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Altruism and spite (or envy) in a two-party interaction refer to interdependent preferences where 

each party assigns, respectively, a positive or negative weight to the other party’s material payoff. In 

general, the effect of such interdependence on the actual, material payoffs at equilibrium can go both 

ways. We show, however, that in a Tullock contest – both the classical model and a generalization 

where there can be uncertainty about the identity of the power-holding politician – the contestants 

can only gain from mutual altruism and be harmed by mutual spite. We establish this finding in two 

ways: by solving the models and explicitly finding their equilibria; and by applying general results 

linking comparative statics of altruism and spite with the stability of the equilibria. The second 

method has the advantages of being simpler as well as more general, in that it does not depend on 

the particularities of the models but only on certain qualitative properties of the success and cost 

functions. JEL classification: C72; D72    

Keywords: Tullock contest; Altruism; Internalization of social payoff; Static stability  

1. Introduction 
A Tullock contest (Tullock 2001), as understood in this paper, is an all-pay auction where two parties 

are participating in a lottery in which the winning probability of a contestant investing 𝑥 against a rival 

investing 𝑦 is given by the contest success function  

𝑃(𝑥, 𝑦) =
𝑥

𝑥 + 𝑦
, (1) 

with 𝑃(0,0) = 1/2. The investments may represent, for example, lobbying efforts directed at a 

politician or government official. The cost of lobbying is an increasing function of the investment and 

is independent of the contestant’s success or failure. We allow for different cost functions for the two 

contestants, but assume that the prize from winning is the same, and is normalized to 1.  

In any two-party contest, each side cares about the other side’s probability of winning to the same 

extent that it cares about its own, simply because the two probabilities are complementary. Altruism 

and spite refer to cases where the opponent’s success or failure has an additional, direct meaning. 

Mutual altruism means that each party sees the other’s success as a partial substitute to its own 

success, and mutual spite, or envy, means the same for the other’s failure. The former may hold, for 

example, if two firms hold stock in their competitor, and the latter may hold if a win for the 

competitor is harmful beyond the present contest. However, these examples, and the terms used, are 

only meant to be illustrative. The question we ask is, what would happen if each contestant behaved 

as if it attaches some weight 𝑟, which may be positive (but not greater than 1) or negative, to the 

competitor’s success? Crucially, our concern is not with the perceived payoffs, which change 

automatically when the competitor’s lot is taken into consideration, but with the effect of this change 

in preferences on the actual, material payoffs at equilibrium. Note that ours is emphatically not an 

evolutionary model. Unlike, e.g., Schmidt (2009, which see for additional references), we view 𝑟 as an 

exogenous, common parameter, which quantifies the contestants’ interdependence of preferences. 

We study the social consequences of this interdependence, not its origin or evolution. Thus, the 

comparison concerns different settings or circumstances, not different types within a population, 

each with its own kind of interdependent preferences, or different stages of evolution of a population.   
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A simple but important observation is that the effect of altruism or spite does not depend on whether 

or not the contestants also care about their competitor’s cost. As the latter cannot be directly 

controlled, its inclusion in the perceived payoff is inconsequential in that it has no effect on the choice 

of strategy and therefore also on the outcome. As the contestants’ winning probabilities are 

complementary, this observation implies that adding the competitor’s payoff multiplied by 𝑟 to the 

own payoff has the same effect as multiplying the own winning probability by 1 − 𝑟. This, in turn, 

means that the perceived payoff is effectively the material payoff with the cost multiplied by the 

inverse factor 1/(1 − 𝑟). The effect of this change in the relative importance of the cost may be 

expected to be a decrease in the equilibrium investment if 0 < 𝑟 < 1 (altruism) and an increase if 𝑟 <

0 (spite). The former effect is socially beneficial, as it entails lower prize dissipation, and the latter is 

socially harmful. This is indeed what we find in Section 2, where we compute the exact effect of 𝑟 on 

the investments and payoffs. 

A similar argument applies to other contest settings. In Section 3, we consider the two-politician 

model of Epstein et al. (2007), where there is uncertainty about the identity of the power-holding 

politician. The two contestants receive correlated noisy signals about that identity and, at equilibrium, 

make positive investments in both politicians. As we show, here too altruism has a positive effect on 

the material payoffs at equilibrium and spite has a negative effect. 

While the finding of positive comparative statics in a Tullock competition may not be particularly 

novel or surprising (see Schmidt 2009), it is not self-evident either. In fact, negative comparative 

statics may occur in strategic interactions as simple as Cournot competition (Milchtaich 2012) and 

congestion games (Milchtaich 2021). In these settings, two parties involved in a symmetric interaction 

may paradoxically be materially harmed by a small amount of mutual altruism and benefit from 

mutual spite. The fact that we do not find similar, negative comparative statics in our Tullock models 

is a reflection of particular properties of the payoff functions in these models, not of a simple 

universal truth. In the following subsections, we expand on this topic.     

1.1 Comparative statics 
Altruism and spite may be viewed from a wider perspective by considering them as special cases of 

internalization of a social payoff function (Milchtaich 2012). The degree of internalization of a given 

social payoff function 𝑓, which is any function of all participants’ actions, is expressed by the altruism 

coefficient 𝑟 ≤ 1, which everyone involved in the interaction is assumed to share. Thus, the quantity 

that each player 𝑖 seeks to maximize is not the personal, or material, payoff 𝑢𝑖, but the modified, or 

perceived, payoff  

𝑢𝑖
𝑟 ≔ (1 − 𝑟)𝑢𝑖 + 𝑟𝑓. (2) 

These payoff functions define the modified game. The social payoff function relevant for our context 

is the aggregate payoff in a two-player game, 𝑓 = 𝑢1 + 𝑢2, for which the modified payoff simplifies to 

𝑢𝑖
𝑟 = 𝑢𝑖 + 𝑟𝑢𝑗, where 𝑗 is the other player. Thus, 𝑟 expresses the manner and the extent to which 

each player internalizes the other player’s material payoff. A positive, zero or negative value reflects 

altruism, complete selfishness or spite (alternatively, envy), respectively.1 Comparative statics of 

altruism and spite refer to the effect of an increase or decrease in 𝑟 on the equilibrium value of the 

social payoff. Positive comparative statics means that altruism is socially beneficial and spite is socially 

harmful, and negative comparative statics means the opposite. In a symmetric setting, where 

everyone’s equilibrium payoff is the same, the social effect coincides with the effect on the personal 

payoffs, which increase or decrease, respectively, when everyone becomes less selfish or spiteful.      

