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Abstract

The paper examines the e¤ect of conditional heteroskedasticity to least squares infer-
ence in stochastic regression models. We show that a regressor signal of exact order
Oep (n

1+�) for arbitrary � > 0 is su¢ cient to eliminate stationary GARCH e¤ects
from the limit distributions of least squares based estimators and self-normalised test
statistics. The above order dominates the Oep (n) signal of stationary regressors but is
dominated by the Oep (n

2) signal of I(1) regressors, thereby showing that least squares
invariance to GARCH e¤ects is not an exclusively I(1) phenomenon but extends to
processes with persistence degree arbitrarily close to stationarity. The theory val-
idates standard inference for self normalised test statistics based on: (i) the OLS
estimator when � 2 (0; 1); (ii) the IVX estimator (Phillips and Magdalinos, 2009;
Kostakis, Magdalinos and Stamatogiannis 2015a) when � > 0, when the innovation
sequence of the system is a stationary vec-GARCH process. An adjusted version of
the IVX testing procedure is shown to also accommodate stationary regressors and
produce standard chi-squared inference under conditional heteroskedasticity in the
innovations across the full range � � 0.

Keywords: Central limit theory, Conditional Heteroskedasticity, Mixed Normality,
Wald test

AMS 1991 subject classi�cation: 62M10; JEL classi�cation: C22



1. Introduction

The e¤ect of conditional heteroskedasticity in autoregressive and stochastic regres-
sion models has been a topic of intense research activity since the introduction of
ARCH and GARCH processes by Engle (1982) and Bollersev (1986). Limit theory
for stationary autoregressive moving average (ARMA) time series with conditionally
heteroskedastic innovations has been developed by Weiss (1986) and Pantula (1989)
in the case of ARCH innovations and Ling and McAleer (2003) in the case of vector-
valued processes with GARCH innovations. Early work on least squares estimation
of non stationary autoregressions with ARCH(1) and GARCH(1,1) innovations can
be found in Pantula (1989) and Ling and Li (1997a). Asymptotic theory for quasi
maximum likelihood estimation has been developed for both stationary and non sta-
tionary times series with GARCH innovations: see Ling and Li (1997b), Ling and Li
(1998), Ling and McAleer (2003) and references therein.
The current literature on least squares estimation of autoregressive processes with

conditionally heteroskedastic innovations reports that the presence of GARCH e¤ects
in the limit distributions of the OLS estimator and the associated t and Wald test
statistics depends on the stationarity properties of the autoregressive process. In the
case of stationary autoregressions, both the convergence rate and the limit distrib-
ution of the OLS estimator are a¤ected: the standard

p
n-consistency rate requires

�nite fourth moments (a condition that imposes restrictions on the GARCH coe¢ -
cients) and, even when the

p
n rate is achieved, the asymptotic variance of the OLS

estimator depends on the GARCH parameters in a way that invalidates standard t
and Wald hypothesis tests. The situation is di¤erent for models with nonstationary
time series, where GARCH innovations make no contribution to the limit distrib-
ution of the OLS estimator and the usual Dickey-Fuller type t and Wald tests are
asymptotically valid. This asymptotic invariance continues to apply in models with
near-integrated time series with local to unity roots of the form �n = 1 + c=n; where
n is the sample size (Phillips, 1987a, Chan and Wei, 1987) and their vector-valued
extensions with autoregressive matrix of the form Rn = I + C=n (Phillips, 1988).
This I(0)-I(1) dichotomy has a signal-to-noise ratio interpretation: a near-integrated

regressor has su¢ cient signal, of order Op (n2), to asymptotically eliminate stationary
GARCH e¤ects; such elimination cannot be achieved by the weaker Op (n) signal of
a stationary regressor, resulting to the contribution of GARCH e¤ects to the least
squares limit distribution. This insight raises the issue of the existence of a minimal
order of regression signal required to eliminate GARCH e¤ects, leading naturally to
the investigation of intermediate regression signals arising from near stationary time
series. The class of near stationary time series, introduced by Phillips and Magdalinos
(2007a & 2007b) in the case of scalar autoregressions and Magdalinos and Phillips
(2009) in the case of vector autoregressions and systems of regression equations, has
intermediate I(0)-I(1) persistence rate driven by an autoregressive root of the form
�n = 1+c=n

�; where c < 0 and � 2 (0; 1). The signal generated by such processes is of
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order Op (n1+�) and varies continuously with the exponent �, establishing boundaries
with nearly integrated processes as �! 1 and stationary processes as �! 0.
The present work develops a limit theory for near-stationary predictive regression

systems with general GARCH innovations, assuming covariance stationarity of the
GARCH process. We show that, for any � 2 (0; 1), GARCH e¤ects are eliminated
from the limit distribution of the least squares estimator, thereby establishing that
any regressor signal strictly dominating the Op (n) signal of stationary processes is
su¢ cient to asymptotically eliminate GARCH e¤ects. The OLS estimator has an
identical Gaussian limit distribution to that established by Magdalinos and Phillips
(2009) under conditionally homoskedastic innovations and the usual Wald statistic
(without heteroskedasticity correction) for testing restrictions on the regression coef-
�cient matrix has a standard chi-squared limit distribution. To our knowledge, this
is the �rst result of its kind, with standard Gaussian and chi-squared asymptotics
applying respectively to the OLS estimator and the Wald statistic in a stochastic
regression model with conditionally heteroskedastic innovations.
The development of least squares limit theory for the case of near stationary

regressors is the key step towards extending the validity of the IVX endogenous
instrumentation procedure, introduced by Phillips and Magdalinos (2009) and fur-
ther developed by Kostakis, Magdalinos and Stamatogiannis (2015a) (henceforth PM
(2009) and KMS (2015a)) to accommodate the presence of conditional heteroskedas-
ticity in the innovations. In the current predictive regression context, KMS (2015a)
show that the IVX procedure is robust to di¤erent types of persistence, including
purely stationary (� = 0), near stationary (� 2 (0; 1)) and near integrated (� � 1)
time series regressors. In this paper, the method is shown to be robust to GARCH
e¤ects near stationary and near integrated systems. In predictive regression with
purely stationary regressors, KMS (2015a) show that the IVX and OLS procedures
are asymptotically equivalent, so the IVX estimator inherits the usual GARCH e¤ects
present in the asymptotic variance of the least squares estimator. A White (1980)
type of correction is shown to make the IVX procedure operational for all persistence
regimes � � 0 under conditional heteroskedasticity.
The paper is organised as follows. Section 2 outlines a general modelling frame-

work for a system of predictive regressions with unknown persistence properties
and conditionally heteroskedastic innovations of a general covariance stationary vec-
GARCH type. Section 3 develops a limit theory for the OLS estimator in the near
stationary � 2 (0; 1) case and shows that GARCH e¤ects are asymptotically elimi-
nated and do not a¤ect least squares based estimation and hypothesis testing pro-
cedures. Section 4 develops a limit theory for the IVX estimator and the associated
Wald statistic for systems of predictive regressions of arbitrary integration order and
GARCH innovations. Section 5 provides some further discussion of the results and
Section 6 includes all proofs.
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2. Predictive regression with GARCH innovations

We consider the triangular system of predictive regressions (cf. Magdalinos and
Phillips, 2009, 2009b; Kostakis, Magdalinos and Stamatogiannis, 2015)

yt = �+ Axt�1 + "t; (1)

xt = Rnxt�1 + ut; (2)

where A is an m� r coe¢ cient matrix and

Rn = Ir +
C

n�
for some � � 0 (3)

where n denotes the sample size. We distinguish between the following classes of
regressor processes:

(Pi) Near-integrated regressors, if � � 1 in (3).

(Pii) Near-stationary regressors, if � 2 (0; 1) in (3) and C is a negative stable ma-
trix1.

(Piii) Stationary regressors, if � = 0 in (3) and R = Ir + C satis�es kRk < 1.

The system is initialized at some x0 = op
�
n�=2

�
. The stochastic properties of the

innovation sequences "t and ut are that satisfy the following condition.

Assumption INNOV. Let (�t)t2Z be a sequence of independent and identically
distributed random vectors with E (�1) = 0, E (�1�01) = Im+r and �t = [�

0
"t; �

0
et]
0 with

�"t 2 Rm and �et 2 Rr.

(i) The sequence ("t)t2Z in (3) is a strictly stationary process admitting the follow-
ing vec-GARCH (p; q) representation:

"t = H
1=2
t �"t; vech (Ht) = '+

qX
i=1

Aivech
�
"t�i"

0
t�i
�
+

pX
k=1

Bkvech (Ht�k) (4)

where ' is a constant vector, Ai; Bk are positive semide�nite matrices for all
i; k, and the spectral radius of the matrix � =

Pq
i=1Ai +

Pp
k=1Bk satis�es

� (�) < 1:

(ii) The sequence ut in (2) is a linear process

ut =
1X
j=0

Cjet�j

1X
j=0

j1=2 kCjk <1 (5)

1A square matrix is called negative stable if all its eigenvalues are strictly negative.
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where (Cj)j�0 a sequence of constant matrices such that C (1) =
P1

j=0Cj has
full rank and C0 = Ir and the sequence (et)t2Z in (5) a strictly stationary vec-
GARCH (p; q) process:

et = ~H
1=2
t �et; vech

�
~Ht

�
= ~'+

~qX
i=1

~Aivech
�
et�ie

0
t�i
�
+

~pX
k=1

~Bkvech
�
~Ht�k

�
(6)

where ~' is a constant vector, ~Ai; ~Bk are positive semide�nite matrices for all
i; k, and the spectral radius of the matrix ~� =

P~q
i=1

~Ai +
P~p

k=1
~Bk satis�es

�
�
~�
�
< 1:

(iii) E k"1k4 <1 and E ke1k4 <1:

Assumption INNOV accounts for conditionally heteroskedastic innovations with
�nite fourth moments of a very general form: the vec-GARCH process in (4) and (6)
is the most general multivariate GARCH speci�cation (see Chapter 11 of Francq and
Zakoian (2010)). The positive semide�nite condition on the matrices Ai; Bk of (4) and
the condition on the spectral radius of their sum are part of the standard Boussama
(2006) conditions for the existence of a stationary ergodic solution of the vec-GARCH
process; see Theorem 11.5 of Francq and Zakoian (2010). The independence of the
sequence (�t)t2Z and the speci�cation of the innovation processes in (4) and (6) imply
that "t and et are martingale di¤erence sequences with respect to Ft := �

�
�t; �t�1; :::

�
satisfying

EFt�1 ("t"0t) = Ht and EFt�1 (ete0t) = ~Ht: (7)

The summability condition (5) is standard in the literature on short-memory
linear processes (see Phillips and Solo, 1992). Using the Beveridge Nelson (BN)
decomposition, we obtain the following representation for ut

ut = C (1) et ��~et; for ~et =
1X
j=0

~Cjet�j; ~Cj =
1X

k=j+1

Ck; (8)

where
P1

j=0




 ~Cj


2 <1 is assured by the summability condition in (5) by Lemma 2.1

of Phillips and Solo (1992). Consequently, ~et is a strictly stationary ergodic process
satisfying E k~e1k2 <1 and the ergodic theorem yields

