LEAST SQUARES AND IVX LIMIT THEORY IN SYSTEMS
OF PREDICTIVE REGRESSIONS WITH GARCH
INNOVATIONS

By

Tassos Magdalinos

November 9, 2016

RESEARCH INSTITUTE FOR ECONOMETRICS
DISCUSSION PAPER NO. 5-16

Research Institute for Econometrics
NPIVMNPRT PNN 1IN

DEPARTMENT OF ECONOMICS
BAR-ILAN UNIVERSITY
RAMAT-GAN 5290002, ISRAEL

http://econ.biu.ac.il/en/node/2473



http://econ.biu.ac.il/en/node/2473

Least Squares and IVX Limit Theory in Systems
of Predictive Regressions with GARCH

innovations!

Tassos Magdalinos
University of Southampton, UK

9 November 2016

!The author acknowledges research support by the ESRC under grant RES-061-25-0517
and by the British Academy under grant SG151171.



Abstract

The paper examines the effect of conditional heteroskedasticity to least squares infer-
ence in stochastic regression models. We show that a regressor signal of exact order
O, (n'te) for arbitrary o > 0 is sufficient to eliminate stationary GARCH effects
from the limit distributions of least squares based estimators and self-normalised test
statistics. The above order dominates the Oy (n) signal of stationary regressors but is
dominated by the O¢ (n?) signal of I(1) regressors, thereby showing that least squares
invariance to GARCH effects is not an exclusively I(1) phenomenon but extends to
processes with persistence degree arbitrarily close to stationarity. The theory val-
idates standard inference for self normalised test statistics based on: (i) the OLS
estimator when a € (0,1); (ii) the IVX estimator (Phillips and Magdalinos, 2009;
Kostakis, Magdalinos and Stamatogiannis 2015a) when o > 0, when the innovation
sequence of the system is a stationary vec-GARCH process. An adjusted version of
the IVX testing procedure is shown to also accommodate stationary regressors and
produce standard chi-squared inference under conditional heteroskedasticity in the
innovations across the full range o > 0.

Keywords: Central limit theory, Conditional Heteroskedasticity, Mixed Normality,
Wald test

AMS 1991 subject classification: 62M10; JEL classification: C22



1. Introduction

The effect of conditional heteroskedasticity in autoregressive and stochastic regres-
sion models has been a topic of intense research activity since the introduction of
ARCH and GARCH processes by Engle (1982) and Bollersev (1986). Limit theory
for stationary autoregressive moving average (ARMA) time series with conditionally
heteroskedastic innovations has been developed by Weiss (1986) and Pantula (1989)
in the case of ARCH innovations and Ling and McAleer (2003) in the case of vector-
valued processes with GARCH innovations. Early work on least squares estimation
of non stationary autoregressions with ARCH(1) and GARCH(1,1) innovations can
be found in Pantula (1989) and Ling and Li (1997a). Asymptotic theory for quasi
maximum likelihood estimation has been developed for both stationary and non sta-
tionary times series with GARCH innovations: see Ling and Li (1997b), Ling and Li
(1998), Ling and McAleer (2003) and references therein.

The current literature on least squares estimation of autoregressive processes with
conditionally heteroskedastic innovations reports that the presence of GARCH effects
in the limit distributions of the OLS estimator and the associated t and Wald test
statistics depends on the stationarity properties of the autoregressive process. In the
case of stationary autoregressions, both the convergence rate and the limit distrib-
ution of the OLS estimator are affected: the standard \/n-consistency rate requires
finite fourth moments (a condition that imposes restrictions on the GARCH coeffi-
cients) and, even when the /n rate is achieved, the asymptotic variance of the OLS
estimator depends on the GARCH parameters in a way that invalidates standard t
and Wald hypothesis tests. The situation is different for models with nonstationary
time series, where GARCH innovations make no contribution to the limit distrib-
ution of the OLS estimator and the usual Dickey-Fuller type t and Wald tests are
asymptotically valid. This asymptotic invariance continues to apply in models with
near-integrated time series with local to unity roots of the form p, = 1 + ¢/n, where
n is the sample size (Phillips, 1987a, Chan and Wei, 1987) and their vector-valued
extensions with autoregressive matrix of the form R, = I + C'/n (Phillips, 1988).

This I(0)-I(1) dichotomy has a signal-to-noise ratio interpretation: a near-integrated
regressor has sufficient signal, of order O, (n?), to asymptotically eliminate stationary
GARCH effects; such elimination cannot be achieved by the weaker O, (n) signal of
a stationary regressor, resulting to the contribution of GARCH effects to the least
squares limit distribution. This insight raises the issue of the existence of a minimal
order of regression signal required to eliminate GARCH effects, leading naturally to
the investigation of intermediate regression signals arising from near stationary time
series. The class of near stationary time series, introduced by Phillips and Magdalinos
(2007a & 2007b) in the case of scalar autoregressions and Magdalinos and Phillips
(2009) in the case of vector autoregressions and systems of regression equations, has
intermediate I(0)-I(1) persistence rate driven by an autoregressive root of the form
p, = 1+c/n® where ¢ < 0 and a € (0,1). The signal generated by such processes is of



order O, (n'™*) and varies continuously with the exponent «, establishing boundaries
with nearly integrated processes as & — 1 and stationary processes as a — 0.

The present work develops a limit theory for near-stationary predictive regression
systems with general GARCH innovations, assuming covariance stationarity of the
GARCH process. We show that, for any a € (0,1), GARCH effects are eliminated
from the limit distribution of the least squares estimator, thereby establishing that
any regressor signal strictly dominating the O, (n) signal of stationary processes is
sufficient to asymptotically eliminate GARCH effects. The OLS estimator has an
identical Gaussian limit distribution to that established by Magdalinos and Phillips
(2009) under conditionally homoskedastic innovations and the usual Wald statistic
(without heteroskedasticity correction) for testing restrictions on the regression coef-
ficient matrix has a standard chi-squared limit distribution. To our knowledge, this
is the first result of its kind, with standard Gaussian and chi-squared asymptotics
applying respectively to the OLS estimator and the Wald statistic in a stochastic
regression model with conditionally heteroskedastic innovations.

The development of least squares limit theory for the case of near stationary
regressors is the key step towards extending the validity of the IVX endogenous
instrumentation procedure, introduced by Phillips and Magdalinos (2009) and fur-
ther developed by Kostakis, Magdalinos and Stamatogiannis (2015a) (henceforth PM
(2009) and KMS (2015a)) to accommodate the presence of conditional heteroskedas-
ticity in the innovations. In the current predictive regression context, KMS (2015a)
show that the IVX procedure is robust to different types of persistence, including
purely stationary (« = 0), near stationary (« € (0,1)) and near integrated (a > 1)
time series regressors. In this paper, the method is shown to be robust to GARCH
effects near stationary and near integrated systems. In predictive regression with
purely stationary regressors, KMS (2015a) show that the IVX and OLS procedures
are asymptotically equivalent, so the IVX estimator inherits the usual GARCH effects
present in the asymptotic variance of the least squares estimator. A White (1980)
type of correction is shown to make the IVX procedure operational for all persistence
regimes « > 0 under conditional heteroskedasticity.

The paper is organised as follows. Section 2 outlines a general modelling frame-
work for a system of predictive regressions with unknown persistence properties
and conditionally heteroskedastic innovations of a general covariance stationary vec-
GARCH type. Section 3 develops a limit theory for the OLS estimator in the near
stationary o € (0, 1) case and shows that GARCH effects are asymptotically elimi-
nated and do not affect least squares based estimation and hypothesis testing pro-
cedures. Section 4 develops a limit theory for the IVX estimator and the associated
Wald statistic for systems of predictive regressions of arbitrary integration order and
GARCH innovations. Section 5 provides some further discussion of the results and
Section 6 includes all proofs.



2. Predictive regression with GARCH innovations

We consider the triangular system of predictive regressions (cf. Magdalinos and
Phillips, 2009, 2009b; Kostakis, Magdalinos and Stamatogiannis, 2015)

Yy = p+Axrq +ey, (1)
Ty = ant—l + Ug, (2)

where A is an m X r coefficient matrix and
C
R,=1,+— forsomea >0 (3)
na

where n denotes the sample size. We distinguish between the following classes of
regressor processes:

(Pi) Near-integrated regressors, if a > 1 in (3).

(Pii) Near-stationary regressors, if o € (0,1) in (3) and C is a negative stable ma-

trizt.
(Piii) Stationary regressors, if a =0 in (3) and R = I, + C satisfies ||R|| < 1.
The system is initialized at some xy = o, (no‘/ 2). The stochastic properties of the

innovation sequences ¢; and u; are that satisfy the following condition.

Assumption INNOV. Let (1,),., be a sequence of independent and identically
distributed random vectors with & (n,) = 0, B (n,1}) = Lnyr and 1, = [0, 1] with
ne € R™ and n,, € R".

(i) The sequence (e¢),c; in (8) is a strictly stationary process admitting the follow-
ing vec-GARCH (p, q) representation:

q p
€ = Htl/QnEt, vech (Hy) = ¢ + Z Ajvech (g,_58,_;) + Z Byvech (H_x) (4)

i=1 k=1

where ¢ is a constant vector, A;, By are positive semidefinite matrices for all
i,k, and the spectral radius of the matrizx T' = Y ! | A; + > 7_, Br satisfies
p () < 1.

