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Abstract
In the last two decades, there has been a lot of empirical evidence suggesting that
many macroeconometric and financial models (e.g. for inflation, interest rates, or ex-
change rates) are subject to both parameter instability and identification problems. In
this paper, we address both issues in a unified framework, and provide a comprehen-
sive treatment of the link between them. Changes in identification strength provide an
additional source of information that is used to improve estimation. More generally,
we show that detecting and locating changes in instrument strength is essential for
efficient asymptotic inference, and we provide a step-by-step guide for practitioners.
In our simulation studies, our global inference procedures show very good size and
power properties.
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1 Introduction

Early work on identification through heteroskedasticity by Rigobon (2003) and Klein and
Vella (2010), among others, shows that if a p-vector of parameters 6° is not identified by ¢
full-sample moment conditions (¢ < p), but the variance of (structural) errors changes over
the sample at a known break point, such information can be used to construct 2¢ valid and
non-redundant moment conditions.! #° can then be identified whenever 2¢ > p.

In this paper, we focus on using these extra moment conditions for efficient estimation of
the parameters of interest - rather than identification. We show that not only changes in the
variance of structural errors, but, more generally, changes in the derivative of the moment
conditions originating from changes in the parameters of the reduced form, changes in
the identification strength, or in some other second moment matrices of the data provide
additional information that can be used to construct more efficient estimators than the
full-sample GMM estimator which ignores such changes.

As an illustration, consider the following example with one dependent variable, one endoge-
nous regressor, and one instrument. The structural equation is stable over time, while the
parameter of the reduced form changes once at time 7T™. The identification is strong over
the first subsample (for ¢ < T*), and semi-strong® over the second one (for ¢t > T*) at some
rate 7 (with 77 = o(+/T)). Conditional on knowing the break point 7%, the (same) struc-
tural parameter can be estimated at rate v/I' when using data from the first subsample,
but only at rate T /77 when using data from the second subsample. We propose a GMM-
type estimator that combines information from both subsamples to deliver a more efficient
estimator of the structural parameter that converges at the fast rate /7. A similar result
holds when the weakest subsample is actually weak (with 77 = /T), as well as when the
break is unknown and estimated. When part of the sample is weakly identified, the advan-
tage is even more striking: consistent estimation of the structural parameter is now possible
through GMM-type inference procedures while (conservative) confidence regions obtained
by weak-identification robust procedures are not necessary anymore. In our simulations, we
document how the identification may appear weak over the whole sample when the break
is ignored, even when part of the sample is strongly identified.

A lot of empirical evidence suggests that many econometric and financial models are subject

to parameter instability and identification issues. In section 2, we discuss such evidence for

Lq conditions can be constructed over each of the (two) subsamples where the variance is constant.
2See additional discussions about identification strength in Appendix A.1.



our main example, the New Keynesian Phillips Curve (NKPC), along with other examples.
We show how the frameworks and methods developed in this paper can improve the efficiency
of estimated parameters of interest, and shorten their confidence intervals. This is especially
relevant for confidence sets of NKPC parameters which are often wide and uninformative
when using weak-instrument robust methods over the full sample.

In practice, the existence and location of the break point may be unknown. We thus
approach the unknown change in identification strength as a break point estimation problem.
In doing so, our framework extends not only to changes in identification strength, but also
to stable identification strength with parameter change in the reduced form. In addition, we
explicitly account for the potential weakness of the instruments. Specifically, instruments
may not be strong, and their identification strength may even change over the sample: for
example, the identification may be weak over part of the sample.

Our main contributions are threefold. First, we extend the standard linear regression model
with endogenous regressors to allow parameters and identification strength to change over
time. Second, we develop statistical methods to detect parameter instability and changes in
the identification strength. Third, we introduce two new efficient estimation procedures for
the main parameters of the model. As a by-product, one of our estimation procedure also
delivers more efficient estimators of the reduced form parameters than the usual full-sample
OLS, in the presence of breaks in the second moments of the data. To our knowledge, this
paper is the first to explicitly allow the identification strength to change over time, and to
show how to efficiently use such information.

The following three cases are discussed successively:

1. the case where the structural equation remains stable while the reduced form may
change (both parameter change without change in identification strength, and changes

in identification strength are allowed);

2. the case where the reduced form equation remains stable while the equation of interest

may change?;
3. the case where both equations may change at the same time.

In each case, we propose methods to detect and estimate the location of the break. Our

methods also incorporate weaker and changing identification strength.

3Tllustrations of such cases are given in section 2, Example 4, and in Appendix A.2.



Our paper relates to the weak-identification literature: see the surveys by Stock, Wright,
and Yogo (2002), Dufour (2003), and Andrews and Stock (2005), and the survey of the
applied literature by Hansen, Hausman, and Newey (2008). Typically, we consider a lin-
ear framework where the exact identification strength is unknown and allowed to change
over time. We rely on Staiger and Stock’s (1997) popular rule-of-thumb to decide which
identification framework (weak vs "not weak”) is appropriate.

Our methods also cover and extend existing methods in the break point literature. In a
linear time series regression model, Bai and Perron (1998) are first to jointly estimate break
points and regression parameters by minimizing the sum of squared residuals. Hall, Han
and Boldea (2012) extend this framework to allow for endogenous regressors. We extend
Hall, Han and Boldea’s (2012) results to allow for weaker identification patterns that may
change over time; we also study GMM-type estimators rather than 2SLS.

Finally, our paper relates to the recent work of Caner (2011) and Magnusson and Mavroeidis
(2014). Caner (2011) proposes structural change tests that are robust to weak identification.
Magnusson and Mavroeidis (2014) use reduced form breaks to improve testing, but without
allowing changes in identification strength over the sample. We use similar breaks, but,
in contrast with Magnusson and Mavroeidis, our methods identify the subsamples over
which the instruments are not entirely weak, and use this additional information to shorten
confidence intervals on the parameters of interest. In other words, we provide an additional
source of information to improve estimation. Our simulations reveal that there is valuable
(and reliable) information contained in the break that can be used to improve estimation:
for instance, if the break is ignored, the identification may appear weak over the whole
sample, even when a subsample is strongly identified.

In our Monte-Carlo study, we consider the linear IV regression model with one break in the
reduced form. When estimating the slope parameter, we show that our proposed estimator
always displays the smallest RMSE irrespective of the location of the break, especially under
conditional heteroskedasticity. In addition, we compare the power curves associated with
two types of inference: one, our proposed inference procedure that relies on the detection
(and estimation) of the break and weak identification; two, a weak-identification robust
inference procedure that ignores the break. Overall, the power properties of our inference
procedure are better, while a (simple) Bonferroni-type adjustment is sufficient to control
the size across all our simulation designs.

The paper is organized as follows. Section 2 presents four motivating examples that illus-

trate the relevance of our framework. Section 3 provides asymptotic results for efficient
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estimation and inference in the presence of a break in the reduced form equations, or in the
main equation. Section 4 presents our general framework and inference procedure, along
with a comprehensive step-by-step guide for practitioners. In section 5 we introduce more
general characterizations of the identification strength that allow each instrument and di-
rection in the parameter space to display their own identification pattern. We also discuss
efficient estimation of the reduced form in the presence of breaks. Section 6 illustrates our
theoretical results through simulation studies. Section 7 concludes. The appendix con-
tains additional discussions about identification and parameter instability in the linear IV
model, simplified proofs of the theoretical results, as well as the graphs and tables associated
with the simulation studies. Complete proofs of the theoretical results can be found in the

supplemental appendix.

2 Motivating examples

In the last two decades, there has been a lot of empirical evidence suggesting that many
macroeconometric and financial models (e.g. for inflation, aggregate demand, interest rates,
or exchange rates) are subject to parameter instability and identification issues. We present
four examples that emphasize the relevance of the framework and inference methods pro-

posed in this paper.
e Example 1: Break in reduced form parameters

The New Keynesian Phillips Curve (NKPC) has recently received a lot of attention. The
NKPC is a dynamic relationship resulting from a limited (or full-information) equilibrium
model between inflation and driving variables such as output gap, unemployment, or real
marginal costs (see, among others, Taylor (1980), Rotemberg (1982), Calvo (1983), and
Clarida, Gali and Gertler (1999)). The typical stylized NKPC equation writes

T :‘wateH + Oy +¢9yyt+ut t=1,---,T

where 7, denotes the inflation, 77, the expected inflation at time ¢+ 1 based on information
available up to time ¢, and y; the chosen driving variable (e.g. output gap, unemployment, or
real marginal costs). Following Clarida, Gali and Gertler (1999), the parameters (¢, 6;,0,)
are assumed to be stable over the sample period (functions of some underlying structural

parameters). Since 7f,, is based on information up to time ¢, and since y; may be correlated



with contemporaneous noise such as demand shocks at time ¢, both are endogenous. In-
struments commonly used to correct for endogeneity are lags of inflation, inflation forecasts,
output gap, the average labor share, short-term interest rates and unemployment rates.*
Several NKPC studies for US find weak instruments over the period 1960-2007 (see Mavroei-
dis (2005), Dufour, Khalaf and Kichian (2006), Nason and Smith (2008), Kleibergen and
Mavroeidis (2009) and Magnusson and Mavroeidis (2014)). Others find that the instruments
are strong for the sample 1969-2005 (see Zhang, Osborn and Kim (2008, 2009)). This sug-
gests that instrument strength changes over the sample. A change in identification strength
over the sample period is also supported by the results in Kleibergen and Mavroeidis (2009,
Table 4): the weak-identification robust confidence sets for the same NKPC parameters
are considerably larger for the period 1960-1983 than for the period 1984-2007, suggesting
that identification is stronger in the latter period. Such changes in instrument strength
could come from a break in a policy function that generates a break in the reduced form
for endogenous regressors, but no break in the deep structural parameters. The methods
developed in this paper allow us to detect and locate not only reduced form parameter
breaks, but also breaks in instrument strength. These breaks are then used to improve
efficiency of structural parameter estimates and shorten their confidence intervals. This is
especially relevant for the confidence sets of NKPC parameters which are often wide and
uninformative when using weak-instrument robust methods over the full sample.

In contrast to Magnusson and Mavroeidis (2014), who focus on constructing confidence sets
that control size regardless of the strength of instruments, and that may therefore be wide,
our methods identify the subsamples over which the instruments are not entirely weak, and
use those subsamples to shorten confidence intervals on the parameters of interest. In other
words, and as suggested by Kleibergen and Mavroeidis (2009), we provide an additional
source of information - namely the change in identification strength - to improve estimation:
”A natural response to the current finding that the NKPC' is not well identified |[...] is to

look for more information”.
e Example 2: Break in structural error variance with no parameter breaks

Asset returns models provide another example where our methods prove useful. Suppose

we are interested in modeling a financial return on an asset in the home country, rl', as a

4More recently, researchers have identified additional useful instruments such as the long-short interest
rate spread (Gali and Gertler (1999), Gali, Gertler, and Lopez-Salido (2001)), lags of model dependent and
forcing variables from various competing specifications (Dufour, Khalaf, and Kichian (2010)), and factors
extracted from Stock and Watson’s (2005) 132 variables (Kapetanios and Marcellino (2010)).
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function of the same asset returns in foreign countries, th , and some lags,

p q

=0, + 0! + Z Oc il + Z in,iri:i + €.

i=1 i=1
For example, in Rigobon (2003), r’ are sovereign bond yields in Argentina, rf are sovereign
bond yields in the intimately connected foreign bond markets of Mexico, Brazil and US,
and ¢, are structural shocks to the bond market. As Rigobon (2003) forcefully argues, the
structural shock volatility increases substantially in financial crises. Such a break in variance
can then be used for identification purposes. In this paper, we show that even if the model
is identified, a break in the variance of ¢, provides an additional (non-redundant) moment
condition for the estimation of (6,, 0y, 0.,04), and thus delivers more efficient estimators of
these parameters.” More generally, our method produces more efficient estimates of any

asset return model when there is a break in the volatility of structural shocks, such as in a

crisis.
e Example 3: Break in instrument variance with no parameter break

Most macroeconomic variables such as output, consumption, inflation, unemployment, to
mention a few, have experienced a decline in volatility in the mid-1980s. This decline is
referred to as the Great Moderation (see among others Stock and Watson (2002), Bernanke
(2004) and Gali and Gambetti (2008)), and is usually modeled as a break in variance. Since
lags of these macroeconomic variables are often used as instruments for estimation of various
structural parameters, the Great Moderation effect amounts to a change in instrument
variance, which can be used to construct additional moment conditions, and improve the

efficiency of estimated structural parameters.
e Example 4: Break in parameters of the equation of interest

Suppose that we want to model interest rate via the Taylor rule. Orphanides (2001) writes

down the simplest Taylor rule as®
Jo = 01+ Oomy + O3y, + €,

with f; the federal funds real interest rate, m; the inflation, and g, the output gap. The

parameters 6o and 63 reflect the weight monetary policy puts on targeting inflation and

>Our result holds whether r{ is endogenous or not: see section 5.2 for the exogenous case.
6Formulations with a backward looking component are also allowed (see Clarida, Gali and Gertler (1998)).
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output, respectively. In this model, both 7; and ¥y, are endogenous, and their lags along
with some other macroeconomic variables are usually employed to estimate (61,605, 6s3).

Since #, and 63 are policy parameters, they are not immune to Lucas critique, and there
is considerable evidence of a break in monetary policy in early 1980s; see e.g. Stock and
Watson (2002) and Ahmed, Kevin, and Wilson (2004). The seminal paper of Stock and
Watson (2002) convincingly shows that since the 1980s, monetary policy is more committed
to fighting inflation, which translates in a bigger 6,.”® This provides an example where the
equation of interest has parameter breaks, while the reduced forms of m; and y; may not
experience breaks over the sample period of interest. Our methods show how to improve

efficiency of parameter estimates in the presence of such a break in the equation of interest.

3 Two simplified frameworks of interest

Our framework extends the linear regression model with endogenous variables to allow
structural parameters and identification strength to change over time. In this section, we
start with two simplified frameworks: first, the case where the parameters of interest remain
stable; second, the case where the reduced form remains stable. In each case, we introduce a
new GMM-type estimator that uses additional valid information from the model. We study

its asymptotic properties, including its efficiency with respect to existing estimators.

3.1 Unstable identification strength

Our first framework of interest extends the standard linear IV regression model to allow in-
stability in the reduced form over time, while the structural parameters remain stable. More
specifically, the (stable) structural equation with p; exogenous variables Z;, ps endogenous

variables Y}, and p = p; + py parameters of interest 0°, writes

Yo = Z{00 +Y/0) + uy = X30° +u,,  with X] = [Z] Y]] and 6" = [07 6))]. (3.1)

"This break is at the core of the debate ”Good policy or good luck?”, which aims at explaining the
reasons for the Great Moderation. Many studies, including Stock and Watson’s (2002) and Ahmed, Kevin,
and Wilson’s (2004), found that the Great Moderation was partly due to improved policy - that is, breaks

in the Taylor rule parameters - and partly due to luck - or a break downward in the variance of shocks ¢;.
8Tt can be argued that y is smaller again in recent years, because the federal funds rate was kept low

and constant during the crisis, and was not used to fight inflation.



For a given vector of ¢ valid instruments W, with ¢ > p, that includes the exogenous

regressors Z;, the unstable reduced form now writes

WL, / *
Wb 4y t<T

Y/ =1 Wi t N T = [TV, (3.2)
—r;TQ + , t>T*

with T* the break point, v° the break fraction, r;7 = 1, or 7,7 — 0o, and II; a full-rank
matrix of size (q,ps) for ¢ = 1,2. For now, we consider the simplest framework where
all the instruments have the same (unknown) identification strength over each subsample.
More general identification patterns allowing the strength to vary across instruments and
directions of the parameter space are discussed in section 5.1.

The above break point T* may capture two kinds of changes in the associated parameters:

e the identification strength remains stable over the whole sample, that is? 71 o< o7
and Hl 7£ HQ,

e the identification strength changes, that is 17 = o(rar), or rop = o(ri7).

We are especially interested in cases where the identification strength changes. We show
that, in such a case, only the magnitude of the change matters for identifying the true break
point (that is the change from rate ;7 to rate rjr), and not the change in the value of
the reduced form parameters II;. To our knowledge, this is the first paper that explicitly
accounts for changes in identification strength. Such changes are important because they can
lead to improved inference about the structural parameters with more efficient estimators
converging at faster rates than full-sample estimators.

As an illustration, consider the following example where the structural equation is stable
over time, while the reduced form has one break. In the first subsample, the identification is
strong, while in the second subsample the identification is semi-strong!® at some (unknown)
rate 7 (with 77 = o(v/T)). Conditional on knowing the break point 7%, the (same) struc-
tural parameters can be estimated at rate v/T when using data from the first subsample, but
only at rate v/T /7 when using data from the second subsample. Our GMM-type estima-
tor combines information from both subsamples to deliver more efficient estimators of the
structural parameters (that converge at the fast rate VT ); see Theorems 1 and 2. Of course,
these results are asymptotic, but our simulations show that there are cases where such infor-

mation can be used to draw sharper inference (or tighter confidence regions) on structural

P11 o ror & 17 /TOT L ¢ with ¢ a real number such that 0 < |e] < oo.
10See additional discussions about identification strength in Appendix A.1.
HStandard estimators (e.g. 2SLS or GMM) can be computed without knowing the rate of weakness 7r.
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parameters of interest. A similar result holds when the break is unknown and when the
weakest subsample is actually weak with 77 = /7. In such a case, the advantage is even
more striking: consistent estimation of the structural parameters is now possible through
GMM-type inference procedures and (conservative) weak-identification robust procedures

are not necessary anyiunore.

SE: 0 break

Rate /T Rate /T'/Fr

RF: 1 break

|
|
|
0 Strong T Semi-strong T
T*

Before introducing our GMM-type estimator of °, we first define the break point estimator.
For any given (candidate) break point |Tv|, II;(v) and IIy(r) denote the OLS estimators
computed in (3.2) over each associated subsample. The break point estimator T* = |T7
of T* is defined as in Bai and Perron (1998):

U = argmin [QOLS <V, ﬂf}ec(y))} ;

|Tv] T
R 1 . 2 1 . 2
Qous (n1L.(01) = = > (W-WILW) +7 > (W -wWihw) .
t=1 t=|Tv|+1

where, for a given choice of s, Y;* denotes the s element of Y}, f[f (v) the s column of

A

IL(v) for i = 1,2, and 115, (v) = vec (II$(v), II5(v)) with s € {1,...,po}.1213

vec
We now introduce three estimators of the structural parameters. These estimators will be
considered in the simulation study in section 6.

e The full-sample 25LS estimator uses first-stage predicted regressors X, = vec (Zy, ﬁ)
It is defined as in Hall, Han, and Boldea (2012),

12The vec (-) notation is defined as follows: for any £1 x £ matrices Ay, ..., Ay, let vec (A1, ..., As,) be

the (£1€203) x 1 vector that stacks all ¢5 columns of each matrix Ay, ..., Ag,, in order.
13For our purposes, only the consistency of the break point estimator and the associated rate stated

in Theorem 1(i) are relevant, and not how the estimator is obtained. The asymptotic distribution of the
OLS estimators e (v) is unaffected by the choice of s (or the precision of the break point estimator). In
practice, one can also use the multivariate methods of Qu and Perron (2007) to estimate the break point

common to all reduced forms; evaluation of the latter methods is beyond the scope of our paper.
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T -l - ~

. oA . . W/, t<T* . .