1

n

nX
t=1

~etu
0
t !a:s: E (~e1u01) =

1X
j=1

�u (j) (9)

as n!1, where �u (:) denotes the autocovariance matrix �u (j) = E
�
u1u

0
1�j
�
:
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Denoting the demeaned regression matrices in the system (1)�(2) by Y =
�
y0
1
; :::; y0

n

�0
,

X =
�
x00; :::; x

0
n�1
�0
, where y0

t
= y0t � �y0n, x

0
t = x0t � �x0n�1, �yn = n�1

Pn
t=1 yt and

�xn�1 = n�1
Pn

t=1 xt�1, the OLS estimator of A in (1) is given by

Ân = Y 0X (X 0X)
�1
: (10)

The e¤ect of GARCH innovations on the asymptotic theory of the least squares es-
timator of A is known to di¤er according to persistence class of the regressor xt in
(2). For stationary processes in class (iii),

p
nvec

�
Ân � A

�
is asymptotically zero

mean Gaussian with non-standard asymptotic variance that depends on the GARCH
parameters and the fourth moment of the innovations. As a result, the usual self-
normalised hypothesis tests will be invalid and a White (1980) type of correction is
necessary to obtain correctly sized t and Wald tests. The situation is very di¤erent
for the near-I(1) processes of class (i), where the non-standard limit distributions of

nvec
�
Ân � A

�
in the unit root and local to unity cases (Phillips 1987, 1988; Chan

and Wei, 1987) are invariant to the presence of GARCH e¤ects and the associated
Dickey-Fuller type t and Wald tests remain valid without corrections for conditional
heteroskedasticity. This dichotomy has a signal-to-noise ratio interpretation: station-
ary GARCH e¤ects in the noise of the system (1)-(2) are asymptotically eliminated
by the strong signal

Pn
t=1 xt�1x

0
t�1 = Op (n

2) of a near-integrated process in class (i).
On the other hand, the weaker Op (n) signal of a stationary process in class (iii) is
not su¢ cient to eliminate GARCH e¤ects from the noise. Given the vast discrepancy
in the order of magnitude of the above signals, a natural question is the existence
of a "minimal" order of magnitude for the signal of xt to asymptotically eliminate
GARCH e¤ects. An a¢ rmative answer requires the development of a limit distribu-
tion theory for the least squares estimator in the intermediate case of near-stationary
regressors of class (ii), undertaken in the next section.

3. Least squares limit theory for near-stationary
systems with GARCH innovations

We develop a limit theory for the centred least squares regression estimate

n
1+�
2

�
Ân � A

�
=

 
1

n
1+�
2

nX
t=1

"tx
0
t�1

! 
1

n1+�

nX
t=1

xt�1x
0
t�1

!�1
+Op

�
1

n
1��
2

�
(11)

for regressors xt belonging to the class P(ii) of near stationary processes. The as-
ymptotically negligible term above arises from estimating the intercept in (1) and
employing the demeaned series for yt and xt�1 for the construction of the OLS esti-
mator Ân; in the case of stationary and near stationary regressors this demeaning is
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eliminated asymptotically2. Our approach follows Magdalinos and Phillips (2009) in
the sense that we derive a law of large numbers and a martingale central limit the-
orem, respectively, for the denominator and numerator of the matrix quotient (11)
and use this to extract the limit theory. The main technical issue is to obtain the
probability limit of the quadratic variation of the martingale transform in the nu-
merator of (11) when "t is a vec-GARCH process de�ned in (4). An approximation
to this quadratic variation is achieved by reducing the problem to the existence of a
stable solution to a stochastic recurrence relation involving products of innovations
and covariates, see Lemma 3.4. Stability of the solution permits standard martingale
approximation arguments (Lemma 3.5) that resolve the asymptotics in (11).
To �x ideas, we establish some notation for the recursive equations that we employ

in the development of the asymptotic theory. Given the matrices A1; :::; Aq; B1; :::; Bp
in (4), de�ne

Ci =

8<:
Ai +Bi; if i � p ^ q
Ai; if p < i � q
Bi; if q < i � p

(12)

�i = Ir2 
 Ci; �n;i = Rin 
Rin 
 Ci (13)

and consider the stochastic di¤erence equations:

Y (j) =
�X
l=1

�lY (j � l) + v (j) (14)

Yn (j) =
�X
l=1

�n;lYn (j � l) + vn (j) (15)

for j � 1 and � := q _ p. The companion matrix associated with (15) is given by

Mn;� =

2666664
�n;1 �n;2 ::: �n;��1 �n;�
I 0 ::: 0 0

0 I
. . .

...
...

...
. . . . . . 0 0

0 ::: 0 I 0

3777775 (16)

where all identity matrices are of order r2m (m+ 1) =2 � r2m (m+ 1) =2. The com-
panion matrix associated with (14), denoted byM�, has the same form as the matrix
in (16) with �n;i replaced by �i for all i 2 f1; :::; �g. It is relatively straightforward
to show from �rst principles that the stationarity conditions for the GARCH process
ensure the stability of the solution of (14) and (15).

2See the proof of Theorem 3.7 in the Appendix for details and the proof of (11).
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3.1 Lemma. Under Assumption INNOV, the spectral radius and norm of the com-
panion matrices Mn;� and M� de�ned in (16) satisfy:

(i) � (M�) < 1 and
P1

j=0 kM j
�k <1

(ii) � (Mn;�) < 1 for all but �nitely many n, and supn�1
P1

j=0



M j
n;�



 <1:

We begin by providing some useful results involving the regressor xt and its ap-
proximant �n;t arising from the BN decomposition (8).

3.2 Lemma. Under Assumption INNOV, the process

�n;t =

t�1X
j=0

RjnC (1) et�j (17)

satis�es the following:

(i) max1�t�n E


n��=2�n;t

4 = O (1).

(ii) L�1n n(1+�)=2max1�t�n


�n;t

!p 0 for an arbitrary sequence Ln !1.

(iii) max1�m�n


n�1Pm

t=2

�
�n;t�1 
 et

�


L2
! 0

(iv) n�(1+�)=2


Pn

t=1 (xt�1 
 "t)�
Pn

t=1

�
�n;t�1 
 "t

�

 = op (1) :

We now consider the sample moment matrix
Pn

t=1 xtx
0
t: The following result shows

that n�1��
Pn

t=1 xtx
0
t has the same probability limit as in the case of a near-stationary

regressor generated by a conditionally homoskedastic martingale di¤erence et, see
Magdalinos and Phillips (2009a). Denote the autocovariance matrix of ut by �u (j) =
E
�
u1u

0
1�j
�
and the associated long run covariance 
uu =

P1
j=�1 �u (j). Positive

de�niteness of 
uu and the negative-stable property of C imply that the matrix

VC =

Z 1

0

erC
uue
rC0dr (18)

is well de�ned and positive de�nite.

3.3 Lemma.

(i) n�1��


Pn

t=1 xt�1x
0
t�1 �

Pn
t=1 �n;t�1�

0
n;t�1



 = op (1)

(ii) n�1��
Pn

t=1 �n;t�1�
0
n;t�1 !p VC where VC is the matrix in (18).
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Lemma 3.4 shows that stationary GARCH e¤ects are eliminated from the �rst
order asymptotics of the denominator of the matrix quotient (11), for a near station-
ary regressor xt of arbitrary order. The asymptotic development so far was based on
unconditional moment bounds and truncation based on Lemmata 3.1 and 3.2: the
GARCH speci�cation (4) has not been employed. Obtaining the limit distribution of
the martingale transform in the numerator of the matrix quotient (11), asymptotically
equivalent to

Nn =
1

n(1+�)=2

nX
t=1

�
�n;t�1 
 "t

�
(19)

in view of Lemma 3.2(iv), is more challenging. We show that the predictable quadratic
variation of Nn

hNin =
1

n1+�

nX
t=1

�
�n;t�1�

0
n;t�1 
 EFt�1"t"0t

�
=

1

n1+�

nX
t=1

�
�n;t�1�

0
n;t�1 
Ht

�
(20)

with Ht de�ned in (4), can be approximated by

Vn =
1

n1+�

nX
t=1

�
�n;t�1�

0
n;t�1 
 �""

�
; �"" = E"1"01 (21)

with approximation error expressed in terms of the solution of a stochastic recurrence
relation arising from (4), and that the stability of this solution implies the asymptotic
negligibility of the approximation error.
The next result shows how the error of approximating the quadratic variation

hNin in (20) by Vn in (21) can be estimated by using a bound that depends on the
solutions of (14) and (15).

3.4 Lemma. Consider the vector-valued processes

�t (j) = vec (ete0t � �ee)
 vech (Ht+j) (22)

Sn;t (j) = Rjn�n;t�1 
RjnC (1) et 
 vech (Ht+j) (23)

with Ht de�ned in (4) and

wt = vech ("t"0t �Ht) : (24)

(i) For each j � 1 and �xed t, �t (j) satis�es (14) with innovations v (j) � vt (j)
given by

vt (j) = vec (ete0t � �ee)
 '+

qX
l=1

(I 
 Al) [vec (ete0t � �ee)
 wt+j�l] : (25)

8



(ii) For each j � 1 and �xed t, n, Sn;t (j) satis�es (15) with innovations vn (j) �
�n;t (j) given by

�n;t (j) = Rjn�n;t�1
RjnC (1) et
'+
qX
i=1

(Ir2 
 Ai)
�
Rjn�n;t�1 
RjnC (1) et 
 wt+j�i

�
:

(26)

(iii) Given the sequences hNin and Vn in (20) and (21), the following bound applies:

khNin � Vnk � b (�n + sn) + op (1) (27)

as n!1, where

�n =
1

n1+�

n�1X
j=1

kRnk2(j�1)






n�jX
t=1

�t (j)






 ; sn =
1

n1+�







n�1X
j=1

n�jX
t=2

Sn;t (j)






 (28)

and b 2 (0;1) is a uniform constant.

By Lemma 3.4, the processes in (22) and (23) can be expressed as the companion
form solutions of the stochastic recurrence relations (14) and (15), see (64) and (65)
in the Appendix. The leading terms of these solutions consist of "moving averages" of
the martingale di¤erence sequences (25) and (26) weighted by powers of the compan-
ion matrices M� and Mn;� respectively. The stability property of the latter allows to
employ standard martingale arguments to demonstrate that the bounding sequences
�n and sn in (27) are asymptotically negligible.

