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Introduction 

A standard assumption in the theory of spatial general equilibrium (SGE) is that there is perfect 

internal capital mobility (PICM), which ensures that rates of return to capital are equated 

everywhere within the economy (Roback 1982, Krugman 1991, Glaeser and Gottlieb 2008). In 

SGE models other factors are assumed to be immobile. In Roback’s model the immobility of 

land plays a central role, whereas in the New Economic Geography (NEG) model unskilled labor 

is assumed to be immobile. By contrast, PICM is assumed to apply uncritically and ubiquitously. 

Although internal labor migration might be impeded because people develop attachments to 

places (Nocco 2009), this argument does not extend to capital.  

Empirical investigation of PICM has been impeded by lack of data. There are no data on regional 

or spatial returns to capital that may be used to test the hypothesis that returns to capital are 

equated. Nor are there data on regional capital stocks that may be used to test PICM indirectly, 

by testing restrictions on the relationship between regional capital stocks. It is no doubt for these 

reasons that we are unable to refer to previous empirical investigations of PICM. We show below 

that PICM plays an important role in SGE theory. If capital is immobile, or even imperfectly 

mobile, the comparative statics of SGE are mitigated compared to their counterparts under 

PICM.  

In this paper we use capital stock data for Israel, constructed using the methodological proposal 

in Beenstock, Ben Zeev and Felsenstein (2011), to carry out indirect tests of PICM. Specifically, 

annual capital stock data are generated for nine regions of Israel during 1987 – 2010. These data 

are used to test PICM according to the theory described in the next section. Unfortunately, direct 

tests of PICM are not feasible since data on spatial returns to capital do not exist.  

Theory 

Two theoretical issues are considered. First, if capital is perfectly mobile internally, restrictions 

apply to the relationship between capital-labor ratios (k = K/L) between regions. If these 

restrictions do not apply empirically, we may reject PICM. On the other hand, capital may be 

imperfectly mobile, or even completely immobile. Secondly, we show that if PICM does not 

apply, comparative static shocks on SGE are qualitatively the same, but quantitatively smaller.  

Implications of PICM for Capital-Labor Ratios 
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Each region is assumed to produce homogeneous output using a common Cobb-Douglas 

production technology: 

)1(1 αα −= jjjj LKAQ    

where j labels regions, Q, K and L denote output, capital and labor, and A denotes total factor 

productivity (TFP). The cost of capital in region j is r + δj – sj where r is the national rate of 

interest, δ is the rate of depreciation and s denotes a subsidy to capital investment set by regional 

policy. It is assumed that all firms can raise finance at the rate r. Firms are assumed to equate the 

marginal product of capital (MPK) to the cost of capital, hence: 

)2(1−=−+= ααδ jjjjj kAsrMPK  

PICM implies that equation (2) applies across all regions in which case the capital stocks in 

regions i and j are related: 
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If for simplicity dji  = 0 equation (3) implies that MPK is equated between regions i and j so that: 
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where µ =1. PICM predicts that the partial elasticities between pairs of kj and ki are unity. If TFP 

in region j exceeds TFP in region i, the capital-labor ratio in j must exceed its counterpart in 

region i if PICM applies. More generally, PICM implies: 
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according to which the capital-labor ratio in region j varies inversely with dji because capital in j 

is more subsidized than in i, or because it depreciates more slowly. Equation (5) implies that the 

elasticity of kj with respect to ki is: 
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The elasticity exceeds unity if dji is negative and it is less than unity if dij is positive. 

In the CES case where: 
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the marginal product of capital is: 
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which, unlike equation (2) is no longer loglinear in k. The counterpart of equation (5) is: 
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If Ai = Aj and d = 0, equation (9) implies that ki = kj as expected. 

Implications of PICM for Spatial General Equilibrium (SGE) 

For simplicity and without loss of generality we assume that labor market participation ratios are 

1, that the supply of labor hours is wage inelastic and fixed, so that labor supply is equal to the 

population. However, because of internal labor mobility regional populations are endogenous. 

