Note that the individual 𝜇𝑖’s and 𝒜𝑖’s can be recovered from the 

product 𝜇 and its domain 𝒜. The former coincide with the marginals of 𝜇 and the latter 

satisfy 𝒜𝑖 = {𝐴𝑖 ⊆ 𝑆𝑖 ∣∣ 𝑆1 ×⋯× 𝐴𝑖 ×⋯× 𝑆𝑛 ∈ 𝒜 }. 

Lemma 1  For a bounded function 𝑓: 𝑆 ⟶ ℝ, 

∫
𝑆

𝑓(𝑠) ⅆ𝜇(𝑠) ≥ ∫
𝑆𝑛

⋯∫
𝑆2

∫
𝑆1

𝑓(𝑠1, 𝑠2, … , 𝑠𝑛) ⅆ𝜇1(𝑠1) ⅆ𝜇2(𝑠2)⋯ⅆ𝜇𝑛(𝑠𝑛) 

≥ ∫
𝑆𝑛

⋯∫
𝑆2

∫
𝑆1

𝑓(𝑠1, 𝑠2, … , 𝑠𝑛) ⅆ𝜇1(𝑠1) ⅆ𝜇2(𝑠2)⋯ⅆ𝜇𝑛(𝑠𝑛) ≥ ∫
𝑆

𝑓(𝑠) ⅆ𝜇(𝑠). 

Proof. The second inequality is based on iterated use of the inequality between the upper 

and lower integrals of bounded functions. To prove the first inequality, observe first that a 

similar inequality holds (as equality between integrals) with 𝑓 replaced with the indicator 

function of any measurable rectangle, hence also with 𝑓 replaced with any simple 

measurable function 𝑔. An immediate conclusion is that the inequality holds also with 𝑓 

replaced only on the left-hand side with a simple measurable function 𝑔 ≥ 𝑓. Taking the 

infimum over all such 𝑔 proves the inequality. The proof of the third inequality is similar.∎ 

Corollary 1  For a bounded function 𝑓: 𝑆 ⟶ ℝ, if the iterated integral  

∫
𝑆𝑛

⋯∫
𝑆2

∫
𝑆1

𝑓(𝑠1, 𝑠2, … , 𝑠𝑛) ⅆ𝜇1(𝑠1) ⅆ𝜇2(𝑠2)⋯ⅆ𝜇𝑛(𝑠𝑛) 

exists (which means that the innermost integral exists for all 𝑠2, … , 𝑠𝑛, the second-innermost 

integral exists…, and so on), then this integral lies between the upper and lower integrals of 

𝑓 and is therefore equal to the “multiple” integral ∫ 𝑓(𝑠) ⅆ𝜇(𝑠)
𝑆

 if the latter also exists.  

The corollary, which follows immediately from Lemma 1, shows that, if the multiple integral 

of a bounded function exists, then the value of an iterated integral cannot depend on the 

order of integration. (In general, the value may depend on the order. See Example 1 below.) 

However, even for 𝑛 = 2, the existence of an iterated integral may depend on the order of 

integration, and it is not implied by (nor does it imply) the existence of the multiple integral.2 

Thus, Fubini’s theorem does not hold here.   

 
2 An example is 𝑓(𝑥, 𝑦) = 𝑥 sin 1/𝑦 : (0,1)2⟶ℝ. With 𝜇1 = 𝜇2 = 𝛿0+ and the algebra ℐ (both are 
defined at the end of Section 3), ∫𝑓 ⅆ𝜇 = ∫∫𝑓 ⅆ𝜇1 ⅆ𝜇2 = 0 but the other iterated integral does not 

exist. 
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3 Mixed strategies and best-response equilibrium 
In an 𝑛-player game (𝑛 ≥ 1), each player 𝑖 has a (finite or infinite) set 𝑆𝑖 of actions, or pure 

strategies, and a payoff function 𝑢𝑖: 𝑆 ⟶ ℝ, where 𝑆 = ∏ 𝑆𝑗𝑗  is the set of all action profiles. 

(It is sometimes convenient to view the function 𝑢𝑖 as bivariate, and defined on the product 

set 𝑆𝑖 × 𝑆−𝑖, where 𝑆−𝑖 = ∏ 𝑆𝑗𝑗≠𝑖 .) A (mixed) strategy for player 𝑖 is any finitely additive 

probability 𝜎𝑖  defined on an algebra 𝒜𝑖 of subsets of 𝑆𝑖. (Thus, the algebra is part of the 

specification of the strategy; it can be chosen arbitrarily.) A special case is any pure strategy; 

an action 𝑠𝑖 is identifiable with the total probability 𝛿𝑠𝑖 , the Dirac measure at 𝑠𝑖. A (mixed) 

strategy profile (𝜎1, 𝜎2, … , 𝜎𝑛), which specifies a strategy 𝜎𝑖  for each player 𝑖, may be 

identified with the product 𝜎 = ∏ 𝜎𝑖𝑖  (see the comment immediately preceding Lemma 1), 

and may be written also as (𝜎𝑖 , 𝜎−𝑖), where 𝑖 is any player and 𝜎−𝑖 = ∏ 𝜎𝑗𝑗≠𝑖 .  

For an integer 𝐿 ≥ 2 and strategies 𝜎𝑖
1, 𝜎𝑖

2, … , 𝜎𝑖
𝐿 for a player 𝑖, which are defined on 

algebras 𝒜𝑖
1, 𝒜𝑖

2, …, 𝒜𝑖
𝐿, any convex combination ∑ 𝜆𝑙𝜎𝑖

𝑙𝐿 
𝑙=1  (with nonnegative weights that 

sum up to 1) is also a strategy, defined on the algebra ⋂ 𝒜𝑙𝑙 .  