3.5 Lemma.

(i) The bounding sequences in (27) satisfy �n !p 0 and sn !p 0:

(ii) The martingale transform in (19) satis�es the conditional Lindeberg condition

Ln (�) =
nX
t=2

EFt�1
�
�2nt1 fj�ntj > �g

�
!p 0 � > 0

with �nt = n�
1+�
2 k"tk



�nt�1

 :
Part (i) of the above lemma implies that the predictable quadratic variation of

the martingale transform in (19) with "t following the vec-GARCH process (4) can be
approximated by its counterpart when "t is conditionally homoskedastic. Combined
with the Lindeberg condition of part (ii), a standard martingale central limit theorem
applies to the numerator of the matrix quotient (11), and shows that the asymptotic
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variance of the OLS estimator Ân is invariant to GARCH e¤ects. The asymptotic
distribution of the associated Wald statistic

Wn =
�
HvecÂn � h

�0 n
H
h
(X 0X)

�1 
 �̂""
i
H 0
o�1 �

HvecÂn � h
�

(29)

for testing linear restrictions on the coe¢ cient matrix

H0 : Hvec (A) = h; (30)

where H is a known q � mr matrix with rank q and h is a known vector, follows
directly from that of Ân. Since the "t sequence is uncorrelated, �̂"" in (29) is a
simple parametric estimator �̂"" = n�1

Pn
t=1 "̂t"̂

0
t based on the residuals of (1): "̂t =

yt � �yn � Ân (xt�1 � �xn�1). These results are summarised below.

3.6 Theorem. Consider the system of predictive regressions (1)-(3) with � 2 (0; 1),
C a negative stable matrix and "t, ut satisfying Assumption INNOV. The following
limits apply as n!1:
(i) n�(1+�)=2

Pn
t=1 (xt�1 
 "t)) N (0; VC 
 �"")

(ii) n(1+�)=2vec
�
Ân � A

�
) N

�
0; V �1

C 
 �""
�

(iii) Wn ) �2 (q), under (30)

where q is the rank of H in (30), VC is de�ned in (18) and �"" = E"1"01.
Analogous results apply to the OLS estimator R̂n of the vector autoregressive

process in (2), with martingale di¤erence innovations ut = et that satisfy the vec-
GARCH speci�cation (6). The associatedWald statistic for testingH0 : HRvec(Rn) =
hR; where HR is a known q � r2 matrix with rank q and hR is a known vector, is
given by

WR
n =

�
HRvecR̂n � hR

�0 n
HR

h
(X 0X)

�1 
 �̂uu
i
H 0
R

o�1 �
HRvecR̂n � hR

�
(31)

where �̂uu = n�1
Pn

t=1 ûtû
0
t is based on the (2) residuals ût = xt �Rnxt�1.

3.7 Theorem. Consider the vector autoregression (2)-(3) with � 2 (0; 1), C a
negative stable matrix and strictly stationary ergodic innovations ut = et = ~H

1=2
t �et

with ~Ht generated by (6). Under Assumption INNOV, the following limits apply as
n!1:
(i) n�(1+�)=2

Pn
t=1 (xt�1 
 ut)) N (0; VC 
 �uu)

(ii) n(1+�)=2vec
�
R̂n �Rn

�
) N

�
0; V �1

C 
 �uu
�

(iii) WR
n ) �2 (q),

where q is the rank of HR and VC is de�ned in (18).
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3.8 Remarks.

(i) Theorems 3.6 and 3.7 provide a full characterisation of the e¤ect of GARCH
innovations in stochastic regression models by considering regressors with signal
that is intermediate to the Op (n2) signal of I(1) processes and the Op (n) signal
of I(0) processes. We show that a regression signal of order

nX
t=1

xt�1x
0
t�1 = Op (nLn) (32)

where Ln ! 1 at arbitrary rate is su¢ cient to asymptotically eliminate sta-
tionary GARCH e¤ects from the distribution of the least squares estimator and
the associated self-normalised test statistics. The implication is that the elim-
ination of GARCH e¤ects from least squares regression asymptotics is not an
exclusively I(1) phenomenon: it occurs when the regressors exhibit persistence
of any degree, including near-stationary regressors that are arbitrarily close to
stationarity. Note that the polynomial rate given to the sequence Ln above
serves solely the purpose of facilitating the presentation by employing existing
notation of PM (2009) and KMS (2015a): all mathematical arguments carry
through trivially by replacing the rate n� with an arbitrary sequence Ln !1
with Ln=n! 0.

(ii) The result has an intuitive signal to noise interpretation: the Op (n) signal
in stationary regression is not su¢ ciently strong to asymptotically remove the
e¤ects of conditional heteroskedasticity in the noise; this only becomes possi-
ble when the regression signal is strengthened to (32), while the order of the
conditionally heteroskedastic innovations remains I(0).

4. IVX limit theory with GARCH innovations

Having characterised the asymptotic behaviour of the least squares estimator in near
stationary systems with conditionally heteroskedastic innovations, we turn to the
issue of conducting inference in the predictive regression system (1)-(3) when the
order of regressor persistence is unknown. A robust methodology that produces
standard inference for testing restrictions on the matrix A of coe¢ cients in (1) across
all persistence regimes P(i)-P(iii) based on an endogenous instumentation procedure,
termed IVX, has been proposed by PM (2009) and further developed in the current
predictive regression context by KMS (2015a). In this paper, we investigate the extent
to which the above procedure is valid under conditionally heteroskedastic innovations.
To �x ideas, instruments are constructed by di¤erencing the regressor xt and a

new process
~zt = Rnz~zt�1 +�xt ~z0 = 0 (33)
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is generated according to an arti�cial autoregressive matrix

Rnz = Ir +
Cz
n�
; � 2 (0; 1) ; Cz < 0; (34)

with speci�ed persistence degree �. The matrix A of coe¢ cients in (1) is then esti-
mated by a standard instrumental variable estimator that employs the instruments
in (33):

~AIV X = Y 0 ~Z
�
X 0 ~Z

��1
: (35)

The asymptotic development of the previous section is the key to the determina-
tion of the asymptotic properties of the above IVX estimator under GARCH e¤ects.
The asymptotic behaviour of the numerator of the matrix quotient in (35) is driven
by the martingale transform

~Nn =
1

n(1+�^�)=2

nX
t=1

(~zt�1 
 "t) (36)

with instrument process ~zt behaving asymptotically like a near stationary process of
the type P(ii): when � < � (in which case the instruments are less persistent that
the regressors) ~zt�1 can be replaced asymptotically in (36) by zt�1, where

zt = Rnzzt�1 + ut (37)

a n�-near-stationary process; when � > �; employing more persistent instruments
than the regressor in (2) results to ~zt behaving asymptotically as the regressor xt,
a necessarily near-stationary process by the choice of � in (34), in which case ~Nn
in (36) is asymptotically equivalent to Nn in (19); see Lemma 3.1(i) and Lemma
3.5(i)3 of PM (2009) and Lemma B2(iv) of KMS (2015b). We conclude that the limit
distribution of ~Nn in (36) can be derived directly from Theorem 3.7(i). Denote a
strictly stationary ergodic version of xt when � = 0 by

x0;t =
1X
j=0

Rjut�j; R = Ir + C; kRk < 1; (38)

and the constant matrices

VCz =

Z 1

0

erCz
uue
rCzdr and V =

Z 1

0

erCVCe
rCzdr: (39)

3In the context of this paper, the statement of Lemma 3.5(i) of PM (2009) is valid for all � 2 (0; �)
since the innovation sequence u0t � "t is a martingale di¤erence.
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4.1 Theorem. Consider the model (1)�(3) under Assumption INNOV with instru-
ments ~zt de�ned by (34) and (33). Let Bu be a r-variate Brownian motion with
covariance matrix 
uu, JC (t) =

R t
0
eC(t�s)dBu (s) be an Ornstein-Uhlenbeck process

and let

Bu (t) = Bu (t)�
Z 1

0

Bu (t) dt, JC (t) = JC (t)�
Z 1

0

JC (t) dt

denote the demeaned versions of Bu and JC. The following limit theory as n ! 1
applies for the estimator ~AIV X in (35):

(i) when � < � ^ 1, n 1+�
2 vec

�
~AIV X � A

�
)MN

�
0;
�
~	�1uu

�0
CzVCzCz ~	

�1
uu 
 �""

�
(ii) when � 2 (0; �), n 1+�

2 vec
�
~AIV X � A

�
) N

�
0; V �1

C 
 �""
�

(iii) when � = � > 0, n
1+�
2 vec

�
~AIV X � A

�
) N

�
0;V�1C�1VCC�1 (V0)�1 
 �""

�
(iv) when � = 0,

p
nvec

�
~AIV X � A

�
) N (0; V0)

where x0;t is de�ned in (38), the matrices VC, VCz and V are de�ned in (18) and
(39),

V0 =
��
Ex0;1x00;1

��1 
 Im

�
E
�
x0;1x

0
0;1 
 "2"

0
2

� ��
Ex0;1x00;1

��1 
 Im

�
(40)

and ~	uu is a random matrix given by ~	uu = 
uu+
R 1
0
JCdJ

0
C when � � 1 with C = 0

when � > 1, and ~	uu = 
uu + VCC when � < 1.

4.2 Corollary. Under Assumption INNOV, the IVX-Wald statistic

~Wn =
�
Hvec ~AIV X � h

�0 n
H
h
(X 0P ~ZX)

�1 
 �̂""
i
H 0
o�1 �

Hvec ~AIV X � h
�

(41)

for testing the hypothesis (30) has a �2 (q) asymptotic distribution when � > 0.
The only class of predictor variables not covered by Corollary 4.2 is that of purely

stationary autoregressions P(iii) with conditionally heteroskedastic innovations. This
is by no means surprising since, in the above case, the IVX-Wald test statistic is
asymptotically equivalent to a standard OLS-Wald statistic which is known to have
a non-standard limit distribution under conditionally heteroskedastic innovations.
When xt is a stationary process and the innovation sequence "t in (1) is condition-
ally heteroskedastic, the asymptotic variance of n�1=2

Pn
t=1 (xt�1 
 "t) is given by

� = E
�
xt�1x

0
t�1 
 "t"

0
t

�
and does not factorise to E

�
xt�1x

0
t�1
�

 �"" as in the case

when "t are conditionally homoskedastic; consequently, the matrix n (X 0X)
�1 
 �̂""

is no longer a consistent estimator of the asymptotic variance of the (asymptotically
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equivalent) OLS and IVX estimators, so both the OLS and IVX based Wald statistics
will fail to be asymptotically �2 (q). The standard limit distribution can be recovered
by introducing a White (1980) type of correction in the Wald statistic, which requires
consistent estimation of n� when xt is a stationary process. In order to preserve the
robustness of the IVX procedure to the persistence properties of xt, we employ the
estimator

�̂n =

nX
t=1

�
~zt�1~z

0
t�1 
 "̂t"̂

0
t

�
(42)

where ~zt are the IVX instruments in (33) and "̂t are the OLS residuals from (1). The
corrected IVX-Wald statistic takes the form

Ŵn =
�
Hvec ~AIV X � h

�0 �
HQ̂nH

0
��1 �

Hvec ~AIV X � h
�

(43)

Q̂n =

��
~Z 0X

��1

 Im

�
�̂n

��
X 0 ~Z

��1

 Im

�
(44)

The next result characterises the asymptotic behaviour of �̂n in (42) and con�rms
that it provides an appropriate conditional heteroskedasticity adjustment to the IVX-
Wald statistic.

4.3 Lemma. Under Assumption INNOV, the following hold as n!1:

(i) max1�t�n E


n�(�^�)=2~zt

4 = O (1) :

(ii) n�1��^��̂n !p �, where

� =

8<:
VCz 
 �""; � < �
VC 
 �""; 0 < � < �
E
�
x0;1x

0
0;1 
 "2"

0
2

�
� = 0

where x0;t is de�ned in (38), and the matrices VC and VCz are de�ned in (18)
and (39).