GQSLS = (Z Xt t/) Z Xtyt? }/t/ = ! . ' ) with Hz = Hl(ﬁ) ,i = 1, 2.
=1 t=1 Willy, t>1T*

e The full-sample (or standard) GMM estimator is defined as:

borr = argmin |gr(0)S, g7(0)] |

with gr(0) = %i Wy(y — X,0) and S, 5 AVar (TY2g7(6°)) .
=1
It ignores the break pointlt in the reduced form, and is such that
[ <X/WS;1W’X) B <X’W§;1W/y) .
e The modified GMM estimator is defined as:
Ouop = argmin |37(0)(52) " gr(6)] .

S Wiy — X[0)/T*
S e Wilye — X10) /(T — T7)

It uses information about the break point and is such that,

with §r(0) = ( ) and S B AVar (T25.(60%)) .

duiop = (XW(SH™W'X) " (XTW(ED W)

WithWtheTXQQ matrix defined as W' = ( W W U v )
o - 0 Wy, 0

These GMM-type estimators are known as ”partial-sample GMM estimators”. They

were used in Andrews (1993) to derive the properties of a break point test (but for a

break in §° rather than in the reduced form) under local alternatives. Note that the

above 2SLS is a special case of the GMM-MOD, but it is not the traditional 2SLS.

To derive asymptotic properties of the above estimators, we impose the following regularity

assumptions.

Assumption 1. (Regularity of the break fraction, error terms and reduced form)
(1) 0 < ° < 1, and the candidate break fractions v are such that
max(|Tv|,T — [Tv]) > max(q,€T), for some e > 0 such that ¢ < min(v°,1 —1°) and so
vel =gl —¢.
11



(ii) Let hy = W; @ vec (uyg, v¢) with it element hy ;.

- The eigenvalues of S = AVar <T’1/2 ST ht> are O(1).

- E(h;) = 0 and for some d > 2, ||hy;l|la < oo fort=1,--- T andi=1,---,(p2+ 1)gq.

- {hs;} is near epoch dependent with respect to some process {&}, ||he — E(he| G ) || < vim
with v, = O(m~Y?) where G is a o-algebra based on (&, -+ Erm)-

t—m
d/[2(d—1) d/(d—2)

-{&} is either ¢p-mizing of size m™ I or a-mizing of size m~ )

(#3) 11; is full column-rank equal to ps fori=1,2.

Assumption 1 is common for the break point literature, and is similar to Hall, Han and
Boldea (2012). Part (i) ensures that there are enough observations in each subsample to
identify the true break point. Part (ii) allows for general patterns of weak dependence in

the data. Part (iii) ensures that the instruments are not redundant.

Assumption 2. (Regularity of the identification strength)
Let rp = min(ryp, rop). We assume that rp = o(\/T).

Since the slowest sequence r;7 is associated with the subsample with the strongest identi-
fication, the sequence ry corresponds to the strongest subsample. Assumption 2 prevents
the identification strength to be weak over the whole sample. For instance, when there
is a change in identification strength with stronger identification over subsample 7, that
is 7,7 = o(rjr), identification can be weak over the weakest subsample j, but not over
subsample 7. However, when there is no change in identification strength, r;7 oc r;7, the
identification cannot be weak. We show in Theorem 1 below that such an assumption gua-

rantees that the structural parameters can be consistently estimated.

Assumption 3. (Regularity of the instrumental variables)
Let Qy(r) = T~ Z}Z{J W,W/. Then Q1(r) 5 Qy(r), uniformly in r € [0,1] (u.r.) where

Q1(r) is positive definite and strictly increasing in r.

Assumption 4. (Regularity of the variances)

[Tr| ,
Su S
AVar | T7Y? E he| = Si(r) = (1) S (r) 7
t=1 Suva (1) Su1(r)

u.r, where Sy(r) is positive definite and strictly increasing in v, with S, 1(r), Sy1(r) of size

q X q, respectively (paq) X (p2q).
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Assumptions 3 and 4 are typical for the break point literature. Assumption 3 ensures that
there is enough variation in the instruments to identify the break point. It also allows for
the variance of instruments to change over the sample, as in the Great Moderation Example
3 discussed in section 2. Assumption 4 allows for heteroskedasticity in the sample moments
of the structural equation and the reduced form. It also allows for a break in the variance

of structural errors u;, as in Example 2 due to financial crises.

The following theorem collects asymptotic results about the above estimators of the break

fraction and the structural parameters.

Theorem 1. (Consistency of v and Asymptotic normality of éQSLS, éGMM, and éMOD)

(1) Under Assumptions 1 to 3, we have |0 — 10| = Op(r2/T).

(ii) Let Ap = diag(TV/21,,, TY?r:'1,,) with r¢ defined in assumption 2.

Under Assumptions 1 to 4, AT(éQSLS —6%), AT(éGMM —60°), and AT(éMOD —60°) are asymp-

totically normally distributed with mean 0 and asymptotic variances, respectively,

Vasps = (Ai+ Aj) " (Bi + By)(Ai + A45) 7!
— whenrir =rir, { Vounr = [(IFQi +119Q;)(Sus + Suy) Qi + Q112 ]
Viop = [IF'QiS, QI + 117 Q,8,1Q,112]
Vasrs = (Ai+A§)_1(Bi+B;)(Ai+A§)_l
— when rip = o(rjr), § Veun = [(IFQi +11¢Q;)(Sui + Sz ) HQIIE + Q;119)]
[T QuS, 1 Qi + 117 Q,5, Qe !

1
Vvop =

with Qp = Q(VO); Q2 = Q1(1) - QI(VO); Su,l = Su,l(VO); Su,z = Su(]-) - Su,1(7/0)7
and A; = ¢ Q; 11¢, Az = IYQ,I1¢, B, = 1¢ S, 11¢, Bf = 1% S, 11¢, T1¢ = (11.,,11;), and
1% = (I1,, Oyxp, ), for i # j and either i =1 or 2.1

Comments:
(i) The consistency of the estimated break fraction extends results developed by Bai and
Perron (1998) and Bai (1997) for rip = ror = 1. Here, we show that even with a change

in identification strength, 7,7 = o(rjr) (for ¢ # j and either i = 1 or 2), the break fraction

4Note that while II; are the reduced form parameters of the endogenous regressors, II, denotes the
implicit “reduced form” parameters for exogenous regressors, with elements equal to one for the correlation
of exogenous regressors with themselves, and zero for the other instruments. Thus, II{ is the matrix of
all "reduced form” coefficients (including those on the exogenous regressors) and is only used to facilitate

presentation of all results in a unified way across models with and without exogenous regressors.

13



estimator is consistent at the rate inherited from the strongest subsample. This holds even
when the weakest subsample is weakly identified, r;7 = VT. Intuitively, only the magnitude
of the break (in this case o(v/T))) matters for consistency of the break fraction estimator.
(i1) The rates of convergence of estimated parameters of the exogenous variable Y (standard
rate v/T) and the estimated parameters of the endogenous variables 0} (slower rate VT [rr)
are extensions of the results developed by Antoine and Renault (2009) over stable reduced
forms. The rate \/T/’I“T comes from the strongest subsample and holds even when the
weakest subsample is genuinely weak.

(iii) To our knowledge, the consistency of both GMM-type estimators éGMM and éMO D -
even when the weakest subsample is genuinely weak (that is 7,7 = VT ) - is new. Hence,
ignoring the break point does not lead to a loss of consistency. However, using such in-
formation (to construct 2¢q valid sample moments) is crucial for efficiency as shown below
in Theorem 2. The asymptotic normality of 2SLS-type estimator § is an extension of the
results developed by Hall, Han, and Boldea (2012) for r;7 = 1.

The following assumptions are useful to derive some of our efficiency results.

Assumption 5. (Homogeneity of the second moments)

(i) Qi(r) =rQ; (i) Si(r) =rS.

The above assumption prevents changes in the second moments of the instruments and in
their correlation with the error terms of the reduced form. For example, a break in Var(v, %)
at TY means that Var(v,W;) changes once at some T, so the homogeneity assumption 5(ii)
is violated. In addition, a break in E(W,W/) implies that E(W;W/) changes once as t = T",

so the homogeneity assumption 5(i) is violated.

Assumption 6. (Conditional homoskedasticity in subsamples)

u? Uy 7| = o, D,
(TR Dy D, )

with F; the o-algebra generated by {W;, W;_1,...}, and i =1,2.

S; =®® Q;, where ® =FE

Assumption 6 is only used in special cases to compare the above estimators - see e.g. The-

orem 2(ii).

Theorem 2. (Efficiency of estimated structural parameters)
(i) Under Assumptions 1 to 4, éMOD is always at least as efficient as éQSLS and éGMM
asymptotically.
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St 11 when ryp = i,
(ii) In addition, Vijop = Veannr < S, QI8 = "qQJ J T
’ S, i Q1% when rip = o(rjr) .
(1ii) Under Assumptions 1 to 6, Vo > Vasis-

Comments:

(i) Using the additional information about the reduced form break leads to more efficient
estimators (e.g. Orro p). Intuitively, the break does not impact the validity of traditional full-
sample moment conditions, however more information can be extracted from the subsample
moments due to their derivative changing over the sample. Condition (ii) above is hard
to satisfy unless Assumption 5 holds. So, in general, Orrop is strictly more efficient than
Ocnin-

(ii) The strict efficiency gain of éMo p also occurs when there is no break in the reduced
form (i.e. II; = Il, = IT and r17 = ro7 = rp), as long as one of the homogeneity assumption,
5(i) or 5(ii), is violated. We now discuss two such violations: a) a break in structural error
variance as in Example 2; b) a break in instrument variance as in Example 3.

a) In the first case, Assumption 5(ii) is violated: for example, when the structural sample
moment variance increases from Var(Wyu,) = S; | for t < T° to Var(Wyu,) = S, > Si )
for t > TY In Example 2, these breaks occur because a financial crisis can induce a
break in the structural error variance u;. Then, even with no break in the reduced form
parameters, the variance break provides additional information that is used in éMOD to
obtain a strictly more efficient estimator. The strict efficiency gain occurs because the
condition in Theorem 2(ii) can still be violated. For example, under Assumption 5(i), the
condition writes S;7'QII* = S;5'QII*, and does not hold in general when S, > S ;.

b) The second case refers to violations of Assumption 5(i). Example 3 discusses the Great
Moderation, where the instrument variance decreases at TV, so that E(W,W/) = Q3 for
t <T° and E(W,W/) = Q3 < Q3 for t > T". Then, under Assumption 5(ii), with no break
in the reduced form parameters, the condition in Theorem 2(ii) writes Qi1 = Q3II, and
does not hold in general when Q7 > Q5.

(iii) Finally, we consider a change in instrument strength, as in Example 1 for NKPC. Then,
with no exogenous regressors, 0 vop is strictly more efficient than éGM M- With at least one

exogenous regressor, fyrop is still more efficient whenever Assumptions 5 and 6 hold.!®

15Without exogenous regressors, see the proof of Theorem 2, case (b)(i) in the Appendix; with exogenous

regressors, see the proof in the Supplemental Appendix.
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For efficiency purposes, it is therefore essential to detect breaks in the reduced form equation
and associated changes in the identification strength. The latter is done to ensure that at
least one subsample is not weakly identified. Testing for weak identification'® must be done
over each (stable) subsample, which requires consistent estimation of the break fraction.
Before testing for weak identification, one can test for a break in the reduced form using
the sup-Wald statistic of Bai and Perron (1998). Define the null hypothesis for a certain
endogenous regressor s as Hy : 115 /rip = 15 /rop (i.e. 115 = 115 and rip = ror), versus the
alternative H 4 that II§ # II5 or r;r = o(rjr) for ¢ # j and either ¢ = 1 or 2. Then, Bai and
Perron’s (1998) sup-Wald test statistic for testing for a break in the reduced form is:

Sup — Wald® = supWaldi¥ (v),
I/GA&

vec vec

Gip(v) = diag] Q7' (v) S5,(v) Q7' (v), Q3 (v) S2u(v) Q3 (v) ],
Ghp(v) = diag[ Q7' (v) S5, (v) Q7' (v), Q3 (v) Sia(v) Q' (v) |,
R,=(1,-1)®I,,

where  Waldi¥ (v) = | TILL (V) R (R, Gp(v) RL) P Ry 1L, (V) |

and S5 () the s diagonal (g x ¢) block of S, ;(v) with gji(z/) S Sy i(v), uniformly in v.
The asymptotic distribution of the sup-Wald test is stated below.

Theorem 3. (Test for a break in the reduced form )
(i) Under Hy, and Assumptions 1 to 5, the above Sup-Wald test has the same null asymptotic
distribution as in Bai and Perron (1998),

— 1 2
Sup — Wald¥ = sup 1B, () — vB,(1)]| ’
veA. v(l—v)

where "=" indicates weak convergence in Skorohod metric, || -|| is the Euclidean norm, and
B,(v) is a ¢ x 1 vector of independent standard Brownian motions defined on [0, 1].

(ii) Under Hx, and Assumptions 1 to 4, Sup—WaldZ¥ 2 0. In addition, if Assumption 5
holds, then the implicit break fraction estimator 0V = arg(Sup—W ald®) 200, Otherwise,

A~ Y4 .
oW = 10 is not guaranteed.

Comments:
(i) It is important to point out that result (i) holds even when rp = /T, that is, when the

instruments are weak over the whole sample.

110 our simulations, we rely on Staiger and Stock’s (1997) rule-of-thumb to test weak identification.

16



(ii) While the above Sup-Wald test has power one against the alternative hypothesis H4
and should be employed because of its robustness to conditional heteroskedasticity and

W is not always consistent unless the

autocorrelation, the implicit break point estimator
homogeneity assumption 5 holds. Thus, if the test rejects, it is still desirable to use 7 as a

break point estimator, which is consistent even if assumption 5 is violated.

3.2 Unstable structural parameters

Our second framework of interest extends the standard linear IV regression model to allow
instabilities in the structural parameters over time, while the identification strength remains
stable. Example 4 shows that this can occur when the equation of interest is a policy
function, while the reduced forms originate from a structural model that does not change

over time.'” More specifically, the equation of interest with a break point is:

Y = 200, + Y0, + w o, t<|TX (3.3)
Z0, + Y/, + wu o, t>[TA\]
We also define the vector of all (unknown) parameters of interest, 6%, = vec (67, 69) with
0) = vec (02,, 6 ;) for i = 1,2. The stable reduced form is
W/
Y;, =—+ Uzlf ) (3.4)
rr

where r = 1, or ro — oo with rp = o(ﬁ ), and W, is uncorrelated with v; and wu,.

0

vec?

We extend results of Hall, Han, and Boldea (2012) to show that minimizing a 2SLS criterion
provides consistent estimators of both the break fraction A\’ and the structural parameters

90

vec*

Before introducing our GMM-type estimator of ;. ., we first define the break point estimator.

In the first stage, the reduced form for Y; is estimated over the full-sample by OLS to
get Y, = 1T Wy, with IT the OLS estimator in (3.4), and the augmented projected regressors
X, = vec (Z, )A/t) = [1¢W,, where 1% = (11, ﬂ) In the second stage, we define the following
2SLS criterion given a candidate break point [T'A\] and 6,.. = vec (61, 6s),

[TA] R 5 T X )
QZSLS()H evec) - Z <yt - Xt/61> + Z (yt — X;eg) .
t=1 t=[TA+1

1"To see another explicit system of equations with breaks that can give rise to a stable reduced form, see
Appendix A.2.
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We concentrate with respect to 0,.. to get the 2SLS estimators for each candidate break
point, évec()\) = vec (él()\),ég()\)), and then minimize QQSLS()\,éUec()\)) over all possible
valid partitions of the sample defined by [T'A]. The 2SLS estimators of the break point

T = [T;\] and of the structural parameters 6,.., are defined as

~ ~ ~ ~ ~

A = argminQaszs(, fuec(N) and fee = vec (B1(N), B2(N)) = vec (61, 05).

We now turn to GMM estimation of #°

vec*

We know from Hall, Han, and Boldea (2012) that
minimizing a GMM criterion directly with respect to A and 6%, (instead of the above 2SLS
criterion) does not deliver consistent estimators of the break fraction. However, we show
below that if we use the above 2SLS break point estimator 7' = [T;\] to partition the sample,
the resulting partial-sample GMM estimators are consistent. Intuitively, A converges faster

than the parameter estimates, explaining the consistency result for GMM. We now introduce
0

vec’

two GMM-type estimators of 6
e The partial-sample GMM estimators using 7" are defined as follows:

. 0 R
QGMM,vec = AGMM’I = argmin [Q/T(Ql, ‘92)51:19T(017 92)] )
9GMM,2 01,62

T S W (g — Y/ 0,0 — Z}6..1)

where 01,02) = a
gr(61,02) (T — T)—l 232T+1 Wi (ye — Y/0,2 — dez,Z)

] 69

and S, = diag [Sy.1, Sua] & AVar [T2g7(69,09)] with S, ; of size (¢ x q).

These GMM estimators were defined in Andrews (1993) to study local properties of a break
point test. Here, we derive their asymptotic distribution under a stable reduced form, and
compare them with their 2SLS counterparts. Similar to 2SLS estimators, we show that
the GMM estimators of the structural parameters associated with the endogenous variables
are asymptotically normally distributed at rate /T /T, whereas those associated with the
exogenous regressors are asymptotically normally distributed at the standard rate /7.
However, these GMM estimators, éGMM,Uec, are not the most efficient, because they ignore
the information that the reduced form is stable, while the 2SLS estimators évec take this
information into account. This suggests that a (augmented) GMM estimator that takes this

information into account will also be more efficient than O¢ s vec-

e The "augmented” GMM estimator is built by adding moment conditions from the

reduced form. In the absence of breaks, the reduced form moments are redundant to the
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structural form moments, because adding just-identified nuisance parameters leaves the
GMM estimators asymptotically unaffected (see Ahn and Schmidt (1995)).

The same intuition applies when adding the just-identified ¢ full-sample moments of the
reduced form. However, it does not apply when we add the 2¢ subsample moments of the
reduced form, before and after 7°. In other words, we add 2¢gp, moment conditions and
gpe nuisance parameters II (recall that II is stable over the whole sample). These added
reduced form moment conditions over-identify II. In addition, we show in Theorem 5 that
they are not redundant and deliver a more efficient estimator.