 
1 Note that we only bound 𝑟 from above. While the assumption that the other’s payoff is no more 
important than the own payoff is crucial, a similar restriction on the strength of spite is not needed. 
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1.2 The connection with stability  
Whether internalization of a social payoff function increases or, paradoxically, decreases its 

equilibrium value is determined to a large extent by the stability or instability of the equilibria (or, in a 

symmetric setting, the equilibrium strategies) involved (Milchtaich 2012). This general connection 

between stability and comparative statics is not at all obvious, as stability is a property of a particular 

strategy profile in a single game, namely, the modified game with a specified altruism coefficient 𝑟, 

whereas comparative statics involve multiple games, each corresponding to a different value of the 

coefficient. Importantly, the connection mentioned is not with dynamic stability, which concerns the 

way the system evolves following a perturbation, but with static stability (Milchtaich 2023), which 

looks at the players incentives following a perturbation rather than the resulting changes of actions 

(which may vary according to the assumed law of motion). Static stability is a very general concept, 

relevant to any strategic game. It includes as special cases a number of other, familiar notions of 

stability, such as evolutionarily stable strategy (ESS) and continuously stable strategy (CSS), which are 

meaningful only in specific settings.    

Static stability of the equilibria in our two models is examined in Section 4. The general results alluded 

to above, which relate stability with comparative statics, allow us to reach conclusions about the 

effect of changing the altruism coefficient in an easier and more general manner than we can do by 

explicitly computing the equilibria. The Appendix looks at the dynamic stability of these equilibria. It 

shows how two different, standard kinds of such stability differ from one another and from static 

stability in the context of Tullock contest.  

2. Tullock model with a single politician 
In the basic Tullock model described in the introduction, when the two contestants’ investments are 

𝑥1 and 𝑥2 their payoffs are given by   

𝑢1(𝑥1, 𝑥2) = 𝑃(𝑥1, 𝑥2) − 𝑐1(𝑥1)

𝑢2(𝑥1, 𝑥2) = 𝑃(𝑥2, 𝑥1) − 𝑐2(𝑥2),
 

where 𝑃 is the success function (1) and 𝑐1 and 𝑐2 are the cost functions. We assume that the latter are 

continuous and increasing, are zero at the origin, and are twice continuously differentiable outside 

the origin (𝑥1, 𝑥2 > 0), where, for 𝑖 = 1,2, they satisfy the inequalities2 𝑐𝑖
′(𝑥𝑖) > 0 and 

𝑐𝑖
′(𝑥𝑖) + 𝑥𝑖𝑐𝑖

″(𝑥𝑖) > 0. (3) 

The social payoff is the aggregate payoff 

𝑓(𝑥1, 𝑥2) ≔ 𝑢1(𝑥1, 𝑥2) + 𝑢2(𝑥1, 𝑥2) = 1 − 𝑐1(𝑥1) − 𝑐2(𝑥2). (4) 

For altruism coefficient 𝑟 ≤ 1, the modified payoffs (Eq. (2)) are both equal to (1 + 𝑟)/2 if 𝑥1 = 𝑥2 =

0 and otherwise they are given by3  

𝑢1
𝑟(𝑥1, 𝑥2) =

𝑥1 + 𝑟𝑥2
𝑥1 + 𝑥2

− 𝑐1(𝑥1) − 𝑟𝑐2(𝑥2)

𝑢2
𝑟(𝑥1, 𝑥2) =

𝑥2 + 𝑟𝑥1
𝑥1 + 𝑥2

− 𝑐2(𝑥2) − 𝑟𝑐1(𝑥1).
(5) 

 
2 Inequality (3), which can be written also as ⅆ ⅆ𝑥𝑖

⁄ [𝑥𝑖𝑐𝑖
′(𝑥𝑖)] > 0, means that the function 𝑥𝑖𝑐𝑖

′(𝑥𝑖) is 

strictly increasing. It is implied by (the first inequality 𝑐𝑖
′(𝑥𝑖) > 0 and) convexity, 𝑐𝑖

″(𝑥𝑖) ≥ 0, but it is a 

significantly weaker condition (and holds, e.g., for all increasing power functions, 𝑐𝑖(𝑥𝑖) = 𝑥𝑖
𝑑, ⅆ > 0.) 

3 Note that we could drop the last term in each of the expressions on the right-hand side. Doing so 
would correspond to assuming that altruism only involves the opponent’s chance of winning, and not 
the cost. The change would not affect the players’ choice of strategy, because the dropped terms only 
depend on the opponent’s strategy, and would also not affect the social payoff function 𝑓, which 
incorporates the players’ personal payoffs rather than the modified ones.    
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Obviously, the unique equilibrium for 𝑟 = 1 is (0,0). For 𝑟 < 1, there is no equilibrium where either 

investment is 0, and so any equilibrium is internal. An internal strategy profile (𝑥1
𝑟 , 𝑥2

𝑟) is an 

equilibrium only if it satisfies the first-order conditions 

𝑢1,1
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟) ≔

𝜕𝑢1
𝑟

𝜕𝑥1
(𝑥1
𝑟 , 𝑥2

𝑟) = (1 − 𝑟)
𝑥2
𝑟

(𝑥1
𝑟 + 𝑥2

𝑟)2
− 𝑐1

′(𝑥1
𝑟) = 0

𝑢2,2
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟) ≔

𝜕𝑢2
𝑟

𝜕𝑥2
(𝑥1
𝑟 , 𝑥2

𝑟) = (1 − 𝑟)
𝑥1
𝑟

(𝑥1
𝑟 + 𝑥2

𝑟)2
− 𝑐2

′ (𝑥2
𝑟) = 0,

(6) 

which together imply that 

𝑥1
𝑟𝑐1
′(𝑥1

𝑟) = 𝑥2
𝑟𝑐2
′ (𝑥2

𝑟). 

(In the symmetric case, where 𝑐1 = 𝑐2, it follows from the last equality and the remark at footnote 2 

that an equilibrium is necessarily symmetric, 𝑥1
𝑟 = 𝑥2

𝑟 . ) The necessary second-order equilibrium 

conditions are weak inequalities. We assume, however, that these conditions hold as strict 

inequalities:  

𝑢1,11
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟) ≔

𝜕2𝑢1
𝑟

𝜕𝑥1
2
(𝑥1
𝑟 , 𝑥2

𝑟) = −2(1 − 𝑟)
𝑥2
𝑟

(𝑥1
𝑟 + 𝑥2

𝑟)3
− 𝑐1

″(𝑥1
𝑟) = −2

𝑐1
′(𝑥1

𝑟)

𝑥1
𝑟 + 𝑥2

𝑟 − 𝑐1
″(𝑥1

𝑟) < 0

𝑢2,22
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟) ≔

𝜕2𝑢2
𝑟

𝜕𝑥2
2
(𝑥1
𝑟 , 𝑥2

𝑟) = −2(1 − 𝑟)
𝑥1
𝑟

(𝑥1
𝑟 + 𝑥2

𝑟)3
− 𝑐2

″(𝑥2
𝑟) = −2

𝑐2
′ (𝑥2

𝑟)

𝑥1
𝑟 + 𝑥2

𝑟 − 𝑐2
″(𝑥2

𝑟) < 0.