Definition 1  A strategy profile 𝜎 is a best-response equilibrium if for every player 𝑖 (i) the integral  

𝑣𝑖(𝑠𝑖) ≔ ∫ 𝑢𝑖(𝑠𝑖 , 𝑠−𝑖) ⅆ𝜎−𝑖(𝑠−𝑖)
𝑆−𝑖

(1) 

exists for every 𝑠𝑖 ∈ 𝑆𝑖, and (ii) for every 𝑎 < sup 𝑣𝑖 (= sup{ 𝑣𝑖(𝑠𝑖) ∣∣ 𝑠𝑖 ∈ 𝑆𝑖 }),
3 

𝜎𝑖
∗({ 𝑠𝑖 ∈ 𝑆𝑖 ∣∣ 𝑣𝑖(𝑠𝑖) < 𝑎 }) = 0. (2) 

Condition (i) in the definition concerns only the other players’ strategies. These strategies 

𝜎−𝑖 are required to be such that, against them, every action 𝑠𝑖 yields player 𝑖 a well-defined 

expected payoff 𝑣𝑖(𝑠𝑖). 

Condition (ii) may be interpreted as the requirement that player 𝑖’s strategy 𝜎𝑖  is a best 

response to 𝜎−𝑖. It says that every number 𝑎 smaller than the supremum (which may be 

finite or ∞) of the function 𝑣𝑖: 𝑆𝑖 ⟶ℝ defined by (1) is a 𝜎𝑖-essential lower bound of 𝑣𝑖: The 

set of actions for player 𝑖 yielding a payoff lower than 𝑎 is contained in a measurable set of 

arbitrarily small 𝜎𝑖-probability. Put differently, the supremum of 𝑣𝑖 coincides with the 𝜎𝑖-

essential infimum.  

If sup 𝑣𝑖 < ∞, then condition (ii) can also be stated as the requirement that 𝑣𝑖 − sup 𝑣𝑖 is a 

𝜎𝑖-null function. If 𝜎𝑖  is a probability (thus, sigma-additive), this is equivalent to the 

requirement that the equality 𝑣𝑖 = sup 𝑣𝑖 holds 𝜎𝑖-almost surely. However, if 𝜎𝑖  is only 

finitely additive, then the equivalence does not hold: the latter requirement is stronger. 

Thus, a profile of mixed strategies that are probabilities is a best-response equilibrium if and 

only if each player’s mixed strategy assigns probability 1 to some set of payoff-maximizing 

actions. But in general, this condition is not necessary but is only sufficient for best-response 

equilibrium. As the next proposition shows, another familiar equilibrium condition is both 

necessary and sufficient.  

Proposition 1  For 𝑣𝑖 that is bounded from above (that is, sup 𝑣𝑖 < ∞), the best-response 

requirement (ii) in Definition 1 holds if and only if 𝑣𝑖 is 𝜎𝑖-integrable and satisfies 

∫ 𝑣𝑖(𝑠𝑖) ⅆ𝜎𝑖(𝑠𝑖)
𝑆𝑖

= sup 𝑣𝑖 .  

 
3 Recall that the asterisk denotes outer measure. 
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Proof. A nonpositive function is 𝜎𝑖-null if and only if it is 𝜎𝑖-integrable and the integral is zero 

(Dunford and Schwartz 1988, Theorem II.2.20). Apply this to the function 𝑣𝑖 − sup 𝑣𝑖. ∎ 

Proposition 1 extends the familiar equilibrium condition that the mixed strategy of each 

player should yield maximal expected payoff. In particular, it entails that a standard mixed 

strategy profile in a finite game is a best-response equilibrium (with the mixed strategies 

viewed as total probabilities) if and only if it is a Nash equilibrium. In this case, sup 𝑣𝑖 is 

player 𝑖’s equilibrium payoff. In general, however, the equilibrium payoff is given by the 

integral ∫ 𝑢𝑖(𝑠) ⅆ𝜎(𝑠)𝑆
, and it therefore exists only if the integral exists. If in addition the 

payoff function 𝑢𝑖 is bounded, then it follows from Corollary 1 and Proposition 1 that the 

equilibrium payoff is equal to sup 𝑣𝑖. However, if 𝑢𝑖 is not 𝜎-integrable, then the equilibrium 

payoff is not well defined – it does not exist. The interpretation is that, in this case, the 

information provided by the strategy profile is not sufficient even for a probabilistic 

determination of the player’s payoff (although it would become so, according to condition (i) 

in the definition, if the player’s own action were known with certainty).  

Even in a finite game, a best-response equilibrium 𝜎 does not necessarily assign a probability 

to every single action. An atom 𝐴 of 𝒜𝑖 may include several of player 𝑖’s actions, in 

particular, equivalent actions. It is, however, always possible to assign probabilities to these 

actions by arbitrarily dividing the probability 𝜎𝑖(𝐴) among them. Doing so for one or more 

players 𝑖 yields an equilibrium that extends 𝜎 in the sense that its components are 

extensions of 𝜎’s components. The next proposition generalizes this observation.  

Proposition 2  For every best-response equilibrium 𝜎, every strategy profile �̃� that extends 𝜎 

is also a best-response equilibrium, and there is at least one such �̃� that is total (in the sense 

that all its components are so). 

Proof. As already remarked, if �̃� extends 𝜎, then every function that is 𝜎-integrable is also �̃�-

integrable and the two integrals are equal. In addition, for every player 𝑖, �̃�𝑖
∗(𝐶) ≤ 𝜎𝑖

∗(𝐶) for 

every 𝐶 ⊆ 𝑆𝑖. It follows that �̃� is a best-response equilibrium if 𝜎 is so. As proved in Section 

2, every strategy, hence every strategy profile, has a total extension. ∎ 

A strategy that is total is in particular complete. Therefore, a corollary of Proposition 2 is that 

there would not be a substantial loss of generality in replacing the outer measure 𝜎𝑖
∗ in the 

definition of best-response equilibrium with 𝜎𝑖  itself and requiring that the set in Eq. (2) is 

measurable. However, the practical downside of such a change is that strategies defined on 

simple, natural algebras may need to be extended in order to become equilibrium strategies.  