Our new (augmented) GMM estimator éMOD,Uec = vec (éMODJ,éMODQ) (along with the

new reduced form estimator I1y/op yec = vec (f[ mop)) are based on the following moments:

gT(evec)

gT(eveca Hvec) =
gr2 (Hvec)

) with g7 as in (3.5), and

97211 ec) stacks the OLS moment conditions from the subsamples of the reduced form with

I,e. = vec (IT) for any II. More precisely, we have:

T WY — W

TS WL (v — W)

gT,Z(Hvec) = ~ 5
(T = T) ™ 3 gy WiV = W)
(T = 1) ey WalY? = W) |
where Y and II* are the s columns of Y/ and II, for s = 1,...,ps. Then, the optimal

MOD estimators are defined as:

é vec 3
AMOD7 = arg min [g}(eveca Hvec) Sil gT(evew Hvec)] s
HMOD,vec vees

where & & AVar[v/T§r(69,,,11°,.)] with 1%, = vec (II).
In order to discuss asymptotic properties of the above estimators, we impose the following

regularity assumptions. Those are quite similar to the regularity assumptions of section 3.1.

Assumption 7. (Regularity of the break fraction \°, and reduced form)
(1) 0 < \Y < 1, and the candidate break points satisfy max([TA,T — [TA]) > max(p —
1,eT) for some e >0 such that e < min(A\°, 1 — %) and so A € A, = [¢,1 — €.
(i) Rank (I1) = ps.
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The following theorem collects asymptotic results about the above estimators of the break

fraction, the structural and reduced form parameters.

Theorem 4. (Consistency of \ and Asymptotic normality of évec, éGMM,Uec and OAMODJ,EC )
(i) Under Assumptions 1(ii), 2 to 4, and 7, | A — X°|| = Op(T~1).

(ii) Define A as in Theorem 1. Under Assumptions 1(ii), 2 to 4, and 7, [l Az](0pec—02,,),
I, ® Ar] <9GMM,UGC — 98%), and [I, ® A7) (éMODﬂ,ec - 9860> are asymptotically normally
distributed with mean zero and asymptotic variances defined explicitly in the appendiz.
0r10D,0ec — 02, ]

MOD,wec — ngc/rT
15 asymptotically normally distributed with mean zero and asymptotic variance explicitly

(iii) Under Assumptions 1(ii), 2 to 4, and 7, diag(Iy @ Ap, TY2L,,,) | .

defined in the appendix.

Comments:

(i) The structural equation break fraction estimator converges faster to its true value than
its reduced form counterpart; in fact it does so at the fastest available rate T'. This stems
from the presence of breaks in the exogenous regressor parameters; intuitively, the exogenous
regressors are their own strong instruments, and so the strength of the endogenous regressor
instruments determines the fast convergence rate. However, part (ii) shows that estimators
of the endogenous regressor parameters, «92 ;, converge at rate VT /rp, which is slower than
usual: such slow rate is due to the presence of instruments W, that are not strong. The other

parameters, 0° ., are not affected by the instruments, and their estimators are asymptotically

z 27
normally distributed at the standard rate v/7T.
(ii) The explicit formulas for the asymptotic variance-covariance matrices are provided in

the appendix because they require cumbersome notations.

The following theorem compares the asymptotic variance of the proposed estimators.

Theorem 5. (Efficiency of estimated structural parameters)
(i) Under Assumptions 1(ii), 2 to 4, and 7, éMODﬂ,eC is always as efficient as éGMM,veC.
(ii) Under Assumptions 1(ii), 2 to 4, and 5 to 7, fori=1,2,

AVGT(éQSLS,Z') S AVCLT’(QAGMMJ‘) -~ 2(1), ‘90 +¢90 CI) ‘90 S 0

uv’ Y,
. X / 52
0 0 0 u
AVCL?“(@MOD’Z') < AVCLT(@QSLSJ') & 2@2“)93” + (9 CD (93“ > m ,
with § = ®,2®) (P, — By, @, P ) 1Dy, .
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Comments:

(i) MOD estimators are more efficient than the usual partial sample GMM estimators,
because they exploit the additional information that the reduced form is stable. In general,
the added moment conditions gro(-) are not redundant, because of two key reasons: first, II
is over-identified; second, the added moment conditions are correlated with the initial ones.
Even when the first subsample moments of the reduced form first are redundant for the

second subsample moments of the reduced form - as it is the case under Assumptions 5 and
0

vec*

Theorem 4 in Breusch, Qian, Schmidt, and Wyhowski (1999), where it is shown that with

three moment conditions, say (g1, g2, 93), g3 redundant given go does not imply that gs is

6 - they are not overall redundant for the estimation of 6 This intuition is similar to

redundant given (g1, g2). The above non-redundancy result is also related to recent results
by Antoine and Renault (2014) who extends Breusch et al. (1999) to frameworks that allow
different identification strengths.

(ii) 2SLS estimators are not a special case of partial-sample GMM estimators: in fact,
the latter only use subsample information for estimation of parameters 69 and 69, while
2SLS estimators use both subsample and full-sample information. As a result, the 2SLS
estimators considered here can be more efficient than partial-sample GMM estimators. The

above condition,

20,609, +6%,0,00, <0 & O, +20,,00, +00,2,60, <,

AL TR Y, — UV Y,i

is actually equivalent to the following condition on conditional variance of the errors,
Var(u, + vj0) ;| ) < Var(u,|F;), with F; the information set available at time ¢.

Heuristically, it states that 2SLS estimators are more efficient when the second-stage error
after using the full-sample reduced form for estimation on a subsample is less than the
structural GMM error.

(iii) 2SLS estimators are not a special case of MOD estimators either.!'® In general, our MOD
estimators are more efficient even under homogeneity and conditional homoskedasticity, as

long as

, od2
o .+ VD00 >
uv -y, + Y,r VY, — 1 +6q)u

This condition is harder to interpret, but it is automatically satisfied with a single en-

dogenous regressor and no exogenous regressors, that is po = 1,p; = 0. In such a case,

18This is related to results in Hall, Han and Boldea (2012) about the relationship between 2SLS and

GMM estimators that breaks down in the presence of break points.
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P,0 = 92 (9,9, — P2,))7!, and the above condition becomes,

0 0 \2 CI)2 0 q)uv ?
2®uvey7i + (ey,i) q)v Z _q)—u: = (9%2' + @v ) 2 O

In this case, MOD is always at least as efficient as 2SLS. MOD and 2SLS estimators are

uv
o,

uv

asymptotically equivalent when —Hg,i = for 1 = 1,2. To interpret this condition, assume

the regressors are fixed. Then (% = is the limiting coefficient of a regression of u; on
vy, suggesting that the MOD estimatorv”purges” u; of the true correlation with v;. On the
other hand, the 2SLS estimator transforms the error u; into (u; +v;6) ;) through an orthog-
onal projection, so that —0272- plays the role of 3° for each subsample. As a result, when
these two are equal, say over subsample 1, the two associated estimators 2SLS and MOD
are asymptotically equivalent over subsample 1, but the MOD estimator is more accurate

over subsample 2.

So far, our analysis assumes that the existence of the break point in the structural equation
(3.3) is known. In practice, this existence often needs to be established. To that end, we
consider the sup-Wald test of Hall, Han and Boldea (2012) for which the null and alternative
hypotheses are: Hp : R,0° = 0 versus Hy : R,0° # 0, with R, = (1,—1) ® I,. The test
statistic 1s:

Sup — Waldy = supWaldr(N), (3.6)

AEA,

where  Waldp(\) = T6!

~ -1 ~
e VR, [Ry GOVRY| Ryfucel(V) .

G = diag[ Gi(\), Go(V)] with Gi(\) = AT H(V)AT (),

AN =T"Y X, X] L={1L.. TN}, L={TN+1,. .. T}
tel;
and  H;(\) is a HAC estimator such that
Z A;l)A(t(ut + 1];9271)] .

tel;

AFPH; (VA D Hi(\) = AVar

The following theorem provides the limiting distribution of the sup-Wald test statistic.

Theorem 6. (Test for a break in the structural equation)
(1) Under Hy : 09 = 09, Assumptions 1(ii), 2 to 4, 5, and 7,

1B, (A) — AB, (1)
Sup — Waldr = su ,
b TR A1-N
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where B,(A\) is a p x 1 vector of independent standard Brownian motions defined on [0, 1].
(ii) Under H, : 6% = 69— 63 # 0, and Assumptions 1(ii), 2 to 4, and 7, Sup —Waldy 2 oo
such that

O,(T/r3) without exogenous regressors (p1 =0)

O,(T) in presence of exogenous regressors (p; #0)

Sup — Waldr = {

In addition, if Assumption 5 holds and either p1 = 0,py = 1 (only one endogenous regressor,

0
y,27

AV = arg(Sup — WaldB") % X°. Otherwise, AW 200 s not guaranteed.

no eT0genous regressors) or 9271 =07 ,, then the implicit break fraction estimator

Comments:

(i) The above Sup-Wald test should be used because of its robustness to conditional het-
eroskedasticity and autocorrelation. However, if one is not willing to impose the homogeneity
assumption 5, then the implicit break fraction estimator may not be consistent under Hy,
that is AW /5 X0, In such a case, the break point estimator A should be used instead. This
is similar to the properties of the Sup-Wald test in the reduced form highlighted in the
previous section.

(ii) The rate of divergence under the alternative H,4 depends on the presence of exogenous
regressors: without exogenous regressors, the rate of divergence is affected by the identifica-
tion strength of the instruments and is equal to T'/r%; in presence of exogenous regressors,

the rate is standard equal to T', and not affected by the identification strength.

4 Common Break

In this section, we combine the two frameworks of interest introduced in the previous section,

allowing for a common break in the equation of interest and in the reduced form:

b = | B0+ Y0 w < TX) (1)

t 202, + Y0, + w o, t>|TX] |
W/l

I ol i SR TR 42

t - W/H2 / 0 ( : )
7,;—T + v , > I_T)\J

where r;7 = 1, or ;7 — oo, with ¢ = 1,2, and W, is not correlated with v, and w;.

When there is no change in the identification strength, r17 o ro7, (4.2) naturally extends the
unstable reduced form models considered in Hall, Han and Boldea (2012) to weaker identi-
fication patterns. Otherwise, (4.2) captures changes in identification strength concomitant
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0

vee- Our goal is to detect and locate both parameter

to those in the parameter of interest 6

instability and changes in the strength of identification, as well as to provide correct and
0

vec*

sharp inference on 6,,.. This goal is met by combining results developed in section 3.

1. First stage: the reduced form.
(a) Test whether there is a break in the reduced form using Sup — WaldEF.
(b) If a break is detected, use the break point estimator T* and subsample OLS to construct
Y; as discussed in section 3.1. Otherwise, construct Y, by full-sample OLS.

2. Second stage: the structural equation.
(a) If no break has been detected in the reduced form, test for a break in the main equation
using Sup — Waldy. If a break is found, proceed with inference using \, Owro D,i OF 0.
(b) If a break point has been detected in the reduced form, impose the above estimated
break point T* and work over the associated subsamples separately. Since on each such
subsample the reduced form is stable, we use the results developed in section 3.2.

3. Third stage: the common break structure.
(a) If a break point has been detected in the reduced form, impose the break 7% in (4.1) and
test whether the break is common to the structural equation using the test Wald5. described
below.
(b) If the test does not reject, the main equation is stable. Use Orrop for inference as dis-
cussed in section 3.1. If the test rejects, the break is common to both equations, so proceed

with inference using T and the partial sample estimators QAMODJ» or éZ

It is important to mention that the estimation of the above break points and the inference
described in this paper are feasible when the identification is "not weak” over at least one of
the subsamples. Thus, one needs to test for weak versus "not weak” identification over each
subsample. For simplicity, we rely on Staiger and Stock’s (1997) popular rule-of-thumb in
our simulations. When both subsamples have weak instruments, weak-identification robust

inference procedures should be used.'

We now present our Wald test for common break. Consider the case where the reduced form
break 7™ has been detected and estimated by T+ using the methods described in section
3.1. To test whether T™ is a common break to the main equation, we test whether the 2SLS

parameter estimates defined over each subsample are equal to each other. These parameter

19See Magnusson and Mavroeidis (2014) for suggestions.
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estimates are defined as

1
é,bc = Z Xt,iXé,i Z Xt,iyt s with Xt,i = vec (Zt7 Y/tﬂ) s and Y/ZZ = VVt/ﬂZ s
Ir Ir

i=1,2,and I; = {1,...,7*} and I3 = {T*+1,...,T}. The Wald test for a common break
is:

Walds. = T 0%, R, (R, G°R,) "' R, 0

vec p “vec?

with  6° = vec (é;,ég) . Ry=(1,-1)®I,,

vec

~

G¢ = diag [ e GE] G = (AT B(AS)

Ae -1 O o/
A =T E Xt,iXt,i ,
f*

By such that Ay BEA B Bf = AVar[T~2 > " A X, juy]
Iy
and Ay = diag(T"/?1,,, T"r;' I,,,) .
The following theorem provides the limiting distribution of the above Wald test statistic.

Theorem 7. (Wald test for common break)
(i) Under Hy : 09 = 63, Assumptions 1(ii), 2 to 4, 5, and 7, Walds 4 X
(11) Under Hy : 69 £ 05, Assumptions 1(ii), 2 to 4, 5, and 7, we have

W alds. — { O,(T) in presence of exogenous regressors (py # 0)
O,(T/73) without ezogenous regressors (p1 = 0) and Tr = max;(rir).
Comment:
The above test for common break is somewhat similar to the break point test defined in
section 3.2 to detect a break in the main equation. There are two main differences: first, the
above test is simpler than Sup-Wald test because it is computed directly at the estimated
break point coming from the reduced form; second, the rate of divergence is different in

absence of exogenous regressors.

5 Extensions and related results

5.1 General characterization of the identification strength

In this section, we consider a more general characterization of the identification strength
by allowing each instrument and direction in the parameter space to display their own
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identification pattern. More specifically, the reduced form equation (3.2) now writes,

v/ W’H +ov , t<T*
' Wi 4o, > T

where each element (k [) of matrices H(j ) ( = 1,2) is allowed to display its own rate of
convergence, that is 7Tkz = Wkl)/rkl o with Tkl r=1,or r,g?T % 0o with Tkl = O(T). The
break point T now captures changes in the identification strength of some instruments only,
changes of different magnitudes, as well as changes in different directions of the parameter

space. We focus on the following three special cases:

- Case a): the (overidentified) case with one endogenous variable and two instruments

with different identification strengths;

- Case b): the (just-identified) case with two endogenous variables and associated struc-

tural parameters identified at different rates;

- Case c): the (just-identified) case with two endogenous variables where the instrument

strength is the same for each reduced form, but differs across instruments.
e Case a): instruments with different identification strengths.

In practice, instruments often display different identification strengths. For instance, in
Example 1 in section 2, lags of inflation are usually relatively strong instruments for inflation,
but lags of output gap are not.

We consider the (overidentified) case with one endogenous variable, no additional exogenous

variable, and two instruments associated with two different identification strengths:

(1) (1)

0% 0%

0 :.t(ir)l + it(ir)Q + fU; ? t S T* ( )

Yy =Yoo +uy, Yy = Wltljrf) ngif) ) , TiT (rkT) (i # k)
o t T T U t>T
1T 2T

with E(u;) =0, E(Wyu,) = E(Wou) = 0, and E(Wyv,) = E(Wovy) = 0.

The above framework now captures changes in the strength of one instrument only (e.g.
when TélT) = réQT)), changes in the strength of both instruments but of different magnitudes,
as well as the case where one instrument becomes weaker, while the other becomes stronger.
From the results of section 3.1, when there is one break and two instruments with the same

strength réj ) over subsample j, we know that with ry = min(r(T1 ), 7"512 )) and rp = o(\/T),
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(i) the estimated break fraction is consistent at rate r2 /T
(ii) only the magnitude of the break matters;

(iii) the MOD estimator of o’ is always at least as efficient as the modified 2SLS and the
full-sample GMM.

From Theorem 2 in Antoine and Renault (2014), we also know that when there is no break,

and two instruments with different strengths 77 such that min (7,7, 7or) = o(v/T),

(iv) the (standard) over-identified GMM estimator of o” that relies on both instruments W,
and W5 is more efficient (in terms of asymptotic variance) even when W, is genuinely

weak, as long as (W) and (Wayu,) are correlated.

These results and intuition directly transfer to the above framework after redefining r as

the slowest rate over all possible rates displayed in both matrices H(Tj) (j=1,2).20
e Case b): structural parameters identified at different rates.

In practice, some parameters are often known to be more difficult to estimate accurately. For
example, in the intertemporally separable consumption based capital asset pricing model
with constant relative risk-aversion preferences, this is usually the case for the risk-aversion
parameter, but not for the discount factor. In Stock and Wright (2000), the discount factor
is modeled as strongly identified, whereas the risk-aversion is weakly identified.

Accordingly, we consider the (just-identified) case with two endogenous variables?!, no ad-
ditional exogenous variable, and two orthogonal instruments. Over each subsample, W; and

Wy are both strong instruments for Y7, but they are both weaker instruments for Y5:

ye = Y+ Y0 + uy

% W1t7r11 + WQ{/TS) + Uy s tST*
1w —
Wltﬂ'u + Wgtﬂ'g? + Ut s t>T*
v Wltﬂg)/rg,l% + W2t7T22/§% + vy, t<TT
2t —
Wlmg)/rg% + W2t7T22/é% + Uy s t>1T"

with E(Ut) = 0, E(Wltut) = E(Wgtut) = 0, E(Wltvt) = E(Wgtvt) = 0, and E(WltWQt) = 0.

20The current proof of Theorem 1 goes through with the new definition of r.
21This example also relates to earlier discussions with one exogenous regressor and one endogenous one.
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Taken over each subsample j, this is the (linear) framework of Stock and Wright (2000)
where the structural parameters o’ and 3° are identified at different rates. The associated

moment functions over subsample j

{ 9 (c,8) = EWu(y = Yoo — Yaf)]

9, B) = E[Wa(ys — Yiea — Yo B)]

n {gS)(a,m = ("= @BV + (3 = S B(Wh)md /s
9 (@, f) = (a®—a)EW2)rd) + (8° — BYE(WZ)n%) /riy

contain a ”strong part” that only depends on «a and is not drifting toward zero. It follows
that oV is strongly identified, while 3° is not. In addition, when 7"2 T = o(V/T), the standard
VT(a—a

VT 1505 ~ )

with mean 0; see Antoine and Renault (2009).

GMM estimator of (a?, %) is such that ( ) is asymptotically normal

The above framework now captures changes in the identification strength of one parameter
only, or even in both parameters but of different magnitudes.