We consider the case of a “small open region”, which is affected by what happens elsewhere, but 

which is too small to affect other regions.   

Profit maximization implies that the demand for labor in region j is: 
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i.e. it varies inversely with wages, and directly with TFP and capital. If labor was perfectly 

mobile wages would be equated between regions. However, we assume that labor may be 

imperfectly mobile: 
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where LS denotes the supply of labor and B denotes relative amenities in j and w* denotes wages 

in other regions. If θ = ∞ internal migration is perfect. Because region j is “small”, w* is not 

affected by what happens in region j. 

The labor market in region j is assumed to clear. Equating equations (10) and (11) solves for 

wages in region j:  
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Wages vary directly with TFP, capital and wages elsewhere, and vary inversely with amenities. 

Note that if θ = ∞, wages in j equal wages elsewhere (wj = w*). Otherwise, wages in j vary 

directly with capital and TFP, and inversely with amenities. 

 Equilibrium employment is: 
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Employment varies directly with capital, amenities and TFP, and varies inversely with wages 

elsewhere. Note that as labor becomes perfectly mobile (θ → ∞) 0
1

1,1
1

→
+

→
+ αθαθ
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θ 1

1
→

+
, so that employment is proportionate to the capital stock and does not depend on 

amenities. 

If labor is paid its marginal product, the marginal product of capital in regions j is equal to: 
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Equation (14) is obtained by substituting the marginal product of labor into equation (2). It states 

that MPK is unchanged if the capital stock is proportional to the wage bill. PICM implies that 

MPK = MPK* if, for simplicity, d = 0 in which case: 



6 
 

)15(*lnlnlnlnln 1 MPKwLK jjj −++= −α
α   

Finally, substituting equations (12) and (13) into equation (15) provides the solution for the 

capital stock: 
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Equations (12), (13) and (16) solve for w, L and K. They imply that the elasticities of wages and 

employment with respect to the exogenous variables are greater in absolute value under PICM 

than they are when capital is immobile. For example, the elasticity of employment with respect 

to TFP is:   
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where the first term is the direct effect through equation (13) and assumes that capital is 

immobile, and the second term is induced by capital mobility. The elasticity of wages with 

respect to TFP is: 
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where the first term is the elasticity when capital immobile. The counterparts of equations (17) 

and (18) for amenities are: 
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The direct elasticity of employment with respect to amenities is positive due to internal labor 

mobility, but is less than one. Capital mobility increases this elasticity to unity. The direct effect 

of amenities on wages is negative because it induces internal migration, but capital mobility 

offsets this effect.  
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Finally, the elasticities of employment and wages with respect to wages elsewhere (w*) and the 

marginal product of capital elsewhere (MPK*) are: 
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Notice that an increase in wages elsewhere has no effect on wages in region j because although 

the direct effect increases wages through out-migration of labor, the outflow of capital has a 

countervailing effect. 

Matters are naturally more complicated if region j is not “small” and if internal migration from 

region i to j is not symmetrical and varies by i and j. In this case capital mobility has a smaller 

effect than in equations (19) – (24) because of negative feedback from region j to other regions. 

Bringing Theory to Data 

Suppose there are regional panel data for kjt and d happens to be zero. Equation (4) may be 

written as: 

( ) )25(lnln
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where u denotes a residual. Suppose that the panel data happen to be nonstationary (as we show 

below) but they are difference stationary. If TFP share common stochastic trends lnAjt – lnAit ~ 

I(0) whereas lnkj and lnki are I(1) time series. Asymptotically therefore, the estimates of µ and α 

are independent. Even if TFP is unobserved, it is possible to test hypotheses regarding µ which 

should be unity if capital is perfectly mobile. The test simplifies to: 

)26(lnln jititjijijt ukk ++= µψ  

where ψji  equals the log difference in average TFP between regions j and i.   



