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Abstract

We show that when the true data generating process of a large
class of binary choice models contains conditional heteroscedasticity,
predictions based on the misspeci�ed MLE in which conditional het-
eroscedasticity is ignored, are una¤ected by the misspeci�cation.
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1 Introduction

In recent years qualitative response models have become popular in time
series analysis. In the �nancial context, in particular, they have been applied
in connection with the sign of asset return forecasts, as these may lead to
pro�table speculative positions and correct hedging decisions. See, among
others, Levich (2011). While, apriori, this class of models seems to be less
informative than continuous response models, Leung et. al.�s (2000) detailed
comparative study between binary and continuous response models revealed
that the former outperform the latter in its ability to generate trading pro�ts.
Sign forecastability has been assumed to be driven mainly by conditional

mean dynamics of the underlying process in most recent studies on this issue.
For instance, Nyberg (2011) examined the ability of the binary dependent
dynamic probit model to predict the direction of monthly excess stock re-
turns, extending Kauppi and Saikkonen�s (2008) model. He concluded that
in terms of out-of-sample performance, binary models can be useful in asset
allocation decisions, especially when the mean dynamics resemble an error
correction speci�cation.
Binary choice models were shown to be useful in the context of decom-

position - type models. For instance, Anatolyev and Gospodinov (2010)
expressed the �nancial asset return as a product of its sign and its absolute
value. The two components were modeled separately as a copula before a
joint forecast was constructed. Earlier, Rydberg and Shephard (2003) speci-
�ed the stock return as a product of two binary variables, de�ning the returns
direction and market activity, and multiplied by a process which de�nes the
size of a price change.
Previous �ndings on modeling conditional heteroscedasticity in qualita-

tive response models showed that the volatility parameters are statistically
signi�cant and may have a good explanatory power. Speci�cally, Dueker
(1999) modeled the discrete changes in the bank prime lending rate by a
dynamic ordered probit with Markov-switching conditional heteroscedastic-
ity. His results indicated that conditional heteroscedasticity plays an im-
portant role in explaining the data. Broseta (2000) reported a good �t
for a learning model in which the latent residuals were allowed to follow
an ARCH(1) process (Engle (1982)). Hausman and Lo (1992) estimated a
model for stock price changes with heteroscedastic ordered probit by dividing
the price changes into eight intervals.
In the same line of literature, Christo¤ersen and Diebold (2006) suggested
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that the volatility and other high - order conditional moments may produce
sign dependence, drawing the theoretical connection between the asset return
volatility dynamics and its sign forecastability. From their study it follows
that directional forecasts could be inferred from the volatility dynamics even
when the conditional mean is constant. There are numerous other stud-
ies that have documented the strong dependence of asset returns volatility.
For surveys of the empirical evidence and volatility modeling in �nance, the
reader is referred to Mikosch et. al. (2009) and Bollerslev et. al. (1992).
To this end, we consider in this paper the model

yt = 1fx0t
 + "t > 0g; t = 1; :::; n; (1)

where 1 f�g is the indicator function which takes the value of unity if the
condition in the brackets is satis�ed and zero, otherwise, xt is a K�1 vector
of explanatory variables which are assumed to be ergodic stationary, 
 is a
K�1 vector of unknown parameters, and for all t and s, conditional on Ft�1
and xs, "t � F (0; �2t ), where Ft is the increasing sequence of �-�elds gener-
ated by f"jgtj=1 and F is a symmetric CDF on which conditions are given
in Assumption A below. The conditional variance, �2t , is merely assumed to
satisfy some very mild regularity conditions so that the class of heteroscedas-
ticity models allowed is very general and includes in it, as a special case, the
prominent GARCH(p,q) speci�cation (Bollerslev (1986)). For this model,
under the classical assumptions including a �xed �2t , 8t, the main workhorse
for estimating this model is undoubtedly the probit maximum likelihood es-
timator (MLE), if F is normal, or by Logit, if F is logistic, although other
alternatives exist, such as Horowitz�s (1993) semiparametric estimator. It
is well known that under these restrictive assumptions (i.e., which include
homoscedasticity of "t), the MLE is consistent and asymptotically e¢ cient.
However, when the true data generating process follows (1) but is misspec-
i�ed to have homoscedastic "t, the MLE will no longer be consistent. See
for instance, Greene (2012, p. 693) and Yatchew and Griliches (1985) - the
latter developed an approximation for the probit MLE bias in the presence of
a simple heteroscedasticity form in a cross sectional context. We show in this
paper that this misspeci�cation will result in a positive scaling e¤ect on the
asymptotic mean of the MLE. This form of inconsistency under the general
setting has not been known hitherto. The implication is that, surprisingly,
the MLE - based predictions will be una¤ected by the misspeci�cation. In
other words, even if conditional heteroscedasticity of a general form will be
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ignored and the model will be estimated by the MLE, the predictions based
on the (wrong) estimator will be una¤ected. This result is of importance
and practical relevance because it has been widely acknowledged that the
volatility of asset returns varies across time.
Our main Theorems corroborate some of the simulation results reported

by Munizaga et. al. (2000), which revealed the remarkable robustness of
the misspeci�ed Probit and Logit model - based predictions to conditional
heteroscedasticity. Moreover, we show that t-tests can be based on the MLE
with reference to the standard normal distribution in spite of the misspeci�-
cation.
The main results of the paper are given in the following Section. Simu-

lations are reported in Section 3 and �nal remarks are provided in Section
4.

