
 

EFFICIENT INFERENCE WITH TIME-VARYING 
IDENTIFICATION STRENGTH 

    

 

By 

 

Bertille Antoine and Otilia Boldea 

 

June 18, 2014 

 

 

RESEARCH INSTITUTE FOR ECONOMETRICS 

DISCUSSION PAPER NO. 5-14 

 

_____ 

DEPARTMENT OF ECONOMICS 
BAR-ILAN UNIVERSITY 

RAMAT-GAN 5290002, ISRAEL 
 

http://econ.biu.ac.il/en/node/2473 

http://econ.biu.ac.il/en/node/2473


Efficient Inference with Time-Varying

Identification Strength∗

Bertille Antoine Otilia Boldea

Simon Fraser University Tilburg University

Bertille Antoine@sfu.ca O.Boldea@uvt.nl

June 18, 2014

Abstract

In the last two decades, there has been a lot of empirical evidence suggesting that

many macroeconometric and financial models (e.g. for inflation, interest rates, or ex-

change rates) are subject to both parameter instability and identification problems. In

this paper, we address both issues in a unified framework, and provide a comprehen-

sive treatment of the link between them. Changes in identification strength provide an

additional source of information that is used to improve estimation. More generally,

we show that detecting and locating changes in instrument strength is essential for

efficient asymptotic inference, and we provide a step-by-step guide for practitioners.

In our simulation studies, our global inference procedures show very good size and

power properties.
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1 Introduction

Early work on identification through heteroskedasticity by Rigobon (2003) and Klein and

Vella (2010), among others, shows that if a p-vector of parameters θ0 is not identified by q

full-sample moment conditions (q < p), but the variance of (structural) errors changes over

the sample at a known break point, such information can be used to construct 2q valid and

non-redundant moment conditions.1 θ0 can then be identified whenever 2q ≥ p.

In this paper, we focus on using these extra moment conditions for efficient estimation of

the parameters of interest - rather than identification. We show that not only changes in the

variance of structural errors, but, more generally, changes in the derivative of the moment

conditions originating from changes in the parameters of the reduced form, changes in

the identification strength, or in some other second moment matrices of the data provide

additional information that can be used to construct more efficient estimators than the

full-sample GMM estimator which ignores such changes.

As an illustration, consider the following example with one dependent variable, one endoge-

nous regressor, and one instrument. The structural equation is stable over time, while the

parameter of the reduced form changes once at time T ∗. The identification is strong over

the first subsample (for t ≤ T ∗), and semi-strong2 over the second one (for t > T ∗) at some

rate r̃T (with r̃T = o(
√
T )). Conditional on knowing the break point T ∗, the (same) struc-

tural parameter can be estimated at rate
√
T when using data from the first subsample,

but only at rate
√
T/r̃T when using data from the second subsample. We propose a GMM-

type estimator that combines information from both subsamples to deliver a more efficient

estimator of the structural parameter that converges at the fast rate
√
T . A similar result

holds when the weakest subsample is actually weak (with r̃T =
√
T ), as well as when the

break is unknown and estimated. When part of the sample is weakly identified, the advan-

tage is even more striking: consistent estimation of the structural parameter is now possible

through GMM-type inference procedures while (conservative) confidence regions obtained

by weak-identification robust procedures are not necessary anymore. In our simulations, we

document how the identification may appear weak over the whole sample when the break

is ignored, even when part of the sample is strongly identified.

A lot of empirical evidence suggests that many econometric and financial models are subject

to parameter instability and identification issues. In section 2, we discuss such evidence for

1q conditions can be constructed over each of the (two) subsamples where the variance is constant.
2See additional discussions about identification strength in Appendix A.1.
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our main example, the New Keynesian Phillips Curve (NKPC), along with other examples.

We show how the frameworks and methods developed in this paper can improve the efficiency

of estimated parameters of interest, and shorten their confidence intervals. This is especially

relevant for confidence sets of NKPC parameters which are often wide and uninformative

when using weak-instrument robust methods over the full sample.

In practice, the existence and location of the break point may be unknown. We thus

approach the unknown change in identification strength as a break point estimation problem.

In doing so, our framework extends not only to changes in identification strength, but also

to stable identification strength with parameter change in the reduced form. In addition, we

explicitly account for the potential weakness of the instruments. Specifically, instruments

may not be strong, and their identification strength may even change over the sample: for

example, the identification may be weak over part of the sample.

Our main contributions are threefold. First, we extend the standard linear regression model

with endogenous regressors to allow parameters and identification strength to change over

time. Second, we develop statistical methods to detect parameter instability and changes in

the identification strength. Third, we introduce two new efficient estimation procedures for

the main parameters of the model. As a by-product, one of our estimation procedure also

delivers more efficient estimators of the reduced form parameters than the usual full-sample

OLS, in the presence of breaks in the second moments of the data. To our knowledge, this

paper is the first to explicitly allow the identification strength to change over time, and to

show how to efficiently use such information.

The following three cases are discussed successively:

1. the case where the structural equation remains stable while the reduced form may

change (both parameter change without change in identification strength, and changes

in identification strength are allowed);

2. the case where the reduced form equation remains stable while the equation of interest

may change3;

3. the case where both equations may change at the same time.

In each case, we propose methods to detect and estimate the location of the break. Our

methods also incorporate weaker and changing identification strength.