8 
 

We distinguish between strong CIPM where equation (4) holds in every time period, and weak 

CIPM where it only holds in the long run. In either case the residuals (u) must be stationary so 

that equation (25) is cointegrated. In the former case, the residuals must be serially independent, 

whereas in the latter case this restriction need not apply.  

If there are N regions there are ½N(N-1) pairwise comparisons of kj and ki. The Augmented 

Dickey-Fuller statistic (ADF) for uij is used to test for cointegration. The ADF statistic for pairs 

ji are calculated by carrying out the following regression: 
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where P denotes the number of augmentations if the residuals of equation (27) happen to be 

serially correlated. Cointegration requires that ADF be significantly less than zero. For a single 

pair the critical value for ADF has been calculated by MacKinnon (1991) and is -3.58 when T = 

25 at p = 0.05. There are four possible results: 

i) Equation (26) is cointegrated, 1ˆ =jiµ  and ujt is serially independent, in which case the 

hypothesis of strong PICM is corroborated between j and i.  

ii) If uji is autocorrelated the hypothesis of weak PICM is corroborated. 

iii) Equation (26) is cointegrated but 1ˆ ≠jiµ . PICM is rejected, but capital is imperfectly 

mobile. If uji is not autocorrelated, imperfect capital mobility is strong, otherwise it is 

weak. 

iv) Equation (26) is not cointegrated. PICM is rejected as well as the hypothesis that 

capital is imperfectly mobile. 

Each pair constitutes a separate test of PICM. A joint test of PICM involves examining the 

½N(N-1) pairwise comparisons. If 1ˆ =jiµ for all pairs then PICM is corroborated universally. 

If 1ˆ ≠jiµ but on average 1ˆ =µ then PICM is corroborated in general. If capital mobility is 

imperfect .1ˆ ≠µ  Let GADF denote the group average ADF statistic formed by the ½N(N-1) 
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estimates of equation (28). In panel data the critical value of ADF-bar is normally distributed 

due to the central limit theorem: 

( )
)29(
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z
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This formula is similar to the one first proposed by Im, Pesaran and Shin (2003) for panel unit 

root tests, and by Pedroni (1999) for panel cointegration tests. The expected value and standard 

deviation of GADF need to be calculated under the null hypothesis that equation (26) is not 

cointegrated, because the estimates of λji are not significantly less than zero. Notice that if 

equation (26) is cointegrated, the direction of the regression does not matter asymptotically due 

to super-consistency (Stock 1987), in which case if equation (26) is reversed, and lnki is 

regressed on lnkj. with parameters ψ` and µ`,  then plimψ = plim(1/ψ`) and plim µ = plim(1/µ`). 

In finite samples, however, matters may be different.   

We use the critical values of E(GADF) and sd(GADF) calculated by Perdoni (1999). These 

critical values are also likely to be “liberal” because they assume that the residuals are cross-

section independent, i.e. E(ujiuj`ui`) = 0. This assumption will be incorrect if uji is correlated with 

ujn because region j attracts too much capital from all other regions, or because it attracts too 

little capital. We therefore calculate the residual cross-section correlation matrix, which should 

be diagonal under the null hypothesis. We use the Breusch – Pagan LM test statistic for cross-

section dependence: 
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where ρji.jn denotes the correlation between uji and ujn and BP is expected to be  zero under the 

null hypothesis of no cross-section dependence.  

If the null hypothesis is rejected, there are two main possibilities; the cross-section dependence 

may be weak or strong (Chudik, Pesaran and Tosseti 2013). In the former case the cross-section 

dependence is spatial and localized (Anselin 1988) whereas in the latter case the dependence is 

generic and is induced by common factors, which may be observed or unobserved. In the former 

case shocks to uji dissipate across space, whereas in the latter case they do not. The two cases 
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have an epidemiological interpretation. Weak cross-section dependence is “contagious” in the 

sense that uji has a causal effect on ujn where region n is a first-order neighbor of region j. 