(ii) The sequence u; in (2) is a linear process

w = Ciey Y 7G| < oo (5)
j=0 7=0

'A square matrix is called negative stable if all its eigenvalues are strictly negative.
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where (Cj),, a sequence of constant matrices such that C (1) = > 20 Cj has
full rank and Cy = I, and the sequence (€;),o, in (5) a strictly stationary vec-
GARCH (p, q) process:

q
— F[tl/2776t’ vech (F[t) = Z Vech et i€ Z Zékvech (ﬁt,k> (6)

k=1

where  is a constant vector, A;, B, are positive semzdeﬁmte matrices for all
ik, and the spectral radius of the matriz T = A + Zk 1Bk satisfies

p(r> <1

(i) Eei]|* < oo and E ||eq|* < oo.

Assumption INNOV accounts for conditionally heteroskedastic innovations with
finite fourth moments of a very general form: the vec-GARCH process in (4) and (6)
is the most general multivariate GARCH specification (see Chapter 11 of Francq and
Zakoian (2010)). The positive semidefinite condition on the matrices A;, By, of (4) and
the condition on the spectral radius of their sum are part of the standard Boussama
(2006) conditions for the existence of a stationary ergodic solution of the vec-GARCH
process; see Theorem 11.5 of Francq and Zakoian (2010). The independence of the
sequence (7);),c, and the specification of the innovation processes in (4) and (6) imply
that ; and ¢; are martingale difference sequences with respect to F; := o (n,,17,_1, ...)
satisfying 3

Ez,_, (eig}) = Hy and Eg,_, (ee}) = Hy. (7)

The summability condition (5) is standard in the literature on short-memory
linear processes (see Phillips and Solo, 1992). Using the Beveridge Nelson (BN)
decomposition, we obtain the following representation for wu;

u=C(1)e, — Aé, for é, = ZCet —i C = Z Cr, (8)

k=j+1

2
where > % HC]‘ H < 00 is assured by the summability condition in (5) by Lemma 2.1

of Phillips and Solo (1992). Consequently, é; is a strictly stationary ergodic process
satisfying E||&;|* < oo and the ergodic theorem yields

J
- ; ey —qs. B (E1u)) Z I, 9)

as n — 0o, where I'; (.) denotes the autocovariance matrix I';, (j) = E (U1U'1,j) :



!/
Denoting the demeaned regression matrices in the system (1)—<(2) by Y = (g’l, Y ) :

o / / / ro —y r —/ - -1 n
X = (20,2, ), where ¢ = i — @, 2 = ¥, — T4, Yo = 0" D0,y and

Tpo1=n"1Y 1 x41, the OLS estimator of A in (1) is given by
Ay =Y'X(X'X)". (10)

The effect of GARCH innovations on the asymptotic theory of the least squares es-
timator of A is known to differ according to persistence class of the regressor x; in

(2). For stationary processes in class (iii), y/nvec (An — A) is asymptotically zero

mean Gaussian with non-standard asymptotic variance that depends on the GARCH
parameters and the fourth moment of the innovations. As a result, the usual self-
normalised hypothesis tests will be invalid and a White (1980) type of correction is
necessary to obtain correctly sized t and Wald tests. The situation is very different
for the near-I(1) processes of class (i), where the non-standard limit distributions of

nvec (fln — A) in the unit root and local to unity cases (Phillips 1987, 1988; Chan

and Wei, 1987) are invariant to the presence of GARCH effects and the associated
Dickey-Fuller type t and Wald tests remain valid without corrections for conditional
heteroskedasticity. This dichotomy has a signal-to-noise ratio interpretation: station-
ary GARCH effects in the noise of the system (1)-(2) are asymptotically eliminated
by the strong signal Y ;| 2,17} _; = O, (n?) of a near-integrated process in class (i).
On the other hand, the weaker O, (n) signal of a stationary process in class (iii) is
not sufficient to eliminate GARCH effects from the noise. Given the vast discrepancy
in the order of magnitude of the above signals, a natural question is the existence
of a "minimal" order of magnitude for the signal of x; to asymptotically eliminate
GARCH effects. An affirmative answer requires the development of a limit distribu-
tion theory for the least squares estimator in the intermediate case of near-stationary
regressors of class (ii), undertaken in the next section.

3. Least squares limit theory for near-stationary
systems with GARCH innovations

We develop a limit theory for the centred least squares regression estimate

-1
ta [ 1 < 1 < 1
nos (An — A) = (ﬁ ;1 5tx;_1> (W gl $t_1£l72_1> + 0, ( 1a) (11)

n 2

for regressors x; belonging to the class P(ii) of near stationary processes. The as-
ymptotically negligible term above arises from estimating the intercept in (1) and
employing the demeaned series for y; and z;_; for the construction of the OLS esti-
mator A,; in the case of stationary and near stationary regressors this demeaning is



eliminated asymptotically?. Our approach follows Magdalinos and Phillips (2009) in
the sense that we derive a law of large numbers and a martingale central limit the-
orem, respectively, for the denominator and numerator of the matrix quotient (11)
and use this to extract the limit theory. The main technical issue is to obtain the
probability limit of the quadratic variation of the martingale transform in the nu-
merator of (11) when ¢; is a vec-GARCH process defined in (4). An approximation
to this quadratic variation is achieved by reducing the problem to the existence of a
stable solution to a stochastic recurrence relation involving products of innovations
and covariates, see Lemma 3.4. Stability of the solution permits standard martingale
approximation arguments (Lemma 3.5) that resolve the asymptotics in (11).

To fix ideas, we establish some notation for the recursive equations that we employ
in the development of the asymptotic theory. Given the matrices A4, ..., A,, By, ..., B,
in (4), define

Ai+ B, if i<pAgq

C;, = A, if p<i<yg (12)
B, it g<i1<p

I, = [,®C;, Th,=R. @R &C; (13)

and consider the stochastic difference equations:

Y () = D LY (G—1)+v(j) (14)
Yo(i) = D TuYa (=1 +0.(j) (15)

for j > 1 and k := ¢ V p. The companion matrix associated with (15) is given by

[ Fn,l Fn,2 1_‘n,,‘i—l Fn,n i
1 0 .. 0 0
My.=| 0 1 . : (16)
: 0 0
0o .. 0 I 0 |

where all identity matrices are of order r?m (m + 1) /2 x r*m (m + 1) /2. The com-
panion matrix associated with (14), denoted by M,,, has the same form as the matrix
in (16) with I',,; replaced by I'; for all i € {1,...,x}. It is relatively straightforward
to show from first principles that the stationarity conditions for the GARCH process
ensure the stability of the solution of (14) and (15).

2See the proof of Theorem 3.7 in the Appendix for details and the proof of (11).



3.1 Lemma. Under Assumption INNOV, the spectral radius and norm of the com-
panion matrices M, ,, and M, defined in (16) satisfy:

(1) p(My) <1and 3572, [|MI]] < o0
(ii) p(Myx) <1 for all but finitely many n, and sup,>q Y, | M ,.|| < oo.

We begin by providing some useful results involving the regressor x; and its ap-
proximant ¢, , arising from the BN decomposition (8).

3.2 Lemma. Under Assumption INNOV, the process
Cop =D RIC()ery (17)

satisfies the following:
(i) maxi<icn B |22, || = 0 (1).
(ii) L, 'nM /2 maxi <1<, ||C4]| —p O for an arbitrary sequence L,, — oo.
(iff) maxi<men [0 35 (Copr @ ) [, — 0
(iv) n= 250 (2 ®er) — Sy (Cuir @) || =0, (1)

We now consider the sample moment matrix ), , ;2}. The following result shows
that n=*=*>""" | z,x} has the same probability limit as in the case of a near-stationary
regressor generated by a conditionally homoskedastic martingale difference e;, see
Magdalinos and Phillips (2009a). Denote the autocovariance matrix of u; by I', (j) =
E (ulu’l_j) and the associated long run covariance Q,, = > 2 T, (j). Positive
definiteness of €2,, and the negative-stable property of C' imply that the matrix

Vo = / "¢ Qe dr (18)
0
is well defined and positive definite.

3.3 Lemma.

(i) n~m® HZ?:1 Ty 1Ty g — Z?:l Cn,t—l(:z,tAH = 0p (1)
(i) n >0 Cur1Cni1 —p Vo where Vi is the matriz in (18).



Lemma 3.4 shows that stationary GARCH effects are eliminated from the first
order asymptotics of the denominator of the matrix quotient (11), for a near station-
ary regressor x; of arbitrary order. The asymptotic development so far was based on
unconditional moment bounds and truncation based on Lemmata 3.1 and 3.2: the
GARCH specification (4) has not been employed. Obtaining the limit distribution of
the martingale transform in the numerator of the matrix quotient (11), asymptotically
equivalent to

n

1
n(1+a)/2 Z (Crp1 @) (19)

t=1

N, =

in view of Lemma 3.2(iv), is more challenging. We show that the predictable quadratic
variation of IV,

n n

1 1
<N>n = ita Z (Cn,t—lgln,tfl ® E}—t—lgtg;) = nlta Z (Cn,t—lcgz,tfl ® Ht) (20)

t=1 t=1

with H; defined in (4), can be approximated by

n

1
Vi = Z (Cn,th%t_l ® 255) , Ve = E51€,1 (21)

1+«
n
t=1

with approximation error expressed in terms of the solution of a stochastic recurrence
relation arising from (4), and that the stability of this solution implies the asymptotic
negligibility of the approximation error.