(7) 

The strictness assumption holds automatically if the cost functions are convex (𝑐𝑖
″ ≥ 0), and it also 

follows automatically from assumption (3) if 𝑥1
𝑟 and 𝑥2

𝑟 are equal (as they necessarily are in the 

symmetric case). For later reference, note that, by (6), the mixed partial derivatives at the equilibrium 

point are given by 

𝑢1,12
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟) = (1 − 𝑟)

𝑥1
𝑟 − 𝑥2

𝑟

(𝑥1
𝑟 + 𝑥2

𝑟)3
= (𝑥1

𝑟 − 𝑥2
𝑟)

𝑐1
′(𝑥1

𝑟)

𝑥2
𝑟(𝑥1

𝑟 + 𝑥2
𝑟)
= (𝑥1

𝑟 − 𝑥2
𝑟)

𝑐2
′ (𝑥2

𝑟)

𝑥1
𝑟(𝑥1

𝑟 + 𝑥2
𝑟)

(8) 

𝑢2,21
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟) = (1 − 𝑟)

𝑥2
𝑟 − 𝑥1

𝑟

(𝑥1
𝑟 + 𝑥2

𝑟)3
= −𝑢1,12

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟). (9) 

Example 1  In a symmetric setting, the players’ cost functions are 𝑐𝑖(𝑥𝑖) = 𝑥𝑖
𝑑, 𝑖 = 1,2, with ⅆ > 0. 

For 𝑟 < 1, the solution of the first-order conditions (6) is  

𝑥1
𝑟 = 𝑥2

𝑟 = (
1 − 𝑟

4ⅆ
)

1
𝑑
. (10) 

To check whether this solution is in fact an equilibrium, consider player 1’s modified payoff when 

𝑥2 = 𝑥2
𝑟, which can be written as 

𝑢1
𝑟(𝑥1, 𝑥2

𝑟) = 1 − (1 − 𝑟)
𝑥2
𝑟

𝑥1 + 𝑥2
𝑟 − 𝑥1

𝑑 − 𝑟(𝑥2
𝑟)𝑑 = 1 − 4ⅆ

(𝑥2
𝑟)𝑑+1

𝑥1 + 𝑥2
𝑟 − 𝑥1

𝑑 − 𝑟(𝑥2
𝑟)𝑑 

= 1 + (𝑥2
𝑟)𝑑 (−

4ⅆ
𝑥1
𝑥2
𝑟 + 1

− (
𝑥1
𝑥2
𝑟)

𝑑

) − 𝑟(𝑥2
𝑟)𝑑 . 

For ⅆ ≥ 1, the function −4ⅆ/(𝑡 + 1) − 𝑡𝑑 suggested by the expression in parentheses is unimodal, 

peaking at 𝑡 = 1. For 0 < ⅆ < 1, the function is decreasing for small 𝑡 ≥ 0, then increasing, and 

finally decreasing again from 𝑡 = 1 and on. Therefore, player 1’s best response to 𝑥2
𝑟 (which is given 

by (10)) is either the same investment, which corresponds to 𝑡 = 1, or zero. The former is true if and 

only if −4ⅆ/(1 + 1) − 1𝑑 ≥ −4ⅆ/(0 + 1) − 0𝑑, which holds if and only if ⅆ ≥ 0.5. These are 

therefore the ⅆ values for which (10) is indeed an equilibrium.  

In Example 1, the common equilibrium investment (10) is a decreasing function of the altruism 

coefficient 𝑟. It follows that, the more altruistic the players are, the higher is their personal, material 

payoff at equilibrium. Specifically, the latter is one-half the social payoff at equilibrium, which for 
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every 𝑟 ≤ 1 is given by 

𝑓(𝑥1
𝑟 , 𝑥2

𝑟) = 1 − (𝑥1
𝑟)𝑑 − (𝑥2

𝑟)𝑑 = 1 +
𝑟 − 1

2ⅆ
. 

The next subsection examines comparative statics in the general (in particular, not necessarily 

symmetric) case.   

2.1 Comparative statics with a single politician 
The following proposition describes the effect of altruism and spite on the equilibrium strategies. 

Proposition 1  For 𝑟 < 1, the derivatives of the equilibrium strategies with respect to 𝑟 are given by 

the matrix equation 

𝐻𝑟 (

ⅆ𝑥1
𝑟

ⅆ𝑟
ⅆ𝑥2

𝑟

ⅆ𝑟

) =
1

(𝑥1
𝑟 + 𝑥2

𝑟)2
(
𝑥2
𝑟

𝑥1
𝑟) , (11) 

where  

𝐻𝑟 = (
𝑢1,11
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟) 𝑢1,12

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟)

𝑢2,21
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟) 𝑢2,22

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟)
). 

This coefficient matrix is negative definite (in the sense that its symmetric form (1/2)(𝐻𝑟 + (𝐻𝑟)T) is 

so) and has a positive determinant, |𝐻𝑟| > 0. 

Proof  By (6), for every 𝑟 < 1 

0 = 𝑢1,1
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟) = 𝑢1,1(𝑥1

𝑟 , 𝑥2
𝑟) + 𝑟𝑢2,1(𝑥1

𝑟 , 𝑥2
𝑟). 

Derivation with respect to 𝑟 gives  

0 = 𝑢1,11(𝑥1
𝑟 , 𝑥2

𝑟)
ⅆ𝑥1

𝑟

ⅆ𝑟
+ 𝑢1,12(𝑥1

𝑟 , 𝑥2
𝑟)
ⅆ𝑥2

𝑟

ⅆ𝑟
+ 𝑟𝑢2,11(𝑥1

𝑟 , 𝑥2
𝑟)
ⅆ𝑥1

𝑟

ⅆ𝑟
+ 𝑟𝑢2,12(𝑥1

𝑟 , 𝑥2
𝑟)
ⅆ𝑥2

𝑟

ⅆ𝑟
+ 𝑢2,1(𝑥1

𝑟 , 𝑥2
𝑟) 

= 𝑢1,11
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟)
ⅆ𝑥1

𝑟

ⅆ𝑟
+ 𝑢1,12

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟)
ⅆ𝑥2

𝑟

ⅆ𝑟
−

𝑥2
𝑟

(𝑥1
𝑟 + 𝑥2

𝑟)2
, 

where the second equality uses the identities  

𝑢1,1𝑖
𝑟 (𝑥1, 𝑥2) = 𝑢1,1𝑖(𝑥1, 𝑥2) + 𝑟𝑢2,1𝑖(𝑥1, 𝑥2), 

𝑖 = 1,2. Similarly,  

0 = 𝑢2,21
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟)
ⅆ𝑥1

𝑟

ⅆ𝑟
+ 𝑢2,22

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟)
ⅆ𝑥2

𝑟

ⅆ𝑟
−

𝑥1
𝑟

(𝑥1
𝑟 + 𝑥2

𝑟)2
. 

Eq. (11) presents these equalities in matrix form.  

By (7) and (9), the diagonal elements of 𝐻𝑟  are negative and the off-diagonal elements have opposite 

signs. Therefore, 
1

2
(𝐻𝑟 + (𝐻𝑟)T) is negative definite, as it has negative diagonal elements and zero 

off-diagonal ones, and 

|𝐻𝑟| = 𝑢1,11
𝑟 (𝑥1, 𝑥2)𝑢2,22

𝑟 (𝑥1, 𝑥2) + (𝑢1,12
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟))

2

> 0. 