However, the epidemic “dies out” because uji has no domino effect on regions that are remote 

from j. By contrast, strong cross-section dependence is induced by regional heterogeneity in the 

effect of one or more common factor on uji. The epidemic does not spread because of contagion 

but because all regions are susceptible to various degrees to the same common cause. 

Pesaran (2013) suggested the following test for weak cross-section dependence:     

)30()1,0(ˆ
2

)1( NNTNCD ≈
−

= ρ     

If the average value of ρ is not significantly different from zero the null hypothesis of weak 

cross-section dependence cannot be rejected. Unlike BP, CD depends on the sign of ρ. For 

example, if N = 3, T = 100 and the three values of ρji are 0.4, 0.4 and -0.8, CD = 0 but BP = 96, 

in which the cross-section dependence is weak (spatial). If instead the values of ρji are 0.4, 0.4 

and 0.8, BP still equal 96 but CD = 32, in which case the cross-section dependence is strong. In 

general, both types of cross-section dependence may be present.   

The spatial variant of equation (26) is: 
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where w denote spatial weights row-summed to one, jk~ denotes the spatial lagged dependent 

variable, and ik~ denotes its spatial Durbin counterpart. If the data are stationary the spatial lag 

coefficients (δ and π) need to be estimated by maximum likelihood (Anselin 1988). However, if 

the data happen to be nonstationary, OLS estimates of these parameters are super-consistent 

(Beenstock and Felsenstein 2015). Equation (30) is a double spatial lag model because it 

specifies spatial lags in the vicinities of regions j and i. The elasticity of k in region j with respect 

to k in region i is: 
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It depends on the direct elasticity µ as well as the two spatial elasticities.  

For strong cross-section dependence Pesaran (2007) has suggested the common correlated 

effects (CCE) estimator in which equation (26) is specified as: 

)32(lnlnln jittjiitjijijt ukkk +++= kµψ  

where 𝑘� denotes the average capital-labor ratio and 𝜅𝑗𝑗 denotes the loading of this common factor 

on the relation between kj and ki. Critical values for panel cointegration tests using CCE have 

been calculated by Banerjee and Carrion-I-Silvestre (2011). 

A final variant of equation (26) takes account of regional investment grants. Let Zjt denote the 

cumulative stock of investment grants in region j at the beginning of period (year) t. Theory 

predicts that capital labor ratios vary directly with Z. Conditional on ki, kj should vary directly 

with the difference between Zj and Zi: 

   )33()(lnln jititjtjiitjijijt uZZkk +−++= ηµψ  

At first equation (26) is freely estimated, which delivers µ-bar, which is the average of the 

estimates of µji. PICM predicts that µ-bar is one. It may exceed one for some pairs and be less 

than one for others, unless PICM is strictly applied to all pairs. More generally, µ-bar 

summarizes the degree of internal capital mobility, and is a number that varies between zero 

(capital immobility) and one (PICM). If, for example, µ-bar is 0.6 it means that internal capital is 

60 percent mobile. To test whether µ-bar is significantly less than unity, we impose the 

restriction that µji = 1 for all pairs, calculate the ADF statistics for the new pairwise residuals, 

and determine whether the restricted model is cointegrated. If it ceases to be cointegrated, we 

may reject PICM as the null hypothesis.  

If PICM happens to be rejected in favor of imperfect capital mobility, we test the secondary 

hypothesis that capital mobility varies inversely with the distance between pairwise nodes. Since 

equation (26) is a pairwise regression estimated using time series observations between j and i, 
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this secondary hypothesis is investigated indirectly by testing whether the estimates of µji vary 

inversely with the distances between j and i.    