The next result shows how the error of approximating the quadratic variation
(N), in (20) by V,, in (21) can be estimated by using a bound that depends on the
solutions of (14) and (15).

3.4 Lemma. Consider the vector-valued processes

¥ (j) = vec(ere; — Lee) ® vech (Hy ) (22)
Snt(j) = R)C.y 1 ® RLC (1) e, @ vech (Hyyy) (23)

with Hy defined in (4) and

w; = vech (e, — Hy) . (24)
(i) For each j > 1 and fized t, ¥4 (j) satisfies (14) with innovations v (j) = v (j)
given by
q
v (§) = vec (e€) — Bee) @+ > (I @ Ay) [vec (€46 — See) @ wyija] . (25)

=1



(ii) For each j > 1 and fized t, n, S, (j) satisfies (15) with innovations v, (j) =
Unt (j) given by
Unt (J) = R, 1 @R,C (1) €t®90+z (Ie @ A;) [RICps 1 © RLC (1) € @ wiyj] -
i=1
(26)
(ili) Given the sequences (N), and V,, in (20) and (21), the following bound applies:
[{N)y = Vall < b (0 + sn) + 0, (1) (27)

as n — 00, where

n—1 n—j n—1 n—j
1 2051 . 1 .
o= e DBV XSG s = DD S ()| (28)
j=1 t=1 j=1 t=2

and b € (0,00) is a uniform constant.

By Lemma 3.4, the processes in (22) and (23) can be expressed as the companion
form solutions of the stochastic recurrence relations (14) and (15), see (64) and (65)
in the Appendix. The leading terms of these solutions consist of "moving averages" of
the martingale difference sequences (25) and (26) weighted by powers of the compan-
ion matrices M, and M, , respectively. The stability property of the latter allows to
employ standard martingale arguments to demonstrate that the bounding sequences
o, and s, in (27) are asymptotically negligible.

3.5 Lemma.
(i) The bounding sequences in (27) satisfy 0, —, 0 and s, —, 0.

(ii) The martingale transform in (19) satisfies the conditional Lindeberg condition

£,(8) =3 B, (E1{l6u] > 5}) =, 0 550

t=2

U)Zth Snt = n_HTa ||8t|| HCntle .

Part (i) of the above lemma implies that the predictable quadratic variation of
the martingale transform in (19) with &, following the vec-GARCH process (4) can be
approximated by its counterpart when ¢; is conditionally homoskedastic. Combined
with the Lindeberg condition of part (ii), a standard martingale central limit theorem
applies to the numerator of the matrix quotient (11), and shows that the asymptotic



variance of the OLS estimator A, is invariant to GARCH effects. The asymptotic
distribution of the associated Wald statistic

~ / ~ -1 ~
W, = (Hveed, —n) {B [(x'X) @S| H'} - (Hvecd, —h)  (29)
for testing linear restrictions on the coefficient matrix
Hy : Hvec (A) = h, (30)

where H is a known ¢ x mr matrix with rank ¢ and h is a known vector, follows
directly from that of A,. Since the & sequence is uncorrelated, ¥.. in (29) is a
simple parametric estimator .. = n~! > i, &€, based on the residuals of (1): & =
Ye — Un — A, (x4—1 — Tp_1). These results are summarised below.

3.6 Theorem. Consider the system of predictive regressions (1)-(3) with « € (0, 1),
C' a negative stable matriz and e, u; satisfying Assumption INNOV. The following
limits apply as n — oo:

(1) n_(1+0‘)/2 Z?:l (.Tt_l ® €t) = N (0, VC & Ees)
(i) nt*)/2vec( A, — A) = N (0,V5' @ 2..)

(iii) W, = x?(q), under (30)
where q is the rank of H in (30), Vi is defined in (18) and X.. = Beie].

Analogous results apply to the OLS estimator R,, of the vector autoregressive
process in (2), with martingale difference innovations u; = e; that satisfy the vec-
GARCH specification (6). The associated Wald statistic for testing Hy : Hrvec(R,) =
hgr, where Hp is a known ¢ x r? matrix with rank ¢ and hp is a known vector, is
given by

. / . -1 .
Wk — (HRvecRn - hR> {HR [(X’X)*1 ® Euu} Hg} (HRvecRn - hR) (31)
where 3, = n~! > i U4y is based on the (2) residuals 4y = x — Ry2y—1.

3.7 Theorem. Consider the vector autoregression (2)-(3) with o € (0,1), C a

negative stable matriz and strictly stationary ergodic innovations uy = e; = H'tl / 2776t
with H; generated by (6). Under Assumption INNOV, the following limits apply as
n — oo:

(1) Tl_(1+a)/2 Z?:l ((Etfl X Ut) = N (0, VC X Euu)
(i) n(+)/2yec (Rn . Rn) = N (0,V5" ® %)
(it)) W= x*(q),

where q is the rank of Hg and Vi is defined in (18).
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3.8 Remarks.

(i) Theorems 3.6 and 3.7 provide a full characterisation of the effect of GARCH
innovations in stochastic regression models by considering regressors with signal
that is intermediate to the O, (n?) signal of I(1) processes and the O, (n) signal
of 1(0) processes. We show that a regression signal of order

Z T Ty = Oy (nLn) (32)

t=1

where L,, — oo at arbitrary rate is sufficient to asymptotically eliminate sta-
tionary GARCH effects from the distribution of the least squares estimator and
the associated self-normalised test statistics. The implication is that the elim-
ination of GARCH effects from least squares regression asymptotics is not an
exclusively I(1) phenomenon: it occurs when the regressors exhibit persistence
of any degree, including near-stationary regressors that are arbitrarily close to
stationarity. Note that the polynomial rate given to the sequence L, above
serves solely the purpose of facilitating the presentation by employing existing
notation of PM (2009) and KMS (2015a): all mathematical arguments carry
through trivially by replacing the rate n® with an arbitrary sequence L,, — oo
with L,,/n — 0.

(ii) The result has an intuitive signal to noise interpretation: the O, (n) signal
in stationary regression is not sufficiently strong to asymptotically remove the
effects of conditional heteroskedasticity in the noise; this only becomes possi-
ble when the regression signal is strengthened to (32), while the order of the
conditionally heteroskedastic innovations remains 1(0).

4. IVX limit theory with GARCH innovations

Having characterised the asymptotic behaviour of the least squares estimator in near
stationary systems with conditionally heteroskedastic innovations, we turn to the
issue of conducting inference in the predictive regression system (1)-(3) when the
order of regressor persistence is unknown. A robust methodology that produces
standard inference for testing restrictions on the matrix A of coefficients in (1) across
all persistence regimes P(i)-P(iii) based on an endogenous instumentation procedure,
termed IVX, has been proposed by PM (2009) and further developed in the current
predictive regression context by KMS (2015a). In this paper, we investigate the extent
to which the above procedure is valid under conditionally heteroskedastic innovations.
To fix ideas, instruments are constructed by differencing the regressor z; and a

New process
Zv=Rp.Ze 1+ Ay Zp=0 (33)

11



is generated according to an artificial autoregressive matrix

C;

an = I’r‘ + —,
np

pe(0,1), C, <0, (34)
with specified persistence degree 5. The matrix A of coefficients in (1) is then esti-

mated by a standard instrumental variable estimator that employs the instruments
in (33):

Ax =Y'Z (g’Z) - (35)

The asymptotic development of the previous section is the key to the determina-
tion of the asymptotic properties of the above IVX estimator under GARCH effects.
The asymptotic behaviour of the numerator of the matrix quotient in (35) is driven
by the martingale transform

n

~ 1 B
No = —rargs 2 (1 ® 1) (36)

t=1

with instrument process z; behaving asymptotically like a near stationary process of
the type P(ii): when 8 < « (in which case the instruments are less persistent that
the regressors) Z;_; can be replaced asymptotically in (36) by z;_1, where

2= Rz 1 + g (37)

a n’-near-stationary process; when 3 > «, employing more persistent instruments
than the regressor in (2) results to Z; behaving asymptotically as the regressor z,
a necessarily near-stationary process by the choice of § in (34), in which case N,
in (36) is asymptotically equivalent to N,, in (19); see Lemma 3.1(i) and Lemma
3.5(i)? of PM (2009) and Lemma B2(iv) of KMS (2015b). We conclude that the limit
distribution of N, in (36) can be derived directly from Theorem 3.7(i). Denote a
strictly stationary ergodic version of x; when oo = 0 by

vos =Y Ruj, R=1,+C, ||R| <1, (38)

Jj=0

and the constant matrices

z

Ve, = / e Qe dr and V = / e Veerdr. (39)
0 0

3In the context of this paper, the statement of Lemma 3.5(i) of PM (2009) is valid for all a € (0, 3)
since the innovation sequence ug; = €; is a martingale difference.
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4.1 Theorem. Consider the model (1)—(3) under Assumption INNOV with instru-
ments Z; defined by (34) cmd (33’) Let B, be a r-variate Brownian motion with
covariance matric Q.,, Jo (t f et=9)dB, (s) be an Ornstein-Uhlenbeck process
and let

Eu(t)zBu(t)—/olBu (it Lo ()=o)~ [ o)

denote the demeaned versions of B, and Jc. The following limit theory as n — 00
applies for the estimator Apyx in (35):

+8

~ / ~
(i) when B < aAnl, anvec( wx —A) = MN ( (\I/;J) CVe,CU.l @ Z€€>

(ii) when a € (0,5), n' 2" vec(AIVX - A> = N (0,V;' ® Z..)
) = N (0, V100 (V) @ 3.