 ∎ 

As the next theorem shows, the effect described by Proposition 1 spells positive comparative statics.  

Theorem 1  For 𝑟 < 1, the equilibrium strategies satisfy ⅆ𝑥1
𝑟/ ⅆ𝑟, ⅆ𝑥2

𝑟/ ⅆ𝑟 < 0, and the equilibrium 

social payoff satisfies  

ⅆ

ⅆ𝑟
𝑓(𝑥1

𝑟 , 𝑥2
𝑟) > 0. 
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Proof  Solving (11), and using (7), (8) and (9), we get 

ⅆ𝑥1
𝑟

ⅆ𝑟
=

1

|𝐻𝑟| |
|

𝑥2
𝑟

(𝑥1
𝑟 + 𝑥2

𝑟)2
𝑢1,12
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟)

𝑥1
𝑟

(𝑥1
𝑟 + 𝑥2

𝑟)2
𝑢2,22
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟)
|| =

1

(𝑥1
𝑟 + 𝑥2

𝑟)2|𝐻𝑟| |
|
𝑥2
𝑟 (𝑥1

𝑟 − 𝑥2
𝑟)

𝑐2
′ (𝑥2

𝑟)

𝑥1
𝑟(𝑥1

𝑟 + 𝑥2
𝑟)

𝑥1
𝑟 −2

𝑐2
′ (𝑥2

𝑟)

𝑥1
𝑟 + 𝑥2

𝑟 − 𝑐2
″(𝑥2

𝑟)
|| 

= −
𝑐2
′ (𝑥2

𝑟) + 𝑥2
𝑟𝑐2
″(𝑥2

𝑟)

(𝑥1
𝑟 + 𝑥2

𝑟)2|𝐻𝑟|
< 0, 

ⅆ𝑥2
𝑟

ⅆ𝑟
=

1

|𝐻𝑟| |
|
𝑢1,11
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟)

𝑥2
𝑟

(𝑥1
𝑟 + 𝑥2

𝑟)2

𝑢2,21
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟)

𝑥1
𝑟

(𝑥1
𝑟 + 𝑥2

𝑟)2

|| =
1

(𝑥1
𝑟 + 𝑥2

𝑟)2|𝐻𝑟| |
|
−2

𝑐1
′(𝑥1

𝑟)

𝑥1
𝑟 + 𝑥2

𝑟 − 𝑐1
″(𝑥1

𝑟) 𝑥2
𝑟

−(𝑥1
𝑟 − 𝑥2

𝑟)
𝑐1
′(𝑥1

𝑟)

𝑥2
𝑟(𝑥1

𝑟 + 𝑥2
𝑟)

𝑥1
𝑟
|| 

= −
𝑐1
′(𝑥1

𝑟) + 𝑥1
𝑟𝑐1
″(𝑥1

𝑟)

(𝑥1
𝑟 + 𝑥2

𝑟)2|𝐻𝑟|
< 0, 

where the inequalities follow from (3) and Proposition 1. By (4), 

ⅆ

ⅆ𝑟
𝑓(𝑥1

𝑟 , 𝑥2
𝑟) = −𝑐1

′(𝑥1
𝑟)
ⅆ𝑥1

𝑟

ⅆ𝑟
− 𝑐2

′ (𝑥2
𝑟)
ⅆ𝑥2

𝑟

ⅆ𝑟
> 0. 

 ∎ 

An alternative, shorter demonstration of positive comparative statics, which does not require explicit 

examination of the effect of 𝑟 on the equilibrium strategies, is provided by the following general 

result. The result applies to any game where the players’ strategy space are intervals (finite or 

otherwise) in the real line. 

Proposition 2 (Milchtaich 2012, Proposition 8)  For a two-player game with strategy spaces that are 

real intervals, and altruism coefficients 𝑟0 and 𝑟1 with 𝑟0 < 𝑟1 ≤ 1, suppose that there is a 

continuously differentiable function assigning to each 𝑟0 < 𝑟 < 𝑟1 an internal equilibrium (𝑥1
𝑟 , 𝑥2

𝑟) in 

the corresponding modified game with a neighborhood where the payoff functions have continuous 

second-order partial derivatives. For 𝑟0 < 𝑟 < 𝑟1,  

 
ⅆ

ⅆ𝑟
𝑓(𝑥1

𝑟 , 𝑥2
𝑟) = −(1 − 𝑟) (

ⅆ𝑥1
𝑟

ⅆ𝑟
 
ⅆ𝑥2

𝑟

ⅆ𝑟
)𝐻𝑟 (

ⅆ𝑥1
𝑟

ⅆ𝑟
ⅆ𝑥2

𝑟

ⅆ𝑟

). 

Obviously, replacing the matrix 𝐻𝑟  with (1/2)(𝐻𝑟 + (𝐻𝑟)T) leaves the quadratic form on the right-

hand side unchanged. In our case, this expression is therefore equal to  

−(1 − 𝑟) (𝑢1,11
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟) (

ⅆ𝑥1
𝑟

ⅆ𝑟
)

2

+ 𝑢2,22
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟) (

ⅆ𝑥2
𝑟

ⅆ𝑟
)

2

). 

By (7), the expression is positive provided that at least one of ⅆ𝑥1
𝑟/ ⅆ𝑟 and ⅆ𝑥2

𝑟/ ⅆ𝑟 is not zero. 

3. Tullock model with two politicians 
A more general setting than the standard Tullock model considered in Section 2 is when there is 

incomplete information on the source of power in a contest (Epstein et al. 2007). Specifically, suppose 

that there are two politicians, or government officials, who are a priori equally likely to be the true 

decision-making politician ⅆ. The two contestants are uncertain about ⅆ’s identity. Each of them 

receives a noisy signal 𝑠 indicating that identity, which is correct (𝑠 = ⅆ) with probability 0 < 𝑝 < 1. 

(The cases 𝑝 = 0 or 1 would correspond to the standard model.) The two players’ signals may be 

conditionally dependent or independent, given ⅆ. We only assume that the correlation coefficient 𝜌 
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between them is the same regardless of whether ⅆ is the first or second politician and that 0 ≤ 𝜌 ≤ 1 

(i.e., the signals are not negatively correlated). The parameters 𝑝 and 𝜌 determine the probability 𝛼 =

𝑝2 + 𝜌𝑝(1 − 𝑝) (> 0) that both players’ signals are correct, the probability 𝛽 = (1 − 𝑝)2 +

𝜌𝑝(1 − 𝑝) (> 0) that they are both incorrect and the probability 𝛾 = (1 − 𝛼 − 𝛽)/2 =

(1 − 𝜌)𝑝(1 − 𝑝) that only one, specific player got a correct signal.  