4.4 Theorem. Under Assumption INNOV, the corrected IVX-Wald statistic Ŵn in
(43) for testing the hypothesis (30) has a �2 (q) asymptotic distribution when � � 0.

4.5 Remarks.

(i) Theorem 4.1 and its corollary show that the limit distribution of the standard
IVX-Wald statistic ~Wn is invariant to the presence of conditional heteroskedas-
ticity in the innovations for all regressors that exhibit some degree of persistence
� > 0. GARCH e¤ects are present in the limit distribution only in the case
where the regressor xt is a stable autoregressive process with � = 0. These
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results are a direct consequence of the asymptotic development in Section 3
and the fact that any degree of persistence � > 0 is su¢ cient to eliminate
GARCH e¤ects in near stationary systems of regression equations: intuitively,
an IVX instrument ~zt behaves asymptotically as a near-stationary process (zt
if � < � and xt if � > � > 0), the martingale transform ~Nn in (36) will behave
asymptotically as its near stationary counterpart (19), and will thus have suf-
�cient signal to eliminate GARCH e¤ects from the limit distribution. For the
same reason, the limit distribution of the standard IVX-Wald test is distorted
by the presence of GARCH innovations when � = 0, since ~zt behaves like the
stationary process xt.

(ii) Theorem 4.4 shows that a simple adjustment to the IVX Wald test statistic
extends the validity of the IVX approach in the presence of GARCH innova-
tions across the whole range � � 0 of data generating mechanisms considered in
classes P(i)-P(iii). These classes de�ne regressors with diverse stochastic prop-
erties, ranging from pure stationarity to unit root nonstationarity and include
the intermediate local to unity and near stationary persistence regimes. The
adjustment di¤ers from a standard conditional heteroskedasticity correction in
that E

�
xt�1x

0
t�1 
 "t"

0
t

�
is estimated by using the IVX instruments instead of

the regressors, in order to ensure the robustness of the corrected IVX-Wald
statistic in (43) to regressors with degree of persistence � > �.

(iii) KMS (2015a) have proposed a �nite sample correction to the IVX Wald test
statistic ~Wn in (41) that exhibits better �nite sample properties while being as-
ymptotically equivalent to ~Wn. The conditional heteroskedasticity adjustment
employed to ~Wn can also be employed to the IVX-Wald test statistic of KMS
(2015a), resulting to the adjusted version having a �2 (q) limit distribution for
all � � 0.

5. Discussion

The paper provides a complete characterisation of the asymptotic properties of least
squares regression methods in the presence of conditional heteroskedasticity in the in-
novations that take the form of a covariance stationary vec-GARCH process. Existing
results on stochastic regression with conditionally heteroskedastic innovations lead to
di¤erent conclusions depending on the integration properties of the regressors. Least
squares limit theory with I(1) processes is invariant to the presence of conditional
heteroskedasticity and the usual Dickey-Fuller type of limit distributions apply. On
the other hand, GARCH e¤ects appear in the �rst order asymptotics of the OLS
estimator and the associated self-normalised statistics generated by I(0) regressors.
Approached as a signal-to-noise ratio problem, a natural question that arises is the
degree of regression signal required in order to asymptotically eliminate conditional

15



heteroskedasticity from the noise. The paper provides a simple and intuitive answer:
any signal that dominates the Oep (n) signal of a stationary regressor is su¢ cient.
Consequently, GARCH e¤ects appear in least squares limit theory only in the case of
stationary regressors: for near-stationary and local to unity regressors, the OLS esti-
mator has same the limit distribution that applies under conditionally homoskedastic
innovations, given in Magdalinos and Phillips (2009) and Phillips (1988) respectively.
The asymptotic invariance of least squares methods to GARCH e¤ects in the in-

novations in the case of regressors that are not exactly I(0) carries over to the IVX
procedure of PM (2009) and KMS (2015a), where the IVX-Wald test statistic is shown
to have a standard chi-squared limit distribution. The advantage of this method is
that, unlike least squares, the limit distribution is robust to regressor persistence. To
accommodate I(0) regressors in the presence of conditional heteroskedasticity in the
innovations, we introduce a White-type correction based on the endogenously gener-
ated IVX instruments rather than the regressor in order preserve the method�s ro-
bustness property. This adjusted IVX-Wald test statistic is shown to have a standard
chi-squared limit distribution under all persistence regimes and stationary GARCH
innovations, validating the IVX procedure under conditional heteroskedasticity.

6. Technical appendix and proofs

We denote by kMk = max
np

� : � 2 � (M 0M)
o
and kMkF = (trM 0M)1=2 the spec-

tral and Frobenius matrix norms and by � (A) and � (A) the spectrum and the spectral
radius of a square matrix A.

Proof of Lemma 3.1. It is su¢ cient to show that all non-zero eigenvalues ofM� lie
inside the open unit disk fz 2 C : jzj < 1g. Suppose that � 2 C8 f0g is an arbitrary
eigenvalue of of M�. Letting

G� (�) = Is �
1

�
�1 � :::� 1

��
��;

with s = r2m (m+ 1) =2, and using the standard formula for the determinant of a
partitioned matrix (e.g. 5.30 of Abadir and Magnus (2005)) and induction on � we
obtain

det (M� � �I�s) = (��)�s detG� (�) : (45)

The identity (45) implies that any non-zero eigenvalue � of M� satis�es

detG� (�) = 0: (46)
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Denoting by �M the conjugate transpose of a square complex matrixM , the real (also
called Hermitian) part of G� (�) is given by

R [G� (�)] =
1

2

�
G� (�) + �G� (�)

�
=

1

2

�
2Is �

�
1

�
+
1
��

�
�1 � :::�

�
1

��
+
1
��
�

�
��

�
=

1

2

"
2Is �

2Re (�)

j�j2
�1 �

2Re
�
�2
�

j�j4
�2 � :::� 2Re (�

�)

j�j2�
��

#

= Im �
�X
i=1

�i +

�X
j=1

"
1�

Re
�
�j
�

j�j2j

#
�j: (47)

Note that R [G� (�)] is a real symmetric matrix. The conditions �i � 0 and �0 < 1
imply that the matrix Im �

P�
i=1 �i is positive de�nite: �0 is the largest eigenvalue

of
P�

i=1 �i (since
P�

i=1 �i � 0), so 1� �0 is the smallest eigenvalue of Im �
P�

i=1 �i.
Moreover, for arbitrary � 2 C8 f0g and j 2 N,

j�j � 1 =) j�j2j � j�jj =
���j�� � ��Re ��j��� =) 1�

Re
�
�j
�

j�j2j
� 0

which implies that the second sum on the right of (47) is a positive semide�nite
matrix. Since Im �

P�
i=1 �i > 0; (47) implies that R [G� (�)] is a positive de�nite

matrix for all � 2 C satisfying j�j � 1: Positivity of R [Gq (�)] implies the inequality

jdet [Gq (�)]j � detR [Gq (�)] > 0

for all � 2 C satisfying j�j � 1 (see e.g. Exercise 11(b), page 106 of Serre (2010)).
We conclude that (46) is violated when j�j � 1; so M� cannot have an eigenvalue
with j�j � 1. Hence, � (M�) < 1.
To show the second assertion, denote by (M j

�)kl the kl element of the matrix M
j
�

for j � 1. By Corollary 5.6.13 of Horn and Johnson (2013) for arbitrary � > 0 there
exists b (�) > 0 such that

max
1�k��s

max
1�l��s

���M j
�

�
kl

�� � b (�) [� (M�) + �]j for all j � 1:

Since � (M�) < 1, we may choose � 2 (0; 1� � (M�)), which implies that �� :=
� (M�) + � 2 (0; 1) : For this choice of �,

M j

�




F
� �s max

1�k��s
max
1�l��s

���M j
�

�
kl

�� � �sb (�)�j�

giving
1X
j=0



M j
�




F
� �sb (�)

1X
j=0

�j� =
�sb (�)

1� ��
:
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This shows part (i). For part (ii), Mn;� ! M� as n ! 1 so, by continuity of the
eigenvalues of a matrix as a function of the matrix elements, � (Mn;�)! � (M�) and
kMn;�k ! kM�k as n ! 1. Since � (M�) < 1, convergence of � (Mn;�) implies that
� (Mn;�) < 1 for all but �nitely many n. Also, since

P1
j=0 kM j

�k < 1, kMn;�k !
kM�k and dominated convergence yield

lim
n!1

1X
j=0



M j
n;�



 = 1X
j=0



M j
�



 <1
which implies that supn�1

P1
j=0



M j
n;�



 < 1 (since convergent real sequences are
bounded).

Proof of Lemma 3.2. For part (i), denoting F = C (1) for brevity, the identity
kxk4 = tr f(x
 x) (x0 
 x0)g for any vector x, yields

E

 

�n;t

4
n�=2

!
=

1

n2a
tr
�
E
�
�n;t 
 �n;t

� �
� 0n;t 
 � 0n;t

�	
=

1

n2a
tr

tX
i;j;k;l=1

�
Rt�jn F 
Rt�in F

�
E (eje0k 
 eie

0
l)
�
F 0Rt�k0n 
 F 0Rt�l0n

�
=

1

n2a

tX
i;j;k;l=1

Etr
��
F 0Rt�k0n Rt�jn F 
 F 0Rt�l0n Rt�in F

�
(eje

0
k 
 eie

0
l)
�

=
1

n2a

tX
i;j;k;l=1

�
vec
�
F 0Rt�j0n Rt�kn F 
 F 0Rt�i0n Rt�ln F

��0 Evec (eje0k 
 eie
0
l) (48)

by using the identity tr (A0B) = [vec (A)]0vec(B). Since, for any r � r matrices
K;L the r4� 1 vectors vec(K 
 L) and vec(K)
vec(L) consist of the same elements
fKijLkl : 1 � i; j; k; l � rg in di¤erent order of appearance, there exists a r4 � r4

permutation matrix � such that vec(K 
 L) = � [vec (K)
 vec (L)] ; giving

vec (eje0k 
 eie
0
l) = � [vec (eje

0
k)
 vec (eie0l)] = � (ek 
 ej 
 el 
 ei) : (49)

The Kronecker product on the right of (49) is a vector that consists of the same ele-
ments (in di¤erent order of appearance) for any reordering of the indices k; j; l; i; since
the product of two permutation matrices is a permutation matrix, we can rearrange
the order fek; ej; el; eig in the Kronecker (49) by changing the permutation matrix
�. By the Cauchy-Schwarz inequality and equivalence of norms in �nite dimensional
spaces, we obtain that��[vec (A)]0 vec (B)�� � kvec (A)k kvec (B)k = kAkF kvec (B)k

� b kAk kvec (B)k
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for all matrices A;B of the same order and some �nite constant b > 0. Applying the
above bound to (48), and using the fact that k�k = 1:

E

 