(iii) when o= >0, n e VGC(A[VX -
(iv) when o =0, fvec(AIVX - A) N (0,V)

where x4 is defined in (38), the matrices Vo, Vo, and V are defined in (18) and
(39);

Vo= (DEIOJ@"/&JA ® Im) E (w0,170,1 ® £255) ([Efﬂo,lx’o,l}_l ® ]m) (40)

and \iluu s a random matriz given by @uu = Quu —l—fol JodJl when o > 1 with C' =0
when o > 1, and U, = QD + VeC when a < 1.

4.2 Corollary. Under Assumption INNOV, the IVX-Wald statistic
. . ' . -1 -
W, = (HvecAIVX - h) {H [(&’PZX)_l ® 2%} H’} (HvecAWX - h) (41)

for testing the hypothesis (30) has a x* (q) asymptotic distribution when o > 0.

The only class of predictor variables not covered by Corollary 4.2 is that of purely
stationary autoregressions P(iii) with conditionally heteroskedastic innovations. This
is by no means surprising since, in the above case, the IVX-Wald test statistic is
asymptotically equivalent to a standard OLS-Wald statistic which is known to have
a non-standard limit distribution under conditionally heteroskedastic innovations.
When z; is a stationary process and the innovation sequence ¢; in (1) is condition-
ally heteroskedastic, the asymptotic variance of n=%/2Y" (7, 1 ® &) is given by
T = E (z;-17)_; ® g,£}) and does not factorise to E (z;_17}_;) ® .. as in the case
when &; are conditionally homoskedastic; consequently, the matrix n (X'X )71 ® 5356
is no longer a consistent estimator of the asymptotic variance of the (asymptotically
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equivalent) OLS and IVX estimators, so both the OLS and IVX based Wald statistics
will fail to be asymptotically x? (¢). The standard limit distribution can be recovered
by introducing a White (1980) type of correction in the Wald statistic, which requires
consistent estimation of nT when x; is a stationary process. In order to preserve the
robustness of the IVX procedure to the persistence properties of x;, we employ the

estimator
n

Yo=Y (Baz, ®&8) (42)

t=1
where Z; are the IVX instruments in (33) and &; are the OLS residuals from (1). The
corrected IVX-Wald statistic takes the form

W = (HvecAwx - h)' (@) - (FrvecAmx — 1) (43)
Qn = [(ZX) T Im} T, {(&’2) T Im} (44)

The next result characterises the asymptotic behaviour of T, in (42) and confirms
that it provides an appropriate conditional heteroskedasticity adjustment to the IVX-
Wald statistic.

4.3 Lemma. Under Assumption INNOV, the following hold as n — oo:
(i) maxicicn B|jn=@925]|" = 0 (1).
(i) n~ 1T, —, ®, where

VCZ ® Zssa 6 <«
=1 Ve®2,, 0<a<p
E (1‘0711‘6’1 X 628’2) a=0

where x; is defined in (38), and the matrices Vo and Vi, are defined in (18)
and (39).

4.4 Theorem. Under Assumption INNOV, the corrected IVX-Wald statistic W, in
(43) for testing the hypothesis (30) has a x*(q) asymptotic distribution when o > 0.

4.5 Remarks.

(i) Theorem 4.1 and its corollary show that the limit distribution of the standard
IVX-Wald statistic W, is invariant to the presence of conditional heteroskedas-
ticity in the innovations for all regressors that exhibit some degree of persistence
a > 0. GARCH effects are present in the limit distribution only in the case
where the regressor z; is a stable autoregressive process with @ = 0. These
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results are a direct consequence of the asymptotic development in Section 3
and the fact that any degree of persistence @ > 0 is sufficient to eliminate
GARCH effects in near stationary systems of regression equations: intuitively,
an IVX instrument 2, behaves asymptotically as a near-stationary process (z;
if 3 < o and z; if 3 > o > 0), the martingale transform N,, in (36) will behave
asymptotically as its near stationary counterpart (19), and will thus have suf-
ficient signal to eliminate GARCH effects from the limit distribution. For the
same reason, the limit distribution of the standard IVX-Wald test is distorted
by the presence of GARCH innovations when a = 0, since Z; behaves like the
stationary process x;.

(ii) Theorem 4.4 shows that a simple adjustment to the IVX Wald test statistic
extends the validity of the IVX approach in the presence of GARCH innova-
tions across the whole range o > 0 of data generating mechanisms considered in
classes P(i)-P(iii). These classes define regressors with diverse stochastic prop-
erties, ranging from pure stationarity to unit root nonstationarity and include
the intermediate local to unity and near stationary persistence regimes. The
adjustment differs from a standard conditional heteroskedasticity correction in
that B (z,_12,_, ® &¢}) is estimated by using the IVX instruments instead of
the regressors, in order to ensure the robustness of the corrected IVX-Wald
statistic in (43) to regressors with degree of persistence a > f.

(iii) KMS (2015a) have proposed a finite sample correction to the IVX Wald test
statistic W, in (41) that exhibits better finite sample properties while being as-
ymptotically equivalent to W,,. The conditional heteroskedasticity adjustment
employed to W, can also be employed to the IVX-Wald test statistic of KMS
(2015a), resulting to the adjusted version having a x? (¢) limit distribution for
all > 0.

5. Discussion

The paper provides a complete characterisation of the asymptotic properties of least
squares regression methods in the presence of conditional heteroskedasticity in the in-
novations that take the form of a covariance stationary vec-GARCH process. Existing
results on stochastic regression with conditionally heteroskedastic innovations lead to
different conclusions depending on the integration properties of the regressors. Least
squares limit theory with I(1) processes is invariant to the presence of conditional
heteroskedasticity and the usual Dickey-Fuller type of limit distributions apply. On
the other hand, GARCH effects appear in the first order asymptotics of the OLS
estimator and the associated self-normalised statistics generated by 1(0) regressors.
Approached as a signal-to-noise ratio problem, a natural question that arises is the
degree of regression signal required in order to asymptotically eliminate conditional
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heteroskedasticity from the noise. The paper provides a simple and intuitive answer:
any signal that dominates the Oj (n) signal of a stationary regressor is sufficient.
Consequently, GARCH effects appear in least squares limit theory only in the case of
stationary regressors: for near-stationary and local to unity regressors, the OLS esti-
mator has same the limit distribution that applies under conditionally homoskedastic
innovations, given in Magdalinos and Phillips (2009) and Phillips (1988) respectively.
The asymptotic invariance of least squares methods to GARCH effects in the in-
novations in the case of regressors that are not exactly I(0) carries over to the IVX
procedure of PM (2009) and KMS (2015a), where the IVX-Wald test statistic is shown
to have a standard chi-squared limit distribution. The advantage of this method is
that, unlike least squares, the limit distribution is robust to regressor persistence. To
accommodate 1(0) regressors in the presence of conditional heteroskedasticity in the
innovations, we introduce a White-type correction based on the endogenously gener-
ated IVX instruments rather than the regressor in order preserve the method’s ro-
bustness property. This adjusted IVX-Wald test statistic is shown to have a standard
chi-squared limit distribution under all persistence regimes and stationary GARCH
innovations, validating the IVX procedure under conditional heteroskedasticity.

6. Technical appendix and proofs

We denote by || M| = max{\/X: A€ U(M’M)} and | M|, = (trM’'M)"? the spec-

tral and Frobenius matrix norms and by o (A) and p (A) the spectrum and the spectral
radius of a square matrix A.

Proof of Lemma 3.1. It is sufficient to show that all non-zero eigenvalues of M, lie
inside the open unit disk {z € C: |z| < 1}. Suppose that A € C\{0} is an arbitrary
eigenvalue of of M,. Letting

1 1

Ge(\)=1I,—~T) —..

= =D,
A A"

with s = r?m (m + 1) /2, and using the standard formula for the determinant of a
partitioned matrix (e.g. 5.30 of Abadir and Magnus (2005)) and induction on k we
obtain

det (M, — M) = (=N det G, (N) . (45)
The identity (45) implies that any non-zero eigenvalue \ of M, satisfies

det G, () = 0. (46)
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Denoting by M the conjugate transpose of a square complex matrix M, the real (also
called Hermitian) part of G, ()) is given by

RIG: O] = 5 [Ge ) +Gr (V)]
_ %[215_ G+%)rl—...— (%+%)F}
_ % [215 - 2?;9%1 - %FQ - Qﬁij—éﬁ)n]
- Im—ZH;Fi—I—i; 1—%‘@. (47)

Note that R [G, (A)] is a real symmetric matrix. The conditions I'; > 0 and p, < 1
imply that the matrix I,, — > ., I'; is positive definite: p, is the largest eigenvalue
of Y% | I'; (since ) = I'; > 0), so 1 — p, is the smallest eigenvalue of I, — > 7 T;.
Moreover, for arbitrary A € C\{0} and j € N,

Re(¥)
AP

|)\’21:>|)\|2j2|)\|j:})\j|2|Re(/\j)|:>1_

which implies that the second sum on the right of (47) is a positive semidefinite
matrix. Since I, — > T'; > 0, (47) implies that R [G, (\)] is a positive definite
matrix for all A € C satisfying |A\| > 1. Positivity of R [G, (\)] implies the inequality

et [Gy (V)] = det R [Gy (V)] > 0

for all A € C satisfying |\| > 1 (see e.g. Exercise 11(b), page 106 of Serre (2010)).
We conclude that (46) is violated when |A| > 1, so M, cannot have an eigenvalue
with [A\| > 1. Hence, p (M,) < 1.