With respect to a total strategy, every bounded function is integrable (see Section 2). 

However, this fact does not take the bite out of condition (i) in Definition 1. This is because, 

with 𝑛 ≥ 3, the condition refers to integrability with respect to the product of strategies. 

This makes it a substantial, rather than technical, requirement, as the following example 

demonstrates.  

Example 1  Three-player game without best-response equilibrium. For three players, the 

action set is the open interval (0,1). The payoff functions are 𝑢1(𝑠) = −𝑠1, 𝑢2(𝑠) = −𝑠2 

and 𝑢3(𝑠) = min(𝑠2/𝑠1, 1) (where 𝑠 = (𝑠1, 𝑠2, 𝑠3)). Note that only the first two players’ 

actions affect the payoffs. 

For a strategy profile (𝜎1, 𝜎2, 𝜎3) to be a best-response equilibrium in this game, it must 

satisfy the condition in Proposition 1, which for 𝑖 = 1,2 reads ∫(−𝑠𝑖) ⅆ𝜎𝑖(𝑠𝑖) = 0. It must 
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also satisfy requirement (i) in Definition 1, which for 𝑖 = 3 implies that, if the iterated 

integrals ∫∫𝑢3 ⅆ𝜎2 ⅆ𝜎1 and ∫∫𝑢3 ⅆ𝜎1 ⅆ𝜎2 both exist, they must be equal (because, by 

Corollary 1, they are both equal to 𝑣3). However, this equality does not hold. For every 𝑠1, 

0 ≤ min(𝑠2/𝑠1, 1) ≤ 𝑠2/𝑠1 for all 𝑠2, which, since ∫ 0ⅆ𝜎2(𝑠2) = 0 and ∫ 𝑠2/𝑠1 ⅆ𝜎2(𝑠2) =

(−1/𝑠1) ∫(−𝑠2) ⅆ𝜎2(𝑠2) = 0, implies that the “sandwiched” integral ∫min(𝑠2/

𝑠1, 1) ⅆ𝜎2(𝑠2) exists and is also 0 (because the upper and lower integrals both have this 

value). For every 𝑠2, 1 ≥ min(𝑠2/𝑠1, 1) ≥ 1 − 𝑠1/𝑠2 for all 𝑠1, which similarly implies that 

∫min(𝑠2/𝑠1, 1) ⅆ𝜎1(𝑠1) exists and is equal to 1. It follows that the two iterated integrals 

above are 0 and 1, respectively, and so they are not equal. The conclusion proves that no 

strategy profile is a best-response equilibrium, which concludes the example.  

With 𝑛 = 2, condition (i) in Definition 1 is only a technical requirement. Condition (ii), 

however, is still a substantial, non-technical one.  

Example 2  Two-player game without best-response equilibrium. For both players, the action 

set is the set ℕ of natural numbers. If player 1 chooses a number that is greater than that 

chosen by 2, each player gets his choice. Otherwise, only a player whose choice is 1 gets it. 

Thus, the (infinite) payoff matrix is  

    1     2      3    ⋯  𝑛  ⋯  
1
2
3
⋮
𝑚
⋮ (

 
 
 

1,1 1,0 1,0 ⋯ 1,0 ⋯
2,1 0,0 0,0 ⋯ 0,0 ⋯
3,1 3,2 0,0 ⋯ 0,0 ⋯
⋮ ⋮ ⋮ ⋱ ⋮
𝑚, 1 𝑚, 2 𝑚, 3 ⋯ 0,0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱)

 
 
 
. 

Suppose, by contradiction, that a best-response equilibrium exists. By Proposition 2, there 

exists, in particular, an equilibrium (𝜎1, 𝜎2, 𝜎3) that is total. 

If strategy 𝜎2 is “diffuse” in the sense that 𝜎2({𝑛}) = 0 for all 𝑛, then 𝑣1(1) = 1 and 𝑣1(𝑚) = 0 

for 𝑚 ≥ 2, which by the best-response requirement implies that 𝜎1 must be concentrated at 

1, that is, 𝜎1({1}) = 1. It then follows that 𝜎2 too must be concentrated at 1, and so it is 

actually not diffuse. On the other hand, if 𝜎2 is not diffuse, then ∑ 𝜎2({𝑛})𝑛≥1 > 0 and 

therefore the sequence 𝑣1(2), 𝑣1(3), … increases to infinity, which implies that 𝜎1 must be 

diffuse. The conclusion means that 𝑣2(𝑛) = 𝑛 for all 𝑛, which implies that 𝜎2 too must be 

diffuse. These contradictions prove that a best-response equilibrium does not exist in this 

game.4   

Existence of a best-response equilibrium is guaranteed in the special case 𝑛 = 1. While this 

result is mainly of technical significance, note that it concerns payoff functions that are not 

necessarily bounded. For a concrete, non-trivial example of an equilibrium, see Example 8. 

Theorem 1  Every one-player game has a best-response equilibrium. 

Proof. In the player’s action set 𝑆, let (𝑠𝑛)𝑛∈ℕ be a sequence such that lim
𝑛→∞

𝑢(𝑠𝑛) = sup 𝑢, 

the supremum (finite or otherwise) of the payoff function. Define a strategy 𝜎 by 𝜎(𝐴) = 0 

or = 1 if 𝐴 or its complement, respectively, includes only finitely many points in (𝑠𝑛)𝑛∈ℕ.5 

 
4 An open problem is to find a two-player game with bounded payoff functions that does not have a 
best-response equilibrium, or to prove that such a game does not exist. 
5 The collection of all sets 𝐴 satisfying the first or second condition is easily seen to be an algebra. If 
neither condition holds, 𝐴 is not measurable. However, by Proposition 2, there are extensions of 𝜎 
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By definition of limit, 𝜎(𝐴) = 0 holds for the set 𝐴 = { 𝑠 ∈ 𝑆 ∣ 𝑢(𝑠) < 𝑎 } for every 𝑎 <

sup 𝑢. Thus, 𝜎 is a best-response equilibrium.  ∎ 

The construction in the proof of Theorem 1 does not use, or assume, any structure on 𝑆. 