Since the instrument strength is the same across the two reduced forms, the results developed
in section 3.1 (e.g. estimation of the break point) apply equation by equation. For efficient
estimation of the structural parameters, it is always better to consider the MOD estimator,

as already discussed.
e Case c): each instrument has the same identification strength across all reduced forms.

For example, the intercept is always a strong instrument. We consider the (just-identified)
case with two endogenous variables, no additional exogenous variable, and two orthogonal
instruments. Over each subsample, W is a strong instrument for both Y; and Y5, while W5

is a weaker instrument for both Y; and Y5,

e = Yo+ YyBY +uy

Y - Wltﬂ-ii) -+ Wgﬂrg)/?"él% + V1t y tST*
1w =

Wurl?) + Warl)/riy + vy, t>T

Yoy = Wirly + Warly /ri) + vy, t<T
% =

er@ + Wgtwg) /Té% + vy o, t>T*

with E(u,) =0, EWyu) = E(Wyuy) =0, E(Wyw,) = E(Wor,) = 0, and E(Wy,Wsy,) = 0.
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Different directions in the parameter space (or linear combinations of a® and 3°) can now

be identified at different rates. The associated moment functions over subsample j write:

{g?)(a,/ﬁ):(aO—a)E(W f)miy + + (= D) (Wi
95 (@, ) = (a° — Q) B(W)r$i) 1§ + (8° — B)E(W3)n%) /r¥y

The (strong) instrument W delivers the strongly identified moment g%j ) while W, delivers

the weakly identified moment géj ). It follows that only one (specific) direction in the pa-
rameter space is strongly identified. However, unlike case b), the strong direction does not
necessarily correspond to any structural parameter; e.g. the structural parameters will not
be strongly identified. Following Antoine and Renault (2009), the strong direction can be
found through a reparametrization that is based on the orthogonal of the null space of the
Jacobian associated with the (strong) moment gij )
)_ 097, 8°)
Ola p]

. In our case, this Jacobian vector is

Jij iE(Wlt)Trll E(Wlt)ﬂ-mi

(4)

()
; m
and the orthogonal of its null space is spanned by the vector eg] ) = < 1 ) )
1o

It is interesting to realize that different strong directions are identiﬁed over each subsample

whenever egl) and eg )

are not parallel to each other, that is es 7é ces ) for some constant
¢ # 0. For example, this is the case when either my; or w5 changes (but not both), or when
they both change but not by a proportional amount: we expect this to happen more often
than not in practice. It also means that when considering moments from both subsamples
together, two (different) directions in the parameter space will be strongly identified, and
therefore the entire parameter space (including a” and 3°!).

The MOD estimator of (a?; 3%) (see section 3 1) is defined by stacking the four moments
obtained from both subsamples: g1 ) and g1 are the two strong moments that drive the
strength of the identification of the parameter space, but for efficiency, the other two mo-

ments should also be included as already discussed in case a).

5.2 Efficient estimators for the reduced form

In this section, we show that in the presence of breaks, we can construct not only more
efficient GMM estimators of the structural form, but also more efficient estimators of the

reduced form. To formalize this, consider the following reduced form where we are interested

29



in efficiently estimating II. For simplicity, we consider one endogenous regressor Y; and no

additional exogenous regressor (p; = 0,p2 = 1), and we also impose strong identification.
Y = W+ ;.

The parameter II is stable, however we allow for potential breaks in Var(v,W;), E(W;W}),
or both at T°, which is assumed known for simplicity. A break in Var(v,W;) at T" implies
that the homogeneity assumption 5(ii) is violated. A break in E(W,;W}) implies that the
homogeneity assumption 5(i) is violated.

In section 3.2, we have introduced two estimators of II: the usual OLS estimator,

II = (WW) 'W'Y, and the MOD estimator II,;0p based on the moment conditions,

gT(evec)
gr,2(10)

gT(‘gveca H) -

We now introduce a third estimator that ignores the structural form and relies on the
subsample moment conditions before and after the break, gro(II). We call this estimator
[larar because it is the optimal estimator that uses the 2¢ moments gr (1) to estimate ¢

parameters. The following theorem shows that fIMo p is the most efficient.

Theorem 8. (Efficiency of reduced form estimators)
(i) Under Assumptions 1(ii), 2 to 4, and 7, \/T(f[—H), \/T(f[GMM—H), and \/T(f[MOD—H)
are asymptotically normally distributed with mean zero and respective asymptotic variance-

covartance matrices,

Vorsn = (Q1+Q2) ' (Su1 + Su2)(Q1+Q2) "
Vemmun = (QIS;%QI + Q2S;%Q2)_l
Voo = (Vi +9.6.)""  with G, defined in the appendiz.

(ii) Under Assumptions 1(ii), 2 to 4, and 7: Vyropn < Vammn < Vorsi.

(111) Under Assumptions 1(ii), 2 to 4, and 7, and 5 or 6: Vyjopn < Venmmn = Vorsi-

Comments:

(i) The inference developed to construct more efficient GMM estimators of the structural
parameters carries over to provide more efficient estimators of the reduced form parameters
in the presence of breaks. In other words, the OLS estimators of the reduced form parameters

are no longer the most efficient in presence of breaks in second moments of the instruments,
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or in their correlation with the error terms. It is important to note that OLS estimators
remain the most efficient under conditional homoskedasticity, that is if the regressors W are
independent of the errors v and can be treated as fixed. Consequently, our results do not
conflict with the Gauss-Markov Theorem, which states that OLS estimators are the most
efficient given W.

(i) In addition, if the regressors are independent of the errors, f[G vy and I MOD are more
efficient than IT, even under (unconditional) homoskedasticity. Thus, our estimators correct
not only for heteroskedasticity across subsamples, but also for changes in the second moment

of the regressors.

6 Monte-Carlo simulations

We consider the framework of section 3.1 with one endogenous regressor Y, ¢ valid instru-

ments (including the intercept), and one break in the reduced form:

L+ WIL v, t<T*

s E[EtWt] = 0, E[’UtWt] =0.
1+WtIH2+Ut t>1T*

v = a+YBtowe, Y, = {
The errors (€, v;) are i.i.d. jointly normally distributed with mean 0, variance 1 and cor-
relation p; the instruments W; are i.i.d jointly normally distributed with mean zero and
variance-covariance matrix equal to the identity matrix, and independent of (e;,v;). The

parameters of the model are such that, with ¢, denoting the vector of ones of size k,

Ri
)(1— RY)

(Oéﬁ):(OO), Hi:dibq_l,(izl,Q) with dl:\/(q—l d2:d1+b.

We consider two versions of the model: homoskedasticity with ¢ = 1; conditional he-
teroskedasticity (Garch) with 67 = 0.1 4+ 0.6u? | + 0.307_; and u; = oy¢€;.

We are interested in the slope parameter 5. In experiments 1 and 2, we compare the
performance of three estimators of 8: (i) the new MOD estimator proposed in this paper
(that relies on the break); (ii) the 2SLS estimator proposed by Hall, Han and Boldea (2012)
(that also relies on the break); (iii) the standard full-sample GMM that ignores the break.
In experiment 1, their performances are evaluated by computing the Monte-Carlo bias,
standard deviation, root-mean squared errors (RMSE), as well as the length and coverage

of corresponding 95% confidence intervals??, for various configurations of the model. In

22The standard errors of each estimator are computed using the formulas in Theorem 1. We use HAC-type

estimators under conditional heteroskedasticity.
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experiment 2, we investigate these performance measures as a function of the location of
the break. In experiment 3, we compare the power curves of two types of inference to test
Hy : B = By over a range of values for ;. We consider the identification-robust inference
procedure that ignores the break and the inference procedure proposed in this paper that
relies on the detection and estimation of the break, as well as the detection of weak identi-

fication.

e Experiment 1:

Our benchmark model is such that the sample size is T" = 400, the endogeneity parameter
is p = 0.5, the true break is located at 7" = 160 with break size b = 1. We use ¢ = 4
instruments (including the intercept), and the R-square over the first subsample is R =
0.2, which corresponds to a first-stage F-test statistic equal to 13 and somewhat strong
identification.?> The implied reduced form parameters are d;, = 0.29 and dy = 1.29.

We then explore different configurations of the model. First, we decrease R? to display
weaker identification in the first subsample, while the second subsample remains strong:
R? = 0.05 (and F; = 2.7), and R? = 0.01 (and F; = 0.5). The break size is still b = 1,
but the implied reduced form parameters are now d; = 0.13 and d; = 0.06, respectively.
Then, we consider larger sample size, T' = 800, more instruments, ¢ = 6, larger endogeneity
parameter, p = 0.75. In all these experiments, the break is assumed to be known, and the
results are displayed in Tables 1 and 2 (for the homoskedastic and Garch cases). The results
for cases where the break location is unknown and estimated are displayed in Tables 3 and 4
(for the homoskedastic and Garch cases): three break sizes, 1, 0.5, and 0.2, are considered,;
R? = 0.2 and d; = 0.29 throughout, while dy =1.29, 0.79, and 0.49. All the results are
based on 5,000 replications.

- When the break is known, the main results do not vary much over the different specifica-
tions. We then focus on the benchmark case. Under homoskedasticity, the performances of
MOD and 2SLS are very close when considering the bias, the standard deviation, and the
RMSE. And their RMSEs are significantly smaller than for GMM. It is worth mentioning
that the biases of MOD and 2SLS tend to be larger than for GMM, but they are well-
compensated by the gains in terms of standard deviation; in addition, when the sample size
increases, such biases decrease as expected. When looking at the 95% confidence intervals

of the slope parameter, MOD displays the shortest ones while maintaining good coverage

23Recall the link between the R? and the first-stage F-statistic F = % X %. Staiger and Stock’s

(1997) rule-of-thumb declares the instruments weak when the F-test statistic is below 10.
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properties. Under conditional heteroskedasticity (Garch case), the standard deviation and
RMSE of MOD are much smaller than for 2SLS as expected.

- When the break point is treated as unknown, the actual break size is important for the
accuracy of the estimated break location. With a break size of 1, the estimated break is
quite reliable with an average (over the estimated breaks) very close to the actual break:
the average is 161.3 with a true break at 160. When the break size decreases, the quality of
the estimator of the break location deteriorates: for instance, with a true break at 160 and
a break size of 0.2, the average is 172.4. Reliable estimation of the location of the break is
crucial for the bias properties of MOD and 2SLS. We can see that when the break is not
accurately estimated, their biases increase, and the coverage properties of the confidence
intervals also worsen.?* This bias should not be too much of a concern, because it only ap-
pears when the break size is small, and, oftentimes, such small breaks cannot be detected;

see also experiment 3 below.

e Experiment 2: Performance as a function of the true location of the break.

We have shown the asymptotic efficiency of MOD (compared to GMM and 2SLS). And,
at least asymptotically, it is always efficient to ”split” the sample in order to double the
number of moments. Intuitively, it seems reasonable when the break is somewhat in the
middle of the sample. We now investigate how the performance of the three estimators,
MOD, 2SLS and GMM, varies with the (true) location of the break.

We consider three versions of the above model, all with 7" = 400, p = 0.5, ¢ = 4, and
R? = 0.1 (which corresponds to d; = 0.1925 and F; = 5.8):

e model (i): the R-square remains the same over both subsamples: R} = R3 = 0.1. The
associated break size is b = —0.385, and dy = —0.1925. The identification strength is

borderline weak over the second subsample with F, = 8.7.

e model (ii): the R-square increases over the second subsample, R = 0.22. The asso-
ciated break size is b = —0.5, and dy = —0.3075. In this model, the identification is

strong over the second subsample with Fy, = 22.2.

e model (iii): the R-square is smaller over the second subsample, R3 = 0.025. The

240ne remedy consists in discarding the data around the estimated break (e.g. in a confidence interval
for the break location). This simple strategy should mitigate the drawback from estimating the break
inaccurately, and using partly misspecified moments. However, it does require the asymptotic distribution

of the break, which is beyond the scope of this paper.
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associated break size is b = —0.1, and dy = 0.0925. In this model, the identification is

weak over the second subsample with F, = 2.

The results under homoskedasticity and conditional heteroskedasticity are presented in Fig-
ures 1 and 2: two measures of performance are considered, the Monte-Carlo RMSE (left),
and the Monte-Carlo standard deviation (right). All results are based on 5,000 replications.
- In model (i), both Monte-Carlo RMSE and standard deviations for MOD and 2SLS are
stable as the break location changes from (0.1 x 400) to (0.9 x 400). This is quite different
for GMM: first, both its RMSE and standard deviation are quite larger than those of MOD
and 2SLS (as expected from the results of experiment 1); second, both are increasing as
a function of the location of the break until it is in the middle of the sample, then they
are decreasing to return to their original levels. Results for model (ii) are very similar, and
available upon request.

- In model (iii), both Monte-Carlo RMSE and standard deviations for all inference proce-
dures are decreasing functions of the location of the break. This is not very surprising since

the explanatory power over the second subsample is quite smaller than over the first one
(R? = 0.1 and R3 = 0.025).

e Experiment 3: Power curves of the overall inference procedure.

We now compare the power curves of two types of inference procedures to test Hy : =
Po for a range of [, values: (i) an identification-robust procedure (IdR hereafter) that
ignores the break; (ii) our suggested procedure (MOD hereafter) (that tests for break and
identification strength). When using IdR, we compute a 95% confidence interval for g, and
check whether the tested value 3y belongs to it. We consider two IdR procedures, Anderson-
Rubin (hereafter AR) and Kleibergen (2005, hereafter K).?> When using our suggested
procedure, we first test 0 vs 1 break: if 0 break, we test for weak over the whole sample and
use either GMM or IdR to compute the confidence interval for g; if 1 break, we estimate
it, and conditional on the estimated break, we test for weak over each subsample, and use
either MOD or IdR. We test for the presence of break with the Sup-Wald test at 95%;
we use Staiger and Stock’s rule-of-thumb to test for weak identification. We consider two
versions of MOD: one where we simply use a 95% confidence interval for 3; the other,

MOD-adj, where we adjust the size of the test using a Bonferroni-type correction, and use

25These procedures are more computationally-friendly than other IdR procedures, because their critical

values are known and do not need to be simulated for each tested value.
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a (1 —0.05/2)% confidence interval. When MOD (or MOD-adj) relies on K, we denote it
MOD-K (or MOD-K-adj); when it relies on AR, we denote it MOD-AR (or MOD-AR-adj).
We consider the three versions of the homoskedastic model from experiment 2, models (i),
(i) and (iii). All results are based on 5,000 replications, and are reported in Figures 3, 4,
and 5. We also report the rejection probability at the true value, the probability of detecting
the break, and the probability of detecting weak identification when the break is ignored
(full-sample F-test), and when the detection of the break is taken into account (full-sample
F-test when no break is detected, and subsample F-test when a break is detected). The
results for AR are very close to K (with a slight lack of power for AR as expected) and are
not reproduced here; they are available upon request.

Comments:

(i) Test of weak identification in presence of a break.

Interestingly, accounting for the presence of a break matters a lot when testing weak iden-
tification. When the break is ignored, the sample is declared weak much more often, even
though it is not necessarily weak over each subsample. For example, for model (ii), the
identification is strong over the second subsample (F, = 22). Yet, the sample is almost
always declared weak when the break is ignored. However, when the break is accounted
for, the sample is never declared weak, as expected. This means that there is valuable and
reliable information contained in the break that can be used to improve estimation as we
discuss next. As a robustness check, it is also worth mentioning that for model (iii) with
a second subsample that is quite weak (Fy = 2), accounting for the break does not change
how often the sample is declared weak: both probabilities are approximately 0.76.

(ii) IdR vs MOD.

Overall the power properties of MOD are better than K. This means that confidence intervals
for g will be narrower when using MOD. Of course, MOD is slightly oversized due to the
pretest: instead of 5%, the rejection probabilities at the true value are between 8% and 10%
across all simulation designs. However, our simple Bonferroni-type adjustment is sufficient
to control the size across all simulation designs without affecting the power properties much.
Fully accounting for the error of pretesting is beyond the scope of this paper. We refer the
interested reader to the powerful size-correction methods recently developed by McCloskey
(2012); see also references therein.

In model (i), K does not have any power, while MOD (and MOD-adj) both display the
usual well-shaped power curve achieving a power equal to 0.5 for tested values |3 > 0.6.

In model (ii), all inference procedures have some power. However, MOD has much more
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power: it is equal to 1 for tested values |5y| > 0.6 for MOD, and less than 0.5 for K. Finally,
in model (iii), the identification is quite weak over the second subsample, and all inference
procedures behave very similarly. It is reassuring to see that when the identification is weak

over the whole sample, there does not seem to be a cost in accounting for the break.

7 Conclusion

There is a lot of empirical evidence that macroeconomic models such as the NKPC are sub-
ject to parameter instability and identification issues. In this paper, we consider both issues
in a unified framework, and provide a comprehensive treatment of the link between them.
To our knowledge, it is the first paper that explicitly accounts for the connection between
parameter instability and changes in identification strength. Such changes in identification
strength provide an additional source of information that is used to improve estimation.
As long as at least one subsample is not weakly identified, we show that standard procedures
can be used to detect and estimate break points. In addition, given the estimated break
point, we propose a GMM-type estimator for the parameters of interest that is more efficient
than competitors (e.g. the full-sample GMM and the 2SLS estimator of Hall, Han and
Boldea (2012)). When parameter instability is confined to the main equation, we exploit
the stability of the reduced form equation to propose another efficient GMM-type estimator
when the identification is not weak. More generally, we show that detecting and locating
changes in instrument strength is essential for correct and efficient asymptotic inference,
and we provide a step-by-step guide for practitioners.

In our simulation study, our inference procedures rely on Staiger and Stock’s (1997) popular
rule-of-thumb (based on the first stage F-test) to distinguish weak and "not weak” identifi-
cation, either on the whole sample, or on each subsample. The associated results, especially
the power curves of our global inference procedures, are very promising. We expect such
results to be even better with more elaborate and powerful tests of weak identification such

as those proposed in Antoine and Renault (2013).
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Appendix

This Appendix contains three parts (denoted A, B, and C). Appendix A provides additional
discussions about identification and parameter instability in the linear IV regression model.
Appendix B contains the proofs of the theoretical results of the paper. Appendix C contains
the tables of results of the Monte-Carlo study.

A Identification and instability

We now discuss identification and parameter instability in the linear IV regression model.

A.1 Identification in the stable linear IV regression model

We start with an overview of the identification settings and associated asymptotic results

commonly used in the stable linear IV model. The associated moment restrictions write

with y, the dependent variable, Y; the vector of py endogenous variables, Z; the vector
of p; exogenous variables, W, the vector of ¢ (valid) instrumental variables including Z;,
Xy = vec (Z,Y3), 0° = vec (6, 6)), and p = py + pa.