To show the second assertion, denote by (M?),, the kl element of the matrix M
for j > 1. By Corollary 5.6.13 of Horn and Johnson (2013) for arbitrary ¢ > 0 there
exists b (d) > 0 such that

nax max |(M2) | <b(6)[p (M) +6) forall j>1.
Since p(M,) < 1, we may choose § € (0,1 — p(M,)), which implies that \s; :=
p(M,)+9d € (0,1). For this choice of 4,

M}, < ks max max ‘(M,i)kl} < ksb (6) N

HF - 1<k<ws 1<I<rs

giving

N ] = . ksb(§
;HMéHF < rsb(8) SN = 1_(&)‘

J=0
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This shows part (i). For part (ii), M, , — M, as n — oo so, by continuity of the
eigenvalues of a matrix as a function of the matrix elements, p (M, ) — p (M) and
| My sl = ||My]| as n — oo. Since p (M,) < 1, convergence of p (M, ) implies that
p (M) < 1 for all but finitely many n. Also, since > 22 | M|l < oo, [[My.l| —
||M,|| and dominated convergence yield

,g;rgozz o] = i ]| < o0

which implies that sup,>; /", |3 ,.|| < oo (since convergent real sequences are
bounded).

Proof of Lemma 3.2. For part (i), denoting F' = C' (1) for brevity, the identity
|z)|* = tr {(z @ 2) («/ ® 2/)} for any vector x, yields

= %tr {E (Cn,t X Cn,t) (C;t ® C;v,t)}

t
= %tr Y (RUF@RLF)E(eje), @ eiep) (F'RLY @ F'RITY)
i,,k,0=1
t
= Y B [(FRIVESF® FRUESE) (o6 © o)
1,5,k,1=1
t
= 12 > [vec (F'RLVRIFF @ F'REVRIUF)] Bvec (ej¢) ® egep)  (48)

i:chvl:l

by using the identity tr (A’B) = [vec(A)]'vec(B). Since, for any 7 x r matrices
K, L the r* x 1 vectors vec(K ® L) and vec(K) ®@vec(L) consist of the same elements
{KijLi :1<4,j,k,1 <r} in different order of appearance, there exists a rt x rt
permutation matrix I such that vec(K ® L) = Il [vec (K) ® vec (L)], giving

vec (eje, @ e;e;) = Il [vec (eje)) ® vec (e;e)] = (e R e, @ €, R ¢€;) . (49)
The Kronecker product on the right of (49) is a vector that consists of the same ele-
ments (in different order of appearance) for any reordering of the indices k, j, [, i; since
the product of two permutation matrices is a permutation matrix, we can rearrange
the order {ex,e;, e, e;} in the Kronecker (49) by changing the permutation matrix

II. By the Cauchy-Schwarz inequality and equivalence of norms in finite dimensional
spaces, we obtain that

|[vec (A)] vec (B))| [vee (A)[[ [[vec (B)[| = [[All g || vec (B)]]

<
< b|[A] [lvec (B
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for all matrices A, B of the same order and some finite constant b > 0. Applying the
above bound to (48), and using the fact that ||II|| = 1:

t
(”i’:ﬁﬂ) S o Y IFRIRR, R, B s @ s )

i jkl—l
b F _
< ML S i B e ©a o) (50
i,5,k,0=1
where p, = ||R,|| and b is a uniform bounding constant (taking possibly different

values).
The martingale difference property of e; implies that E (e, ® e; ® ¢, ® ;) = 0
when

max {7, j, k, 1} > max {{i, j, k, {} \ max {i, j, k, [},

so the expectation in (50) is non-zero in the following cases: (i) all elements of
{i,7,k,l} are equal; (ii) three elements of {i,j, k,l} are equal and strictly greater
the remaining element; (iii) the elements of {i,j, k,[} are pairwise equal; (iv) two
elements of {i,j, k,l} are equal and strictly greater than the remaining two unequal
elements. In cases (i)-(iii), the result is immediate since there are at most 2 sums in
(50). For example, in case (ii), the right side of (50) is bounded by

”Tl;u (Zﬁ) (Zp )maxE leall lle:])*)

O (1) max [B (lleal fls]*)] " (B les]|*)

O (L) E|lex]*

IN

IN

because > -, pmt = O (n®) for any fixed m. In case (iv) there will be 3 sums in (50),
so the above bound is too crude. In this case, we may write expectation in (50)

E(e,®ej@e®e)=E(e,®ejQ@e;®e;), 1 >75>k

without loss of generality (by varying the permutation matrix IT in (49) and noting
that [|II|| = 1), so (50) yields

¢, DIIFI* = s
( Hna;l’ > S n2a Z pi(t )
=1

j—1

[y
<

PR B (ex @ € @ vec (egel) |

(]

j=1 k=1
i—1 j—1
DIDAIFI* = 2y xm%= oy o |
S T DA B DYl MOl (51)
i=1 j=1 k=1

19



where D, denotes the 72 x r (r + 1) /2 duplication matrix (Chapter 11 of Abadir and
Magnus, 2005) that satisfies vec(K) = D,vech(K) for a symmetric r x r matrix K
and

Yij (i) :=E (e ® e; ® vech (e;€})) = E (ek ® e; ® vech (FL))

since ¢, = H !/ 27) . Applying (6) and recalling that E (e, ® ;) = 0 since k < j, we
t et J
obtain

gn(i—j—1)
Yk,j (Z) = Z (I,«Q X Al> E |:6k & € (24 vech (Hz_l>i|
=1
AG=i-1) ) )
+ Z (Im X Bk> E [ek ® e; ® vech (Hi_kﬂ
k=1
because the law of iterated expectations gives
E [ek ® e; ® vech (ei_le;_l)] = E [ek ®e; @ vechBEg, , | (ei_le;_l)]
= E [ek ® e; ® vech (ﬁi,lﬂ

the above expectation is non-zero only if + — [ > j and ¢ — k& > j. We conclude that,
for fixed k, j, Y}, ; (7) satisfies the recurrence relation

Y, (i) = ifly,m (i—1), fori> j; Y3; (i) =0fori <j (52)
1=1
where I, = I, ® C; where C is defined in (12) with A; replaced by A; and B; replaced
by B; and k = ¢ V p. Letting
Vi () = [Yig () iy (0 = 1) Vi (8) (= 5+ 1))
we can write (52) in companion form:
Vij (i) = MY (i—1) i>

where M, is the matrix M, defined in (16) with T; replaced by I';. Recursion yields

Yig () = M7, (G +1) = M7 75 (5 + 1)
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since Y; ; (1) = 0 for all [ < j. We conclude that

Ve DI < || Yy ()

<

Ye; G+ Dl
= M,iijil HE <€k (059 €; (059 vech (HjJrl)) H
— M,i_j_l HE (ek X ej (29 VeCth]. (6j+1€;-+1)) ||

= |[M77H| ||E (ex ® e; @ vech (ej11€,4)) ||

IN
S§

_— )
M7 ([lex !l llesll Hleg %)

S 4B (lenll lesaal?) B (eI llegal) >

INA
SH

IN
SH

I B e

and substituting into (51) yields:
4 t i—1
n b i _j
s(lel) < LYy
i=1 j=1
p i—1
2(t—1i) HMi—j—l‘
" Pn *
n? ; ;
b %) > o) o
< DY) HMé
=0 k=1 =1

- 0(1)

7—1
W S B e )
k=1

IN

j—1
P i R eI
k=1

4
Eled

uniformly in ¢. This shows part (i).
For part (ii), since for any § > 0

P <max ||CntH > 0L, nH2a> < iLz]E; [ ! max HCMH2

1<t<n = 52T | plta 1<i<n

and L, — oo at arbitrarily slow rate, it is sufficient to show that

L g [max Hgn,t”?} o,

nl-i—a 1<t<n

To prove (53), letting
eng = e;1{llej| > mn}
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for an arbitrary sequence m,, — 0o, we can write

2

2
ISnall” =

t
> RLIIC (1)
j=1

‘ 2
< llo)” ZHRnH”HejH)
j=1
‘ 2
= COI*{ D NRa Tlesll L {llesll < mn} + IIén,le)
j=1 t ,
< lC@I | biman® + 3[R Hén,jH)
J=1 t )
< 2flc @) b?min2“+<ZHRnHt‘j Hé'n,jl\>
j=1
<

t t
2|lc () {b“{min%‘ +Y RPN ||én,jll2}
j=1 =1
< 2||(J(1>||2{b§m3n2a+b2n02\|én,j\|2}
j=1

for fixed constants by, by € (0,00). Choosing m,, — oo such that m2/n'~* — 0 and
taking expectations yields

plte " |i<i<n nl-o

1 2 m; 2
B | o] < 0 (520 ) 4058 (Jel 1 ey > ) — 0

showing (53). For part (iii), the martingale property and part (i) give
2

1 n
= B (Gl lel?)
t=1

< 1 [maXE <||Cn,t—1||4>] v [E (||€1||4)]1/2

1 n

- Z (Cn,t—l ® et)

n
t=1

E

n t<n

(k)
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For part (iv), zo = o0, (n/?) and the BN decomposition gives