However, action sets often do have one or more natural structures – a measurable 

structure, a topology, or an order relation – in which case other, possibly more natural, 

equilibrium strategies may exist.  

A prime example of a “structured” action set is the real line ℝ. The strategy 𝛿∞ presented in 

the Introduction uses the order relation on ℝ: 𝛿∞(𝐴) = 0 if 𝐴 is bounded from above and  

= 1 if 𝐴∁ is bounded from above (put differently, if 𝐴 includes a neighborhood of ∞). Similar 

constructs, for 𝑥 ∈ ℝ, are 𝛿𝑥+ , which is defined by 𝛿𝑥+(𝐴) = 1 or = 0 if 𝐴 or 𝐴∁, 

respectively, includes a right neighborhood of 𝑥, and 𝛿𝑥−, which is defined similarly using left 

neighborhoods. It is easy to see that the collection of sets on which each of these strategies 

is defined is an algebra. Moreover, strategy 𝛿∞, the similarly defined strategy 𝛿−∞, 𝛿𝑥+, 𝛿𝑥− 

and the pure strategies 𝛿𝑥 (𝑥 ∈ ℝ) can all be restricted to a common subalgebra, namely, 

the algebra ℐ consisting of all finite unions of intervals in the real line (where ‘interval’ refers 

to any convex set, including ℝ, ∅, singletons and rays).6 They are moreover the only finitely 

additive probabilities defined on ℐ that take only the values 0 and 1.  

4 Applications  
This section presents a number of examples and applications where best-response equilibria 

are useful – and arguably quite natural.  

Example 3  Largest-request game. In an 𝑛-player version of the single-player game described 

in the Introduction, each player 𝑖 may request any payoff 𝑠𝑖. The request is granted if and 

only if the other players’ requests are all lower than 𝑠𝑖. Consider a strategy profile 𝜎 where 

the strategy of some player 𝑖 is 𝛿∞. The other strategies do not matter, except that they 

have to satisfy the technical condition that the ray (−∞, 𝑥) is measurable for all 𝑥, so that 

the function 𝑣𝑗 in Definition 1 exists for all 𝑗. This strategy profile is a best-response 

equilibrium. Indeed, for every player 𝑗 ≠ 𝑖 and action profile 𝑠, the payoff 𝑢𝑗(𝑠𝑗 , 𝑠−𝑗) is 

nonzero only if 𝑠𝑗 > 𝑠𝑖. This implies that 𝑣𝑗 = 0 identically, and so any strategy is a best 

response for 𝑗. It remains to check condition (ii) for player 𝑖. Since the payoff function 

𝑢𝑖(𝑠𝑖 , 𝑠−𝑖) is obviously nondecreasing in 𝑠𝑖, the function 𝑣𝑖 is nondecreasing and therefore 

the set in Eq. (2) is bounded from above for every 𝑎 < sup 𝑣𝑖. By definition of 𝛿∞, this 

means that (2) holds.  

Example 4  Bilateral trade. A buyer has to offer a price 𝑝 ≥ 0 to the owner of an item whose 

worth is 1 to the buyer and 0 to the seller. The seller has to decide what prices are 

acceptable. The seller’s sensible strategy of accepting any price greater than zero is weakly 

dominant, yet it is not an equilibrium strategy because no action of the buyer is a best 

response to it. Offering any 𝑝 > 0 is less profitable than offering, say, half that price. There is 

moreover no standard mixed strategy (that is, a probability defined on the Borel sets) that is 

 
that render all sets measurable. Such an extension is the function 𝐴 ↦ lim

𝑛→∞
𝛿𝑠𝑛(𝐴), where lim refers 

to some fixed Banach limit (so that it exists for every bounded sequence).  
6 More generally, for any 𝑆 ⊆ ℝ, the collection {𝐴 ∩ 𝑆 ∣ 𝐴 ∈ ℐ} is an algebra on 𝑆, which may also be 
denoted by ℐ if the meaning is clear from the context.    
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a best response. However, the intuitive idea that the buyer should offer as little as possible, 

or “an 𝜖”, is captured by the strategy 𝛿0+, which together with the seller’s (pure) strategy of 

accepting any positive price constitutes a best-response equilibrium.7 The traders’ payoff 

functions are integrable with respect to this equilibrium. The integrals, which give the 

expected profits, are 0 for the seller and 1 for the buyer. 

Example 5  Price competition. Price competition among identical firms may be expected to 

drive the price down to the break-even point. However, as indicated by Vasquez (2017), 

considerably higher prices are supported by equilibria involving finitely additive probabilities. 

This makes these equilibria qualitatively different also from 𝜖-equilibria (which are defined 

by the condition that unilateral deviations can only yield vanishingly small payoff gains).  

Consider some good that is produced by 𝑛 identical firms, with cost function 𝐶. Each firm 𝑖 

sets a price 𝑝𝑖 ≥ 0. The lowest price 𝑝 = min
𝑖
𝑝𝑖 and the demand function 𝐷 determine the 

demand 𝐷(𝑝), which is equally divided among the 𝑘 (≥ 1) firms tied for the lowest price. 