   

3. Data   

Annual capital stock data for 9 regions of Israel (see map) were calculated during 1987 – 2010 

using the method proposed by Beenstock, Ben Zeev and Felsenstein (2011). The capital stock 

comprises plant and machinery. This method calculates plant directly from regional data on 

building completions (square meters) in the business sector published by the Central Bureau of 

Statistics (CBS). It allocates machinery at the national level to the 9 regions according to the 

ratio of machinery to plant across the economy. For example, if the value of plant in a region is 

$100, and the ratio of machinery to plant across the economy is 1.3, the value of machinery in 

the region is imputed to be $130 so that K = $230. Data on employment for these 9 regions were 

constructed by us from Labor Force Surveys (CBS), and data for earnings (deflated by the 

national CPI) were constructed by us from Household Income Surveys (CBS). Since geographic 

disaggregation in these surveys is not continuously available prior to 1987, this determines the 

starting point for our investigation.  

Capital-labor ratios (k) are plotted in Figure 1 in 1000s of shekels at 2005 prices. The Haifa 

region stands out as the most capital-intensive region of Israel because heavy industry has been 

concentrated in Haifa since Ottoman times. There are persistent and substantial differences 

between capital-labor ratios in the rest of the country. In 1987 the Dan region was the least 

capital intensive, but by 1996 it exchanged positions at the bottom of the distribution with 

Krayot. The Tel Aviv region, which in 1987 was in 4th position, temporarily moved up to 2nd 

position in 2003. On the whole, however, positions in the distribution appear to be quite stable. 

Following the wave of mass migration from the former USSR (1989 – 1995) capital-labor ratios 

naturally decreased especially in Haifa, which absorbed many immigrants. Subsequently, capital 

labor ratios recovered, eventually surpassing what they were in the late 1980s.   

Since 1967 the Ministry of Trade (now the Ministry of Economics) has operated an Investment 

Center, which provides investment grants as part of its regional development policy. Businesses 

in designated regional development zones (A, B and C) are eligible to apply to the Investment 
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Center for investment grants, which are awarded as percentages of the total investment. These 

percentages are highest in zone A and lowest in zone C. Priority is given to export businesses, 

and to industry rather than to services.  The criteria have varied over time as have the zones 

eligible for regional development support. Figure 2 plots the allocation of investment grants at 

constant 2005 prices by the Investment Center in each of the 9 regions. The main beneficiaries 

have been the North and South, and since 2007 the budget of the Investment Center has been cut-

back considerably. By contrast the central regions (excluding Jerusalem) have received almost 

nothing. 

Figure 3 plots the cumulative (since 1967) development grants received by the 9 regions. Since 

these are stocks, the data can only increase over time. However, these stocks no longer increase 

in regions that have ceased to be eligible for investment support. By contrast, the stock has 

increased in North and South and to some extent in Jerusalem.     

Table 1 Panel Unit Root Tests 

                           IPS                          CIPS 

                       d              0              1              0                 1 

lnk             1.07                 -3.92        -1.51             -3.75 

lnZ              -8.89             -8.15        -2.28            -3.64 

Notes: Order of differencing denoted by d. IPS: Unit root test due to Im, Pesaran and Shin 
(2003). CIPS: Unit root test due to Pesaran (2007)  

Panel unit roots tests are reported in Table 1 for the data in Figures 1 and 3. The IPS statistics 

assumes that there is no cross-section dependence between the panel units, whereas the CIPS 

statistics assume that there is strong cross section dependence.  The IPS statistic confirms that 

lnk is difference stationary, as does the CIPS statistic. Matters are more complicated in the case 

of the data in Figure 3 where both IPS and CIPS suggest that lnZ may be stationary. The problem 

is that for most regions lnZ maybe stationary, but in North, South and Jerusalem it is clearly 

nonstationary. In what follows it is assumed that lnZ is difference stationary.  

Results 

Model 1 in Table 2 tests CIPM by estimating equation (26) with µji imposed to be one. The 

GADF statistic (-0.691) greatly exceeds its critical value (-2.22), which clearly rejects CIPM. 
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There is extensive cross-section dependence between the 36 sets of residuals (BP = 303.7) since 

the critical value of chi square with 36 degrees of freedom is approximately 50. The average 

correlation between the 36 sets of residuals is 0.062, which is statistically significant since CD > 

1.96. Therefore, the null hypothesis of weak cross-section dependence is clearly rejected. On this 

basis the null hypothesis of CIPM, both strong and weak, is also clearly rejected. 