2

n t—
1 1
a9 = it 3 (S M 04 ) +o (k)

t=1 t=1 7=0
1 n t—2 1
= Saren ; [(Cn,t_l - X;P%Aéul) Ber| +op (m)
= ‘7:

. 12 i A ~ . -2
Since Y. _{ R A& j 1 = RiFE) — ¢ o — > o (AR é,_; 4, and

—(1+a)/2 i (R;—Hél ® Et)

t=1

-0 (n—(l—a)/Z)

Ly

by the Cauchy-Schwarz inequality, it is enough to show that the martingale arrays

1T 1
t=1

are both o, (1). The Cauchy-Schwarz inequality gives

1/2

2 1 - ~ 2 2 1 ~ 114 4
Ellmul” = > E(llE-2l lell) < — {Blal B}
t=1

and the Cauchy-Schwarz inequality followed by the Minkowski inequality gives

4y 1/2
2 4y 1/2
B ma® < WQZ w0 AB e’}
4N 1/2
el = (2 e i
S {I!RnI\JEHelH}
t=1 =0
<

leal el (ZIIR HJ> —o(%)

Proof of Lemma 3.3. To prove the approximation in (i), we use the Phillips and
Solo (1992) method of applying the BN decomposition u; = C' (1) e; — Aé; and the
summation by parts formula to (,, ; to obtain

Ty1 = Cppq + Wy + Ri7 1, (54)
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with @, = é — RLé; — = Z; iRJ 'é,_; and é; defined in (8). First note that, by
the Minkowski mequahty,

2
- C
B [, < 2| 2supE 18, pE(ZHR s 1||eu||>

2
||c|| D 2L
B e + = g sup | 30 { IRV E o))

2
_ ~ 1 — .
< 4E|é? +2||C1*Eé] (ﬁZHRnH“ 1))
j=1
= E(lal>)o1)=0(1)

by stationarity of & and the fact that E||é]|> < oo and PR IR.|7 = O(n).
Expanding (54) using the above bound and zo = 0, (n*/?),

n
- Z Cnt—l C:ltf].
t=1

and part (i) follows since n'=B 37", ||t ||* = O (n~*) and

1 n ) 1 y 1/2 . ) 1/2
ez 2Bl < o (maxBlieun ) (sup® )

ne
t=1

1
= 0(@)

1 n
o Z Cnt—lC;Ltfl = A+ B, + B?”L
t=1

IN

<2 Z |Gt || 1Dl + Z [ ]|” + 0, (n**)
t=1 t=1

For part (ii), write

where

1 n t-1 ‘ , , N
An = n1+aZZR%C<1)€t—j€tij(l) (R2)
t=1 j=0
n t—1 t—1

B = Y 3 RIC( e C ) (R)

t=1 i=0 j=i+1
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Noting that Q,, = C (1) X..C (1) and

n—1 n

A = =S RO Y oy (R
Jj=0 t=j+1
1 n—1 n—j
. -
= T 2RO W)Y (e~ Te) € (1) (B)
j=0 t=1
1 n—1
. ; N\
'*n4+a§£;(”“3>3%9uu(ﬁz)
= Aln + AQn
The ergodic theorem yields

[Awmll <

Z [ ||2’ Z (€€ — Xee)

= 0(1) 04, (1) = 04, (1) . 7
Since Zj 0 J HRnH] =0 (n2a)

n—1

1 1
Agy = — Y RIQ,, (R +0< — >evc
ne n-—¢
7=0
because
1 n—1 1 n—1
—_ jQuu 7Y - n Rn 7 Quu
w{wgm @ﬁ e 2 (B @ ) oo ()

= % (I — R, ® Ry,) " vec Q) +0(1)
—(CRI-T®C) " vec (Quu) +0(1)
vec (Vo) +o(1).
For B,,, we have
B, = ! ”Z_l i i RIC (1) eje,_,C (1) (R)
n ita n —jCt—i n

=0 t=i4+1 j=i+1
n—1 n—i t+i—1

— n11+a ZZ Z R{;C(l)etﬂ,je;(?(l)' (Rjz),

i=0 t=1 j=i+1

1 n—1 ‘n v [t—1 ' '
_ nl+aZR;Z RIC (1) ey e,C (1) (R
i=0 t=1 [j=1

1

= %ZRZH ZCnt e l)

=0
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and Lemma 3.2(iii) implies that

1Ballz, < 1IC (1)l max

n—1
—Zcm il IR =00
=0

L2

showing that || B,|| —, 0.

Proof of Lemma 3.4. By definition of the process (,,_;, we can write

n

1

<M>n —Vh = nlta Z [Cntflczmt—l ® (H; — Esa)]
t=1
= A, +B,+ B, (55)
where
1 n [ (t-1
An = nita Z {Z RO (1) et—jegfjo (1) R%_l} ® (Hy — 266)] (56)
t=1 L\ =1
1 n [ (t-2 t-1
B = i {Z > RO ey C <1>’Rz‘;1} ® (H, za] .(57)
(Ca [ (g
We first expand the term in (56) by adding and subtracting ¥, from as follows:
1 n—1 n—j
A = g ; (RC()el) 3 leve, ® (Hiyy — 2] (C (1) R @ 1)

3
<.

1 n—1 . ) ‘
= Y (RTCM) 1) (e, — See) ® Hiyy] (C (1) R @)
j=1

t=1

-1

1 , J / |
2 ([mTTc el {Z(eteé—xee)}@@&a C) (R el)
j=1 t=1
HQZRJ RS Y (-
t=75+1
= Ay, — A2n_|_A3n

in order of appearance. It is easy to show that Ay, and As, are o, (1): since

n

1
— Z €€y — Yee) —as. 0 and - Z (Hy — Xee) =45 0 (58)

t=1
by the ergodic theorem, and

n—1

— Z RAQORT — Vo = / e, e dr (59)
ne < 0
j=1
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we can write

n—1 n
1 . .
Asn = nlto ZR% QR @ Z (H; — Zee)
j=1 t=j+1

n—1 n n—1 J
1 i—1 i1 L 1 j—1 i—1
= = E RI7TQRT ® - E (Hy — 3ee) — e E RTQRT® E (H,
j=1 t=1 J=2 t=1
= Ay, + A4,

in order of appearance. By (58) and (59), A%, —,s 0. For arbitrary 6 > 0, there
exists jo (0) € N such that

H% Z (Ht - Esz—:)

<0 a.s. forall j > jo(9),

t=1
giving, a.s.
—lj-1 n—-1 .
145,01 < 19l s Z > - Sl 4ol o S L RO
J=3j0(9)

~ 0 <n11+a) +80(1),

since E ||Hy || < oo implies that P (|| H¢|| < c0) = P (||H1|] < 00) =1 for all t < jo (4).
This shows that A%, —,, 0. The same argument works for A,,: almost surely,

[Azll < 2 [HIC (1 1+O(Z:JHR [ Z(etei—ﬁee)
=1
Jo(6)—1 3 n—1 j .
< ZelIC ™Y s Z Z I(erer = Zee)ll + 5— > 5 | R
J=jo(3)
= 0 ! 50 (1
o nlta + ( )
We conclude that ||4,, — A1,|| = 0, (1) and
1 n—1
vec (Ay,) = sy Z (RIT'@ RN (C(1)@C (1) Zvec [(ere; — Xee) @ Hyyj.
J=1 =

For any matrices K € R™", L € R™*™ the vectors vec(K ® L) and vec(K) ®@vec(L)
consist of the same elements {K;; Ly : 1 <4i,j <r,1<k,l <m} but appear in dif-
ferent order in the two vectors. Therefore, there exists a m?r? x m?r? permutation
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matrix II such that vec(K ® L) = I [vec (K) ® vec (L)]. Using this and the identity
vec(K) = Dp,vech(K) for a symmetric m x m matrix K, where D,, denotes the
m? x m (m + 1) /2 duplication matrix (Chapter 11 of Abadir and Magnus, 2005), we
can write

[y

vee (A) = 11 © D) = 3 (R 9 B (C(1) 9 € (1) 3% ()

Jj=1

with X, (j) =vec(ere; — Xee) ®vech(H;y;) as in Lemma 3.5. Since ||II]] = 1 and
| Dyl = v/2 for a permutation matrix II, (60) yields the asymptotic bound

—J
e S [ e

The term in (57) can be written as:
t

lvee (Aw) || < V2(IC (1) +op (). (61)

1 n -2 t—1 ' '
Br = i 2 RO (1) eryel C (1) R} @ (H, — 5z.)]
t=1 j=1 i=j+1
1 n t—2t—j—1
= ) {RITC (D) er el ,C (1) R @ (H, - 5.2

- Z > R C W e €W BT} © (Hiy — )]

{RJ geli! (ZRZ ‘o1 et_i> ng} ® (Hiyy —255)]

- nHaZZ HRTC () e B} © (Hiyy — 2ee)]

7j=1 t=2

by definition of the process ¢, ,. Employing the same argument for the vectorisation
of a Kronecker product, we deduce that

n—2 n—j
vec (B,) = n1+a Z Z [vec {RI7'C (1) etC;m_lRZl} ® vec (Hyyj — 2e.)]
j=1 t=2
n—2 n—j
- (L, ®R,'®D,,) MZZ [RIC,.1 ® RIC (1) e, @ vech (Hyyj)] + 0, (1)
j=1 t=2
n—2 n—j
- (e R 8 D) e Y )+ ()
Jj=1 t=2
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where S, ¢ (j) is defined in (23) and the term involving .. is o, (1) because

n—2 n—j

1 . .
nlto Z R ant_l X R%C (1) et]
=1 t= L
HC — 2] - —
< Z [re| Z [Cn,t—l ® 64 =o0(1)
=2 Lo
by Lemma 3.2(iii). The last expression for vec(B,,) yields
n—2 n—j
[vec (B, Tta Z Snt (3)]| +0p (1) (62)
7=1 t=2

for some uniform bounding constant b > 0. Combining (61) and (62) shows (27) and
part (iii).