The winning probability of each player depends only on his own and his rival’s investment in the 

decisive politician and is given by Tullock’s contest success function. The cost depends on the 

investment in both politicians. To simply the analysis, we assume that the cost is just the sum of the 

two investments, which in particular makes our model symmetric. In a symmetric equilibrium, each 

player spends 𝑥 on the politician his signal indicates is the decision-making one and 𝑦 on the other 

politician. The equilibrium condition is that a player would not gain from unilaterally replacing 𝑥 and 𝑦 

with any alternative values 𝑋 and 𝑌, thereby receiving the payoff 

𝑢(𝑋, 𝑌, 𝑥, 𝑦) ≔ 𝛼𝑃(𝑋, 𝑥) + 𝛽𝑃(𝑌, 𝑦) + 𝛾𝑃(𝑋, 𝑦) + 𝛾𝑃(𝑌, 𝑥) − 𝑋 − 𝑌. 

Since 𝛼, 𝛽 > 0, this condition implies, in particular, that a symmetric equilibrium must be internal, 

𝑥, 𝑦 > 0. A similar conclusion holds with any altruism coefficient 𝑟 < 1, where, in an internal 

symmetric equilibrium, the payoff from deviating to alternative values 𝑋 and 𝑌 is given by   

𝑢𝑟(𝑋, 𝑌, 𝑥, 𝑦) = 𝑢(𝑋, 𝑌, 𝑥, 𝑦) + 𝑟𝑢(𝑥, 𝑦, 𝑋, 𝑌) 

= 𝛼
𝑋 + 𝑟𝑥

𝑋 + 𝑥
+ 𝛽

𝑌 + 𝑟𝑦

𝑌 + 𝑦
+ 𝛾

𝑋 + 𝑟𝑦

𝑋 + 𝑦
+ 𝛾

𝑌 + 𝑟𝑥

𝑌 + 𝑥
− 𝑋 − 𝑌 − 𝑟𝑥 − 𝑟𝑦. (12) 

The first-order equilibrium condition is that   

∂𝑢𝑟(𝑋, 𝑌, 𝑥, 𝑦)

∂X
= 𝛼

(1 − 𝑟)𝑥

(𝑋 + 𝑥)2
+ 𝛾

(1 − 𝑟)𝑦

(𝑋 + 𝑦)2
− 1 = 0 

∂𝑢𝑟(𝑋, 𝑌, 𝑥, 𝑦)

∂Y
= 𝛽

(1 − 𝑟)𝑦

(𝑌 + 𝑦)2
+ 𝛾

(1 − 𝑟)𝑥

(𝑌 + 𝑥)2
− 1 = 0 

at (𝑋, 𝑌) = (𝑥, 𝑦), which simplifies to  

(1 − 𝑟) (
1

4
𝛼(𝑥 + 𝑦)2 + 𝛾𝑥𝑦) = 𝑥(𝑥 + 𝑦)2  

(1 − 𝑟) (
1

4
𝛽(𝑥 + 𝑦)2 + 𝛾𝑥𝑦) = 𝑦(𝑥 + 𝑦)2.  

An equivalent pair of equations is obtained by subtracting and adding these two, which, using the 

notation 

𝛿 ≔  𝛼 − 𝛽, 

gives 

𝑥 − 𝑦 =
1

4
(1 − 𝑟)𝛿 (13) 

and  

(𝑥 + 𝑦)3 = (1 − 𝑟) (
1

4
(𝛼 + 𝛽)(𝑥 + 𝑦)2 + 2𝛾𝑥𝑦) = (1 − 𝑟) (

1

4
(1 − 2𝛾)(𝑥 + 𝑦)2 + 2𝛾𝑥𝑦) 

=
1

4
(1 − 𝑟)((𝑥 + 𝑦)2 − 2𝛾(𝑥 − 𝑦)2) =

1

4
(1 − 𝑟)(𝑥 + 𝑦)2 −

1

32
(1 − 𝑟)3𝛾𝛿2. 

The last equation means that the third-order polynomial equation  

𝑧3 −
1

4
𝑧2 +

1

32
𝛾𝛿2 = 0 (14) 

holds for  

𝑧 =
𝑥 + 𝑦

1 − 𝑟
. (15) 
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Solving (13) and (15) for (𝑥, 𝑦) gives the solution  

(1 − 𝑟) (
1

2
𝑧 +

1

8
𝛿,
1

2
𝑧 −

1

8
𝛿) . (16) 

For this solution to be an internal strategy, both entries must be positive, which is the case if and only 

if 𝑧 > |𝛿|/4. As Epstein et al. (2007) show, there is a unique solution 𝑧 of (14) that satisfies the last 

inequality, which is given by  

𝑧 =
1

12
+
1

6
cos

𝜃

3
 , (17) 

where 𝜃 = arccos(1 − 27𝛾𝛿2). The next proposition shows that, for every 𝑟, the strategy (𝑥𝑟 , 𝑦𝑟) 

obtained by plugging (17) in (16) is indeed an equilibrium strategy. Moreover, the equilibrium is strict. 

That is, any unilateral deviation is actually harmful. 

Proposition 3  For every 𝑟 ≤ 1, both players using strategy (𝑥𝑟 , 𝑦𝑟) is the unique symmetric 

equilibrium, and it is strict.  

Proof  For 𝑟 = 1, the strategy in question is (0,0) and the assertion is obvious. For 𝑟 < 1, strategy 

(𝑥𝑟 , 𝑦𝑟) is the unique internal strategy that satisfies the first-order equilibrium conditions (6). These 

necessary conditions are also sufficient for a strict equilibrium because the payoff function 𝑢𝑟 defined 

in (12) is strictly concave in the first two variables, as can be seen by examining the matrix of the 

corresponding second-order derivatives, 

(

 

∂2𝑢𝑟(𝑋, 𝑌, 𝑥, 𝑦)

∂X2
∂2𝑢𝑟(𝑋, 𝑌, 𝑥, 𝑦)

∂X ∂Y
∂2𝑢𝑟(𝑋, 𝑌, 𝑥, 𝑦)

∂Y ∂X

∂2𝑢𝑟(𝑋, 𝑌, 𝑥, 𝑦)

∂Y2 )

 

= −(1 − 𝑟)

(

 
 
𝛼

2𝑥

(𝑋 + 𝑥)3
+ 𝛾

2𝑦

(𝑋 + 𝑦)3
0

0 𝛽
2𝑦

(𝑌 + 𝑦)3
+ 𝛾

2𝑥

(𝑌 + 𝑥)3
)

 
 
. 

Since 𝛼, 𝛽 > 0 and 𝛾 ≥ 0, this matrix is negative definite for all 𝑋, 𝑌, 𝑥, 𝑦 with 𝑥, 𝑦 > 0. ∎ 

3.1 Comparative statics with two politicians 
At the symmetric equilibrium, where the investment of each player in the two politicians is given by 

(16), the personal, material payoff is 1/2 − 𝑥𝑟 − 𝑦𝑟 = 1/2 − (1 − 𝑟)𝑧 (with the 𝑟-independnet 𝑧 > 0 

given by (17)). This finding means that comparative statics are positive. 

Theorem 2  The investment in each politician at the symmetric equilibrium is a decreasing linear 

function of 𝑟, which reaches zero at 𝑟 = 1. The equilibrium personal payoff is an increasing linear 

function, which reaches the socially efficient level of 1/2 at 𝑟 = 1.  