The profit for firm 𝑖 is therefore 

𝑢𝑖(𝑝1, 𝑝2, … , 𝑝𝑛) = {
𝑝𝑖
𝐷(𝑝𝑖)

𝑘
− 𝐶(

𝐷(𝑝𝑖)

𝑘
), 𝑝𝑖 = min

𝑗
𝑝𝑗

0, otherwise

. 

If the monopoly profit function 𝜋𝑀(𝑝) ≔ 𝑝𝐷(𝑝) − 𝐶(𝐷(𝑝)) is continuous, unimodal and 

positive at its maximum point 𝑝𝑀, then 𝛿𝑝𝑀
−  is the equilibrium strategy in a symmetric best-

response equilibrium where the expected price is the monopoly price 𝑝𝑀. This is because, if 

a single firm 𝑖 sets a price 𝑝𝑖 < 𝑝𝑀, it will be the sole seller, while 𝑝𝑖 ≥ 𝑝𝑀 will mean no sells, 

and so the expected profit 𝑣𝑖(𝑝𝑖) is given by 

𝑣𝑖(𝑝𝑖) = {
𝜋𝑀(𝑝𝑖), 0 ≤ 𝑝𝑖 < 𝑝𝑀
0, 𝑝𝑖 ≥ 𝑝𝑀

 . 

The supremum of 𝑣𝑖 is the monopoly profit 𝜋𝑀(𝑝𝑀). For every 𝜖 > 0, the probability that 

the strategy 𝛿𝑝𝑀
−  assigns to the set of prices { 𝑝𝑖 ∣∣ 𝑣𝑖(𝑝𝑖) < 𝜋𝑀(𝑝𝑀) − 𝜖 } is zero, which 

shows that it is indeed a best response. Note that the expected equilibrium profit of an 

individual firm is not well defined, as 𝑢𝑖 is not integrable with respect to the equilibrium (but 

only becomes so after fixing 𝑝𝑖). However, 𝑝 = min
𝑖
𝑝𝑖  is integrable. Its integral, which 

equals 𝑝𝑀, gives the expected equilibrium price. 

There are additional, lower equilibrium prices, and the continuity and unimodality 

assumptions above are made for illustrative purposes only. In general, a sufficient condition 

for a price 𝑝 to be the expected price in a symmetric best-response equilibrium with the 

equilibrium strategy 𝛿𝑝−  is that 𝜋𝑀 is nondecreasing in the interval (0, 𝑝) and its supremum 

there is nonnegative. A rather similar result holds for non-identical firms, which differ in 

their cost functions.   

Price competition may have no standard mixed-strategy equilibrium, that is, with strategies 

that are (sigma-additive) probabilities (Hoernig 2007, Dastidar 2011). This is so, for example, 

for 𝑛 = 2, 𝐷(𝑝) = 1 − 𝑝 and quasi-fixed cost, 𝐶(𝑞) = 𝐹 for 𝑞 > 0 and = 0 for 𝑞 = 0, with 

0 < 𝐹 < 1/4. For finitely additive probabilities, by contrast, this case poses no difficulty. By 

the result in the previous paragraph, (𝛿𝑝− , 𝛿𝑝−) is a best-response equilibrium for every 

1/2 − √1/4 − 𝐶 ≤ 𝑝 ≤ 1/2. The upper and lower bounds on the equilibrium price 𝑝 

correspond to the monopoly profit and zero profit, respectively.    

 
7 For an alternative solution to the problem of nonexistence of equilibrium, which employs a set-
valued solution concept, see Milchtaich (2019). 
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Example 6  Spatial competition with three firms. With consumers uniformly distributed on 

the unit interval [0,1], it is well known that this model has no equilibrium in pure strategies 

(Eaton and Lipsey 1975). It does have a symmetric equilibrium in mixed strategies, where all 

three firms (independently) choose a location in [1/4,3/4] according to the uniform 

distribution on this subinterval (Shaked 1982). There is also a unique (up to permutations of 

firms) equilibrium with a mixture of pure and mixed strategies, in which one firm chooses 

1/2 and the other two use an identical mixed strategy that specifies a particular continuous 

distribution on the interval [5/24,19/24] that is symmetric with respect to 1/2 and puts 

most of the weight around 1/4 and 3/4 (Osborne and Pitchik 1986).  

The last mixed strategy cannot be replaced by the strategy that simply randomizes fifty-fifty 

between 1/4 and 3/4, as the replacement would make a deviation to 1/2 profitable for the 

two randomizing firms. However, it can be replaced with 1/2 𝛿1/4− + 1/2 𝛿3/4+, and more 

generally by 1/2 𝛿𝑥− + 1/2 𝛿(1−𝑥)+ for any 1/4 ≤ 𝑥 ≤ 1/3. This is because, if player 2 uses 

the last strategy and player 3 chooses 1/2, then the expected profit for player 1 from 

choosing location 0 ≤ 𝑠1 ≤ 1 is given by 𝑣1(𝑠1) = 𝑓(min{𝑠1, 1 − 𝑠1}), where  

𝑓(𝑡) = {
𝑡/2 + 𝑥/4 + 1/8, 0 ≤ 𝑡 < 𝑥
𝑡/4 − 𝑥/4 + 1/4, 𝑥 ≤ 𝑡 ≤ 1/2

 . 

If 𝑥 ≥ 1/4, then sup 𝑣1 = 3/4 𝑥 + 1/8, and therefore 𝛿𝑥− is a best response because 

𝛿𝑥−({ 𝑠1 ∣∣ 𝑣𝑖(𝑠𝑖) < 3/4 𝑥 + 1/8 − 𝜖 }) ≤ 𝛿𝑥−([𝑥 − 2𝜖, 𝑥)
∁) = 0 for every 𝜖 > 0. Similarly, 

𝛿(1−𝑥)+  is a best response, and therefore also the average of the two is so. The additional 

requirement 𝑥 ≤ 1/3 comes from consideration of player 3’s alternatives. Thus, with both 

inequalities holding, the symmetric strategy profile is a best-response equilibrium. With 

respect to this equilibrium, only player 3’s payoff is well defined. That payoff lies in 

(1/3,1/2). 