2 Main Results

By Ft�1 we denote the �-�eld generated by "t�1; "t�2; � � � . We shall make the
following assumption.

Assumption A

1. The data generating function is given by yt = 1fx0t
 + "t > 0g.

2. For all t and s, conditional on Ft�1 and xs, "t has a zero mean, con-
ditional variance �2t , 0 < �t < 1 and cumulative distribution func-
tion (CDF) F . The CDF F is smooth and strictly monotonic with a
bounded density f which has R as its support and which is symmetric.
In addition, F (�) is concave for � > 0.

3. The true parameter vector 
0 is an element of the interior of a convex
parameter space � � RK .

4. The K�1 vector xt is �nite, strictly stationary and ergodic, and is not
contained in any linear subspace of RK , 8t.

5. The process f�tg is strictly stationary and ergodic and independent of
xs, for all t and s.
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We remark that Assumption A(2) holds for the normal and logistic dis-
tributions. The misspeci�ed log-likelihood function in which conditional het-
eroscedasticity is ignored and �t is set to unity 8t, is given by

~ln(
) =

nX
t=1

~lt (
) ;

where
~lt (
) = yt log (F

�(x0t
)) + (1� yt) log (1� F �(x0t
)) (2)

and F � is the CDF of a random variable with a CDF F after it has been
normalized to have mean zero and unit variance. Similarly, by f � we denote
the density corresponding to F �. Let ~
n = argmax� ~ln(
). To emphasize, ~
n
is the maximizer of a misspeci�ed log-likelihood function. By E
0 we denote
an expectation taken under the true parameter value. The main result follows
below.

Theorem 1 Under Assumption A, there exists a �nite and positive � which
satis�es

0 <
1

E
0 (�t)
� � � E
0

�
1

�t

�
<1; (3)

such that ~
n
p�! �
0.

The MLE of the correct likelihood1, say 
̂n, is consistent. If, given xt = x,
the researcher wishes to base the predictive value, ŷt, of yt, according to the
rule ŷt = 1fF �(x0
̂n=�t) > 0:5g, then for large n; the rule is equivalent to
1 fx0
0 > 0g. Basing the prediction on ~
n instead does not a¤ect the result
because for large n it is tantamount to

1f�x0
0 > 0g = 1 fx0
0 > 0g :

In other words, the misspeci�ed MLE-based prediction remains unaltered
even though ~
n is inconsistent. This result corroborates some of the simula-
tion results of Munizaga et. al. (2000).

1By �correct likelihood�it is meant that, among other things, �t is correctly speci�ed.
In general, it would be a function of a �nite dimensional vector of parameters, as in the
GARCH(p; q) process, for instance, and its parameters would have had to be estimated
jointly with 
.

4



When the classical assumptions including homoscedasticity hold and the
usual normalization, �t = 1 8t, is imposed, it follows from (3) that � = 1,
i.e., that the MLE based on the correct speci�cation is consistent. Therefore,
Theorem 1 is a generalization of the standard result.

Proof of Theorem 1: The proof can be made by verifying the conditions
of Theorem 2.7 of Newey and McFadden (1994), the di¤erence being that
instead of the true parameter 
0, we will show that the ~
n converges to the
value 
� that uniquely maximizes E
0 [

~ln(
)]. To do so, we �rst note that for

 6= 
0,

E
0

�
(x0t (
 � 
0))

2
�
> 0:

As F is strictly monotonic, x0t
 6= x0t
0 implies F � (x0t
) 6= F � (x0t
0) and that
1 � F � (x0t
) 6= 1 � F � (x0t
0), so that ~lt (
) 6= ~lt (
0). Moreover, Assump-

tion A(4) implies that E
0

����~lt (
)���� < 1, 8
 2 � and thus, by Lemma 2.2
of Newey and McFadden (1994), identi�cation is established. Secondly, As-
sumption A(2) on the concavity of F implies that log (F (�)) is also concave
(see, for instance, Theorem 2.8 in De la Fuente (2000, p. 251)), which is
su¢ cient for the concavity of ~ln (
) (see, Newey and McFadden (1994), p.
2134). Third, as the process is ergodic stationary,

n�1~ln(
)
a:s:�! E
0

�
~lt (
)