�n;t

4
n�=2

!
� 1

n2a

tX
i;j;k;l=1



F 0Rt�j0n Rt�kn F



F



F 0Rt�i0n Rt�ln F



F
kE (ek 
 ej 
 el 
 ei)k

� b kFk4

n2a

tX
i;j;k;l=1

�t�jn �t�in �t�kn �t�ln kE (ek 
 ej 
 el 
 ei)k (50)

where �n = kRnk and b is a uniform bounding constant (taking possibly di¤erent
values).
The martingale di¤erence property of et implies that E (ek 
 ej 
 el 
 ei) = 0

when
max fi; j; k; lg > max ffi; j; k; lg�max fi; j; k; lgg ;

so the expectation in (50) is non-zero in the following cases: (i) all elements of
fi; j; k; lg are equal; (ii) three elements of fi; j; k; lg are equal and strictly greater
the remaining element; (iii) the elements of fi; j; k; lg are pairwise equal; (iv) two
elements of fi; j; k; lg are equal and strictly greater than the remaining two unequal
elements. In cases (i)-(iii), the result is immediate since there are at most 2 sums in
(50). For example, in case (ii), the right side of (50) is bounded by

kFk4

n2a

 1X
j=1

�jn

! 1X
k=1

�3kn

!
max
i;l�1

E
�
kelk keik3

�
� O (1)max

i;l�1

�
E
�
kelk2 keik2

��1=2 �E ke1k4�1=2
� O (1)E ke1k4

because
P1

i=1 �
mi
n = O (n�) for any �xed m. In case (iv) there will be 3 sums in (50),

so the above bound is too crude. In this case, we may write expectation in (50)

E (ek 
 ej 
 el 
 ei) = E (ek 
 ej 
 ei 
 ei) ; i > j > k

without loss of generality (by varying the permutation matrix � in (49) and noting
that k�k = 1), so (50) yields

E

 

�n;t

4
n�=2

!
� b kFk4

n2a

tX
i=1

�2(t�i)n

i�1X
j=1

j�1X
k=1

�t�jn �t�kn kE (ek 
 ej 
 vec (eie0i))k

� b kDrk kFk4

n2a

tX
i=1

�2(t�i)n

i�1X
j=1

j�1X
k=1

�t�jn �t�kn kYk;j (i)k (51)
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where Dr denotes the r2� r (r + 1) =2 duplication matrix (Chapter 11 of Abadir and
Magnus, 2005) that satis�es vec(K) = Drvech(K) for a symmetric r � r matrix K
and

Yk;j (i) := E (ek 
 ej 
 vech (eie0i)) = E
�
ek 
 ej 
 vech

�
~Hi

��
since et = ~H

1=2
t �et. Applying (6) and recalling that E (ek 
 ej) = 0 since k < j, we

obtain

Yk;j (i) =

~q^(i�j�1)X
l=1

�
Ir2 
 ~Al

�
E
h
ek 
 ej 
 vech

�
~Hi�l

�i
+

~p^(i�j�1)X
k=1

�
Ir2 
 ~Bk

�
E
h
ek 
 ej 
 vech

�
~Hi�k

�i
because the law of iterated expectations gives

E
�
ek 
 ej 
 vech

�
ei�le

0
i�l
��

= E
�
ek 
 ej 
 vechEFi�l�1

�
ei�le

0
i�l
��

= E
h
ek 
 ej 
 vech

�
~Hi�l

�i
the above expectation is non-zero only if i� l > j and i� k > j. We conclude that,
for �xed k; j; Yk;j (i) satis�es the recurrence relation

Yk;j (i) =
~�X
l=1

~�lYk;j (i� l) ; for i > j; Yk;j (i) = 0 for i � j (52)

where ~�l = Ir2
 ~Cl where ~Cl is de�ned in (12) with Al replaced by ~Al and Bl replaced
by ~Bl and ~� = ~q _ ~p. Letting

~Yk;j (i) =
�
Yk;j (i)

0 ; Yk;j (i� 1)0 ; :::; Yk;j (i) (i� ~�+ 1)0
�0

we can write (52) in companion form:

~Yk;j (i) = ~M�
~Yk;j (i� 1) i � j

where ~M� is the matrix M� de�ned in (16) with �i replaced by ~�i. Recursion yields

~Yk;j (i) = ~M i�j�1
�

~Yk;j (j + 1) = ~M i�j�1
� Yk;j (j + 1)
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since Yk;j (l) = 0 for all l � j. We conclude that

kYk;j (i)k �



 ~Yk;j (i)


 � 


 ~M i�j�1

�




 kYk;j (j + 1)k
=




 ~M i�j�1
�







E�ek 
 ej 
 vech
�
~Hj+1

��



=




 ~M i�j�1
�






E �ek 
 ej 
 vechEFj
�
ej+1e

0
j+1

��


=




 ~M i�j�1
�






E �ek 
 ej 
 vech
�
ej+1e

0
j+1

��


� b




 ~M i�j�1
�




E �kekk kejk kej+1k2�
� b




 ~M i�j�1
�




�E �kekk2 kej+1k2�E �kejk2 kej+1k2�	1=2
� b




 ~M i�j�1
�




E ke1k4
and substituting into (51) yields:

E

 

�n;t

4
n�=2

!
� b

n2a

tX
i=1

�2(t�i)n

i�1X
j=1

�t�jn




 ~M i�j�1
�




 j�1X
k=1

�t�kn E ke1k4

� b

n2a

tX
i=1

�2(t�i)n

i�1X
j=1




 ~M i�j�1
�




 �t�j+1n

j�1X
k=1

�j�1�kn E ke1k4

� b

n2a

1X
i=0

�2in

1X
k=1

�kn

1X
j=1




 ~M j
�




E ke1k4
= O (1)

uniformly in t. This shows part (i).
For part (ii), since for any � > 0

P
�
max
1�t�n



�n;t

 > �L�1n n
1+�
2

�
� 1

�2
L2nE

�
1

n1+�
max
1�t�n



�n;t

2�
and Ln !1 at arbitrarily slow rate, it is su¢ cient to show that

1

n1+�
E
�
max
1�t�n



�n;t

2�! 0: (53)

To prove (53), letting
~en;j = ej1 fkejk > mng
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for an arbitrary sequence mn !1, we can write



�n;t

2 =







tX
j=1

Rt�jn C (1) ej







2

� kC (1)k2
 

tX
j=1

kRnkt�j kejk
!2

= kC (1)k2
 

tX
j=1

kRnkt�j [kejk1 fkejk � mng+ k~en;jk]
!2

� kC (1)k2
 
b1mnn

� +

tX
j=1

kRnkt�j k~en;jk
!2

� 2 kC (1)k2
8<:b21m2

nn
2� +

 
tX
j=1

kRnkt�j k~en;jk
!29=;

� 2 kC (1)k2
(
b21m

2
nn

2� +
tX
j=1

kRnk2(t�j)
tX
j=1

k~en;jk2
)

� 2 kC (1)k2
(
b21m

2
nn

2� + b2n
�

nX
j=1

k~en;jk2
)

for �xed constants b1; b2 2 (0;1). Choosing mn ! 1 such that m2
n=n

1�� ! 0 and
taking expectations yields

1

n1+�
E
�
max
1�t�n



�n;t

2� � O

�
m2
n

n1��

�
+ b2E

�
ke1k2 1 fkejk > mng

�
! 0

showing (53). For part (iii), the martingale property and part (i) give

E






 1n
nX
t=1

�
�n;t�1 
 et

�





2

=
1

n2

nX
t=1

E
�

�n;t�1

2 ketk2�

� 1

n

�
max
t�n

E
�

�n;t�1

4��1=2 �E �ke1k4��1=2

= O

�
1

n1��

�
:
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For part (iv), x0 = op
�
n�=2

�
and the BN decomposition gives

1

n(1+�)=2

nX
t=1

(xt�1 
 "t) =
1

n(1+�)=2

nX
t=1

 
t�2X
j=0

Rjnut�j�1 
 "t

!
+ op

�
1

n(1��)=2

�

=
1

n(1+�)=2

nX
t=1

" 
�n;t�1 �

t�2X
j=0

Rjn�~et�j�1

!

 "t

#
+ op

�
1

n(1��)=2

�

Since
Pt�2

j=0R
j
n�~et�j�1 = Rt+1n ~e1 � ~et�2 �

Pt�2
j=0 (�R

j+1
n ) ~et�j�1, and




n�(1+�)=2

nX
t=1

�
Rt+1n ~e1 
 "t

�





L1

= O
�
n�(1��)=2

�
by the Cauchy-Schwarz inequality, it is enough to show that the martingale arrays

m1n =
1

n(1+�)=2

nX
t=1

(~et�2 
 "t) ; m2n =
1

n(1+�)=2
1

n�

nX
t=1

" 
t�2X
j=0

Rjn~et�j�1

!

 "t

#

are both op (1). The Cauchy-Schwarz inequality gives

E km1nk2 =
1

n1+�

nX
t=1

E
�
k~et�2k2 k"tk2

�
� 1

n�
�
E k~e1k4 E k"1k4

	1=2
and the Cauchy-Schwarz inequality followed by the Minkowski inequality gives

E km2nk2 � 1

n1+3�

nX
t=1

8<:E






t�2X
j=0

Rjn~et�j�1







4
9=;
1=2 �

E k"1k4
	1=2

�
k"1k2L4
n1+3�

nX
t=1

8<:
 
t�2X
j=0

n
kRnk4j E k~e1k4

o1=4!49=;
1=2

�
k"1k2L4 k~e1k

2
L4

n3�

 
n�2X
j=0

kRnkj
!2
= O

�
1

n�

�
:

Proof of Lemma 3.3. To prove the approximation in (i), we use the Phillips and
Solo (1992) method of applying the BN decomposition ut = C (1) et � �~et and the
summation by parts formula to �nt�1 to obtain

xt�1 = �nt�1 + ~wn;t +Rt�1n x0 (54)
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with ~wn;t = ~et � Rtn~e1 � C
n�

Pt�1
j=1R

j�1
n ~et�j and ~et de�ned in (8). First note that, by

the Minkowski inequality,

sup
t�1
E k ~wn;tk2 � 2

242 sup
t�1
E k~etk2 +

kCk2

n2�
sup
t�1
E

 
t�1X
j=1

kRnkj�1 k~et�jk
!235

� 4E k~e1k2 +
2 kCk2

n2�
sup
t�1

 
t�1X
j=1

n
kRnk2(j�1) E k~et�jk2

o1=2!2

� 4E k~e1k2 + 2 kCk2 E k~e1k2
 
1

n�

1X
j=1

kRnk(j�1)
!2

= E
�
k~e1k2

�
O (1) = O (1)

by stationarity of ~et and the fact that E k~e1k2 < 1 and
P1

j=1 kRnk
j�1 = O (n�).