 Model 2 in Table 2 does not impose the restriction that µji = 1. When this restriction is lifted the 

average estimate of µ is 0.701, and the GADF statistic decreases sharply (-2.307), which 

nevertheless is slightly larger than its new stricter critical value (-2.489). Therefore, model 2 

comes close to being panel cointegrated. Cross-section dependence is even stronger than in 

model 1. The large standard deviation of µ (0.526) implies that the estimates of µ are widely 

dispersed; in 9 cases µ exceeds unity but µ is always positive. Model 2 indicates that there is 

substantial heterogeneity in µ, which is inconsistent with absolute CIPM, but may be consistent 

with relative CIPM. When homogeneity is imposed by restricting µji = 0.7, GADF increases 

sharply from -2.307 to -1.407, which clearly rejects homogeneity. 

Table 2 Tests of CIPM 

                
Model 

             
1 

            
2 

 
3 

           
4 

 
5 

           
6 

 
7 

 
8 

µ̂   1   0.701 
(0.526) 
            

1 0.700 
(0.499) 

1 0.0304 
(0.402) 

1 -0.077 
(0.627) 

δ̂      -0.288 
(2.560) 

0.216 
(1.839) 

  

π̂      0.043 
(2.672) 

0.604 
(1.794) 

  

η̂    0.019 
(0.349) 

0.035 
(0.161) 

    

κ̂        0.292 
(0.790) 

0.950 
(0.794) 

GADF1 -0.691  -2.307 -1.365 -2.486 -2.683 -2.967 -2.440 -2.843 
GADF* -2.220 -2.489 -2.489 -2.860 -2.860 -3.191 -3. -3.55 
BP 303.7 135 257.4 97.5 113 93.04 189.3 121.3 
CD 7.663 8.736 8.22 8.870 4.700 0.006 3.63 2.48 
ρ̂  0.062 0.071 0.067 0.072 0.038 0.00005 0.030 0.002 
Notes: Standard deviations in parentheses. GADF1 1st order group ADF statistic of residuals. BP Breusch-
Pagan LM test statistic for cross-section dependence in pairwise residuals. CD test statistic for weak 
cross-section dependence. ρ̂  Average cross-section correlation. In models 1, 3, 5 and 7 µ is imposed at 
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unity. GADF* Critical value of GADF at p = 0.05 one tail: Models 1 -6, Pedroni (1999) table 2, models 
7-8, Banerjee and Carrion-I-Silvestre (2011) table 1. 

 

Figure 4 plots the relationship between the estimates of µji from model 2 and the distance between j and i. 

If capital mobility varied inversely with distance, this relation should be negative. However, there is no 

relation between the two. 

Model 3 in Table 2 refers to equation (33) with µ imposed at unity. The specification of regional 

investment grants causes GADF to decrease substantially from -0.691 in model 1 to -1.365, 

which indicates that investment grants may have a role in the determination of regional capital-

labor ratios.  However, GADF falls well short of its critical value. When µ is estimated 

unconstrained, as in model 4, it is similar to its estimate in model 2, GADF becomes more 

negative than in model 2, but falls short of its critical value, and the p-value of model 4 is larger 

than that of model 2. The mean estimates of η in models 3 and 4 are positive, as expected, but 

they are widely dispersed (standard deviation of 0.349), and 12 of the 36 estimates are negative 

in model 3. 