5 Zero-sum games 
In a finite two-player zero-sum game, an equilibrium in mixed strategies can be found by 

solving two uncoupled optimization problems, one for each player. The problem is to find for 

the player an optimal, that is, a maximin or equivalently minimax, strategy. Thus, a strategy 

profile 𝜎 = (𝜎1, 𝜎2) is an equilibrium if and only if, for each player 𝑖, the value of sup 𝑣𝑖 

(where 𝑣𝑖 is defined by (1)) would not decrease if the strategy 𝜎𝑗  of the other player 𝑗 were 

replaced by any other mixed strategy. In this case, sup 𝑣1 is equal to −sup 𝑣2, and it is the 

value of the game. For best-response equilibrium, characterization in terms of maximin or 

minimax is not applicable, as there is no notion of alternative mixed strategies. 

A characterization that is applicable is the following one.   

Proposition 3  In a two-player zero-sum game with a bounded payoff function 𝑢1, consider a 

strategy profile 𝜎 for which the integral of 𝑢1 with respect to 𝜎 and the two corresponding 

iterated integrals exist. The strategy profile is a best-response equilibrium if and only if 

sup 𝑣1 + sup 𝑣2 = 0, and in this case, the two suprema give the respective players’ 

equilibrium payoffs.  

Proof. By Corollary 1, the assumed existence of the three integrals implies equality: both 

iterated integrals of 𝑢1 are equal to the multiple integral ∫ 𝑢1(𝑠) ⅆ𝜎(𝑠)𝑆
. It follows, since 

𝑢2 = −𝑢1, that 

∫ 𝑣1(𝑠1) ⅆ𝜎1(𝑠1)
𝑆1

+∫ 𝑣2(𝑠2) ⅆ𝜎2(𝑠2)
𝑆2

= 0. 
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The first and second integral in this equation are clearly less than or equal to sup 𝑣1 and 

sup 𝑣2, respectively, and by Proposition 1, both inequalities hold as equalities if and only if 𝜎 

is a best-response equilibrium. As remarked, in this case, the (well-defined) equilibrium 

payoff of each player 𝑖 is sup 𝑣𝑖.  ∎ 

Example 7  Game without a value. In a two-player zero-sum game, both players’ action set is 

[0,1] and the payoff function is 𝑢1(𝑠1, 𝑠2) = 𝑔(𝑠1 − 𝑠2) + 1, where 𝑔(𝑡) = sign(𝑡) −

sign(𝑡 + 1/2). (For a graphical presentation of the payoff, see any of the references below.) 

With standard mixed strategies, that is, (sigma-additive) probabilities on the Borel sets, this 

game does not have an equilibrium or even an 𝜖-equilibrium for sufficiently small 𝜖, as the 

maximin and minimax values are different, 1/3 and 3/7 respectively (Sion and Wolfe 1957; 

see also Dasgupta and Maskin 1986). However, player 2 has a finitely additive mixed strategy 

that lowers player 1’s maximum payoff to 1/3, namely, 𝜎2 = 1/3 𝛿1/2− + 2/3 𝛿1 (Vasquez 

2017). It follows from Proposition 3 that together with 𝜎1 = 1/3 𝛿0 + 2/3 𝛿1, for example, 

against which player 2’s maximum payoff is −1/3, this strategy constitutes a best-response 

equilibrium, with equilibrium payoffs 1/3 and −1/3. Thus, this zero-sum game has well 

defined best-response equilibrium payoffs (that sum up to 0) even though it does not have a 

value. 

The assumption in Proposition 3 that the payoff function is 𝜎-integrable cannot be dropped. 

Without it, the equality sup 𝑣1 + sup 𝑣2 = 0 is neither sufficient nor necessary for best-

response equilibrium, as the following examples show.  

In the game in Example 7, the above equality holds for 𝜎1 = (3√2 − 4)𝛿0 +

(3 − 2√2)𝛿1/2− + (2 − √2)𝛿1 and 𝜎2 = (3√2 − 4)𝛿1/2 + (3 − 2√2)𝛿1/2− + (2 − √2)𝛿1. 

Specifically, player 1’s strategy makes player 2’s maximum payoff equal to 1 − √2, thus 

guaranteeing player 1 a minimum of √2 − 1, and player 2’s strategy makes this figure player 

1’s maximum payoff (Yanovskaya 1970). However, (𝜎1, 𝜎2) is not a best-response 

equilibrium because, for both players, actions just below 1/2 (which are picked up by 𝛿1/2−) 

yield a significantly lower payoff than the maximum.  

In a somewhat similar game with 𝑢1(𝑠1, 𝑠2) = (−1)
1𝑠1=1+1𝑠2=1  sign(𝑠1 − 𝑠2) (Ville 1938), 

the strategy profile (𝛿1− , 𝛿1−) is a best-response equilibrium because 𝑣1 = 𝑣2 = −1 

identically: all actions yield a player a payoff of −1 if the opponent’s strategy is 𝛿1−  

(Yanovskaya 1970). But sup 𝑣1 and sup 𝑣2 sum up to −2 rather than zero, which reflects the 

fact that they are not equilibrium payoffs; the payoff function is not integrable. Note that, 

with standard mixed strategies, an equilibrium does not exist. For every (sigma-additive) 

strategy of the opponent, there are for each player actions yielding payoffs arbitrarily close 

to 1, which means that the infsup and supinf values of 𝑢1 are different: 1 and −1 

respectively.   