It remains to show that ¥, (j) and S, ; (j) satisfy (14) with innovations given by
(25) and (26) respectively. For S, (j), applying (4) to vech(H,;) yields

St (j) = Rngn,t_l ® R.C (1) e, ® vech (Hy, )

= RI( 1 QRIC(1)e® {Z Ajvech (Hyyj—i) + Z Byvech (Hyij— k)}

=1

+R¥;Cn,t71 & RZLO (1) er & {Z AiVGCh <€t+j—i52+j—i — Ht+j—i) }

i=1

+R¥z€n,t—l QRIC(1) e ® ¢

K

= > (R,@R,®T:) [RI7C,yy ® R C (1) € ® vech (Hyyj )] + Ung (4)
=1

= D (R @R, ®Ti) Sue (j = 1) +vas () (63)

=1

where Kk = pV q,
Unt (j) = Rl 1 ®RIC(1) e ® e
q . .
+3 (L2 ® A) [RiC, 1 © RLC (1) € ® wysji]
i=1

and Wy, :Vech(gtﬂ-_ig:e bjei HHJ-_,;). Since the above expression for v, (j) co-
incides with (26) and T',,; = R%, ® R: ® I'; by (13), (63) shows part (ii).
Applying (4) to vech(H;;) in

Et (]) = vec <€t62 - Zee) &® vech (Ht—l-j)
and proceeding as in (63) shows part (i).
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Proof of Lemma 3.5(i). The processes in (22) and (23) have companion form
solutions

J
S(j) = Mis, (O)+ZM£T% (), j>1 (64)
=1
~ . ~ ] .
Sua () = MJ,.Sui(0)+ ) Mo, (1), j>1 (65)
=1

50() = [S00) 2G-S (- r+1)] (66)
S’n,t (]) = [Smt (])/ ) Smt (] - 1)I PR Sn,t (] — K+ 1)1], (67)

and
!

Uy (]) = [Ut (])/ ) 07 ) Oj| > ’Dn,t (]) = [Un,t (])/ ) Oa X3 0:|I . (68)
For part (i), by (66), (68) and the definition of the Euclidian vector norm,

DS < Do) A

We can therefore apply the companion form solution (64) to the first term of the
bound (27) of Lemma 3.4(iii) to obtain

n—j

vy (1)

and

<

t=

1 n—1 - n—j .
On = n1+aZ|’RnH2(J ) 2 (J)
j=1 t=1
1 n—1 ' n—j~
< S D IR DS G)
j=1 t=1
Lo~y L v ls
< Sl S S )
j=1 t=1

1 n—1 . J ) n—j
o D MRAIPOT Y A e ()
j=1 =1 t=1

= O1n + O9on, (69)
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in order of appearance. The first term of (69) satisfies E ||o1,|| = O (n™%) because
> 21 1M < oo by Lemma 3.1 and

Kk—1 1/2 Kk—1
B[S 0)] - E{an—iw} < D B[S ()]

< Hry<a:<E(||6t||2||Ht—z‘||)
1/2
< wmax {Elle:| Bl H,-|*}
4 4y1/2
< k{E e Ele]|'}

by the Jensen inequality for conditional expectations. For the second term of (69),
letting
wy (k) = vec (ere; — Bee) @ wyps, (70)

and using the expression in (25) we can write

< ”SDHZHMIHZHR || (n—j—1)
ey ZHR 26 ZuA HZH

The first term on the right is o, (1) by the ergodic theorem; the second term is
O, (n™®) when [ < i because, in this case, it is bounded in L; norm by

E vec (ee; — Yee)

(1 —1)

2b L )
- < .
HWWZEHW N < e e, Bl ]
4b 4 4\ 1/2
< — {Blal Elal}

where

b_ZHM]H Z 1Al ]| 22

i,l=1

is a finite constant and E ||wy || < 4E|je1]|* by the Jensen inequality for conditional
expectations. We conclude that

1
oo < 161 ”Zm ||2<“Z||A||ZHMWH‘ Zwt +op(1)
so the condition '
1 =
235 |5 20 - ()
- 1
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is sufficient to show that g, —, 0. The definition of w; (I) in (70) implies that
O (1) = we (D 1 {lledl|* < L}

is an F;;-martingale difference sequence for each [ > 1, where the truncating sequence
(L) ey is chosen to satisfy L, — oo and L, /n — 0 The Lyapounov inequality then
gives

1< 1|
EZwt(Z) < Eizwtu)
t=1 L1 t=1 Lo
. n—j ) 1/2
= - ZEH@(Z)II)

[z (1 1/2
< (zEnwmn)

L1/2
<
—_— \/_

uniformly in j,[. Therefore, the Cauchy-Schwarz inequality yields

B[] =0

< max —ZEcht O 1{llel* > Lo }|| + 0 (1)

1<5,l<n n

S max —ZE HetH +Hzee ) {HetH > L }”thrlm +0( )

1<5l<n n

< {B [(leall® + 1I8eell*) 1 {lleal* > Lo}] B Jeor ]} + 0 (1)
= o(1)

since B | ||* < 0o and L,, — oo. This proves (71) and ¢, —,, 0.
We turn to the second term of the bound (27) of Lemma 3.4(iii), to prove that
sp —p 0. Using the solution (65) and the same argument leading to (69), we obtain

SZSM

nia;u A8

= Sip + Son

Sno > n1+oc

IN

m ( H—i_nHO‘
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Since sup,>q Y-, |7 .|| < oo by Lemma 3.1,

1
< b
E s < bna I?SanXE

< 1
- po/2

50 O < bmax max B (el G| 1 Hei])

t<n 0<i<k—1 N

Cn,tfl _ O <L2)
Ly ne/

na/2
by Lemma 3.2(i). For sy, some care is required to use the norm equivalence between
Ot (1) and v, (1): standard manipulations yield

Hill, el max

n—2n—j j—1
1 . .
S = o > M. B (G- 1)
j=1 t=2 =0
1 n—3 n—2 n—j
_ l ~ :
= — M, . Ont (J—1)
1=0 j=l+1 t=2
n—3 n—Il—2n—l—j
1 ~
< > > 2
= Mn nn1+a . Un,t (])
=0 Jj=1 t=2
n—3 1 n—Il—2n—Il—j
_ !
- E : Mn,n 1+a Un,t (j>
=0 j=1 t=2

Substituting the expression for v,,; (j) in (26) we obtain

-3 q n—l—2n—Il—j
Z n,K Z H n1+a Z Z R Cn,tfl ® RZLC (1) e & wt+j—i]
=0 =1 j=1 t=2
n—3 1 n—Il— ' n—l—j
+ el HC(l)HZMA%Ha Z IBal || > (Cpr @ e0)
=0 j=1 t=2

The last term on the right converges to 0 in L; by Lemma 3.2(iii). For the first term,
partitioning the sum

jef{l,.on—1-2}={1,..,i}u{i+1,..,n—1—2}

we obtain that
Son < S3n + S4n + Op (1)

where

n—l—2n—Il—j

Z Z [R%Cn,t_1 ® R{;C (1) e ® wt+j—i]

=i+l =2

n—3 q 1
_ l
=ML A
=0 =1
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and
q

n—3 q 1 n—l—j
1O I [ M Y 1A Tra > B[ | el el
=0 =1 t=2

=1

E84n

IN

IN

n—3 q 1/4
IC N M8 Y14 L (maxBliGun ) el bl
=0 =1 -

1
= O(W)‘

It remains to show that ss, —, 0. The inner double sum in the expression for ss,
can be written as

where
§n7t—1 = Z (RZ'LCn,t—j—l ® Rﬁlc (].) €t,j)
j=1
is a F;_i-martingale difference sequence satisfying

t—2
maxB[¢, | = ||0<1>||2rp§a7;<§;||3n||4%(\\¢n7t_j_1||2||et_j||2)
=
n—2 ‘ A2
< OIS IR fesl, (max G,
=1 =
= 0 (n*). (72)
Substituting in the expression for sz, we obtain
1 n—Il—1i
Boon S S| ) (G ® )
n—Il—1i
< B | 3 (6 ®w) LA < L)
1 n—Il—i
o | 3 (€nes @ w) LI > Lo}
= €1p T €2y
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where the sequence £, , | ® w; is an F;-martingale difference sequence

w; = vech(ge, — Hy) = vechH,"* (Mg — Im) "
1/2 1/2
= D, (Ht/ ® Ht/ ) vec (el — 1)
where D) is the Moore-Penrose inverse of the duplication matrix D,,, satisfying

D5l =1 (e.g. 11.30 in Abadir and Magnus, 2005). Since || H|| is F;—;-measurable,
the martingale difference property is preserved for the truncated sequence

(€ni1 @wy) L{||Hy|| < Ly},

giving
1 " 2 2
an < {rrﬁx 3 B[ e[| Nl 1{1HL| < Ln}}
B " 2 v
< = {H;:(;X 3 B[ e ||” P L{IHL| < Ln}}
1/2
S

L,
=9 (m)

by (72), where B = {2E (H7751H4 +1)}

write

v Taking L, — oo with L,/n'/? — 0 we can

n

1
€2n S nlta ZE (Hgn,t—ln ||wt|| 1 {”HtH > LTL})

t=3

n

< S B ([l IHI L] > L)

< e (Bl ) BUAL A > )}
1/2 1/92

= %{%L%E}}ém | } (B (1P LB > L)}

= OW{E(IHIPL{|H] > L))} =0(1).