�
= ~l0(
);

say, for all 
 2 �. Therefore, the conditions of Theorem 2.7 in Newey and
McFadden (1994) hold and we only need to �nd the unique value that max-
imizes ~l0(
).
Under Assumption A, ~l0(
) is a continuous, measurable and uniformly

bounded function, so that by the Lebesgue Dominated Convergence Theo-
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rem,

@~l0(
)

@


�����

=
�

= E
0

0@E
0
0@ @~lt(
)

@


�����

=
�

������Ft�1; xt = x
1A1A

= E
0

�
E
0

�
yt � F �(x0t
�)

F �(x0t

�)(1� F �(x0t
�))

f �(x0t

�)xt

����Ft�1; xt = x��
= E
0

�
f �(x0
�)x

F �(x0
�)(1� F �(x0
�)) (4)

� E
0
��
F �
�
x0
0
�t

�
� F �(x0
�)

�
[1 fx0
0 > 0g+ 1 fx0
0 � 0g]

���� x : x0
0 = a�� ;
where the expectation in the last line is conditional on the value of x such
that x0
0 = a, for some a 2 R. We proceed to treat the two parts of the
integrals, corresponding to 1 fx0
0 > 0g and 1 fx0
0 � 0g, separately. As f
is assumed symmetric around zero and F (�) is assumed concave for � > 0,
it also holds that F (1=�) is convex for � > 0 and that F (�) is convex for
� < 0 and therefore, under Assumption A,

F �
�

a

E
0 (�t)

�
1 fa > 0g � E
0

�
F �
�
x0
0
�t

�
1 fx0
0 > 0g

���� x : x0
0 = a�
� F �

�
aE
0

�
1

�t

��
1 fa > 0g (5)

and

F �
�

a

E
0 (�t)

�
1 fa < 0g � E
0

�
F �
�
x0
0
�t

�
1 fx0
0 < 0g

���� x : x0
0 = a�
� F �

�
aE
0

�
1

�t

��
1 fa < 0g : (6)

In view of (4), (5) and (6) and the fact that identi�cation of the MLE is
su¢ cient for the existence of a unique maximum, there exists a � satisfying
(3) such that 
� = �
0 and the theorem is proven. �
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Let

An(
) = �
1

n

@2~ln(
)

@
@
0

and

Bn(
) =
1

n

@~ln(
)

@


@~ln(
)

@
0
:

Theorem 2 Under Assumption A and if yt is strong mixing with mixing co-
e¢ cients �m satisfying

P1
m=1 �

�=(�+2)
m <1, for some � > 0: (i) An(~
n) converges

in probability to a �nite and nonsingular matrix

A (
�) = �E
0

0@ @2~lt(
)
@
@
0

�����

=
�

1A :
(ii) The limit

B (
�) = E
0

0@ 1
n

@~ln(
)

@


@~ln(
)

@
0

�����

=
�

1A
of Bn(
�) exists and

p
n
@~ln (
)

@


�����

=
�

d�! N(0; B(
�)):

(iii)
p
n(~
n � 
�)

d�! N(0; A�1 (
�)B� (
�)A�1 (
�)).

Proof of Theorem 2: By the Ergodic Theorem and from Example 1.2
of Newey and McFadden (1994), An (
) converges uniformly in probability
to a nonstochastic matrix A (
), 8
 2 �, and nonsingularity follows from
Assumptions A(2) and A(4). Part (i) of the Theorem is established upon an
application of Theorem 4.1.5 of Amemiya (1985) and Theorem 1 above. In
view of (2),

@~lt(
)

@

=

yt � F �(x0t
)
F �(x0t
)(1� F �(x0t
))

f �(x0t
)xt:

Under Assumptions A(2) and A(4), it is obvious that each of the elements

of the vector
n
@~lt(
)=@


o
is a bounded sequence. The CLT conditions of
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Theorem 18.5.3 of Ibragimov and Linnik (1971) are satis�ed, hence part (ii)
of the theorem is established. By the Mean Value Theorem,

0 =
@~ln(~
n)

@

=
@~ln(


�)

@

+
@2~ln(�
n)

@
@
0
(~
n � 
�) ;

where j�
n � 
�j � j~
n � 
�j. The remaining conditions of asymptotic nor-
mality of M-estimators (see, for instance, Theorem 4.1.3 of Amemiya (1985))
follow easily and so, the Theorem is proven. �

Mikosch et. al. (2009, p. 63) showed that the GARCH(p; q) process is �-
mixing with a geometric rate, which implies the condition stated in Theorem
2. We may apply the result of Theorem 2 to test the hypothesis H0 : 
j = 0
by using misspeci�ed MLE-based t-statistic

t =

p
n~
n;jq�

An(~
n;0)
�1Bn

�
~
n;0

�
An(~
n;0)

�1
��1
j;j

;

where ~
n;0 is the restricted MLE of 
. On an application of Theorem 2,

t
d�! N (0; 1) under H0.