4. Static stability 
The notion of static stability of strategy profiles is introduced in Milchtaich (2023). Whereas 

equilibrium is defined by the condition that, at the strategy profile in question, no player can gain 

from a unilateral deviation, stability also examines the incentives associated with sequential moves, 

whereby several (possibly, all) players deviate one after the other.     

Definition 1  In a two-player game, a strategy profile (𝑥1, 𝑥2) is stable if it has a neighborhood where 

for every profile (𝑥1
′ , 𝑥2

′ ) ≠ (𝑥1, 𝑥2)  

1

2
(𝑢1(𝑥1

′ , 𝑥2
′ ) − 𝑢1(𝑥1, 𝑥2

′ ) + 𝑢1(𝑥1
′ , 𝑥2) − 𝑢1(𝑥1, 𝑥2) + 𝑢2(𝑥1

′ , 𝑥2
′ ) − 𝑢2(𝑥1

′ , 𝑥2) + 𝑢2(𝑥1, 𝑥2
′ ) − 𝑢2(𝑥1, 𝑥2)) < 0. (18) 

A strategy profile is globally stable if a similar condition holds for all (𝑥1
′ , 𝑥2

′ ) ≠ (𝑥1, 𝑥2). 
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The expression on the left-hand side of (18) is the sum of the players’ changes of payoff as they move 

one-by-one from (𝑥1, 𝑥2) to (𝑥1
′ , 𝑥2

′ ), averaged over the two possible orders of move. The inequality 

thus expresses the condition that such a sequential move on average harms the deviating players. 

A globally stable strategy profile is in particular a strict equilibrium. The converse is generally false. 

However, the following propositions identifies a special case where the converse does hold.  

Proposition 4  In a two-player game, suppose that there exist real-valued functions ℎ1 and ℎ2 on the 

strategy spaces of player 1 and 2, respectively, such that for every strategy profile (𝑥1, 𝑥2)  

𝑢1(𝑥1, 𝑥2) + 𝑢2(𝑥1, 𝑥2) = ℎ1(𝑥1) + ℎ2(𝑥2). (19) 

Then, every strict equilibrium in the game is globally stable.  

Games as in the proposition are characterized by the property that the change to the aggregate 

payoff brought about by any unilateral deviation is independent of the other player’s strategy.  

Lemma 1  In a two-player game, functions ℎ1 and ℎ2 satisfying the identity (19) exist if and only if the 

aggregate payoff 𝑓 = 𝑢1 + 𝑢2 satisfies the following identify: for all (𝑥1, 𝑥2), (𝑥1
′ , 𝑥2

′ ), 

𝑓(𝑥1
′ , 𝑥2

′ ) − 𝑓(𝑥1, 𝑥2
′ ) = 𝑓(𝑥1

′ , 𝑥2) − 𝑓(𝑥1, 𝑥2). (20) 

Proof  If the first identify, (19), holds for some ℎ1 and ℎ2, then the second one also holds, as both 

sides of (20) are equal to ℎ1(𝑥1
′) − ℎ1(𝑥1). Conversely, if the second identity holds, then for any fixed 

(𝑥1
′ , 𝑥2

′ ) the functions ℎ1(𝑥1) ≔ 𝑓(𝑥1, 𝑥2
′ ) − 𝑓(𝑥1

′ , 𝑥2
′ ) and ℎ2(𝑥2) ≔ 𝑓(𝑥1

′ , 𝑥2) satisfy (19). ∎ 

Proof of Proposition 4  A strict equilibrium (𝑥, 𝑦) satisfies 

𝑢1(𝑥1
′ , 𝑥2) − 𝑢1(𝑥1, 𝑥2) + 𝑢2(𝑥1, 𝑥2

′ ) − 𝑢2(𝑥1, 𝑥2) < 0 

for all (𝑥1
′ , 𝑥2

′ ) ≠ (𝑥1, 𝑥2). It therefore suffices to show that the expression on the left-hand side of the 

last inequality is equal to that in (18), equivalently,   

0 =
1

2
(𝑢1(𝑥1

′ , 𝑥2
′ ) − 𝑢1(𝑥1, 𝑥2

′ ) − 𝑢1(𝑥1
′ , 𝑥2) + 𝑢1(𝑥1, 𝑥2) + 𝑢2(𝑥1

′ , 𝑥2
′ ) − 𝑢2(𝑥1

′ , 𝑥2) − 𝑢2(𝑥1, 𝑥2
′ )

+ 𝑢2(𝑥1, 𝑥2)). 

This equality follows from Lemma 1, as the expression in parentheses is equal to the difference 

between the left- and right-hand side of (20). ∎ 

Unlike global stability, the local condition of stability does not imply that the strategy profile is a strict 

equilibrium, or even an equilibrium. Conversely, being an equilibrium is not a sufficient condition for 

stability. An additional condition that makes an equilibrium stable, in a two-player game where each 

player’s strategy space is an interval, is identified by the next proposition.  

Proposition 5  In a two-player game where the strategy spaces are real intervals, let (𝑥1, 𝑥2) be an 

internal equilibrium with a neighborhood where the players’ payoff functions have continuous 

second-order derivatives. A sufficient condition for the equilibrium to be stable is that the matrix  

𝐻 = (
𝑢1,11(𝑥1, 𝑥2) 𝑢1,12(𝑥1, 𝑥2)

𝑢2,21(𝑥1, 𝑥2) 𝑢2,22(𝑥1, 𝑥2)
) (21) 

is negative definite. This condition holds if and only if |𝐻 + 𝐻T| > 0. 

Proof  The sufficient condition is a special case of Proposition 7 in Milchtaich (2012). The equivalence 

to |𝐻 + 𝐻T| > 0 holds because the diagonal elements of 𝐻 are nonnegative by the second-order 

equilibrium conditions. As (1/2)(𝐻 + 𝐻T), the symmetric form of 𝐻, shares these elements, it is 

negative definite if and only if its determinant is positive. ∎ 

Stability of the equilibria is strongly associated with positive local comparative statics and global 

stability is associated with positive global comparatives statics (Milchtaich 2012, 2021). The former 

kind of comparative statics concerns small, continuous changes to the altruism coefficient and the 



10 

corresponding equilibria, whereas the latter allows for large, discrete changes and is therefore the 

stronger kind. Two of the results establishing such connections are the following theorems.  

Theorem 3 (Milchtaich 2021, Theorem 9)  For a two-player game with continuous payoff functions, 

and altruism coefficients 𝑟0 and 𝑟1 with 𝑟0 < 𝑟1 ≤ 1, suppose that there is a continuous and finitely-

many-to-one function (meaning that the inverse image of every point is a finite set) assigning to each 

𝑟0 ≤ 𝑟 ≤ 𝑟1 a strategy profile (𝑥1
𝑟 , 𝑥2

𝑟) such that the function 𝑟 ↦ 𝑓(𝑥1
𝑟 , 𝑥2

𝑟) is continuously 

differentiable in [𝑟0, 𝑟1]. A sufficient condition for the last function to be strictly increasing is that for 

every 𝑟0 < 𝑟 < 𝑟1 the strategy profile (𝑥1
𝑟 , 𝑥2

𝑟) is stable in the corresponding modified game. 