Expanding (54) using the above bound and x0 = op
�
n�=2

�
;






nX
t=1

xt�1x
0
t�1 �

nX
t=1

�nt�1�
0
nt�1






 � 2
nX
t=1



�nt�1

 k ~wn;tk+ nX
t=1

k ~wn;tk2 + op
�
n2�
�

and part (i) follows since n�1��E
Pn

t=1 k ~wn;tk
2 = O (n��) and

1

n1+�

nX
t=1

E


�nt�1

 k ~wn;tk � 1

n�

�
max
t�n

E


�nt�1

2�1=2�sup

t�1
E k ~wn;tk2

�1=2
= O

�
1

n�=2

�
For part (ii), write

1

n1+�

nX
t=1

�nt�1�
0
nt�1 = An +Bn +B0

n

where

An =
1

n1+�

nX
t=1

t�1X
j=0

RjnC (1) et�je
0
t�jC (1)

0 �Rjn�0
Bn =

1

n1+�

nX
t=1

t�1X
i=0

t�1X
j=i+1

RjnC (1) et�je
0
t�iC (1)

0 �Rin�0 :
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Noting that 
uu = C (1)�eeC (1)
0 and

An =
1

n1+�

n�1X
j=0

RjnC (1)

nX
t=j+1

et�je
0
t�jC (1)

0 �Rjn�0
=

1

n1+�

n�1X
j=0

RjnC (1)

n�jX
t=1

(ete
0
t � �ee)C (1)

0 �Rjn�0
+

1

n1+�

n�1X
j=0

(n� j)Rjn
uu
�
Rjn
�0

= A1n + A2n:

The ergodic theorem yields

kA1nk � kC (1)k2

n�

n�1X
j=0

kRnk2j max
m�n






 1n
mX
t=1

(ete
0
t � �ee)







= O (1) oa:s: (1) = oa:s: (1) :

Since
Pn�1

j=0 j kRnk
j = O (n2�)

A2n =
1

n�

n�1X
j=0

Rjn
uu
�
Rjn
�0
+O

�
1

n1��

�
! VC

because

vec

(
1

n�

n�1X
j=0

Rjn
uu
�
Rjn
�0)

=
1

n�

n�1X
j=0

(Rn 
Rn)
j vec (
uu)

=
1

n�
(I �Rn 
Rn)

�1 vec (
uu) + o (1)

= � (C 
 I � I 
 C)�1 vec (
uu) + o (1)

= vec (VC) + o (1) :

For Bn, we have

Bn =
1

n1+�

n�1X
i=0

nX
t=i+1

t�1X
j=i+1

RjnC (1) et�je
0
t�iC (1)

0 �Rin�0
=

1

n1+�

n�1X
i=0

n�iX
t=1

t+i�1X
j=i+1

RjnC (1) et+i�je
0
tC (1)

0 �Rin�0
=

1

n1+�

n�1X
i=0

Rin

n�iX
t=1

"
t�1X
j=1

RjnC (1) et�j

#
e0tC (1)

0 �Rin�0
=

1

n�

n�1X
i=0

Ri+1n

1

n

n�iX
t=1

�n;t�1e
0
tC (1)

0 �Rin�0
25



and Lemma 3.2(iii) implies that

kBnkL1 � kC (1)kmaxt�n






1n
mX
t=1

�n;t�1e
0
t







L2

1

n�

n�1X
i=0

kRnk2i = o (1)

showing that kBnk !p 0.

Proof of Lemma 3.4. By de�nition of the process �nt�1, we can write

hMin � Vn =
1

n1+�

nX
t=1

�
�nt�1�

0
nt�1 
 (Ht � �"")

�
= An +Bn +B0

n (55)

where

An =
1

n1+�

nX
t=1

"(
t�1X
j=1

Rj�1n C (1) et�je
0
t�jC (1)

0Rj�1n

)

 (Ht � �"")

#
(56)

Bn =
1

n1+�

nX
t=1

"(
t�2X
j=1

t�1X
i=j+1

Rj�1n C (1) et�je
0
t�iC (1)

0Ri�1n

)

 (Ht � �"")

#
:(57)

We �rst expand the term in (56) by adding and subtracting �ee from as follows:

An =
1

n1+�

n�1X
j=1

�
Rj�1n C (1)
 I

� n�jX
t=1

[ete
0
t 
 (Ht+j � �"")]

�
C (1)0Rj�1n 
 I

�
=

1

n1+�

n�1X
j=1

�
Rj�1n C (1)
 I

� n�jX
t=1

[(ete
0
t � �ee)
Ht+j]

�
C (1)0Rj�1n 
 I

�
� 1

n1+�

n�1X
j=1

�
Rn�j�1n C (1)
 I

� "( jX
t=1

(ete
0
t � �ee)

)

 �""

#
C (1)0

�
Rn�j�1n 
 I

�
+

1

n1+�

n�1X
j=1

Rj�1n 
uR
j�1
n 


nX
t=j+1

(Ht � �"")

= A1n � A2n + A3n

in order of appearance. It is easy to show that A2n and A3n are oa:s: (1): since

1

n

nX
t=1

(ete
0
t � �ee)!a:s: 0 and

1

n

nX
t=1

(Ht � �"")!a:s: 0 (58)

by the ergodic theorem, and

1

n�

n�1X
j=1

Rj�1n 
uR
j�1
n ! VC =

Z 1

0

erC
ue
rCdr (59)
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we can write

A3n =
1

n1+�

n�1X
j=1

Rj�1n 
uR
j�1
n 


nX
t=j+1

(Ht � �"")

=
1

n�

n�1X
j=1

Rj�1n 
uR
j�1
n 
 1

n

nX
t=1

(Ht � �"")�
1

n1+�

n�1X
j=2

Rj�1n 
uR
j�1
n 


jX
t=1

(Ht � �"")

= A03n + A003n

in order of appearance. By (58) and (59), A03n !a:s: 0. For arbitrary � > 0, there
exists j0 (�) 2 N such that




1j

jX
t=1

(Ht � �"")





 < � a:s: for all j � j0 (�) ;

giving, a:s:

kA003nk � k
uk
1

n1+�

j0(�)�1X
j=2

j�1X
t=1

kHt � �""k+ � k
uk
1

n�

n�1X
j=j0(�)

j

n
kRnk2(j�1)

= O

�
1

n1+�

�
+ �O (1) ;

since E kH1k <1 implies that P (kHtk <1) = P (kH1k <1) = 1 for all t < j0 (�).
This shows that A003n !a:s: 0. The same argument works for A2n: almost surely,

kA2nk � k�""k kC (1)k2
1

n1+�

n�1X
j=1

j kRnk2(n�j�1)





1j

jX
t=1

(ete
0
t � �ee)







� k�""k kC (1)k2

8<: 1

n1+�

j0(�)�1X
j=1

jX
t=1

k(ete0t � �ee)k+ �
1

n�

n�1X
j=j0(�)

j

n
kRnk2(n�j�1)

9=;
= O

�
1

n1+�

�
+ �O (1) :

We conclude that kAn � A1nk = op (1) and

vec (A1n) =
1

n1+�

n�1X
j=1

�
Rj�1n 
Rj�1n

�
(C (1)
 C (1))

n�jX
t=1

vec [(ete0t � �ee)
Ht+j] :

For any matrices K 2 Rr�r; L 2 Rm�m, the vectors vec(K 
 L) and vec(K)
vec(L)
consist of the same elements fKijLkl : 1 � i; j � r; 1 � k; l � mg but appear in dif-
ferent order in the two vectors. Therefore, there exists a m2r2 �m2r2 permutation
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matrix � such that vec(K 
 L) = � [vec (K)
 vec (L)] : Using this and the identity
vec(K) = Dmvech(K) for a symmetric m � m matrix K; where Dm denotes the
m2�m (m+ 1) =2 duplication matrix (Chapter 11 of Abadir and Magnus, 2005), we
can write

vec (A1n) = � (Ir2 
Dm)
1

n1+�

n�1X
j=1

�
Rj�1n 
Rj�1n

�
(C (1)
 C (1))

n�jX
t=1

�t (j) ; (60)

with �t (j) =vec(ete0t � �ee)
vech(Ht+j) as in Lemma 3.5. Since k�k = 1 and
kDmk =

p
2 for a permutation matrix �, (60) yields the asymptotic bound

kvec (A1n)k �
p
2 kC (1)k2 1

n1+�

n�1X
j=1

kRnk2(j�1)






n�jX
t=1

�t (j)






+ op (1) : (61)

The term in (57) can be written as:

Bn =
1

n1+�

nX
t=1

t�2X
j=1

t�1X
i=j+1

��
Rj�1n C (1) et�je

0
t�iC (1)

0Ri�1n

	

 (Ht � �"")

�
=

1

n1+�

nX
t=1

t�2X
j=1

t�j�1X
i=1

��
Rj�1n C (1) et�je

0
t�i�jC (1)

0Ri+j�1n

	

 (Ht � �"")

�
=

1

n1+�

n�2X
j=1

nX
t=j+2

t�j�1X
i=1

��
Rj�1n C (1) et�je

0
t�i�jC (1)

0Ri+j�1n

	

 (Ht � �"")

�
=

1

n1+�

n�2X
j=1

n�jX
t=2

t�1X
i=1

��
Rj�1n C (1) ete

0
t�iC (1)

0Ri+j�1n

	

 (Ht+j � �"")

�
=

1

n1+�

n�2X
j=1

n�jX
t=2

"(
Rj�1n C (1) et

 
t�1X
i=1

Ri�1n C (1) et�i

!0
Rjn

)

 (Ht+j � �"")

#

=
1

n1+�

n�2X
j=1

n�jX
t=2

��
Rj�1n C (1) et�

0
n;t�1R

j
n

	

 (Ht+j � �"")

�
by de�nition of the process �n;t. Employing the same argument for the vectorisation
of a Kronecker product, we deduce that

vec (Bn) = �
1

n1+�

n�2X
j=1

n�jX
t=2

�
vec
�
Rj�1n C (1) et�

0
n;t�1R

j
n

	

 vec (Ht+j � �"")

�
= �

�
Ir 
R�1n 
Dm

� 1

n1+�

n�2X
j=1

n�jX
t=2

�
Rjn�n;t�1 
RjnC (1) et 
 vech (Ht+j)

�
+ op (1)

= �
�
Ir 
R�1n 
Dm

� 1

n1+�

n�2X
j=1

n�jX
t=2

Sn;t (j) + op (1)

28



where Sn;t (j) is de�ned in (23) and the term involving �"" is op (1) because




 1

n1+�

n�2X
j=1

n�jX
t=2

�
Rjn�n;t�1 
RjnC (1) et

�





L1

� kC (1)k
n�

n�2X
j=1

kRnk2j max
t�n






1n
mX
t=2

�
�n;t�1 
 et

�





L2

= o (1)

by Lemma 3.2(iii). The last expression for vec(Bn) yields

kvec (Bn)k � b
1

n1+�







n�2X
j=1

n�jX
t=2

Sn;t (j)






+ op (1) (62)

for some uniform bounding constant b > 0. Combining (61) and (62) shows (27) and
part (iii).
It remains to show that �t (j) and Sn;t (j) satisfy (14) with innovations given by

(25) and (26) respectively. For Sn;t (j), applying (4) to vech(Ht+j) yields

Sn;t (j) = Rjn�n;t�1 
RjnC (1) et 
 vech (Ht+j)

= Rjn�n;t�1 
RjnC (1) et 

(

qX
i=1

Aivech (Ht+j�i) +

pX
k=1

Bkvech (Ht+j�k)

)

+Rjn�n;t�1 
RjnC (1) et 

(

qX
i=1

Aivech
�
"t+j�i"