In such a setting, weak identification is often modeled by assuming that these unconditional
moments flatten around 6° as the sample size T increases. Typically, Antoine and Renault
(2009), in the line of Staiger and Stock (1997), assume that, for any k& between 1 and ¢,

E (W (e — 700 — 18,)] = 20 (A2)

Tk,T

where 6 = vec (0,,0,), mg(.) is a constant function, 71 is a deterministic real sequence
such that r,» =1 or 71 2y 5. The faster the unknown sequence T, diverges to infinity,
the weaker the associated instrumental variable (IV), or moment condition is. Three cases

of interest have been distinguished in the literature:

e When r, 7 = 1, the IV is strong. This is the standard case. When all the moment
conditions are strong, standard inference procedures deliver /T-consistent estimators

of the structural parameters.
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e When 1 — 0o and 7, = o(v/T), the IV is semi-strong.2® When all the moment
conditions are semi-strong at the same rate rp, standard inference procedures are still
asymptotically valid, and feasible without knowing the exact rate r. However, conver-
gence rates of associated estimators are slower and depend on the degree of weakness,
VT /rp. When moment conditions are associated with different rates, the structural
parameters are usually identified at the slowest available rate, [v/T/ mgx(rk,;p)]. The
interested reader is referred to sections 2.1 and 4.1 in Antoine and Renault (2010) for

a thorough discussion of such cases.

o Whenryr = VT, the IV is weak. Consistent estimation of the structural parameters is
not possible anymore and one must rely on so-called ”identification-robust” inference
techniques. See e.g. the surveys by Stock, Wright, and Yogo (2002), Dufour (2003),
Andrews and Stock (2005), and references therein.

Our paper considers a framework where the exact identification pattern is unknown, and
allowed to change over the sample. In sections 3 and 4, we consider cases where all in-
struments have the same identification strength. In section 5.1, we consider more general

characterizations of identification strength.

A.2 Parameter instability in the stable linear IV regression model

In this section, we motivate why parameter instability may be relevant either in the reduced
form, in the main equation of interest, or in both. Intuitively, if parameters in the main
equation are "deep” parameters of an underlying structural model (such as preferences), they
may not change in response to a change in policy specified by a reduced form. However, if
these parameters are not ”deep” parameters, they may change without any change in policy,
or in response to the change in policy, which can lead to changes in the main equation that
are either idiosyncratic or concomitant with the breaks in reduced form. Below we provide
such an example.

Consider a reduced form as implicitly derived from a structural system, say

1 T ~
[y Y] 2l =z06+U.

F21 F22

26We use the terminology introduced by Andrews and Cheng (2012). Earlier literature referred to such

cases as "near-weak” identification: see Hahn and Kuersteiner (2002).
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Provided I is invertible, this implies that, with obvious notations,

y = =Y+ Zél +U;

Y = [ZOI gy + [UT ]y 22

JIL+V.

Thus, whenever either I'i9, I'so, or (:)2 changes, so do IT and Var(V'), but not the structural
equation. In light of this, we propose in section 3.1 a framework where reduced-form param-
eters can change while structural ones do not. We also propose in section 3.2 a framework
where parameters in the main equation can change while reduced-form ones do not, which
can happen if I'j5 = 0. In such a case, provided 'y is invertible, the reduced form equation

writes

Y = 20,15 + UsTy) 2L ZIT+ V.

and breaks in the main equation (whever I'y; or (:)1 changes) do not transmit to the reduced
form. Finally, whenever I';5 # 0, any break in I'y; or (:)1 will appear in both the main and

the reduced form equations. This case is discussed in section 4.

B Proofs of the theoretical results

To simplify the exposition, all the proofs below are written for a single endogenous regressor
(p2 = 1) and no exogenous regressors, p; = 0. Complete proofs in presence of multiple
endogenous regressors and exogenous regressors can be found in the Supplemental Appendix.
e Proof of Theorem 1: Asymptotic properties of 7, éQSLS, éGMM, and éMOD.

We assume that 7% < T*. The proof for T* > T* is similar and omitted for simplicity.

e (i) Consistency of v. We drop the subscripts s on ﬂ‘{, ﬂ; and Y%, since for one endogenous
regressor, Y,® =Y;, both scalars. Let 7, el Y, — V[/t’ﬂl in interval [1, T*], Uy et Y, — VVt’fIQ

in interval [T + 1,7, and d; <L 9§, — v,. By definition of the sum of squared residuals,

T
i<y wp = 2> wdi+ > (d)*<0. (B.1)

We show consistency by contradiction in two steps. In step 1, we show that?":

T T
> (d;)? = Op(Try®) and Y " wvd; = Op(T"?ry") (B.2)

t=1 t=1

2T1f prp = T2, then Zle (df)? and 2 Z?:l vd; are of the same order, and our argument does not apply.
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T
Then, = Z (df)?* >> 2 thd* ” >>" means "dominates asymptotically”)
t=1 t=1

(d)* <0

M’ﬂ

= plim(r3T71)

t=1

(df)*> =0 by non-negativity (B.3)

]~

= plim(r3T 1)

t=1

In step 2, we show that if 7 % 1, then, with positive probability, (r271) Zthl(d;‘)Q > 0,
which contradicts (B.3).

- Step 1. Let Iy <<= T1, /ry7, and U(r)
gy 2L o120 e, and TE(00)

t=[T0]+1

def

_ r v def
T2 ZT ] Wiy, ‘1’2( ) T2 Zt [Tr]+1 Wiy,

def UY for i = 1,2. Note that:

s . WtI(HlT—ﬁl), tST*
Y =Wl —v, t<T* R R
df@tvt{ tIA = WtI(HlT—Hg), TF4+1<t<T*
Yoo Welly =, €21 Wy — ), t>T*
T
3 wdy = (W — L) [TY209(0)] + (L7 — o) [TV20R] + (Myr — LY [TV203]. (BA4)

t=1

By Assumptions 1(i), (ii), and the functional CLT (FCLT) in Wooldridge and White (1988),

Theorem 2.11, UY(r) = Op(1), uniformly in r € [0,1] (u.r. thereafter). Thus, U} (0) =
Op(1), U = Op(1), V5 = Op(1).
Recall Qy(r) = Z[TT Wi/, Qa(r) = Q — Qu(r), and let Qa <= T 0L wiwy.

Then, by Assumptlon 3, Qi(r) = Op(1) and Qa = Op(1), hence:

My — I = —Qr'(2) [T7'2W(2)] = Op(1) Op(T71?) = Op(T71?).  (B.5)

On the other hand, with [12 == [Ty5 — Iy = Op(rp)),
Mor — 1y = Q' (9) [T712W3(0)] — Q1 (9) Qa 117 = Op(ry) (B.6)
HlT — ﬂg = H% + (HQT - ﬂg) == OP(T;I). (B?)

Substituting (B.5)-(B.7) into (B.4) yields 3, v,df = Op(T"/?r;"). Next, note that:

T T* T
D (d)? =) (d)’+ Z @)+ Y (d)* =y —IL) T Qi) (yr —IIy)
t=1 t=1 g1 t=T"*+1

+ (ILir — ﬂz) T QA (Il — ﬂz) + (Ior — ﬂz)/ T Q2(VO) (o — ﬂ2)
= Op(1) 4+ Op(ry)Op(T)Op(r1") + Op(rp ) Op(T)Op (1) = Op(Tr;*)0
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- Step 2. Define || - || as the Euclidean norm for vectors, and ||J|| as the square root
of the maximum eigenvalue of .J'.J for matrices. If & % 1, then there exists n € (0,1),
such that With positive probability e, T* — T* = [TW°] — [T'0] > Tn. Because Q,,o,n =

-1 Z TVO _ppn WeW{ s a symmetric pd matrix, |Quo.,|| > mineig(Q,0,,). By Assump-
tion 3, mineig(Q),0,) > 0 in probability limit. Let IIy be the OLS estimator of the reduced
form in interval {[Tv° — Tn] + 1,T}. Then, with positive probability e,

T T*
Z 2> TT ! < Z (@)2) = rr(thr — ﬂ2), n QVO,T; rr(Ihr — ﬂQ)
t=1 t=T*—-Tn+1
> ||TTHT + T‘T(HQT — ﬂ2)||2 nmineig(@l,om). (BS)

From (B'G), rT <H2T - ﬂz) = —[Q2(VO - 77)]_1 Quo,n TTH% + 0P(1) <

which can be substituted into (B.8).

—@ TTH% -+ Op(l),
- When 717 = rop = rp, we have:

T
rpTY (d)? > || — Q)(I1 — )| ymineig(Qyo,,)
> ||(I1; — I1y)||*[mineig?(1 — Q)] 1 mineig(Q,0,,)

which is positive with probability € for large T', because @),0, is pd by Assumption 3, as
wellas [ — Q =1 — [Q2(v° — )] ™! Qyo,n = [Q2(+° — )] Q2 (+°) is pd.

- When 7,7 = o(rjr) (i # j), we have, using similar arguments,

* > [|(7 = Q)IL|*pmineig(Quo )

IIMH

which is positive with probability e for large 7', because rank(Il;) = 1 by assumption 1(iii).0]
e (i) Convergence rate of . Since i % 1°, any break point estimator T* = [T'7] is such that
T* —T* < €T, for some chosen €* > 0 (thus uniformly over 7). We find the convergence
rate by contradiction as well. For chosen C* > 0, assume that T — T* > C*r2., uniformly
over . Define SSRy, SSR; and SSR} as the sum of squared residuals in the reduced form
obtained with break points T*, T* and (T*, T*) respectively. Then, by definition of OLS,
min (SSR} — SSR;) <0
T+ 8.6, Crr2<T*—T*<e*T
We show that if C*r% < T —T* < €T for some large but fixed C* and small but fixed €*,
then plim(SSRF — SSR;) > 0, contradicting the above. It follows that T* — 7% < C*r2,
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and by symmetry of the argument, if T >T* T —T* < C*rZ, establishing the desired
convergence rate for the break fraction estimator.

We show that plim(SSR: —SSR;) > 0 in two steps. Denote by (IIy, IT,) the OLS estimators
based on sample partition (1, T+, T), by (fIl, I, TNIQ) the ones based on (l,T*,T*, T), and
by (ﬁl, ﬁg) the ones based on (1,7, 7). In step 1, we show that:

SSR; — SSR; = (Ily — TA)[TQA](ITy — TTa) — (g — TIA) [TQAQ5 (v*)Qa](ITy — TTA)
def Nik . N2* ‘ (B.Q)

By the same arguments, we also have:

A~ A~

SSRy - SSR; = (I —IIA) [TQa)(IL — ITA) — (I — TIA) [TQAQT (v*)Qa](IL; — I1A)
&L Ny - N}

In step 2, we show that N dominates N3, N3, Nj for large C* and small €*. We also show

that Ny > 0 at the limit, for large C* and small €, hence:
plim(SSR} — SSR;) = Nf — Ny — N; +N; > 0.

- Step 1. We have:

T* T
SSR; -SSRy = Y (Vi = W/L)” — (Y, = WA + > (Vi = WL)* = (V; — W/IL)?]
=T 1 t=T"+1

= TV (Tl — M) [20% + QaT"*[(ir — ) + (Tr — 1))
([ = ) [ W5(0°) + Q)T [(Mar — ML) + (M — Tl)]| - (B.10)

For simplicity, let D N Q2(1°). By definition of OLS,

(D + E)IIy = TV2W3(0) = TY?WY + TY2W5(1°) = DIls + Ell,.
Thus, we have:

I — Iy = TIa — (D + E) '[DIIa + Elly) = (D + E)~'[(D + E)llx — DIl — EIl)
— (D + E) 'B(I1x — ),
I, — I, = (D + E) (D + E)Il, — DIls — EILy] = (D + E) ' D(II, — I1,).
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Substituting this into (B.10) and noting that D, F' are symmetric, we obtain:

“Y(SSR; — SSR;)
= (Ilp — ILYE(D + E) '[2D(Ils — Iy7) + D(Ilyp — ) + D(Ip — [1A)]
+ (I, — A)'D(D + E) " '[2E(Iy — Iyr) + E[(Hyy — I1y) + E(Ilyy — II,)]
(lIa — IL)' E(D + E) "' D(I1a — IIy) + (Il — [I7)' D(D + E) "' E(II, — II,)
— (IIn — L) E(D + E)"'D(D + E) ' E(Il5 — I,)
(Il, — 1,)'D(D 4 E) 'E(D + E) ' D(II, — 11,)
— (I — IL)[E(D+ E)'D(D+ E) 'E+ D(D + E) 'E(D + E)"'D](Il5 — II,).

—0  —

To prove (B.9), we are left with showing that:

E(D+E)'D(D+E)'E+ DD+ E)'E(D+E)'D=D—-D(D+E)"'D.

Let Fi =L E(D + E)~! and F, =<

Fl :I—FQ, SO:

_def

D(D+ E)™'. Then Iy + Fy = I, F| + F5 = I and

E(D+E)Y'D(D+E)'E+DD+E)'E(D+E)'D=F D F +F, EF,
=(I-F)D(I-F)+FEF,=D-DF,— F,D+ F,DF; + F,EF,
=D-DD+E)'D-DD+E)'D+DD+E)YD+E)D+E)™'D
=D—-D(D+ E)'D.

- Step 2. Since T* — T* < T, by Assumption 3,
(D+E)"'D = Q;'(9)Qa = Op(1)Op(e") = Op(e") = Nj >> N,

for € small enough. Similarly, N5 >> Nj. To show that Nj >> N3, we need to compare
(ﬁ2 — fIA) and (f[l — f[A). Since I1; and Il are both subsample estimators of Iy,

I — I = (I = yy) — (s — Iig) = Op(T7V/?) + Op(T71/?) = Op(T7'/?).
Since Il is the estimator of Ilyy in subsample [T*+1,T], Iy — Ty = Op(T~/?), so
Iy — IIa = (I, — [yp) — ([a — 7)) — 18 = Op(T7V?) — 112 = Op(ryt).
Thus, (I, —I1x) >> (II, —I1,), implying that N >> N3, and so N >> N7, for j = 2,3, 4.

We show that Ny > 0 at the limit, for small €* and large enough C*. For large enough C*,

TQA/ Z WiW, // *) :OP(l)
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= 13N = (T = T)[0p(T ) =TT Qa/(T* = T%)] [Op(T~/?) — 117)]
> C'rp IR [Q1 — Qu(D)] rr TR + 0p(1) .

By Assumption 3, Qa = Q1 — Ql(ﬁ)] is pd uniformly in 7, and so Nf > 0 at the limit
if rTH% # 0. When 7 = ror, TTH% = II; — Iy # 0 by construction. Similarly, when
rip = o(ryr), |rellg] — |TL] # 0.

o (ii) Asymptotic distribution of 2SLS. Let W1 be the (1™ x ¢) matrix with rows W}, ..., W

T*?
W, the ((T —T*) x ¢) matrix with rows Wi - Wr and,

— —0
W ( Wi O ) and W — ( Wi Org ) ,
O(T—T*)Xq Wy Or—14)xg W3

W and W' are the diagonal partition at 7 and 7, respectively. Then Y 2 vee (}71, ce ?T)
can be written as Y = Wll,., with Il = vec (ﬂl, ﬂg) Let y 4 vec (Y15 y7),

Y 2L vec (Y1,...,Yy) and U 4L Vec (uq,...,ur), the 2SLS estimator is:

0="Y) " Wy=F"Y) WY+ (Y -V +U)=6+(¥7V)V'T,
with U = (Y — Y)6° + U. It follows that:
T80 — 0°) = (P27 Y'Y e T2V (B.11)
In step 1, we show that:

rETEY'Y =2 [y Q) Ty + My Qo Tap | + 0p(1) (B.12)
re T2 Y'U = rg [ Wy WY + Iy U4 ] 4 0p(1), (B.13)

where (U¥(-), U%(-)) are defined as (¥?(-), ¥4 (-)), with u; replacing v;, and ¥’ s I (10),
j € {u,v}, i =1,2. Equations (B.12) and (B.13) imply that 7"/2r7!( — 6°) has the same
asymptotic distribution as if ° was known. In step 2, we derive this asymptotic distribution.
- Step 1. Consider r271 Y'Y = r2 11, (T"'W'W) I,

By Theorem 1(i) and Assumption 3,

T* A~ T*
« T - T 1
Qa=T"" Y WiW/ =— P > Wi/ | = Op(r7/T)Op(1) = 0p(1),
T*+1 T*+1

and so, T 'WW —T'W'W = op(1). (B.14)
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Next, we analyze I, or equivalently II; for i = 1,2. Under Assumptions 1(i), (ii), and the
FCLT in Wooldridge and White (1988), Theorem 2.11,
1/2 -

(T =17 3" Wy | = Op(r/T*)Op(1) = op(1),

t=T++1

T —T*

U\ = T

so WY(0) — Uy = —U% = op(1) and U(r) — Wy = U4 = op(1). From these and (B.14),

TV(M, — ) = QM) WY (D) = Q7 WY 4 op(1) = Op(1)
TV, — Tyy) = O3 () WL(D) + O () QaTV1IS
= Q7 Y + Op(1)Op(r2T HOp(TY?r7Y) = Op(1).

It follows that II; = ITy7 4 op(1), Iy = Ilyy + 0p(1), and with (B.14) these imply:
A A T* A T A
2T Y'Y =2 (T—l V4Tt Y Yf) + op(1) = r2 [ Q Il + I Qollor] + op(1).
=1 t=T"+1
The latter proves (B.12). Next, we show (B.13). By the above, defining Uy, U;(-), U, as
W W(.), U4 but with u, replacing u,, for i = 1,2,
re T Y2Y'0 = rpdl 0y (D) + rellyUg () = rolli Uy (D) + rplll, Us (D). (B.15)

First, |T-Y2WU — T-V2W U|| = ||T-Y/? ZtT:T+1 W], Also, note that:

U + ’Uteo — VVt,(ﬂl — HlT)GO, t < T*
at = U + ()/t - )A/t)eo =\ us + ’Uteo — M/t/(ﬂQ — HlT)QO, T* +1<t<T"
U + Uteg — VVt/(fIQ — H2T)00, t>T"

Yo guv(), UY are defined as before, but with u; replaced by (u; + v0°), for i = 1,2,

o def ~1/2 T ~
\IJA — T / Zt:f*-l—l Wtut, and SO,

Up =W — Qa [TV3(ITy — ip)] 0° = Op(reT~Y?) — Op(r3T 1) Op(T" 1) = 0p(1).

Hence U;(0) — W; = —W, = op(1). Next, we analyze U;. Wy = U — Q;(1°) [TV2(II; —
7)) 60° + op(1) = U — WY 0 + op(1) = U 4 0p(1). Similarly, Uy = U + 0p(1). From
this, U;(0) = U; + op(1), and from (B.15), roT~Y2Y'U = rp [IT}, 0% + 115, WY + op(1),
which coincides with (B.13). In step 2, we derive the limits in (B.13).
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- Step 2. When 717 = 79 = 7. Then (B.13) becomes:

T2 210 — 6°) = [T Q11T + I15Q115) iy [T WY + ITy WY + 0p(1)
= (Ay + Ag) ey [ 0% + T W8] + op(1). (B.16)

By Assumption 1(ii), U} L Wk asymptotically, so by the CLT, rp[II}, 0% + I, VY] —
N(0, By + By). Thus, T%2r7 (6 — 0°) % N(0, (Ay + As) " (By + By)(A; + Ay)7L).