3 Simulations

The goal of this section is to verify the theoretical results established in
Theorem 1. In particular, the convergence and consistency properties of the
probit and logit MLE when the error terms are generated by the GARCH(1,1)
process. Wolfram Mathematica 10 is used in the simulations and parameter
estimation. The simulated process is

rt = 
0 + 
1x1;t + 
2x2;t + "t;

"t = vt�t; �
2
t = ! + �"

2
t�1 + ��

2
t�1;

yt = 1frt > 0g;

vt
iid� N(0; 1) or Logistic(0;

p
3

�
);

�
x1;t
x2;t

�
iid� N

��
1
�2

�
;

�
1 0:3
0:3 3

��
;


0 = 0:3; 
1 = 0:8; 
2 = 0:9; ! = 1; � = 0:3; � = 0:2:
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To avoid a possible separation problem the set of explanatory variables was
built in a way that there is no dominant predictor. The process f"tg is strictly
stationary and ergodic, satisfying the conditions of Theorems 1 and 2 (see
Bougerol and Picard (1992), Mikosch et. al. (2009)). In addition, the un-
conditional variance, �2", is arbitrary chosen to be equal to 2. We generated
2000 samples, each with 250, 500, 1000, 2000 and 5000 observations. Tables
1- 4 summarize the misspeci�ed probit and logit simulation results. In all
cases, as n increases, the models�MLE converges to its limit and its variance
decreases, as expected. As Theorem 1 suggests, the models�parameter esti-
mates are inconsistent but converge to a positive scalar multiple of the real
parameters. Tables 2 and 4 present the average probit and logit bias factor
estimate �̂, which, for large n, is approximately equal to 0:72 and 0:73 for
the probit and logit models respectively. For the model under consideration,
we obtain ��1" = 0:707 and Ê

�
��1t

�
' 0:748, which is consistent with the

bounds given by (3).

4 Final Remarks

The results of Theorems 1 and 2 imply that for a rather general condi-
tionally heteroscedastic process that include as a special case the prominent
GARCH(p; q) process, the predictions which are based on the misspeci�ed
MLE are una¤ected by the misspeci�cation and a t-statistic for the hypothe-
sis H0 : 
j = 0 can still be based on the estimator using the standard normal
distribution. In particular, practitioners who wish to construct sign predic-
tions of �nancial asset returns, for instance, can do so ignoring conditional
heteroscedasticity.
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Table 1. Misspeci�ed Probit model simulation results
n ~
0 ~
1 ~
2

250
0:222
(0:043)

0:597
(0:016)

0:67
(0:01)

500
0:219
(0:02)

0:585
(0:007)

0:658
(0:005)

1000
0:219
(0:009)

0:583
(0:004)

0:652
(0:002)

2000
0:218
(0:005)

0:576
(0:002)

0:65
(0:001)

5000
0:215
(0:002)

0:576
(0:0007)

0:649
(0:0004)

Note: the values represent the mean and variance (in brackets) of the
misspeci�ed probit MLE.

Table 2. Misspeci�ed Probit MLE bias factor estimate (�̂)
n = 250 n = 500 n = 1000 n = 2000 n = 5000

~
0=0:3 0:739 0:731 0:731 0:727 0:718
~
1=0:8 0:746 0:732 0:723 0:720 0:720
~
2=0:9 0:744 0:731 0:725 0:723 0:721

Note: the values represent the probit MLE estimates from Table 1 divided
by the real parameter values.
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Table 3. Misspeci�ed Logit model simulation results
n ~
0 ~
1 ~
2

250
0:229
(0:042)

0:605
(0:017)

0:68
(0:011)

500
0:22
(0:02)

0:592
(0:008)

0:667
(0:005)

1000
0:218
(0:009)

0:593
(0:004)

0:664
(0:002)

2000
0:219
(0:005)

0:587
(0:002)

0:661
(0:001)

5000
0:22
(0:002)

0:584
(0:0008)

0:659
(0:0005)

Note: the values represent the mean and variance (in brackets) of the
misspeci�ed Logit MLE.

Table 4. Misspeci�ed Logit MLE bias estimate (�̂)
n = 250 n = 500 n = 1000 n = 2000 n = 5000

~
0=0:3 0:764 0:734 0:726 0:729 0:732
~
1=0:8 0:758 0:74 0:741 0:734 0:731
~
2=0:9 0:756 0:741 0:738 0:735 0:732

Note: the values represent the Logit MLE estimates from Table 3 divided
by the real parameter values.
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