6 Similar solution concepts 
The idea of relaxing the sigma-additivity requirement in the definition of mixed strategy to 

finite additivity is not new (Yanovskaya 1970 credits Karlin 1950 for it). Neither is the 

realization that integrability with respect to a product algebra, rather than product sigma-

algebra, is a strong condition, which is not satisfied by a number of games of interest with 

payoff functions that are not continuous. Non-integrability of a payoff function means that 

the expected payoff is not well defined, which creates a difficulty for defining, let alone 
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identifying, best response. One solution to this problem is to apply the mixed equilibrium 

concept only when the payoff functions are integrable (Marinacci 1997, Harris et al. 2005). 

However, such a restriction means that some simple and natural equilibria, or even all 

equilibria in a game, may be excluded, as demonstrated above.  

A different approach to dealing with the ambiguity inherent in non-integrability of the payoff 

functions is to assume that the players’ perception of their current payoffs is different from 

their perception of the payoffs they would get by deviating to alternative strategies. In 

particular, a player may be optimistic about the former and pessimistic about the latter. This 

approach underlies the solution concept of optimistic equilibrium proposed by Vasquez 

(2017). The best-response equilibrium described in Example 5 is viewed by Vasquez as 

reflecting optimism. All firms are aiming at a price just below the monopoly price 𝑝𝑀, and 

each of them effectively believes that its price will be the lowest. Note, however, that while 

this equilibrium is similar in spirit to that of the largest-request game in Example 3, the latter 

would have to be interpreted as expressing pessimism. The other players effectively believe 

they will be “outbid” by player 𝑖, even if their strategy is also 𝛿∞.  

Rather than reflecting optimism or pessimism, the idea underlying the best-response 

equilibrium concept is that players evaluate each of their possible actions against the other 

players’ uncertain actions, with the uncertainty specified by the respective mixed strategies. 

Theirs is therefore a different perspective than that of an outside observer, who is uncertain 

about everyone’s actions. The integral with respect to the product probability represents the 

latter point of view, and is therefore irrelevant to any of the individual players.  

Motivated by the work of Vasquez (2017), Flesch et al. (2021) proposed replacing the 

integral with the upper integral for the current payoff and with the lower integral for the 

alternatives. For a game with bounded payoff functions, and for a given algebra 𝒜𝑖 on the 

action set 𝑆𝑖 of each player 𝑖, a strategy profile 𝜎 is a legitimate equilibrium if for every 

player 𝑖 and strategy 𝜏𝑖 (that is also defined on 𝒜𝑖)  

∫
𝑆

𝑢𝑖(𝑠) ⅆ𝜎(𝑠) ≥ ∫
𝑆

𝑢𝑖(𝑠) ⅆ(𝜏𝑖 , 𝜎−𝑖)(𝑠). (3) 

Flesch et al. (2021) proved that a legitimate equilibrium exists for any choice of the players’ 

algebras.8 They illustrate this concept with an example (Wald’s game) that is similar to the 

following one. 

Example 3 (continued) Consider again the two-player case of the largest-request game, 

where, as shown, a sufficient condition for a strategy profile 𝜎 to be a best-response 

equilibrium is that at least one of the two strategies is 𝛿∞. Essentially the same condition is 

sufficient also for legitimate equilibrium. Specifically, 𝜎 is a legitimate equilibrium if (i) 

𝜎1(𝐴1) = 0 for every set 𝐴1 ∈ 𝒜1 that is bounded from above or (ii) a similar condition 

holds for 𝜎2.  

To prove the last assertion, consider inequality (3), which for 𝑖 = 1 reads 

∫
ℝ2
1𝑠1>𝑠2 ⅆ𝜎(𝑠1, 𝑠2) ≥ ∫

ℝ2
1𝑠1>𝑠2 ⅆ(𝜏1, 𝜎2)(𝑠1, 𝑠2). (4) 

 
8 It is easy to see that a legitimate equilibrium 𝜎 remains so if one (or more) of the algebras 𝒜𝑖 is 
replaced by a subalgebra, to which the strategy 𝜎𝑖 is restricted. Note that this is the opposite of the 
situation for best-response equilibria, which are preserved by extensions rather than restrictions.  
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Any simple measurable function 𝑔:ℝ2⟶ℝ can be written as ∑ 𝜆𝑘𝑚1𝐴1𝑘×𝐴2𝑚
 
𝑘,𝑚 , where 

{𝐴1
𝑘}𝑘 ⊆ 𝒜1 is a finite partition of ℝ and similarly for player 2. If 𝑔 ≥ 1𝑠1>𝑠2 , then for all 𝑘 

and 𝑚 such that 𝜆𝑘𝑚 < 1 the set 𝐴1
𝑘 must be bounded from above (as the two inequalities 

imply that 𝑠1 ≤ 𝑠2 in 𝐴1
𝑘 × 𝐴2

𝑚), and there is therefore some 𝐴1∈𝒜1 that is bounded from 

above such that 𝑔 ≥ 1𝐴1
∁×ℝ. If (i) holds, then the last inequality implies ∫ 𝑔 ⅆ𝜎

ℝ2
≥ 1, which 

proves that the left-hand side of inequality (4) is 1, and so the inequality necessarily holds 

for any 𝜏1. Similarly, if 𝑔 ≤ 1𝑠1>𝑠2 , then for all 𝑘 and 𝑚 such that 𝜆𝑘𝑚 > 0 the set 𝐴2
𝑚 must 

be bounded from above (as the two inequalities imply that 𝑠1 > 𝑠2 in 𝐴1
𝑘 × 𝐴2

𝑚), and there is 

therefore some 𝐴2 ∈ 𝒜2 that is bounded from above such that 𝑔 ≤ 1ℝ×𝐴2. If (ii) holds, then 

the last inequality implies ∫ 𝑔 ⅆ(𝜏1, 𝜎2)ℝ2
≤ 0 for any 𝜏1, which proves that the right-hand 

side of inequality (4) is 0, and so the inequality necessarily holds. It follows, by symmetry, 

that either condition implies that 𝜎 is a legitimate equilibrium.  