- When r;7 = o(r;7) and wlog i = 1, we have rp = rip, ro(Ilip, Hop) — (I, Ogx1),

and TV2r71(0 — 6°) = [IT,Q1 11, I, 0% + op(1) % A7'N(0, By) = N(0, A7 ' By A Y).

o (ii) Asymptotzc distribution of GMM.

R Yy’ R 'y -1 Yy’ /
eGMM:{ WV } VoW e v )

T T T
YW ., WYl Y/W w'U
= T1/2 <‘9GMM 0 ) == |:’I“TTSu 1’I“T T Sul T1/2
with rpT7Y'W = rpllp Qi (0°) 4 rollhyp Qo (V°) + reT—H20Y 4 TTT_I/Q’I“T‘IIEJ +op(1)

= TTH/lTQI -+ TTH/QTQQ + OP(l) since ‘Il;) = OP(]_)

def

Also, as before, T=V2W'U = W% + W% % A0, S,). Let p; == QI1; (i 2)
- When T = Tor = T'1. Then TTT71Y/W = HllQl + H/QQQ + OP( ) MQ + Op(l)
Hence, using the optimal GMM estimator with S, 2 AVar(T2g;(6°)) =

TV (HGMM 0°) LN (0, [(p1 4 p2)' Sy (b + p2)] ™) = N (0, Vanrn) -

- When rip = o(rar) = rp, rellar — 0, rpT-YY'W B b and TV2%r5 Oaan — 6°)
N0, 1y St m] ™)
e (ii) Asymptotic distribution of MOD. For the weighting matrix (5¢)~!, we have:

R o VI B BV y

Ovion = [Y’W(s;j)*W'Y} YW (S9) "I (Y60 + U),
where W' = [W'/T*, W4/(T — T*)] and W1, W defined in part (ii). So,

v A v -1 v A v
TV lyrop — 0°] = [TTY’W(S;;)*W’Y] YW (S W' UVT (B.17)

Now, YW [Zt YW T S L YWN(T — T*)], and from the results for s,

T+ T+
- T
T E Y, W/ /T = TTT* 7! E YW/ | = reIl:Q1 /0 + op(1).
t=1 t=1
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Similarly, 7 ZtT:T*+1 YW/ /(T — T*) = rpIlypQs/ (1 — v°) 4 0p(1), hence:
reY'W = [ rpIlQy /10, rellyr Qs /(1 — 1°) | + 0p(1) == K + 0p(1). (B.18)

In addition, W'UVT = [T Zthl w W T, \/TZ?:T*+1 wW//(T — T*)], and using argu-
ments similar to the proof for 2SLS, the difference between the quantities above evaluated
at the true break T* and at the estimated break T* is 0p(1), so:

o
VTS W) T = T(T*) WY+ op(1) 5 N (0,S41/(0°)?)
t=1

VT N wW/ /(T =T%) 5 N (0,8,2/(1 = 1)?).

t=T++1

Because T Zthl uWT* L TS s L uW (T — T*) asymptotically by Assumption
1(ii), WUVT 2 N (0,5%) , where S@ = diag[Su.1/(1°)2, Sua/(1—1°)2]. From (B.17)-(B.18),
T2 Orop — 0°] is asymptotically normally distributed with mean 0 and asymptotic
variance-covariance matrix Vy,;op with

Varop = [K(82) ') K (82) 758 KK (58 KT % Vagop  and 53 % S0

u

- When 77 = rip = rop, K = [ 1y/v°, 115/(1 = °) ] + o(1), and
Vmop = [Mll(su,l)ilﬂl + Mlz(suz)*l,uﬂ -

- When rr = rip = o(ror), K = [ py/V°, O1x4 |, and Viyyop = [u’l(Suvl)*lul]_l. [ |

e Proof of Theorem 2: Efficiency of estimated structural parameters

We prove the following equivalent results.

e Case (a): under Assumptions 1 to 4, and when 17 = ror,

(i) Varop < Vases: Voo < Ve, and Vigop = Vanar iff Sy 11T = S, 5Q-115;

(i) In general, Voarar >< Vasrs. However, under Assumptions 5 and 6, Vg > Vasrs.

e Case (b): under Assumptions 1 to 4, when r;r = o(r;7),

(1) Vmop < Vasrs; Viop < Vauw, with equality only for S;;LQZ»H? = S;;Qjﬂ‘; (note that
if p; = 0, then the inequality is strict);

(i) In general, Voarar >< Vasrs. However, under Assumptions 5 and 6, Vg > Vasrs.
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e Proof of case (a). Recall that:

Vasrs = [ITI1Q1 11 + H§Q2H2]_1[H35u,1n1 + 1155, o 1] [TT Q1 1T, + HIQQQHQ]_I
Venn = [(I5Q1 + I15Q2) (Su1 + Su,2)71(Q1H1 + Q2H2)]71
Virop = [Q1(Su1) ' Q11T + TT5Q5(S,u2) ' QaTlo) .

(i) By construction, Oriop is the optimal version of éQSLS, so Virop < Vagrs. In step 1,

we show that VAZIO p = Vg 1\14 - In step 2, we establish the conditions under which Vi,op =

Ve
- Step 1. Let S, = Su1 + Su2, it = vec (p1, p2) (with p; = Q;I1;), and L = SWSJ&.

Viion — Vs = HiSa it + Sy a0 — (1 + p2)'Sy (n + o)
,<S;% O) ,<Su1 Su1>
= u S N 7 BT
o S} Sl g

R e O I B D 0
—S;t Sup— Sy e ’

because S, 1 — St = S Sy — SualSp1 = Sy Su2S, 1 = S 1L,
and S;% — St =51S, — SMQ]S;% = 5715%15;% =S Lt

A B
It is well known that for any symmetric matrix such that M = ( 5 ) , with A, C' square

symmetric matrices of the same dimension, and C' pd, M is psd (positive semi-definite)

_S—l S—IL—I
Sy 'L = 5,5 — (Su1+Su2) "t is pd by construction, and its Schur’s complement is S, 'L —
S-1LS,S;t = O. Thus, M is psd, and f(u) > 0. This implies that V6,5 > Vi, and

therefore Virop < Vaurar.

: ~ _ S,'L =St
iff (A — BC™'B) (the Schur complement of C) is psd. Let M = :

- Step 2. Since f(p) > 0 and convex, we solve the first-order conditions to find its minimum:
Of(p) Of(p)

O Oz
Then Vany = Vuop < Lpt = ph < S,1Q101 = S, 5Q01l.

(i) In general, Voarar >< Vasrs, but under Assumptions 5,6, we show Vo > Vasrs.

=28, (Lpy — pp)  and

=25, (L™ g — ) = 0.

Under Assumption 6, S, ; = ®,Q;, with ®,, scalar, and so
Visrs = @u(I1 Q111 + IT5Qo11,)
Vearn = @u(I1Q1 + 115Q2) (Q1 + Q2)~ (Q111; + Qo11).
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Under Assumption 5, Q; = 1°Q and Q, = (1 — %)Q, and
Vasps/®u = VIGQIL + (1 — v") QI
Varrnr/@u = [T +Tl5(1 = 1)]Q[T” + (1 — )]
= Vearn/®u = Vasps/®u = —1°(1=v")(IL = L)' Q(IL, —1I) < 0,

and we get Vavm > Vosrs.

e Proof of Case (b): wlog let ro = ri7 = o(rar).

Vasrs = (I QiTT) ™ (IS, T1) (I Q4 1T ) ™
Vanar = Q1 (Suy + Su2) 'QuIL] !
Virop = [IQ1(Su1) ' Q1] 7!
(i) By construction, Oriop is the optimal version of éQSLS, s0 Virop < Vasrsg. Also, VﬂzloD —
Ve = Q1S 1 — (Sua + Suz) Q1L > 0, thus Vaisop < Ve
(ii) In general, Vo >< Vasrg, but under Assumption 6, S, ; = ®,Q;, and then,
Visrs/®u = THQWT  and Vi, /@ = (IQ1)(Q1 + Q2) 1 (Qu11).
Thus, Vasrs — Varrar = PulliQi[Q7 — (Q1 + Qo) Q111 > 0, and Vasrs < Vaarar. B

e Proof of Theorem 3: Test for a break in the reduced form
def

o (i) Let Il = IL;/ri7 (i = 1,2), (1 1)’. Then,
. TV2(I (v) — Ty) .
R T Moec(v) = R, ( T1/2(H; o T) = RV (Myee(v) — 19 @ Ty).
Under Hy, T'V?(ITy(v) — II7) = Q:(v)¥¥(r). Under Assumptions 3 and 5, Q;(v) = vQ.

Under Assumptions 1(ii) and 4, by the FCLT, ¥¥(v) = S$/2Bq(y). Hence,
TV (v) — Ty) = [Q'SV2IB,(v) /v =& GY2 B,(v) /v with Grr == Q'5,Q .

Using similar arguments, we also have:

T2 (I (v) — TIr) = [Q ' SY)[B,(1) — B,()] /(1 — v) = G2 [B,(1) — B,(»)]/(1 — v).
Let T %L diag(v, 1 — v). Then, the above imply:

T2 (Myee(v) — 2@ TIy) = (Y @ GYR)BB,(v) (B.19)
B
with BB,(v) <L ( av) )
By(1) — By(v)
and  AVar[T'2(Myee(v) =12 @ 1)) = (T @GR (Y@ I,) (T G

= (YY) (GHEGHE) = T @ Gre (B.20)



Using (B.19)-(B.20) and letting r, gL (1, —1)", such that R} = r, ® I,, we obtain:

Waldf¥ (v) =T I'(v) R}, [Rq Grr R 'Ry I (v)

= BB (Y 0 G0 1) [ 0 )T 0GR, 0 1)] (1)@ L)X @ GY2) BB, )
= BB (v) [(T7'rg) @ GYZ) (Y 1g) @ Grr] () T™1) © Gf7] BB,(v)

= BB, (1) [(Y ') @ G [(r X ~1rg) ™ @ Gkl (YY) @ GifR) BB,(v)

q
= BBZI(V) {[Tﬁqu(r;Tfqu)flr(;Tfl] ® Iq} BB,(v)

1 1-v)? —u(l-
We can show that T~ re(ri T ry) /T = ——— < (1-v) V(1 -v) >, and so:

! I/(l—l/) —I/(l—lj) V2
BB;(V) {[Tiqu(TéTiqu)ilTéTJ] ® [q} BB,(v) = HB‘I(VV)(;_V%(UH '

e (ii) We now show that for IIn = limyp_, ro (Il /717 — o /ro7), we have:

Iy Q2 Q' (v) [Gre()] Q3 (v) Q2lla v <0°
Sup — Wald -
vere | I Q1 Q7 0) Cre ()] 1QT (V) QiTls v > 00

with Grr(v) = Q7 (1)Su1(1)Q1" + Q3 () Su2Q3 ' (v).

If v < 1Y, we use similar arguments to part (i), to show that, uniformly in v (u. v),

I (v) — Ty = Q7 (w)T~ V208 (v) = Op(T~Y/?)

Iy (v) — oy = Q' ()T 2W8(v) + Q; ' () QuIlR

= Op(T7?)+ Q3 (v) [Q2(v) — Q] I = Op(T?) + {I — Q3 ' ()Q2 1T
It follows that u. v,
Rollyec(N) = I (v) — o (v) = (I (v) — i) — (Ta(v) — Har) + 115
= Op(T™?) +{I = I+ Q3 (1)Q2} TIT = Op(T™V?) + Q5 (1)Q2) TIT.
Hence, with Grp(v) = Q7' ()01 (1QT! + Q7' (18,2Q7 (v) B Crr(v),
WaldgF (v) = Op(T"?r3") + TTR QuQy (V)T rr (1) Q5 (1) Q2112

where the latter term dominates because it is Op(T7r;?). This implies that u. v < 19,

WaldiF (v) = Op(TV?r7") + THE QaQ7 ' ()G (v) Q7 () Q2115
Similarly, it can be shown that u. v > /%,

Waldi" (v) = Op(TY2r7Y) + THE QiQ7 () Crp (V)QT (V) Qi TI.
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Under Assumption 5, Q1(v) = vQ, Sy1(v) = vS,, Q1 = °Q, thus u. v,
1— 92 THA’ g1 a2 , v< /0

Wald%F(V) = OP(Tl/QT‘El) + ( el , T @5, Q7] -
O S rny Q st Ul vt

Since the probability limit of T_lr% Wald%F v) is continuous in v, with the supremum attained

(
at 9, by the continuous mapping theorem, 7" = arg [supl,e A, Wald®F (V)] 2 0. However, if

Assumption 5 is violated, " 5 19 is not always satisfied. As a counterexample, let Qa(v*) =
VeQ: (v*) for some v* < 10 and 0 < e < 1. Then r7I12 5 TIa, and:

T~ 42 WaldZF (v*) B A QaleSy1 (1V°) + Sy2(v*)] 7 1Qally = TTIAQ2[(e — 1)Sy1 (%) + S,] L QallA
T2 Waldi (1°) B T\ Q25,1 QollA.

Since S, 1 (v*) is symmetric, pd, e < 1 and S, is symmetric, pd, [(e—1)S, 1(v*)+S,] ' > S, 1,
so phim([WaldEF (v*) — Wald* (1°)] > 0, meaning that 7" 4 0. R

For Theorems 4-6, (); and S, ;, S,, Sy, are as before, but with A\ replacing 1°.

e Proof of Theorem 4: Asymptotic properties of 5\, évec, OAGMMJ,@C, and éMOD,Uec
- We prove the following statements (with explicit formulas for the asymptotic variances):
(i) Under Assumptions 1(ii), 2 to 4, 7, ||A = A% = Op(T1).

(ii) Under Assumptions 1(ii), 2 to 4, 7,

~

(1> @ Ar] (Buee — 0%,.) 5 N'(0, Vasis),
DinDl Dinng
Dy, Dy Dy Dy
Di = A;I(HGIMZ{)> M{ - ([7Q2Q_17 _QlQ_l)a Mé = (Ia QlQ_1> _QZQ_1)> a; = 6271 ® Iqa

with Vagrg = , where Ay = diag(T21,,, TY?r;'1,), A; = 1% Q;11°,

Suﬂ‘ CL;SM,,Z' O O O CLIQSuU,l
Qi = S{w’iai CL;SMZ‘CLZ‘ O 5 Q12 - O O CL/ISUJCLQ
O O QQ(SU — Sv,i)ai S;U,Qal aiSU,gag O

(iii) Under Assumptions 1(ii), 2 to 4, 7, with rp = o(v/T),

[[2 ® AT] <éGMM,vec - 9260) i) N(O, VGMM,Uec)a
where Ve vee = diag(Vara1, Vamn2), and Vo, = [Ha/ Qi (Sy:) 1 QI ] -
(iv) Under Assumptions 1(ii), 2 to 4, 7, with ry = o(V/T),

é vec ~ 00
diag(I, @ Ag, TY2L,,,) [ Mop. ] 4 N0, [['S7'T)Y),  where:

0
HMOD,U@C - Hq_)ec/TT
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Su @) S{wJ O Q114 @) @
@) Su o s @) 11 O
8 = S 072 S 18172 s ['=— Q2 ] = — diag(Fl, Fg),
uwv,1 v,1 O O P2 ® Ql
O Suv,Z O SU,Z [pz ® QQ
I
with I'; = diag(Q11%, QI1%) and I'; = | ™ @0 . Thus,
IPQ ® QZ

[[2 & AT] <éMOD,vec - 9260) i) N(O, VMOD,vec)a

where VMOD,vec = (V6A14M,vec + H/Eil/QMjgil/QfH)il,
with &= diag(SU,l — SquS;%S{w,l s SU72 — Suv,ggzzés;m), Mj =1- j(j/j)ilj/a

J =Ty, and H = [diag (Suw1 Sit, Sz Sia)] T

def def

— Yt — Yt‘go(t) =

- To facilitate the proof, let 6°(¢) A1t < T+ 091[t > T°] and w,

ug + (Y, — }%)90(15) = uy + v 0°(t) + W/ (Ilp — ﬂ), and IIp def II/ry. Also, for simplicity,
let Ay(r) 2L 712 S y2 - Ay (r) 2L Ay (1) — Ay (r), &(r) == pp 725V, and
& (r) det &(1) =& (r). Let A; 4L rQn (as in Theorem 1(ii) but with IT; = IIy = II, and

10 replaced by A°), and &(A\%) === ¢;. With this notation, TV2r2 (6; — 69) = A71(A) &(N).

2

- We start by proving the following preliminary Lemma.

Lemma 1. Under Assumptions 1(ii), 4, and 7, (i) Ay(r) = O,(1), uniformly in r (u.r.
thereafter); (ii) & (r) = O,(1) w.r.

Proof of Lemma 1:
e (i) Note that A;(r) = 7272 S Y2 — (p001) Qi (r) (rrID), and Qy(r) 2 Qy(r), wr.,

respectively 7711 2 II. So, A1 (r) = Op(1) x Op(1) x Op(1) = Op(1) u.r.
e (ii) If we set II;; = Ilpp = Il in the Proof of Theorem 1(i), TV3(II — 1) = Op(1),
independently of r. Also, by the FCLT in Wooldridge and White (1988), Theorem 2.11,

e (r) = T2 ST, (4, 4+ 0,60(8)) = Op(1) wr. Tt follows that:

&(r) = rellpW(r) + op(1) = UL (r) = Qs (r) [TY*(11 = TIy)] + 0p(1)
= Op(l) + Op(l) X Op(l) + OP(l) = Op(l) u.r.

OJ
- We now return to the proof of the main results. Assume wlog 7' < T'. The proof for 7' > T
is similar and omitted for simplicity.
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o (i) — Y, for t € {1,..., T}, 6, =L 4, —
def .

and d; = u; — u;. We show consistency by contradiction, in two steps. By definition,
S a2 < S W2, hence 230 Wdy + S, d? < 0. In step 1, we show that:

Ytég otherwise,

ZCF Op(Tr;?) and Zutdt Op(TV?r7h, (B.21)
implying that 32, d? >> 230 | %,d, and so® plim(r2/T) Y, d? < 0. Because we have
(r2/)T) Y1, d2 > 0, it follows that plim(r2/T) Y1, d? = 0. In step 2, if A 5 A\, then with
positive probability, (r2/T) Y1, d? > 0, contradicting plim(r2/T) 31, d? = 0, s0 A % A°.
- Step 1. Note that:

~ A ~ ~ )/t(e?_el)7 tST
o — Vb — g+ Vi), t<T | T
dy = 1y — Uy = . R L= )@(0(1)—«92), T+1<t<TO°.
Vil —y V), t>T |
)/t(eg_QZ)? t>T0

It follows that, for £5 = &(A\°) — & (N),
reT~ Z Updy = TY2(00 — 01)&(N) + TV2(0° — 05)&n + T2(09 — 0,)5(N).