Models 1 – 4 are strongly cross-section dependent. Models 5 and 6 add spatial dynamics to 

models 1 and 2 (as in equation 30), which is intended to pick-up weak (spatial) cross-section 

dependence. Indeed, the BP statistic decreases sharply from 303.7 to 97.5 in the case of model 1, 

and less dramatically in the case of model 2. Also, the CD statistic decreases and even ceases to 

be significant in model 6. In model 5 there is negative spatial dependence in the vicinity of 

region j and positive spatial dependence in the vicinity of region i, meaning that if k increases in 

the neighborhood of region j, k in region j is adversely affected, but the opposite happens if k 

increases in the vicinity of  region i. These spatial effects transform the GADF statistic from -

0.69 in model 1 to -2.64 in model 5. However, when CIPM is not imposed (as in model 6) 

GADF becomes more negative, the average estimate of µ is close to zero, and 14 out of 36 

estimates of µ are negative. In both models GADF falls short of its critical value, so neither 

model is panel cointegrated at conventional levels of probability.  

Finally, results for the common correlated effects estimator (equation 32) are reported in models 

7 and 8. CCE is expected to reduce strong cross-section dependence, which it does. CD in model 

7 is 3.63 compared to 7.663 in model 1, and it is 2.48 in model 8 compared to 8.73 in model 2. 
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However, CD in models 7 and 8 continues to be statistically significant, suggesting that further 

common factors may be required to take account of strong cross-section dependence. On average 

the loadings on the common factor are positive, so that the average elasticity of k with respect to 

average k is 0.29 in model 7 and 0.95 in model 8. However, there are 22 negative loading in 

model 7 and only 2 in model 8. The sharp decrease in GADF especially in model 7 compared to 

model 1 indicates the statistical importance of the common factor. However, GADF continues to 

fall short of its critical values. Moreover, in model 8 µ is almost zero.   

Inspection of the residual correlation matrix indicates that cross-section dependence is generic. 

Not only are pairwise residuals correlated for given origins and destinations, they are correlated 

when origins and destinations are separate. Therefore, the cross-section correlation is not induced 

by origin – destination fixed effects. The residuals between j and i and j and i` may be correlated 

because they share j in common. However, the residuals between j and i are just as likely to be 

correlated as the residuals between j` and i`.     

Strong cross-section dependence is present in all the results reported in Table 2. Intuitively, one 

learns less from dependent experiments than from independent experiments. The critical values 

for GADF are therefore too liberal because they assume that our 36 “experiments” are 

independent. Suppose, for example, that in model 2 GADF had been -3 instead of -2.307. In the 

absence of cross-section dependence model 2 would have been panel cointegrated. Matters might 

be different, however, if the cross-section dependence is sufficiently strong. There would be a 

dilemma because critical values for GADF in the presence of cross-section dependence are not 

available. Baltagi, Bressone and Pirotte (2007) and Beenstock and Felsenstein (2015) have 

shown that ADF tests are reliable in spatially dependent panel data, provided the dependence is 

not too great. The implications of strong cross-section dependence for the critical values of 

GADF have yet to be explored. Since in Table 2 GADF is always greater than its critical value, 

this dilemma does not arise.  

It was mentioned that if the data are nonstationary and cointegrated, there is no meaning, 

asymptotically, to the direction of regression models such as equation (26). Reversing the 

direction of the regression by regressing lnki on lnkj should produce the same result. In finite 

samples with T = 24, however, matters might be different. To investigate this, model 2 in Table 2 

was reversed. The mean estimate of 1/µ is 1.114 instead of 1.42, GADF is -2.19 instead of -
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2.307, BP is 130 instead of 135 and CD is 16.15 instead of 8.736. Therefore, reversing the 

regression makes a difference, but it is not sufficiently great to alter the results. In fact, GADF 

was slightly larger in all the models (model 4 -2.344, model 6 -2.876, model 8 -2.592). 

Therefore, the results in Table 2 are robust with respect to potential finite sample bias. 

Conclusions 

In the absence of data on regional returns to capital, estimates of regional capital stock data for 

Israel are used to carry out indirect tests of the hypothesis of perfect internal capital mobility. 