This completes the proof of s, —, 0.
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Proof of Lemma 3.5(ii). For all § > 0,

£000) = xS (sl By (o2 {1 Cums| > 06}
t=2

1 — o
— S a1 Gl > L0 =6 L Br L, (o)
n t=2

1 n
nlta Z cht—leTH (||5t||2 L{lel > Ln})
t=2

= L1, (9) + Ly,

IN

_|_

for an arbitrary sequence (Ly),, . satisfying
L, — oo and P (I?gl<aX |Gt || > L;lnlzacs) — 0. (73)

For the first term,

Lia 1 <
) <1 el > £0050 i Sl B (1) =0

nl
since

1 e[ Cua > 20055 = B (i [Gua] > £,105°6) — 0
by (73) and

1 n

nlta iE [chtfl‘FEft—l (H€t|‘2)] - n11+a ZE (HCnHHQ HstH2>

t=2
2\ 1/2
) (B [ley[[4) "2

<n Tla/2 Cntfl

< (max E

= 0(1)

by Lemma 3.2(i). For the second term, the same chain of inequalities give

1 <& 1/2 1/2
B(La) £~ 2 (BllGanill') ™ {B By (el 1l > L))}
t=2
1\ V2 1/2
< <mE — ) {Blleal* 1{lell > La}}* = 0

since B ||e1]|* < 0o and L,, — oco.
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Proof of Theorem 3.6. Part (i) is an immediate consequence of established results.
By Lemma 3.2(iv), n=(1+)/23"™" (2, 1 ® &) and the martingale transform N,, in (19)
have the same the limit distribution. By Lemma 3.5(i), the predictable quadratic
variation of N, in (20) is given by

n

1
<N>n = Z (gn,tflcg,t—l ® 255) + Op (1) _>p VC ® Zaa

14+«
n
t=1

where the last convergence in probability follows by Lemma 3.3. Since the Lindeberg
condition of Lemma 3.5(ii) holds, a standard martingale central limit theorem, e.g.
Corollary 3.1 of Hall and Heyde (1980), establishes the asymptotic distribution of
part (i). Part (ii) follows immediately from part (i) and Lemma 3.3 and (11). For
completeness, we provide a proof of (11): Letting z, = 2, — Z,,_1 and g, = &, — &,
the fact that > ;. z,_1 = O, (nY/?™) implies that

n n
!/ _ /
Ly Ly Ly
t=1

t=1

1 2

(1 ni2teN? 1
- o) | o ().

1
n1+a

S A '

Also,
n n
1 , A 1 L,
Tta Ly 1&¢ — Tt—1&; = Tita annflgnH
n 2 t=1 t=1 n 2
I _
< || Vg

1
o)

Combining the two remainder terms proves (11). Note that the same orders of mag-
nitude apply for the purely stationary case, by putting « = 0. Part (iii) follows
immediately by part (ii), (11) and n= 7 | X'X — X' X || = 0, (1).

Proof of Theorem 4.1 and Corollary 4.2. See the proof of Theorem A and
Theorem 1 in KMS(2015b).

Proof of Lemma 4.3. To show part (i) we employ the decompositions
N C.
Z = T+ ﬁ%m a<p (74)

C
Zt = Zt + E@Z)nt, a > /6 (75)
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see equations (13) and (23) of PM (2009), where v, = Z;Zl Rz, ;. We first
establish the bound
o B 1,,* = O (n2e4%) (76)

1<t<n

The Minkowski inequality gives

t

E t—J o
an xﬂ -1

j=1

4 ¢ , 1/4 !
Elul* = B < (Z{EIIRz;%—lH“} )

=1

t 1/4\ 4
< (Z IR ”{glngH% '} )
j=1
n 4
J
]:

- 0 (n2a+4[3)

uniformly in ¢ < n. Employing the decomposition (74) when o < /3

81C." 20
giXEHZt” <8maXE||SCtH + i 1o ax B¢, ||* = O (n*?)

by Lemma 3.2(i) and (76). Employing the decomposition (75) when a > /3

81||C
max B )" < 8 max B2 + 21 I e B s 1 =

B
1<t< 4o 1<t< ( )

by Lemma 3.2(i) (since z; is n’-near stationary) and (76).
For part (ii), denoting x, ; = 2;_1 — T,,—1 and g, = &; — &,, using the identity

~

&§&=Y, —- Anzy =g, — (An - A) Ly

and the fact that the OLS estimator satisfies HA” — AH = 0, (n"17%/2) we obtain
that

1 1 o

n1+oz/\,8T nltans Z (Zt—lzg—1 ® §t§2) + 0, (1) (77)
t=1
provided that both
1 1 &, ,
Mn = (0Fa)/2 pltans Zl (B-1%i1 @ z151)
t=
1 1 ., .

Ton = e pltans Z (B2 ® 2427 4)

t=1
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are o, (1). First note that,

4 _ 4
Ellz,[" < E([zl + [|2.]])
< 8 (B |z +E||xn||)
< 8{EHaJtII +— > B (il [l |k |le||)}
zjk:l—l
2 2\ 1/2
< 8E | +— Z {B (llzall* l21%) B (Jlae ]l [l *) }
,5,k,l=1
< 8B |a]* + 8 max B |a|*
1<i<n
so that

max B ||z, ||* < 16 max E ||z* .
1<t<n

For 7y, part (i) and Lemma 3.2(i) give

11 o
Elrall < n(+a)/2 panB I}?ﬁ‘ﬂ?“’(”ZIHH 2o | lle:l)
1 1 ~ an1/2 1/2
< n(Fa)/2 pand ok (BZ]%) (EH Ty 1H e )
1/2 1/4
1 4
< 4leils, samamans (maxEHzt 1l ) (I;lgagEmeH )

_ 0 na/\ﬁna/Q 0 1
- n(+a)/2pans | = %

1 1 -
Bllranll <~ =g max (7 [

n1+a noz/\ﬁ t<n

1 1 1/2 2
nita pand {maxEHzt 1 } {I&&}E”Q_l“ }

11 . . 1
— O ) 0 =0 (1),

Returning to (77), we can write

IN

1 . 1 1
n1+aAﬂT" - nHWZ Zi- 1Zt 1®5t€t +O ( n)
t=1
n~'” ’BZt 1(Zt 1Zt1®€t5t Op(” )7 B <a

n~1- aztl(a:t 1xt1®5t6t Op<n ), a< B
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from which the result for a > 0 follows by Lemma 3.3(i) and Lemma 3.5(i), since z
is a nP-near stationary process. For o = 0, denoting by z¢; = Z;’io Riu;_; a strictly

stationary version of the stable autoregression x;, = Rlxy + Z;;E Riu;_j,
RS > _ 1 ot 2
- D ey =zl el le)® < ol DRI Nzl el
t=1 t=1

=3 D MBI el e 1=l

t=1 j=t

o)

the second part of (78) gives

T, =

S|
SRS

n
Z ('TOtflxé)tfl ® €t52) + Op (1) —a.s. E (thflxé)tfl ® Eté‘;)
t=1

by the ergodic theorem.
It remains to show (78). For the o > [ part, the decomposition (75) implies that

1 & 2
Tn = A B+a ||Zt—1|| HwntleH‘c:t” _>p0
nltB+
t=1
1 - 2 2
Tan = WZII%-J\ leell™ =5 0
=1

are sufficient for (78). Using (76) and Lemma 3.2(i), we obtain

1 1/4 1/4 1o
4 4 4
B < e (maxBlal') (maxB o) @le)

<
t<
- 0 nPne s _of—L
nﬁJrOl n(a*ﬁ)/2
1 A%E 4y1/2
Bra < i (maxBleal’) (E )

not28 1
- (=) -0 ()
which proves (78) for @« > . For a < 3, the same argument can be applied to the

decomposition (74).
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Proof of Theorem 4.4. When a > 0, Lemma 4.3 shows that

1 1
7ﬂ«mﬁT”::(ﬁazm§§:Zn+#l)cazﬁ—+%<n

t=1

which implies that

niret? ‘Q” - (X/PZX)A ® Yee|l = 0p (1)
and HW" — W,|| = 0, (1) under the null hypothesis (30). Corollary 4.2 then gives
W = X2 (q)-

When a = 0, Lemma B2 of KMS (2015b) implies that n~* HX’Z - X'X” =0,(1).
Combined with Lemma 4.3, this yields

. 1., \" 1. 1 ,-\""
n n n
1, \" 1. 1, \"
= |(=X'X) @L.| -T.|[=X'X) ®IL.|+0,(1)
n n n

= ‘}O‘i‘op(l)

where the matrix V; is defined in (40). We can then write W,, = w/,w, + o0, (1) where,
under (30),

w, = (HnQnH’>_1/2 Hvec [\/ﬁ (/va _ Aﬂ
= N (0,1,

by Theorem 4.1(iv).
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