0
t+j�i �Ht+j�i

�)
+Rjn�n;t�1 
RjnC (1) et 
 '

=
�X
i=1

�
Rin 
Rin 
 �i

� �
Rj�in �n;t�1 
Rj�in C (1) et 
 vech (Ht+j�i)

�
+ �n;t (j)

=
�X
i=1

�
Rin 
Rin 
 �i

�
Sn;t (j � i) + �n;t (j) (63)

where � = p _ q,

�n;t (j) = Rjn�n;t�1 
RjnC (1) et 
 '

+

qX
i=1

(Ir2 
 Ai)
�
Rjn�n;t�1 
RjnC (1) et 
 wt+j�i

�
and wt+j�i =vech

�
"t+j�i"

0
t+j�i �Ht+j�i

�
. Since the above expression for �n;t (j) co-

incides with (26) and �n;i = Rin 
Rin 
 �i by (13), (63) shows part (ii).
Applying (4) to vech(Ht+j) in

�t (j) = vec (ete
0
t � �ee)
 vech (Ht+j)

and proceeding as in (63) shows part (i).
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Proof of Lemma 3.5(i). The processes in (22) and (23) have companion form
solutions

~�t (j) = M j
�
~�t (0) +

jX
l=1

M j�l
� ~�t (l) ; j � 1 (64)

~Sn;t (j) = M j
n;�
~Sn;t (0) +

jX
l=1

M j�l
n;� ~�n;t (l) ; j � 1 (65)

for the "stacked" processes

~�t (j) =
�
�t (j)

0 ;�t (j � 1)0 ; :::;�t (j � �+ 1)0
�0

(66)
~Sn;t (j) =

�
Sn;t (j)

0 ; Sn;t (j � 1)0 ; :::; Sn;t (j � �+ 1)0
�0

(67)

and
~�t (j) =

�
vt (j)

0 ; 0; :::; 0
�0
; ~�n;t (j) =

�
�n;t (j)

0 ; 0; :::; 0
�0
: (68)

For part (i), by (66), (68) and the de�nition of the Euclidian vector norm,





n�jX
t=1

�t (j)






 �






n�jX
t=1

~�t (j)






 and







n�jX
t=1

~vt (l)






 =






n�jX
t=1

vt (l)






 :
We can therefore apply the companion form solution (64) to the �rst term of the
bound (27) of Lemma 3.4(iii) to obtain

�n =
1

n1+�

n�1X
j=1

kRnk2(j�1)






n�jX
t=1

�t (j)







� 1

n1+�

n�1X
j=1

kRnk2(j�1)






n�jX
t=1

~�t (j)







� 1

n�

1X
j=1



M j
�



 1
n

nX
t=1




~�t (0)



+

1

n1+�

n�1X
j=1

kRnk2(j�1)
jX
l=1



M j�l
�









n�jX
t=1

vt (l)







= �1n + �2n (69)
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in order of appearance. The �rst term of (69) satis�es E k�1nk = O (n��) becauseP1
j=1 kM j

�k <1 by Lemma 3.1 and

E



~�t (0)


 = E

(
��1X
i=0

k�t (�i)k2
)1=2

�
��1X
i=0

E k�t (�i)k

� �max
i<�

E
�
ketk2 kHt�ik

�
� �max

i<�

�
E ke1k4 E kHt�ik2

	1=2
� �

�
E ke1k4 E k"1k4

	1=2
by the Jensen inequality for conditional expectations. For the second term of (69),
letting

!t (k) = vec (ete0t � �ee)
 wt+k (70)

and using the expression in (25) we can write

�2n � k'k
n�

1X
l=1



M l
�



 n�1X
j=1

kRnk2(n�j�1)
j

n






1j
jX
t=1

vec (ete0t � �ee)







+
k'k
n1+�

n�1X
j=1

kRnk2(j�1)
qX
i=1

kAik
jX
l=1



M j�l
�









n�jX
t=1

!t (l � i)







The �rst term on the right is oa:s: (1) by the ergodic theorem; the second term is
Op (n

��) when l � i because, in this case, it is bounded in L1 norm by

b

n1+�
max
1�l;i�q

nX
t=1

E k!t (l � i)k � 2b

n1+�
max
1�l;i�q

nX
t=1

E ketk2 kwt+l�ik

� 4b

n�
�
E ke1k4 E k"1k4

	1=2
where

b =

1X
j=1



M j
�



 qX
i;l=1

kAik


M�l

�




is a �nite constant and E kw1k2 � 4E k"1k4 by the Jensen inequality for conditional
expectations. We conclude that

�2n �
k'k
n�

n�1X
j=1

kRnk2(j�1)
qX
i=1

kAik
j�iX
l=1



M j�i�l
�








 1n
n�jX
t=1

!t (l)






+ op (1)

so the condition

max
1�j;l�n






 1n
n�jX
t=1

!t (l)







L1

! 0: (71)

31



is su¢ cient to show that �2n !p 0: The de�nition of !t (l) in (70) implies that

~!t (l) = !t (l)1
�
ketk4 � Ln

	
is anFt+l-martingale di¤erence sequence for each l � 1, where the truncating sequence
(Ln)n2N is chosen to satisfy Ln !1 and Ln=n! 0 The Lyapounov inequality then
gives 




 1n

n�jX
t=1

~!t (l)







L1

� 1

n







n�jX
t=1

~!t (l)







L2

=
1

n

 
n�jX
t=1

E k~!t (l)k2
!1=2

� b
L
1=2
n

n

 
n�jX
t=1

E kwt+lk2
!1=2

� 2b
L
1=2
np
n

�
E k"1k4

�1=2 ! 0

uniformly in j; l. Therefore, the Cauchy-Schwarz inequality yields

max
1�j;l�n






1n
n�jX
t=1

!t (l)







L1

� max
1�j;l�n

1

n

n�jX
t=1

E


!t (l)1�ketk4 > Ln

	

+ o (1)

� max
1�j;l�n

1

n

n�jX
t=1

E
��
ketk2 + k�eek2

�
1
�
ketk4 > Ln

	
kwt+lk

�
+ o (1)

�
�
E
��
ke1k4 + k�eek4

�
1
�
ke1k4 > Ln

	�
E kw1k2

	1=2
+ o (1)

= o (1)

since E ke1k4 <1 and Ln !1. This proves (71) and �n !p 0.
We turn to the second term of the bound (27) of Lemma 3.4(iii), to prove that

sn !p 0. Using the solution (65) and the same argument leading to (69), we obtain

sn � 1

n1+�







n�1X
j=1

n�jX
t=2

~Sn;t (j)







� 1

n1+�

n�1X
j=1



M j
n;�



 nX
t=2




 ~Sn;t (0)


+ 1

n1+�







n�1X
j=1

n�jX
t=2

jX
l=1

M j�l
n;� ~�n;t (l)







= s1n + s2n
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Since supn�1
P1

j=1



M j
n;�



 <1 by Lemma 3.1,

E ks1nk � b
1

n�
max
t�n

E



 ~Sn;t (0)


 � bmax

t�n
max

0�i���1

1

n�
E
�
ketk



�n;t�1

 kHt�ik
�

� 1

n�=2
kH1kL2 ke1kL4 maxt�n





�n;t�1n�=2






L4

= O

�
1

n�=2

�
by Lemma 3.2(i). For s2n, some care is required to use the norm equivalence between
~�n;t (l) and �n;t (l): standard manipulations yield

s2n =
1

n1+�







n�2X
j=1

n�jX
t=2

j�1X
l=0

M l
n;�~�n;t (j � l)







=

1

n1+�







n�3X
l=0

M l
n;�

n�2X
j=l+1

n�jX
t=2

~�n;t (j � l)







�

n�3X
l=0

M l
n;�

1

n1+�







n�l�2X
j=1

n�l�jX
t=2

~�n;t (j)







=

n�3X
l=0

M l
n;�

1

n1+�







n�l�2X
j=1

n�l�jX
t=2

�n;t (j)






 :
Substituting the expression for �n;t (j) in (26) we obtain

s2n �
n�3X
l=0

M l
n;�

qX
i=1

kAik
1

n1+�







n�l�2X
j=1

n�l�jX
t=2

�
Rjn�n;t�1 
RjnC (1) et 
 wt+j�i

�





+ k'k kC (1)k

n�3X
l=0

M l
n;�

1

n1+�

n�l�2X
j=1

kRnk2j






n�l�jX
t=2

�
�n;t�1 
 et

�





The last term on the right converges to 0 in L1 by Lemma 3.2(iii). For the �rst term,
partitioning the sum

j 2 f1; :::; n� l � 2g = f1; :::; ig [ fi+ 1; :::; n� l � 2g

we obtain that
s2n � s3n + s4n + op (1)

where

s3n =

n�3X
l=0

M l
n;�

qX
i=1

kAik
1

n1+�







n�l�2X
j=i+1

n�l�jX
t=2

�
Rjn�n;t�1 
RjnC (1) et 
 wt+j�i

�
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and

Es4n � kC (1)k
n�3X
l=0



M l
n;�



 qX
i=1

kAik
1

n1+�

qX
j=1

n�l�jX
t=2

E


�n;t�1

 ketk kwt+j�ik

� kC (1)k
n�3X
l=0



M l
n;�



 qX
i=1

kAik
q

n�

�
max
t�n

E


�n;t�1

4�1=4 ke1kL4 kw1kL2

= O

�
1

n�=2

�
:

It remains to show that s3n !p 0. The inner double sum in the expression for s3n
can be written as

n�l�2X
j=i+1

n�l�jX
t=2

�
Rjn�n;t�1 
RjnC (1) et 
 wt+j�i

�
=

n�l�i�2X
j=1

n�l�j�iX
t=2

�
Rj+in �n;t�1 
Rj+in C (1) et 
 wt+j

�
=

�
Rin 
Rin

� n�l�iX
t=3

�
�n;t�1 
 wt

�
where

�n;t�1 =
t�2X
j=1

�
Rjn�n;t�j�1 
RjnC (1) et�j

�
is a Ft�1-martingale di¤erence sequence satisfying

max
t�n

E


�n;t�1

2 = kC (1)k2max

t�n

t�2X
j=1

kRnk4j E
�

�n;t�j�1

2 ket�jk2�

� kC (1)k2
n�2X
j=1

kRnk4j ke1k2L4

�
max
t�n

E


�n;t

4�1=2

= O
�
n2�
�
: (72)

Substituting in the expression for s3n we obtain

Es3n � 1

n1+�
max
i;l
E







n�l�iX
t=3

�
�n;t�1 
 wt

�





� 1

n1+�
max
i;l
E







n�l�iX
t=3

�
�n;t�1 
 wt

�
1 fkHtk � Lng







+

1

n1+�
max
i;l







n�l�iX
t=3

�
�n;t�1 
 wt

�
1 fkHtk > Lng







= �1n + �2n
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where the sequence �n;t�1 
 wt is an Ft-martingale di¤erence sequence

wt = vech ("t"0t �Ht) = vechH
1=2
t (�"t�

0
"t � Im)H

1=2
t

= D+
m

�
H
1=2
t 
H

1=2
t

�
vec (�"t�

0
"t � Im)

where D+
m is the Moore-Penrose inverse of the duplication matrix Dm, satisfying

kD+
mk = 1 (e.g. 11.30 in Abadir and Magnus, 2005). Since kHtk is Ft�1-measurable,

the martingale di¤erence property is preserved for the truncated sequence�
�n;t�1 
 wt