4L 90 _ 99 and

By Lemma 1, & () = Op(1),&(\) = Op(1),a = Op(1). Also, recall 63
AA def 1211()\) Al; then

T2 [0, — 607 ) &) = 0p(1)
T2 0y — 09 = AJT(N) &(N) + AL (V) ANTY 110
Op(1) + Op(TY?r7Y) = Op(TV?r7h).

e
2 (

Hence, TV2r7 0, — 09 = Op(1) — TV2r710% = Op(TH?*r7). Adding these together,
S Uydy = OP(TI/2 r7'). Next, note that

T

T T
> d = Zd2+2d2 > od;
t=1

T+1 t=TO+1
= (09 — 0,)? Tr;2 A (A) + (69 — 02) Tri2An + (05 — 02)> Tri2Ay(N)
= Op(l)Op(TT;Q) + Op(l)OP(TT;Z) + Op(l)OP(TT;Q) = OP(TT;Q).

BIf rp = T2, then 23:1 d? and 2 Ele urdy are of the same order, and our argument does not apply.
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- Step 2. If A & A% then there exists n € (0,1), such that with positive probability e,
TO — T = [TX°] — [TA] > T. Then, with probability €, for some C' > 0,

T 70
i T AP =ed T Y Ay = (09 — 02)°[A (A7) — Ay (n)] > C + op(1)
t=1 t=T0—-Tn+1

e (i) Rate of convergence of . From above, any break point estimator 7' = [T'A] is such
that 70 — T' < €T, for some chosen € > 0. Assume that for chosen C' > 0, TO — T' > Cr2.
Define SSR;, SSRy; and SSR3 as the 2SLS sum of squared residuals in the structural
equation, obtained with break points 7', T° and (7', T°) respectively. As for Theorem 1(i),
it is sufficient to show that if CT% <TO T < €T for some large but fixed C' and small
but fixed ¢, then plim(SSR; — SSRy) > 0, which cannot hold by definition. It follows that
T° — T < Cr2, and by symmetry of the argument, if 7 > T° T — T° < Cr2., establishing
the desired convergence rate for the break fraction estimator.

We now show that plim(SSR; — SSR,) > 0. Denote by (0y,6,) the 2SLS estimators based
on sample partition (1,T, T), (él,éA,gg) the ones based on (1,T, T° T), and (51,52) the
ones based on (1,7° T, all using the full-sample first stage predictor Y;. Then by similar

arguments as for the proof of Theorem 1(i), we have:

SSRl - SSR3 = (52 - éA)Q TT;QAA - (52 - éA)Q TT;Q AAAQ_I(;\)AA et N1 — NQ

A def

SSRy — SSRs = (61 — 00)% Tr2An — (01 — 0p)? Try? ANATY(V\)Ax == N3 — N,

Since Ax contains 70 — T' < [T terms, Ax = Op(e), while Ay(A) = Op(1) by Lemma 1.
It follows that for small €, Ny >> N,. Because 52 is estimating 09 with observations only
in the second regime, [T° + 1,77, it can be shown that 6 — 69 = Op(T~2r;); on the other
hand, 04 is estimating 6 in subsample [T + 1,T°], so for large enough C, it can be shown
that 0 — 60 = Op(T~2ry), hence by — Oa = 6% + op(1), and so:

Ny = [(63)* + 0p(1)] x Op(1) = Op(L).

For Nj, it can be shown that 6, — 09 = Op(T~Y2r7), and since Ox — 09 = Op(T~ry),
01 — 0r = Op(T~/2ry), and therefore N3 = Op(T~'r2) x Op(1) = op(1). Similarly to
Ny >> Ny, it can be shown that N3 >> N,. It follows that Ny >> Nj, for j = 2,3,4 for
chosen small € and large C, and so SSR; — SSRs = N; + op(1), hence

plim Tr32(SSRy — SSRy) = (6)? plim Ax = (6%)? plim inf [I1'E(W,W/)I1] > 0,
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because inf, E(W;W/) is pd by Assumption 3. Thus, plim(SSR; — SSRy) > 0
o (ii) Asymptotic distribution of 25LS. Recall that TV A, — 6] = ATH(A)E(N). First
analyze AT(\) knowing that 7' — T° = Op(r2). Since

TO
Ay=T7"r3> V7 = T)/T(r2/(T ZYQ Op(r2T™1),
T+1 T+1

Ai(N) = A; (X)) —Ap = A;(\0)+o0p(1). Similarly, Ay(A) = Ay(A\0)+o0p(1), and A;(A\0) B A;,
with Az = H/QiH, Qz = QZ()\O), SO:

TV 0y — 69) = ATEL(A) + op(1) = ATHTUL(A) + 0p(1)

T2 0y — 03] = ASE(N) + 0p(1) = AZHT'W,(N) + 0p(1).
It remains to analyze the asymptotic distributions of ¥;()). Note that Wy () = W1 (A\0)— 4.
It can be shown that U, = Op(ryT~'/?) because it contains only observations in the
subsample {T'+ 1,..., 7}, with 7' — T° = Op(r2). Thus, U;(A) = U;(\°) + op(1). As
before, let W;(\?) <L \TIZ, P (\0) 2L

of Theorem 1(ii), and j = u, v, uv. Thus:

07 where A replaces ¥ in the notation for the Proof

Wy =0 — Qu\)Q (W] + W36 = Wy + (1 — Q)W) — (QQ ") W56 + op(1)
SL MW oo + 0p(1)  with Wy e = vee (WY, TU6°, W309) .

def

Recall that M
because of the full-sample first-stage. They would not show up in the absence of breaks
From the CLT, Uy . — N(0,€). Thus, ¥; -5 N(o MIQuM), so TV 6, — 69 5

N (0, D1 D) . Using similar arguments, \112( ) & N (0, My My). Hence, T ?r, [92 -
03] = 4G N (0, D9 Ds) . Moreover, because of the full-sample first-stage, asymptotically,
TV2p21(0,—09] £ TY2r=1,—69)], and ACov {T%»T 10, — 69, V21116, —90]} = DD,
e (ii) Asymptotic dzstmbutwn of GMM.

We first prove that the asymptotic distribution of subsample GMM estimators is the same

(I,Q-Q7 ', —Q:Q7"). Note that extra terms involving v; show up here

whether we use 7° or 1" to split the sample. Heuristically, it holds because we showed
that 7 — T° = Op(r2) uniformly in a r2-neighborhood. As in Theorem 1(ii), we denote
the partition of W at 7" and T° (rather than T*,T*) as W and W'. We also partition
Y = vec (Y1,Y,) = vec (?(1),?(2)) at T, respectively T, y = vec (7,,7,) = vec (72,79),
U = vec (U,,U,) = vec (U?,Ug), and V = vec (V,V3) = vec (V‘f,V;’). Then for the

weighting matrices Sl

’LLZ’

HGMM,i = (YZW wyi W?) Y W S WZyZ
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Note that T-Y2Wy, = T~/ Zthol Wiy + op(1) = T’l/QW(l)l@(f + op(1), by similar argu-
ments as for the previous proof. Also, ryT WY, = TTT_IW?/?? + op(1). Tt follows
that éGMM,l is asymptotically equivalent to the estimator using 7" instead of T, and sim-
ilarly for s wm,2. The asymptotic distributions for the subsample GMM estimators using
T instead of T follow from standard arguments. In particular, T ’17“T??IW? 5 1rQ,,
TV, T} % N0, Sus), T3 Benins — 60 5 N0, (IVQ;S; 1 Qi) ™) since S5 % S,
(1 =1,2); and, they are asymptotically independent by Assumption 1(ii).
def

A é vec € 00 X €
e (iii) Asymptotic distribution of MOD. Let f — Mob, , 5% def | Tvee cand Ay 2 {
MOD 1_[/ rr

diag(l; @ Ar, TYV21,). Since 000D vee is based on the same quantities as Ogarazvee and Gyee,
we can show using similar arguments that the asymptotic distribution of /u\T(B —32) is as if
the break point 7Y was known. For the rest of the proof, assume wlog that the break point

is known. Then, the estimator B is based on the following moment conditions?:

gT,l(evec) ﬂ T_IWO (y - 7061}66)
o o ——0" [0 0
AR T L (vi-wim)|
gT,Q —0 /—0 —0
W <Y2 - WQH)

where we use the notations introduced in part (ii). Then, for some g = (¢, I1I'Y,

o

Hence, the estimation of 5% is written as a usual GMM problem. Therefore, from Assump-

Y’ o
o W

w0
o W

— —0

5 W (y =Y Opec)

gr(B) =T~ ¢ _ =T
W (v — W)

Y
Y

tions 1(ii), 6, 7 and usual GMM asymptotics,

Ar(B = B9) %5 N(0,[I'S™T]7Y), (B.22)
diir(5°) o]l ¥ o
with I = plim ———2(T"2A-") = -7 ! plim . T12A!
plim[(T-TW" Y°) (I, ® diag(L,,, rr1,,))] o) _
= — = —diag(l;),
O plim(T—'W" W)
—0 / —0
W o\ U TV2W U g |S11 S
S = AVar { T /? 7, — AVar v def |O11 O12 7
o Wi |V T-V2W v Sty San

29Note that for simplicity we scale the subsample moment conditions by 7! instead of 71 and (T—T)*l.

The scaling is irrelevant since it cancels out in the formula for the GMM estimator.
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where S;; and S5 are (¢ x ¢), and I'; and I'y are derived below. Note that the results

above are obtained because under Assumption 3, we have:

[y = —diag]| plim(T”W(ly?(l) diag(1,,, rrlp,)) plim(T%W(Q)l?g diag(1,,, rrlp,)) |

— — diag| plim(T TV WOIT, plim (7T, Wy)Il | = — diag(Q:TD),
0 li T_IWO/WO 7
['y = —plim (Tfll/[/O W)= — p 1'm ( _01/_01) _ | ® Q1 ‘
plim(T~1W, W,) L, ® Qs
S11 S
By Assumptions 1(ii), 4 and 6, S = bR ith:
S12 S22

Sip = AVar(Tfl/QWO/U) = diag(Su,)
812 = ACov(T VA7V U, -2 V)

T° 70 T T
ACov <T_1/2 Z Wtut, Z VVtUt> s ACov <T_1/2 Z VVtut, Z W{Ut>]
1 1

T04+1 T041

= diag

- diag(suv,i)>
_ —0'—0
T-V2W,V,

8272 = AVar(Tfl/QWO/V) = AVar —0'—0
T=12W, V,

— diag[AVar T~V 2W?/V?]

T° T
AVar <T—1/2 > tht> , AVar <T‘” > VVt”t)] = diag(S,,:)-
1

T04+1

= diag

Given the above results, we use as in Antoine and Renault (2014) the partitioned inverse
formula in Abadir and Magnus (2005), pp. 106, to get the desired result. In particular, for
any A, B, C, D matrices, with nonsingular A,D, E =D — CA™'B,and ' = A — BD~'C,

F1 _F-'BD!
D 'CF-! D'y D-lCFr-'BD"!|

A '+ A 'BE-lcA! —A1BE!
—E-lcA! E-1

A B
C D

We use the first formula for S, and the second for (I"S™'T") 1. Let £ = Sy —327181_,1181,2.

Sl — —31,1 S12 B _ 3{% + Sf% S12 5_18{,2 Sfll —Sill S0 E71
Sy S22 £ S, St &l ’
pgoip | PSS 812 €7 S SN TS 81, €7
I —IhE7 S, Sl T,E1T,

61



Then, according to the second formula above, Viop vec = F —1. with:
F =TS + 811 8128 1 81,8111 — (D181t S12 E7'T9)(TE ' T) ' THE 81, ST
Since J = £y and H = S}, S; {1, it follows that:
F=TSTi+ HE(I - J(T'T) ' TNEPH =TS Ty + HE P MEH.

Note that from the above, TS, 1Tt = Vi3 s uee SO that whenever HEPMZEH =0,

the extra moment conditions gr(Ilr) are asymptotically redundant. W

e Proof of Theorem 5: Efficiency of estimated structural parameters
e (i) Showing that 0 MOD vec 18 more efficient than éG MM, vec 1S equivalent to showing that the
additional moment conditions gr»(-) are asymptotically non-redundant for the estimation of

0. (even though their derivative with respect to 6, is zero). The necessary and sufficient

condition for non-redundancy follows from the proof of Theorem 4 and we can show that it

is the same as Antoine and Renault’s (2014) inequality on pp. 11:
(MZEVPHY MZEY?H +# 0 and is positive semidefinite (psd). (B.23)

With G = M ;E7?H, (B.23) can be written as G'G # 0 and psd. G'G is psd by construction
(see Abadir and Magnus (2005), pp. 214, Exercise 8), and we only need to show G # 0.

H = S}, T = diag(Suw,) diag(S, ;) [— diag(Q,11)]
= — diag[Suws Syt Qill] == — diag[I],
€ = diag(Su; — Suwi Syt SL,,) == diag[&)],
121 = — diag[€,/°T]

E;
E,

& o0 |[ea] [5;1/2@] ar
0 & |L,2Q| &Y

J'J=EE +E[E, (JJ) "= (EE, +EE)},

[ —E,(E.E, + E,E,)'E, —E,(EE, + E\E,)'E]
_EQ(E/IEl + EéEg)ilE/l I— EQ(EllEl + EIQEg)flEIQ

J =1, = —

Y

Mg=1-J(TT)'T =

It is important to note that 52-_1 exists, because &; is the Schur complement of S, ; in the
Sui S,

Ui

variance matrix S; = [ ] . Since S,; and S; are pd by construction, so is &;.

Suv,i v,1
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Therefore, &; is invertible, and so &, Y2 and E; exist. It follows that:

_g _ _MJE_I/QH g gll g12 W]th

G
Gn = [[—E(E\E; + EEy)” ,1] E Ty, G =—E\(E\E, + E}E)'E) & T,
G = [I—Eo(BiE; + EjEy) 'EY) &, °Ty,  Go = —Eo(E\E; + E4Ey) 'E; &/°Ty

To show G # 0, we now show that G5 # 0. Since &; and @); are pd, so is E; = 5;1/2621-. It
follows that E(E,E; + E,E;)'E) is pd and invertible, and

ng:O<:>52_1/2I‘2:O<:>I‘2:O<:>Suv72 S;é QQH:0<:>H:0,

since Syp2 is a ¢ X ¢ pd covariance matrix by Assumptions 3 and 4. The latter cannot
hold because it contradicts Assumption 7(ii). Hence, G2 # 0, so G # 0, and the additional
moment conditions for éMo Dwec are not redundant.

Note that under Assumptions 4 and 5, G'G is of rank 1, thus rank deficient. This implies
that some linear combinations of éMOD,Uec will be asymptotically equivalent to the same
linear combinations of Gy Mwec, but in general they will be asymptotically more efficient.
o (ii) Let ¢ = @, + 2(1 — AP, 0 + (1 — AP, (0Y)2. Under Assumptions 5 and 6, we
can show that M[;Q;M; = \°cQ. Since A; = Q11 = \II'QIl =— 4L \A. it follows that
Visrs1 = A’A/e. On the other hand, Vi, = A?A/®,, so we can compare the two by

comparing ¢ with ®@,,.

c—®, = (1 -2, + 0,0))
s 09(29,,/0,+6)) <0.

(1—X0,0%(29,,/®, +6) <0

This implies that ‘/2TS'1LS,1 Z VGTJ\1/[M,17 SO ‘/QSLS,l S VGMM,I' The pI‘OOf for ‘/QSLS72 S VGMM’Q
is similar.
- From the calculations above, we have:

o, 1-X
‘/QSLSl — FA b= - AO + )\0 6?(2q)uv + e?é’v)

def = _ .
2<I>12w5 , we have Virop pee = F 1, with

On the other hand, with

F =TS + HEPMETV*H = diag(N @' A) + GG

APt 1—A%§ (1 = \%s o
Y (R UL DR,
A1 = \%6 (1 =A@, + A\
VMOD,Uec = ]:_1 dd -7— ® A_
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Below we calculate F

det F = A1 — A\O){[®; ' + (1 — \V)d][@; " 4+ %] — A%(1 — \V)6?}
= A1 = AN (D, 2+ ®,10) = \°(1 = AND, (1 + D,0)

=1 _ P2 (1 = XO)[D, ! + A\ A1 =\
COA(1 = \O) (1 + @,0) A(1 =296 M@, + (1= \0)4]
I 30 [@ut + A06] )
(14 D,9) § S [@L + (1= 04|

It follows that VMOD,I = CMODAfl, ‘/QSLS = CAil, and

D, (1+A°0,8) &, P,(1+\d,0) @,

MOD = TN ) A0 N(1 4 D) N0
B P, <I>u(1 + )\Ofbué —1- <I>u5) B P, 1=\ @ié
X0 AO(1 4+ @,0) X0 DU TR
P, 1—=)\0
Cc = F + TQ?(2®UU + 0271®’L})7
1=/ . 025
C— CpmoD — T (01(2(1)1“1 +¢91q)v) + 1+ (I)u(;) Z 0
)
6% (2® POp,) > ——L
& 02Dy, +0,0,) > 110,
0 0 ‘I’Z(S _
Hence, 01 (Qq)uy—f-@l q)v) Z — 1 T CI) 5 = ‘/QSLS,l Z VMOD,I' The pI‘OOf fOI‘ VMOD,2 and ‘/QSLS,Q
is similar and therefore omitted. Iu

e Proof of Theorem 6: Test for a break in the main equation

e (i) Let 6° be the common value of (6Y) under the null hypothesis, for i = 1,2. The
asymptotic distribution of the Wald test is determined by that of TV/2r;1(6;(\) — 6°) =
A7Y(A)&(N). From Lemma 1, the proof of Theorem 4 and Assumption 5, A;(A) 2 M\A.
Also, under Assumptions 1(ii), 4 and 5, by the FCLT,

&1(0) = op(1) + WP (A) = I[Q:(N)Q;  ()]W(1)6°
=T (N) — VX U(1)6° + 0p(1) = T [PV2B,(N) — A(PF)°B;(1)],  (B.24)
where P*/2B:()) and PY/2B,()) are two (dependent) ¢ x 1 Brownian motions generated by

partial sums of (W;v,6°), respectively [W;(u;+ v;6°)], and P = S, + (Suy + 52,)0° + S, (6°)?,
P* = 5,(0°2% Let G* = A7 [I'P*II| A~ = A?[I P, G = A2 [II'PII], because A is a
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scalar here. Also, GY2GY? = G, and (G*)?(G*)/? = G*, with (G*)Y/? = A~ II'(P*)Y/?
and G2 = A~ II'P'Y/2. Then, from (B.24),

TV 6 ) - o) = 6PN e )
L B,(1) — By(\ s
Tl/QTTl(QQ()\) o 90) = G1/2 Q( i — )\Q( ) . (G )1/28q(1)
RyT 215 0uee(A) = T2rpt (01(A) = 6°) = TVrp (B2(N) — 6°)
172B4(A) 12B4(1) = By(A) 12 By(A) — ABy(1)
DA U 1— A ¢ NV

Recall that BB,(\) === B,(A) — AB,(1). Since H;(A) & MITPIL for Ay = A, Ay =1 — A, it
follows that G;(\) % A;'G. Hence, R,G(MNR), = R, diag(A\"'G, (1-\)"'G)R, =
Thus,

ML)

BB,(\) [GY* GG BB, (\) BB, (\)BBi())
VDN DYDY

TONR,[Ry Gi(\) R, RH(N)

because G'/? (G)~'G/? is a projection matrix of rank p = py = 1, thus selecting only the first
element of BB, () (for an extensive proof, see Hall, Han and Boldea (2012, Supplemental
Appendix, pp. 23-27).

e (ii) We show that under H, : 6% = 69 — 65 = 0, Assumptions 1(ii), 3, 2 and 7,

{ AT As(N) GTL(A) As(WAT) (02)2 A< AO

raWaldr(\) 2
{ ATT AL () GTEHO) AL(VATTE (0%)2 A > )0,

where G(\) = G1(\) + Ga(N), G;(\) = A7 TV H (M ATT(N) (6= 1,2).