Theorem 4 (Milchtaich 2021, Theorem 7)  For any two-player game, and altruism coefficients 𝑟 and 𝑠 

with 𝑟 < 𝑠 ≤ 1, if two distinct strategy profiles (𝑥1
𝑟 , 𝑥2

𝑟) and (𝑥1
𝑠, 𝑥2

𝑠) are globally stable in the 

corresponding modified games, then  

𝑓(𝑥1
𝑟 , 𝑥2

𝑟) < 𝑓(𝑥1
𝑠, 𝑥2

𝑠). (22) 

In the following, we apply these general theorems to the models studied in the previous sections, 

thereby obtaining alternative proofs to the positive comparative statics results established above as 

well as gaining appreciation of the generality of these results and a suggestion that they are robust to 

modest changes in the particularities of our settings.  

4.1 Stability with a single politician 
By Propositions 1 and 5, the equilibrium (𝑥1

𝑟 , 𝑥2
𝑟) in the basic Tullock model is stable for every 𝑟 < 1. 

In view of Theorem 3, this finding suggests positive local comparative statics. And, indeed, this is what 

Theorem 1 establishes. In fact, as the latter theorem refers to the entire range of values of the 

altruism coefficient, it even establishes positive global comparative statics. We can, however, get a 

similar result much more easily by showing that the equilibria involved are globally stable. For this 

end, we strengthen our assumption concerning the cost functions 𝑐1 and 𝑐2 by assuming these are 

convex functions. It follows from this assumption that, for every 𝑟 < 1, the modified payoff (Eq. (5)) 

of each player 𝑖 is strictly concave in the player’s own strategy 𝑥𝑖, which implies that the equilibrium 

(𝑥1
𝑟 , 𝑥2

𝑟) is strict (and also that the first-order conditions (6) are both necessary and sufficient for 

equilibrium). The conclusion clearly holds also for 𝑟 = 1, where the equilibrium is (0,0). 

Corollary 1  With convex cost functions, the Tullock model with a single politician exhibits positive 

global comparative statics. That is, for all 𝑟 and 𝑠 with 𝑟 < 𝑠 ≤ 1, the corresponding equilibria 

(𝑥1
𝑟 , 𝑥2

𝑟) and (𝑥1
𝑠, 𝑥2

𝑠) satisfy inequality (22). 

Proof  As  

𝑢1
𝑟(𝑥1, 𝑥2) + 𝑢2

𝑟(𝑥1, 𝑥2) = (1 + 𝑟)(𝑢1(𝑥1, 𝑥2) + 𝑢2(𝑥1, 𝑥2)) = (1 + 𝑟)(1 − 𝑐1(𝑥1) − 𝑐2(𝑥2)), 

by Proposition 4 the strict equilibrium (𝑥1
𝑟 , 𝑥2

𝑟) is globally stable. A similar result holds for 𝑠, and the 

conclusion now follows from Theorem 4. ∎ 

4.2 Stability with two politicians 
Our comparative statics result for the two-politician model, Theorem 2, is based on a lengthy analysis 

which pinpoints the equilibrium strategies. However, as in the single-politician case, such an exact 

identification is actually not required for establishing positive global comparative statics.  

Corollary 2  The Tullock model with two politicians exhibits positive global comparative statics.  

Proof  The proof again relies on Theorem 4. In light of Proposition 3, we only need to show that the 

relevant form of the condition in Proposition 4 holds. With 𝑥1 = (𝑋, 𝑌) and 𝑥2 = (𝑥, 𝑦), indeed   

𝑢𝑟(𝑋, 𝑌, 𝑥, 𝑦) + 𝑢𝑟(𝑥, 𝑦, 𝑋, 𝑌) = (1 + 𝑟)(𝛼 + 𝛽 + 𝛾 + 𝛾 − 𝑋 − 𝑌 − 𝑥 − 𝑦) 

= (1 + 𝑟) (
1

2
− 𝑋 − 𝑌) + (1 + 𝑟) (

1

2
− 𝑥 − 𝑦). 

 ∎ 
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Note that this simple demonstration of positive comparative statics would apply also if the cost 

functions, which are linear in our model, were replaced by any (possibly, two different) convex 

functions and/or the contest success function 𝑃 were replaced by any function that is strictly concave 

in the own investment. Corollary 2 is therefore a considerably more general, albeit less specific, result 

than Theorem 2.   

5. Summary 
The question of the material consequences of altruism and spite is not unique to Tullock competition; 

it is of relevance to essentially any strategic interaction. Most of the general results mentioned above 

are also not specific to two-party interactions but hold for any number 𝑛 of players. The two Tullock 

models analyzed in this paper are simple enough to be solved analytically. However, this may not be 

so for other kinds of interactions. In more complicated cases, the identified connections between 

comparative statics and stability may potentially be used for establishing positive (or, sometimes, 

negative; see Milchtaich 2012) comparative statics without actually computing the equilibria.  

As already indicated, a negative, paradoxical effect of the degree of internalization of a social payoff 

on the equilibrium level of that payoff is a theoretical possibility, which may occur even in symmetric 

settings and when everyone cares equally about social welfare. This paper demonstrates that this 

does not happen in Tullock contest, and for a good reason: the equilibria in this setting are (statically) 

stable. It is left for future research to find out whether other sorts of strategic interactions, in 

particular, contests and auctions of different sorts, also share this property, and what structural 

properties of these interactions guarantee it.   

Appendix: Dynamic stability 
The kind of stability that goes hand-in-hand with positive comparative statics is static stability, 

formalized in Definition 1 (for generalizations and extensions of which see Milchtaich 2023). The 

various kinds of the more commonly considered dynamic stability do not exhibit a similar connection 

(Milchtaich 2012, section 8).  

Unlike static stability, which is fully expressible in terms of the players’ payoff functions, dynamic 

stability also refers to a particular, extraneous law of motion. One such law, relevant to games where 

the strategy spaces are real intervals, posits that the rate of change of each player’s strategy is 

proportional to the marginal payoff. In a two-player game, this means that there are constants 

ⅆ1, ⅆ2 > 0 such that  

ⅆ𝑥1
ⅆ𝑡

= ⅆ1𝑢1,1(𝑥1, 𝑥2)

ⅆ𝑥2
ⅆ𝑡

= ⅆ2𝑢2,2(𝑥1, 𝑥2).

(23) 

With these dynamics, the condition for asymptotic stability of an interior equilibrium (𝑥1, 𝑥2) is that, 

at that point, the (Jacobian) matrix 

(
ⅆ1𝑢1,11 ⅆ1𝑢1,12
ⅆ2𝑢2,21 ⅆ2𝑢2,22

) 

is stable, that is, all its eigenvalues have negative real parts. The requirement that stability holds for 

any pair of positive coefficients ⅆ1 and ⅆ2 is known as D-stability of the matrix 𝐻 defined in (21) 

(which is obtained from the matrix above by omitting the coefficients).  