This issue is important because spatial general equilibrium theory assumes that capital is 

perfectly mobile within countries. Indeed, this is the first time that tests of internal capital 

mobility have been undertaken.  

Since the panel data in the study are nonstationary, the hypothesis of perfect internal capital 

mobility is carried out using panel cointegration methods. However, matters are complicated by 

the presence of cross-section dependence within and between the panel units, which weakens 

standard panel cointegration tests. These tests distinguish between perfect capital mobility, 

imperfect or partial capital mobility, and no capital mobility. Using annual data for 9 regions of 

Israel during 1987 – 2010, the hypothesis of perfect capital mobility is clearly rejected. Matters 

are less clear-cut regarding imperfect capital mobility. At conventional levels of probability, the 

data reject the hypothesis of partial capital mobility too. However, at laxer levels of probability 

the data do not reject this hypothesis. 

Attempts to account for strong and spatial (weak) cross-section dependence were only partially 

successful. The hypothesis of partial internal capital mobility is rejected in these specifications. 

If in a small country such as Israel it is difficult to find evidence in favor of perfect or even 

imperfect capital mobility, in large countries such as the US and the UK it might be even more 

difficult. At the very least, these results challenge the consensus that perfect internal capital 

mobility is an innocuous empirical assumption in spatial general equilibrium theory.                

    

 

  



18 
 

References 

Anselin J-L. (1988) Spatial Econometrics: Methods and Models, Kluwer, Boston. 

Banerjee A., Carrion-I-Silvestre J.L. (2011) Testing for panel cointegration using common 
correlated effects estimators. Dept of Economics, University of Birmingham. 

Baltagi B.H., Bressone G., Pirotte A. (2007) Panel unit root tests and spatial dependence. 
Journal of Applied Econometrics, 22: 339-360.  

Beenstock M., Ben Zeev N, Felsenstein D. (2011) Capital deepening and regional inequality: an 
empirical analysis. Annals of Regional Science, 47: 599-617. 

Beenstock M, Felsenstein D. (2015) Spatial spillover in housing construction. Journal of 
Housing Economics 

Chudik A., Pesaran M.H., Tosetti E. (2011) Weak and strong cross-section dependence and 
estimation of large panels. Econometrics Journal, 14: C45-C90. 

Glaeser E.L. Gottlieb J.D. (2009) The wealth of cities: agglomeration economies and spatial 
equilibrium in the United States. Journal of Economic Literature, 47: 983-1028. 

Im K.S., Pesaran M.H. and Shin Y. (2003) Testing for unit roots in heterogeneous panels. 
Journal of Econometrics, 115: 53-74.  

Krugman P. (1991) Geography and Trade. MIT Press.  

Nocco A. (2009) Preference, heterogeneity and economic geography. Journal of Regional 
Science, 49: 33-56. 

Pedroni P. (1999) Critical values for cointegration tests in heterogeneous panels with multiple 
regressors. Oxford Bulletin of Economics and Statistics, 61: 653-670. 

Pesaran M.H. (2007) A simple panel unit root test in the presence of cross section dependence. 
Journal of Applied Econometrics, 22: 265-312. 

Pesaran M.H. (2006) Estimation and inference in large heterogeneous panels with a multi-factor 
error structure. Econometrica, 74: 967-1012. 

Pesaran MH. (2013) Testing weak cross-sectional dependence in large panels. Econometric 
Reviews 

Roback J. (1982) Wages, rents and the quality of life. Journal of Political Economy, 90: 1257-
1278. 

Stock J. H. (1987) Asymptotic properties of least squares estimators of cointegrating vectors. 
Econometrica, 55, 1035-1056. 

 

 



19 
 

  



20 
 

Figure 1 Capital – Labor Ratios 

Thousands of shekels at 2005 prices  

 

Figure 2 Investment Grants (shekels at 2005 prices) 
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Fig 3 Cumulative Capital Investment by the Investment Center (shekels at 2005 prices) 

 

Figure 4 Relation between µ and Distance 
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