�
1 fkHtk � Lng ;

giving

�1n � 1

n1+�

(
max
i;l

n�l�iX
t=3

E


�n;t�1

2 kwtk2 1 fkHtk � Lng

)1=2

� B

n1+�

(
max
i;l

n�l�iX
t=3

E


�n;t�1

2 kHtk2 1 fkHtk � Lng

)1=2

� BLn
n1=2+�

�
max
t�n

E


�n;t�1

2�1=2

= O

�
Ln
n1=2

�
by (72), where B =

�
2E
�
k�"1k

4 + 1
�	1=2

. Taking Ln !1 with Ln=n1=2 ! 0 we can
write

�2n � 1

n1+�

nX
t=3

E
�

�n;t�1

 kwtk1 fkHtk > Lng

�
� 2

n1+�

nX
t=3

E
�

�n;t�1

 kHtk1 fkHtk > Lng

�
� 2

n1+�

nX
t=3

n
E
�

�n;t�1

2�E �kHtk2 1 fkHtk > Lng

�o1=2
� 2

n�

�
max
t�n

E


�n;t�1

2�1=2 �E �kH1k2 1 fkH1k > Lng

�	1=2
= O (1)

�
E
�
kH1k2 1 fkH1k > Lng

�	1=2
= o (1) :

This completes the proof of sn !p 0.
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Proof of Lemma 3.5(ii). For all � > 0,

Ln (�) =
1

n1+�

nX
t=2



�nt�1

2 EFt�1 �k"tk2 1nk"tk

�nt�1

 > n
1+�
2 �
o�

� 1

n1+�

nX
t=2



�nt�1

2 1n

�nt�1

 > L�1n n
1+�
2 �
o
EFt�1

�
k"tk2

�
+

1

n1+�

nX
t=2



�nt�1

2 EFt�1 �k"tk2 1 fk"tk > Lng
�

= L1n (�) + L2n

for an arbitrary sequence (Ln)n2N satisfying

Ln !1 and P
�
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t�n



�nt�1

 > L�1n n
1+�
2 �

�
! 0: (73)

For the �rst term,

L1n (�) � 1
�
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t�n



�nt�1

 > L�1n n
1+�
2 �

�
1

n1+�

nX
t=2



�nt�1

2 EFt�1 �k"tk2�!L1 0
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E1
�
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�nt�1

 > L�1n n
1+�
2 �

�
= P

�
max
t�n



�nt�1

 > L�1n n
1+�
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�
! 0

by (73) and

1

n1+�

nX
t=2

E
h

�nt�1

2 EFt�1 �k"tk2�i =

1

n1+�

nX
t=2

E
�

�nt�1

2 k"tk2�

�
 
max
t�n

E




 1

n�=2
�nt�1





4
!1=2 �

E k"1k4
�1=2

= O (1)

by Lemma 3.2(i). For the second term, the same chain of inequalities give

E (L2n) � 1

n1+�

nX
t=2

�
E


�nt�1

4�1=2 nE �EFt�1 �k"tk2 1 fk"tk > Lng

��2o1=2
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t�n

E




 1

n�=2
�nt�1





4
!1=2 �

E k"1k4 1 fk"1k > Lng
	1=2 ! 0

since E k"1k4 <1 and Ln !1.
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Proof of Theorem 3.6. Part (i) is an immediate consequence of established results.
By Lemma 3.2(iv), n�(1+�)=2

Pn
t=1 (xt�1 
 "t) and the martingale transformNn in (19)

have the same the limit distribution. By Lemma 3.5(i), the predictable quadratic
variation of Nn in (20) is given by

hNin =
1

n1+�

nX
t=1

�
�n;t�1�

0
n;t�1 
 �""

�
+ op (1)!p VC 
 �""

where the last convergence in probability follows by Lemma 3.3. Since the Lindeberg
condition of Lemma 3.5(ii) holds, a standard martingale central limit theorem, e.g.
Corollary 3.1 of Hall and Heyde (1980), establishes the asymptotic distribution of
part (i). Part (ii) follows immediately from part (i) and Lemma 3.3 and (11). For
completeness, we provide a proof of (11): Letting xt = xt � �xn�1 and "t = "t � �"n,
the fact that

Pn
t=1 xt�1 = Op

�
n1=2+�

�
implies that

1

n1+�







nX
t=1

xtx
0
t �

nX
t=1

xtx
0
t






 =
1

n�


�xn�1�x0n�1

 � 



 1

n�=2
�xn�1





2
= Op

"�
1

n�=2
n1=2+�

n

�2#
= Op

�
1

n1��

�
:

Also,

1

n
1+�
2







nX
t=1

xt�1"
0
t �

nX
t=1

xt�1"
0
t






 =
1

n
1+�
2

kn�xn�1�"0nk

�




 1

n�=2
�xn�1







pn�"n


= Op

�
1

n(1��)=2

�
:

Combining the two remainder terms proves (11). Note that the same orders of mag-
nitude apply for the purely stationary case, by putting � = 0. Part (iii) follows
immediately by part (ii), (11) and n�1�� kX 0X �X 0Xk = op (1).

Proof of Theorem 4.1 and Corollary 4.2. See the proof of Theorem A and
Theorem 1 in KMS(2015b).

Proof of Lemma 4.3. To show part (i) we employ the decompositions

~zt = xt +
Cz
n�
 nt; � � � (74)

~zt = zt +
C

n�
 nt; � > � (75)
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see equations (13) and (23) of PM (2009), where  nt =
Pt

j=1R
t�j
nz xj�1. We �rst

establish the bound
max
1�t�n

E k ntk
4 = O

�
n2�+4�

�
: (76)

The Minkowski inequality gives

E k ntk
4 = E
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Rt�jnz xj�1







4

�
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j=1

n
E


Rt�jnz xj�1



4o1=4!4

�
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j=1

kRnzkt�j
�
max
1�t�n

E kxj�1k4
�1=4!4

�
�
max
1�t�n

E kxj�1k4
� nX

j=1

kRnzkj
!4

= O
�
n2�+4�

�
uniformly in t � n. Employing the decomposition (74) when � � �

max
1�t�n

E k~ztk4 � 8 max
1�t�n

E kxtk4 +
8 kCzk4

n4�
max
1�t�n

E k ntk
4 = O

�
n2�
�

by Lemma 3.2(i) and (76). Employing the decomposition (75) when � > �

max
1�t�n

E k~ztk4 � 8 max
1�t�n

E kztk4 +
8 kCk4

n4�
max
1�t�n

E k ntk
4 = O

�
n2�
�

by Lemma 3.2(i) (since zt is n�-near stationary) and (76).
For part (ii), denoting xt�1 = xt�1 � �xn�1 and "t = "t � �"n; using the identity

"̂t = y
t
� Ânxt�1 = "t �

�
Ân � A

�
xt�1

and the fact that the OLS estimator satis�es



Ân � A




 = Op
�
n�(1+�)=2

�
we obtain

that
1

n1+�^�
�̂n =

1

n1+�^�

nX
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�
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0
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 "t"

0
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�
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provided that both
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1
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0
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0
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0
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�
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are op (1). First note that,

E kxtk
4 � E (kxtk+ k�xnk)4

� 8
�
E kxtk4 + E k�xnk4

�
� 8

(
E kxtk4 +

1

n4
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)
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For r1n, part (i) and Lemma 3.2(i) give

E kr1nk � 1

n(1+�)=2
1

n�^�
max
t�n

E
�
k~zt�1k2



xt�1

 k"tk�
� 1

n(1+�)=2
1

n�^�
max
t�n

�
E k~zt�1k4

�1=2 �E

xt�1

2 k"tk2�1=2
� 4 k"1kL4

1

n(1+�)=2n�^�

�
max
t�n

E k~zt�1k4
�1=2�

max
t�n

E kxt�1k4
�1=4

= O

�
n�^�n�=2

n(1+�)=2n�^�

�
= O

�
1p
n

�

E kr2nk � 1

n1+�
1

n�^�
max
t�n

E
�
k~zt�1k2



xt�1

2�
� 1

n1+�
1

n�^�

�
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=
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O
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�
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�
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:

Returning to (77), we can write
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from which the result for � > 0 follows by Lemma 3.3(i) and Lemma 3.5(i), since zt
is a n�-near stationary process. For � = 0, denoting by x0t =

P1
j=0R

jut�j a strictly
stationary version of the stable autoregression xt = Rtx0 +

Pt�1
j=0R

jut�j,

1
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�
the second part of (78) gives

1

n
�̂n =

1

n

nX
t=1

�
x0t�1x

0
0t�1 
 "t"

0
t

�
+ op (1)!a:s: E

�
x0t�1x

0
0t�1 
 "t"

0
t

�
by the ergodic theorem.
It remains to show (78). For the � > � part, the decomposition (75) implies that
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kzt�1k


 nt�1

 k"tk2 !p 0

r2n =
1

n1+�+2�

nX
t=1



 nt�1

2 k"tk2 !p 0

are su¢ cient for (78). Using (76) and Lemma 3.2(i), we obtain

Er1n � 1

n�+�

�
max
t�n

E kztk4
�1=4�

max
t�n

E k ntk
4

�1=4 �
E k"1k4

�1=2
= O

�
n�=2n�=2+�

n�+�

�
= O

�
1

n(���)=2

�

Er2n � 1

n�+2�

�
max
t�n

E k ntk
4

�1=2 �
E k"1k4

�1=2
= O

�
n�+2�

n�+2�

�
= O

�
1

n���

�
which proves (78) for � > �. For � < �, the same argument can be applied to the
decomposition (74).
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Proof of Theorem 4.4. When � > 0, Lemma 4.3 shows that

1

n1+�^�
�̂n =

 
1

n1+�^�

nX
t=1

~zt�1~z
0
t�1

!

 �"" + op (1)

which implies that

n1+�^�



Q̂n � (X 0P ~ZX)

�1 
 �""



 = op (1)

and



Ŵn � ~Wn




 = op (1) under the null hypothesis (30). Corollary 4.2 then gives

Ŵn ) �2 (q).

When � = 0, Lemma B2 of KMS (2015b) implies that n�1



X 0 ~Z �X 0X




 = op (1) :

Combined with Lemma 4.3, this yields

nQ̂n =

"�
1

n
~Z 0X

��1

 Im

#
1

n
�̂n

"�
1

n
X 0 ~Z

��1

 Im

#

=

"�
1

n
X 0X

��1

 Im

#
1

n
�̂n

"�
1

n
X 0X

��1

 Im

#
+ op (1)

= V0 + op (1)

where the matrix V0 is de�ned in (40). We can then write Ŵn = w0nwn+op (1) where,
under (30),

wn =
�
HnQ̂nH

0
��1=2

Hvec
hp

n
�
~AIV X � A

�i
) N (0; Iq)

by Theorem 4.1(iv).
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