If A < A9 uniformly in A (u. A),

1)) — 69 = AL (NT2rp & (N) = Op(T~Pry)

= AT Y207 €o(0) + AT (N AAOX

= Op(T™"?rp) + A7 (N) [A2(N) — Ag] 0% = Op(T~?rp) + {1 — A7 (V) A2}6R.

p(T2rp) + [A5H(N) Ag] 6. We have
L G,

It follows that w. A, Rpfuec(N) = 01(N) — a()) =

O
RyG(NR), = G1(A) + G2(\) = Op(r2), and rA[G1(\) + G2(N)] 5 G1(N) + Ga(N)
Hence, u. A < \°,

L2 Waldr(\) 5 {AsA51(N) GTHA) A1 (V) Ao} (02)2.
Similarly, it can be shown that u. A > A7,
L2 Waldr(\) 5 {A1ATT (V) GH) ATV AL} (02)2.
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Under Assumption 5, 4;(\) = MA, 4,471 = A7 HN)A; = A1\, where Ay = A, Ay = 1 — ),

and \§ =1 — )Y, and

Gi(\) = ATT OV H (N ATT ) = A72AT2H () = A 2A (NI (Sy + (Suw + S0,)09 + S, (09)H)I0)

= A2\ T (Sy + (Suw + 5L, )00 + 5,(09)2)IT) 2L

H A H
DYDY
G7H(\) = A2X\(1 = \) \Hy + (1 — NH L

A2\ hy)
1
M1 —N)

G(\) = G1(\) + Go(\) = A2 ( > = A7?[AHy + (1 — M)H;]

Note that because Sy, + (Suy +S%,)09 + Sy (09)2 = AVar(uz +v:0?), it is pd, so H; = II'[Sy, + (Suv +
51,069 4+ 5, (69)2]11 > 0 since II # 0. It follows that:

A/(1=A
(=) st A<

1—-X)/\
(A0)27AH§ +(1)_/A)H1 A > 0.

T2 Waldp(\) 5 A2

It can be shown that Waldp()\) is asymptotically maximized at A°, thus, by continuous mapping
theorem, A\W % A0, However, if Assumption 5 doesn’t hold, and for some \* < A0, Qa(\) =
e Q1(N), for a scalar e, then it can be shown that for 0 < e < 1, Waldr(\*) > Waldy(A\°) +op(1),
so AW 72> PRN |

e Proof of Theorem 7: Wald test for common break

e (i) Let 6° be the common value of 69 under the null hypothesis. By arguments similar to the Proof
of Theorem 1(ii), the distribution of the subsample 2SLS estimators éf is as if the break point »/°
was known, so T/ 277 (05 — 6] LN N(0,GS), where G; def (AS)~1 BE (A)~1, A¢ def, Y Q; (v0)11¢,

and Bf et %S, ;(VO)I¢. Moreover, 6 L 05 asymptotically, because they are constructed with

asymptotically independent subsamples in the first-stage. Also, by construction, TZ-QTEZ-C 2 Bf, and
r2Ge B Ge.

- When rp = rip = rop,

1=

TI/QT:Fl Rp é5ec N(0,G¢)  with T;Q RpG'CR; LN G{+ G5 =G"

and Wald§ = [TYV?r3'R, 05, [rp? RyGRL ™ [TV 20 R, 06

vec vec

%

- When 77 = o(rj7), and wlog ¢ =1,

T'2ryt Ry bl = [riw/ror) TVPrif (0 — 6°) — T2yt (05— 6°)
= op(1) = T2z} (65— 60°) % N(0,G5)
rof RpGR, 5 GS
Waldg: = [T"2r5; Ry O5el] [raf RpGRY™H [T 2157 Ry O] 5 X3
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and the test reduces to a J-test on the weaker subsample. This is not the case if p; # 0 (see the
Supplemental Appendix for a detailed proof).
e (ii) - We now show that when rip = rop = rp, T_lr% Walds, EN HOA/(GC)_1 HOA. We have:

A ~

T'2rp(0 —0)) = ATH(D) &(9) = Op(1) and  T'?rp(05—63) = A1 (D) &(P) = Op(1)
It follows that T2 R0, = T/ ?r ' (05 — 05 = Op(1) + TV?r;16%.
Also, 772 R,G°R), 5 G¢, hence T~ 'r2 Walds 5 0% (G°)~16%.
- We now show that when r;7 = o(r;7),
rie Waldg 5 0X(G5) ™! 0% .
We assume wlog that rp = rip << rop. Then:

T vy Ry bsee = [rir/rar) THrig (05 — 09) — TV 2ryp (05 — 63) + TV 2ry7 68

= op(1) — Op(1) + T?r; 6%

ryfGe B diaglO, GS] & ryf RyGERY 5 GS, so T3, Walds 5 6% (G5)~" 6%
e Proof of Theorem 8: Efficiency of reduced form estimators
Varop, is explicitly defined as in the Theorem with G,G, = H;E;l/QMJ* 5;1/27-[*)_1 and,
E* - diag(Su,l - Suy 1Sv %Suv 1, Su,2 S,U QS %Suv 2) Mj* 1 - j*(j j*) j* s

IPQ @ Ql

Jo = &Iy, H=diag(S,,15, 1, SlwaSys) Ta, Ty = diag(Qi11% Qo11%) , Ty =
’ Ip2 ® QQ.

e (i) The distribution of I1 is derived by usual OLS asymptotics; for IIgaras with the optimal
weighting matrix (5¢)~' & diag(S, 1, S,2), we have:
T (Mgan — 1) = (T W) (3T W W) H (T W) (80) 72T
T2 % N (0, diag(Sui, Suz)), T W B vee (Q1,Qa),
= TY2(Maarr — T0) 5 N(0, (@15, 1 Q1 + @25, 3Q2)7Y).

The distribution of I ;0p follows from Theorem 4, by similar arguments as for Viop vec-

o (ii) Vorsn = (Q1+Q2) 1 (Sp1+5u2)(Q14+Q2) !t and Voyun = (lev_j@l +Q25;%Q2)71
Using similar arguments as for Theorem 2(ii), but replacing p; with Q;a, for any ¢ x 1 vector
a, it follows that Vaarvrn < Vorsm, with equality iff S;%Qla = 5';21@2@ for all a. Similarly

to Theorem 5(i), Vayopr < Ve, because:

Ho = 8128512 = —vec (S, MQZ) —vec (Ty),
€, = diag(Sus — 8%y Sy L Suns) == diag(E,,"%).
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So &, Iy play the role of &;, T'; in the proof of Theorem 5(i), and Vijopn < Vemarn because
S, 3 @2 = 0, which cannot hold.

e (iii) From the above, it follows that even under Assumptions 5-6, Viyjopn < Venan.

Vivopn = Vaumn = 52;1/2I‘2* =0T =09

uv,2

However, from (ii), Voymmn = Vorsn iff S;llQla = S;%an for all vectors a. Under As-
sumption 5, S;}Qi = (MNS,)'NQ = S, 'Q, so Vaurmrn = Vorsn. Also, under Assumption
6, Svﬂ' = q)in, SO S;:Qz = (I)UIq. [ R

C Results of the Monte-Carlo experiments
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Benchmark case:

Estimator | Bias Std dev  RMSE || Length Coverage
MOD 0.0023 0.0297  0.0298 || 0.1123  0.9340
2SLS 0.0023 0.0293  0.0294 || 0.1480 0.9860
GMM 0.0005 0.0342  0.0342 || 0.1305 0.9416
Decrease the R? from 0.2 to 0.05:

Estimator | Bias Std dev. RMSE || Length Coverage
MOD 0.0031 0.0341 0.0342 || 0.1294 0.9342
2SLS 0.0030 0.0337  0.0338 || 0.1694 0.9852
GMM 0.0008 0.0416  0.0416 || 0.1590 0.9432
Decrease the R? from 0.2 to 0.01:

Estimator | Bias Std dev. RMSE || Length Coverage
MOD 0.0035 0.0366  0.0367 || 0.1389  0.9356
2SLS 0.0034 0.0361  0.0363 || 0.1815 0.9850
GMM 0.0010 0.0464  0.0464 | 0.1775 0.9422
Increase sample size from 400 to 800:

Estimator | Bias Std dev  RMSE || Length Coverage
MOD 0.0010 0.0193  0.0193 || 0.0755 0.9478
2SLS 0.0010 0.0192  0.0192 || 0.0988 0.9882
GMM 0.0003 0.0219  0.0219 || 0.0862 0.9496
Increase the number of IV from 3 to 6:

Estimator | Bias Std dev  RMSE || Length Coverage
MOD 0.0025 0.0209  0.0211 || 0.0778 0.9322
2SLS 0.0026  0.0205  0.0206 || 0.1032  0.9830
GMM 0.0014 0.0240  0.0241 || 0.0917 0.9416
Increase endogeneity from 0.5 to 0.75:

Estimator | Bias Std dev  RMSE || Length Coverage
MOD 0.0034 0.0296  0.0298 || 0.1122 0.9332
2SLS 0.0033 0.0293  0.0294 || 0.1478 0.9840
GMM 0.0008 0.0342  0.0342 || 0.1305 0.9400

Table 1: Experiment 1 with known break location in the homoskedastic case.

69



Benchmark case:

Estimator | Bias Std dev  RMSE || Length Coverage

MOD 0.0015 0.0245  0.0246 || 0.0876  0.9342
2SLS 0.0015 0.0284  0.0284 || 0.1282 0.9894
GMM 0.0004 0.0305  0.0305 || 0.1106  0.9490

Decrease the R? from 0.2 to 0.05:
Estimator | Bias Std dev. RMSE || Length Coverage

MOD 0.0019 0.0285  0.0286 || 0.1018 0.9344
2SLS 0.0020  0.0325  0.0326 || 0.1459 0.9884
GMM 0.0006 0.0372  0.0372 | 0.1350  0.9508

Decrease the R? from 0.2 to 0.01:
Estimator | Bias Std dev. RMSE || Length Coverage

MOD 0.0022  0.0309  0.0309 || 0.1097 0.9358
2SLS 0.0023  0.0349  0.0350 || 0.1561 0.9874
GMM 0.0007 0.0414  0.0414 || 0.1508  0.9522

Increase sample size from 400 to 800:

Estimator | Bias Std dev.  RMSE || Length Coverage

MOD 0.0006 0.0171  0.0171 |} 0.0621 0.9340
2SLS 0.0007  0.0203  0.0203 | 0.0895  0.9880
GMM -0.0001 0.0201  0.0201 || 0.0746  0.9502

Increase the number of IV from 3 to 6:

Estimator | Bias Std dev  RMSE || Length Coverage

MOD 0.0014 0.0165  0.0166 | 0.0578  0.9198
2SLS 0.0015 0.0211  0.0211 | 0.0899 0.9874
GMM 0.0005 0.0196  0.0196 || 0.0728  0.9408

Increase endogeneity from 0.5 to 0.75:

Estimator | Bias Std dev  RMSE || Length Coverage

MOD 0.0023  0.0245  0.0247 | 0.0875 0.9314
2SLS 0.0023  0.0284  0.0285 || 0.1281 0.9884
GMM 0.0006 0.0306  0.0306 || 0.1106  0.9498

Table 2: Experiment 1 with known break location in the Garch case.
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Break size is equal to 1

~

Monte-Carlo average of estimated break location is T = 161.35

Estimator | Bias Std dev  RMSE || Length Coverage
MOD 0.0030  0.0290  0.0292 || 0.1124 0.9380
2SLS 0.0029  0.0287  0.0288 || 0.3827  1.0000
GMM -0.0003 0.0338  0.0338 || 0.1307  0.9490

Break size is equal to 0.5

Monte-Carlo average of estimated break location is T =162.2

Estimator | Bias Std dev. RMSE || Length Coverage
MOD 0.0083 0.0461  0.0468 || 0.1771  0.9310
2SLS 0.0080  0.0454  0.0460 || 0.2865 0.9970
GMM -0.0000 0.0508  0.0508 || 0.1964 0.9470

Break size is equal to 0.2

~

Monte-Carlo average of estimated break location is T = 172.4

Estimator | Bias Std dev.  RMSE || Length Coverage
MOD 0.0229 0.0686  0.0723 || 0.2619  0.9190
2SLS 0.0222 0.0675  0.0710 || 0.2430 0.9095
GMM 0.0008 0.0729  0.0729 || 0.2815  0.9475

Table 3: Experiment 1 with unknown location of the break in the benchmark homoskedastic
case. The location of the break is estimated for three different break sizes (1, 0.5 and 0.2),

and the true break location is 7™ = 160.
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Break size is equal to 1

~

Monte-Carlo average of estimated break location is T = 161.35

Estimator | Bias Std dev  RMSE || Length Coverage
MOD 0.0021 0.0245  0.0246 || 0.0876  0.9346
2SLS 0.0021 0.0284  0.0285 || 0.4288 0.9978
GMM 0.0004 0.0305  0.0305 || 0.1106  0.9490

Break size is equal to 0.5

Monte-Carlo average of estimated break location is T =162.2

Estimator | Bias Std dev  RMSE || Length Coverage
MOD 0.0057 0.0382  0.0386 || 0.1362 0.9290
2SLS 0.0062 0.0454  0.0458 || 0.3189  0.9846
GMM 0.0009 0.0459  0.0459 || 0.1660 0.9482

Break size is equal to 0.2

~

Monte-Carlo average of estimated break location is T = 172.4

Estimator | Bias Std dev  RMSE || Length Coverage
MOD 0.0158 0.0557  0.0579 || 0.1976  0.9058
2SLS 0.0176 0.0696  0.0717 || 0.2687  0.8996
GMM 0.0018 0.0658  0.0658 || 0.2375  0.9458

Table 4: Experiment 1 with unknown location of the break in the benchmark Garch case.
The location of the break is estimated for three different break sizes (1, 0.5 and 0.2), and
the true break location is 7™ = 160.
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Figure 1: Experiment 2 for model (i) in the homoskedastic case (top) and in the Garch
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case (bottom). Left panel is RMSE and right panel is Standard deviation for MOD (red x),
2SLS (blue o), and GMM (green +).
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Figure 2: Experiment 2 for model (iii) in the homoskedastic case (top) and in the Garch
case (bottom). Left panel is RMSE and right panel is Standard deviation for MOD (red x),
2SLS (blue o), and GMM (green +).
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Rejection probabilities (at the true value fy = 0):
MOD-K MOD-K-adj K MOD-AR MOD-AR-adj AR

(represented on the graph) (not represented on the graph)
0.0982 0.0568 0.0518 0.0858 0.0496 0.0240
Probability of detecting the break 0.9994
Probability of weak identification® (ignoring the break info) 1
Probability of weak identification* (with break info) 0.5056
* We use Staiger and Stock’s rule-of-thumb to test weak identification.

Figure 3: Experiment 3 for model (i) in the homoskedastic case, no change in R?*: R? =
R = 0.1. We represent the power curves when testing Hy : 8 = By at a = 5% using
(a) MOD-K (red o) where we either use MOD or K depending on the tests for break and
weakness; (b) MOD-adj (black +) after adjusting the size of the test using a Bonferroni-type

correction, a,q = /2 = 0.025; (c¢) K (blue x) where we use Kleibergen’s procedure ignoring
the break.
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Rejection probabilities (at the true value fy = 0):
MOD-K MOD-K-adj K MOD-AR MOD-AR-adj AR

(represented on the graph) (not represented on the graph)
0.0810 0.0530 0.0502 0.0808 0.0530 0.0244
Probability of detecting the break 1
Probability of weak identification* (ignoring the break info) | 0.9858
Probability of weak identification* (with break info) 0.0038
* We use Staiger and Stock’s rule-of-thumb to test weak identification.

Figure 4: Experiment 3 for model (ii) in the homoskedastic case, R? larger over the second
subsample: R? = 0.1 and R3 = 0.22. We represent the power curves when testing Hy : § =
Bo at a = 5% using (a) MOD-K (red o) where we either use MOD or K depending on the
tests for break and weakness; (b) MOD-adj (black +) is MOD-K after adjusting the size of
the test using a Bonferroni-type correction, a,qg = «/2 = 0.025; (¢) K (blue x) where we

use Kleibergen’s procedure ignoring the break.
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Rejection probabilities (at the true value fy = 0):
MOD-K MOD-K-adj K MOD-AR MOD-AR-adj AR

(represented on the graph) (not represented on the graph)
0.0798 0.0476 0.0506 0.0620 0.0372 0.0238
Probability of detecting the break 0.2298
Probability of weak identification* (ignoring the break info) | 0.7764
Probability of weak identification* (with break info) 0.7510
* We use Staiger and Stock’s rule-of-thumb to test weak identification.

Figure 5: Experiment 3 for model (iii) in the homoskedastic case, R? smaller over the
second subsample: R? = 0.1 and R3 = 0.025. We represent the power curves when testing
Hy: B = Py at @ = 5% using (a) MOD-K (red o) where we either use MOD or K depending
on the tests for break and weakness; (b) MOD-adj (black +) is MOD-K after adjusting the
size of the test using a Bonferroni-type correction, a,qg = a/2 = 0.025; (c¢) K (blue x) where

we use Kleibergen’s procedure ignoring the break.
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