D-stability is implied by negative definiteness of 𝐻 (but not the other way around; Milchtaich 2023). 

We may therefore conclude from Proposition 1 that, for every 𝑟 < 1, an equilibrium (𝑥1
𝑟 , 𝑥2

𝑟) in the 

Tullock model with a single politician is asymptotically stable with respect to dynamics similar to (23) 

in which 𝑢 is replaced with 𝑢𝑟, for all ⅆ1, ⅆ2 > 0. That is, starting at any point (𝑥1, 𝑥2) close to 

(𝑥1
𝑟 , 𝑥2

𝑟), the system will converge to the equilibrium.  
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Convergence can also be inferred directly from Proposition 1. Write (𝑥1, 𝑥2) as (𝑥1
𝑟 + 𝜉, 𝑥2

𝑟 + 𝜂). For 

small 𝜉 and 𝜂, the linear approximations  

𝑢1,1
𝑟 (𝑥1

𝑟 + 𝜉, 𝑥2
𝑟 + 𝜂) ≈ 𝑢1,1

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟)⏟      
0

+ 𝑢1,11
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟)𝜉 + 𝑢1,12

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟)𝜂

𝑢2,2
𝑟 (𝑥1

𝑟 + 𝜉, 𝑥2
𝑟 + 𝜂) ≈ 𝑢2,2

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟)⏟      
0

+ 𝑢2,21
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟)𝜉 + 𝑢2,22

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟)𝜂
(24) 

give the linearized dynamics 

(

ⅆ𝜉

ⅆ𝑡
ⅆ𝜂

ⅆ𝑡

) = (
ⅆ1𝑢1,11

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟) ⅆ1𝑢1,12
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟)

ⅆ2𝑢2,21
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟) ⅆ2𝑢2,22

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟)
) (
𝜉
𝜂
). 

Pre-multiplying with (𝜉/ⅆ1, 𝜂/ⅆ2), with get 

ⅆ

ⅆ𝑡
(
𝜉2

2ⅆ1
+
𝜂2

2ⅆ2 
) = (

𝜉

ⅆ1
  
𝜂

ⅆ2 
)(

ⅆ𝜉

ⅆ𝑡
ⅆ𝜂

ⅆ𝑡

) = (𝜉  𝜂) (
𝑢1,11
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟) 𝑢1,12

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟)

𝑢2,21
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟) 𝑢2,22

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟)
) (
𝜉
𝜂
). 

By Proposition 1, the quadratic form on the right-hand side (whose matrix is 𝐻𝑟) is negative definite. 

This means that its value is negative as long as (𝜉, 𝜂) ≠ 0. It follows that the quadratic expression on 

the left-hand side decreases monotonically over time, and 𝜉 and 𝜂 converge to 0. 

A different kind of dynamics involves alternate, discrete responses. Player 1 best-responds to the 

strategy of player 2, who then best-responds to 1’s strategy, and so on. Asymptotic stability with 

respect to these “ping-pong” dynamics neither implies nor is implied by static stability (Milchtaich 

2023). And the well-known geometric condition for asymptotic stability, which is that player 1’s 

reaction curve is steeper than 2’s curve, is not implied by and does not imply negative definiteness of 

𝐻𝑟 . 

To see whether, for 𝑟 < 1, the equilibrium (𝑥1
𝑟 , 𝑥2

𝑟) in the Tullock model with a single politician is 

asymptotic stable with respect to alternate best responses, consider again small deviations, 𝜉 and 𝜂, 

from the equilibrium strategies. If 𝜉 is a best response to 𝜂, then player 1’s marginal payoff, which is 

approximated in the first equation in (24), is zero. If player 2 now best-responds to 𝜉 by changing (his 

deviation from 𝑥2
𝑟) to 𝜂′, then an expression similar to that in the second equation in (24) is zero, with 

𝜂′ replacing 𝜂. The two equalities give the following linearized dynamics for player 2’s strategy:  

𝜂′ =
𝑢1,12
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟)𝑢2,21

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟)

𝑢1,11
𝑟 (𝑥1

𝑟 , 𝑥2
𝑟)𝑢2,22

𝑟 (𝑥1
𝑟 , 𝑥2

𝑟)
𝜂. (25) 

Convergence to the equilibrium holds if the absolute value of the quotient on the right-hand side is 

less than 1. Using (7), (8) and (9), we can write this condition as 

(𝑥1
𝑟 − 𝑥2

𝑟)2
𝑐1
′(𝑥1

𝑟)

𝑥2
𝑟(𝑥1

𝑟 + 𝑥2
𝑟)
⋅

𝑐2
′ (𝑥2

𝑟)

𝑥1
𝑟(𝑥1

𝑟 + 𝑥2
𝑟)
< (2

𝑐1
′(𝑥1

𝑟)

𝑥1
𝑟 + 𝑥2

𝑟 + 𝑐1
″(𝑥1

𝑟))(2
𝑐2
′ (𝑥2

𝑟)

𝑥1
𝑟 + 𝑥2

𝑟 + 𝑐2
″(𝑥2

𝑟)). 

By (3), there exist 𝛼, 𝛽 > 0 such that 𝑐1
′(𝑥1

𝑟) + 𝑥1
𝑟𝑐1
″(𝑥1

𝑟) = 𝛼𝑐1
′(𝑥1

𝑟) and 𝑐2
′ (𝑥2

𝑟) + 𝑥2
𝑟𝑐2
″(𝑥2

𝑟) =

𝛽𝑐2
′ (𝑥2

𝑟). The last inequality is equivalent to   

(
𝑥1
𝑟 − 𝑥2

𝑟

𝑥1
𝑟 + 𝑥2

𝑟)

2

− (
𝑥1
𝑟 − 𝑥2

𝑟

𝑥1
𝑟 + 𝑥2

𝑟 + 𝛼)(
𝑥2
𝑟 − 𝑥1

𝑟

𝑥1
𝑟 + 𝑥2

𝑟 + 𝛽) < 0. 

The expression on the left-hand side is a strictly convex function of the quotient (𝑥1
𝑟 − 𝑥2

𝑟)/(𝑥1
𝑟 + 𝑥2

𝑟), 

which lies in (−1,1). Therefore, a sufficient condition for this expression to be negative is 1 −

(±1 + 𝛼)(∓1 + 𝛽) ≤ 0, or 2 + |𝛼 − 𝛽| ≤ 𝛼𝛽. In particular, the last inequality is a sufficient condition 

for asymptotic stability of the equilibrium with cost functions 𝑐1(𝑥1) = 𝑥1
𝛼 and 𝑐2(𝑥2) = 𝑥2

𝛽
. The 

condition is not necessary, however. Whenever we have a symmetric equilibrium, 𝑥1
𝑟 = 𝑥2

𝑟, the right-
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hand side of (25) is zero by (8), which entails fast convergence to the equilibrium from any nearby 

point. This is so, in particular, in the case of cost functions that are power functions with identical 

exponents, 𝛼 = 𝛽 ≥ 0.5 (Example 1). 
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