The similarity identified in the largest-request game between best-response and legitimate 

equilibrium does not extend to other games. In general, the two solution concepts are 

different both conceptually and substantially. The differences are illustrated by the following 

example. 

Example 8  In the one-player game where the action set is [0,1] and the payoff is 1 for a 

choice of a rational number and 0 for an irrational number, consider the algebra ℐ of all 

finite unions of subintervals of [0,1] (see footnote 6).  

A simple measurable function 0 ≤ 𝑔 ≤ 1 satisfies 𝑔 ≤ 1ℚ if and only if it is 0 outside some 

finite set of rational points. It satisfies 𝑔 ≥ 1ℚ if and only if it is 1 outside some finite set of 

irrational points. The first fact gives that ⨜1ℚ ⅆ𝜏 = 1 for 𝜏 = 𝛿0, which together with the 

second fact proves that a strategy 𝜎: ℐ ⟶ [0,1] is a legitimate equilibrium if an only if 

𝜎({𝑠}) = 0 for all 𝑠 ∉ ℚ. In particular, the restriction to ℐ of the Lebesgue measure is a 

legitimate equilibrium, even though it amounts to choosing an action at random and all but 

a countable number of actions are suboptimal in that they give 0 rather than 1.  

The necessary and sufficient condition for 𝜎 to be a best-response equilibrium is more tuned 

to the payoff function. This condition is 𝜎∗([0,1] ∖ ℚ) = 0, or equivalently ∑ 𝜎({𝑠})𝑠∈ℚ∩[0,1]  

= 1. It holds if and only if 𝜎 is the restriction to ℐ of some (sigma-additive) probability on the 

Borel sets in [0,1] that is supported in ℚ. In particular, the restriction to ℐ of the Lebesgue 

measure is not a best-response equilibrium.  

The necessary and sufficient condition for legitimate equilibrium in Example 8 would 

coincide with that for best-response equilibrium if the definition of the former were 

strengthened by replacing the upper integral on the left-hand side of (3) with a lower 

integral. (Proposition 1 implies that this coincidence in fact holds for every one-player game 

with a bounded payoff function.) This fact illustrates the following result.  

Theorem 2  In games with bounded payoff functions, every best-response equilibrium 𝜎 is a 

legitimate equilibrium but not the other way around. 

Proof. The first part of the assertion holds because, for every player 𝑖 and strategy 𝜏𝑖,  

∫
𝑆

𝑢𝑖(𝑠) ⅆ𝜎(𝑠) ≥ ∫
𝑆𝑖

𝑣𝑖(𝑠𝑖) ⅆ𝜎𝑖(𝑠𝑖) = sup 𝑣𝑖 ≥ ∫
𝑆𝑖

𝑣𝑖(𝑠) ⅆ𝜏𝑖(𝑠𝑖) ≥ ∫
𝑆

𝑢𝑖(𝑠) ⅆ(𝜏𝑖 , 𝜎−𝑖)(𝑠), 

where the equality follows from Proposition 1, the middle inequality is obvious, and the 

other two follow from Lemma 1. The second part is proved by Example 8. ∎ 
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The difference between legitimate equilibrium and best-response equilibrium goes beyond 

the former’s use of the upper integral. It also reflects a radically different interpretation of 

mixed strategy. Legitimate equilibrium’s perspective is an extension of the view that mixed 

strategies are strategies in the mixed extension of the game. This means that the mixed 

strategy each player plays is chosen from among, and is evaluated against, all mixed 

strategies. The different treatment of the chosen strategy and of the alternatives in (3) is 

only a concession to the potential non-integrability of the payoff function. Best-response 

equilibrium, by contrast, does not necessarily view players as playing mixed strategies. 

Indeed, these do not even have to be playable in any sense. A mixed strategy is an external, 

probabilistic, and possibly incomplete description of a player’s choice of action. The 

equilibrium condition is that it excludes actions that yield low expected payoff, where the 

expectation is with respect to the other players’ mixed strategies (which reflects an 

assumption that the player’s view of the others is also “external”; he has no special 

knowledge about their intentions). Best-response equilibrium thus describes rational choices 

of actions by the players. It is not interpreted as specifying choices of particular mixed, or 

randomized, strategies, and correspondingly, no mixed extension of the original game is 

considered.     

7 Conclusions 
The discussion in the end paragraph of Section 6 and in Section 1 describes the conceptual 

foundations of the new solution concept proposed in this paper. It is primarily this aspect of 

best-response equilibrium that sets it apart from other game-theoretic solution concepts, 

both standard and less standard ones.  

The specific technical, mathematical characteristics of best-response equilibrium serve and 

reflect its conceptual message. One, unique characteristic is the fact that mixed strategies 

come with their own algebras; they are not restricted to a single (and arguably arbitrary; see 

footnote 1) measurable structure on each player’s set of actions. Another characteristic, 

which is shared with several other solution concepts, is the formulation of mixed strategies 

as finitely additive probabilities. This makes the formulation more general than the more 

conventional formulation that demands sigma-additivity. In the realm of single-person 

decision problems, finitely additive probabilities serve for the representation of (subjective) 

beliefs (de Finetti 1974, Savage 1954, Dubins and Savage 2014). Here, the beliefs concern 

the choice of action of a particular player, as viewed by the others.  

Best-response equilibrium is potentially applicable to all 𝑛-player games, including those 

with unbounded payoff functions. However, even with bounded payoff functions, existence 

of a best-response equilibrium is not guaranteed. Nonexistence may reflect the difficulty of 

satisfying the best-response requirement (Example 2) or, more basically, of associating 

expected payoffs with individual actions (Example 1). However, as shown, best-response 

equilibria exist in some rather mundane games that have no standard mixed strategy 

equilibrium. 
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