3Illustrations of such cases are given in section 2, Example 4, and in Appendix A.2.
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Our paper relates to the weak-identification literature: see the surveys by Stock, Wright,

and Yogo (2002), Dufour (2003), and Andrews and Stock (2005), and the survey of the

applied literature by Hansen, Hausman, and Newey (2008). Typically, we consider a lin-

ear framework where the exact identification strength is unknown and allowed to change

over time. We rely on Staiger and Stock’s (1997) popular rule-of-thumb to decide which

identification framework (weak vs ”not weak”) is appropriate.

Our methods also cover and extend existing methods in the break point literature. In a

linear time series regression model, Bai and Perron (1998) are first to jointly estimate break

points and regression parameters by minimizing the sum of squared residuals. Hall, Han

and Boldea (2012) extend this framework to allow for endogenous regressors. We extend

Hall, Han and Boldea’s (2012) results to allow for weaker identification patterns that may

change over time; we also study GMM-type estimators rather than 2SLS.

Finally, our paper relates to the recent work of Caner (2011) and Magnusson and Mavroeidis

(2014). Caner (2011) proposes structural change tests that are robust to weak identification.

Magnusson and Mavroeidis (2014) use reduced form breaks to improve testing, but without

allowing changes in identification strength over the sample. We use similar breaks, but,

in contrast with Magnusson and Mavroeidis, our methods identify the subsamples over

which the instruments are not entirely weak, and use this additional information to shorten

confidence intervals on the parameters of interest. In other words, we provide an additional

source of information to improve estimation. Our simulations reveal that there is valuable

(and reliable) information contained in the break that can be used to improve estimation:

for instance, if the break is ignored, the identification may appear weak over the whole

sample, even when a subsample is strongly identified.

In our Monte-Carlo study, we consider the linear IV regression model with one break in the

reduced form. When estimating the slope parameter, we show that our proposed estimator

always displays the smallest RMSE irrespective of the location of the break, especially under

conditional heteroskedasticity. In addition, we compare the power curves associated with

two types of inference: one, our proposed inference procedure that relies on the detection

(and estimation) of the break and weak identification; two, a weak-identification robust

inference procedure that ignores the break. Overall, the power properties of our inference

procedure are better, while a (simple) Bonferroni-type adjustment is sufficient to control

the size across all our simulation designs.

The paper is organized as follows. Section 2 presents four motivating examples that illus-

trate the relevance of our framework. Section 3 provides asymptotic results for efficient
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estimation and inference in the presence of a break in the reduced form equations, or in the

main equation. Section 4 presents our general framework and inference procedure, along

with a comprehensive step-by-step guide for practitioners. In section 5 we introduce more

general characterizations of the identification strength that allow each instrument and di-

rection in the parameter space to display their own identification pattern. We also discuss

efficient estimation of the reduced form in the presence of breaks. Section 6 illustrates our

theoretical results through simulation studies. Section 7 concludes. The appendix con-

tains additional discussions about identification and parameter instability in the linear IV

model, simplified proofs of the theoretical results, as well as the graphs and tables associated

with the simulation studies. Complete proofs of the theoretical results can be found in the

supplemental appendix.

2 Motivating examples

In the last two decades, there has been a lot of empirical evidence suggesting that many

macroeconometric and financial models (e.g. for inflation, aggregate demand, interest rates,

or exchange rates) are subject to parameter instability and identification issues. We present

four examples that emphasize the relevance of the framework and inference methods pro-

posed in this paper.

• Example 1: Break in reduced form parameters

The New Keynesian Phillips Curve (NKPC) has recently received a lot of attention. The

NKPC is a dynamic relationship resulting from a limited (or full-information) equilibrium

model between inflation and driving variables such as output gap, unemployment, or real

marginal costs (see, among others, Taylor (1980), Rotemberg (1982), Calvo (1983), and

Clarida, Gali and Gertler (1999)). The typical stylized NKPC equation writes

πt = θfπ
e
t+1 + θbπt−1 + θyyt + ut t = 1, · · · , T

where πt denotes the inflation, π
e
t+1 the expected inflation at time t+1 based on information

available up to time t, and yt the chosen driving variable (e.g. output gap, unemployment, or

real marginal costs). Following Clarida, Gali and Gertler (1999), the parameters (θf , θb, θy)

are assumed to be stable over the sample period (functions of some underlying structural

parameters). Since πe
t+1 is based on information up to time t, and since yt may be correlated
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with contemporaneous noise such as demand shocks at time t, both are endogenous. In-

struments commonly used to correct for endogeneity are lags of inflation, inflation forecasts,

output gap, the average labor share, short-term interest rates and unemployment rates.4

Several NKPC studies for US find weak instruments over the period 1960-2007 (see Mavroei-

dis (2005), Dufour, Khalaf and Kichian (2006), Nason and Smith (2008), Kleibergen and

Mavroeidis (2009) and Magnusson and Mavroeidis (2014)). Others find that the instruments

are strong for the sample 1969-2005 (see Zhang, Osborn and Kim (2008, 2009)). This sug-

gests that instrument strength changes over the sample. A change in identification strength

over the sample period is also supported by the results in Kleibergen and Mavroeidis (2009,

Table 4): the weak-identification robust confidence sets for the same NKPC parameters

are considerably larger for the period 1960-1983 than for the period 1984-2007, suggesting

that identification is stronger in the latter period. Such changes in instrument strength

could come from a break in a policy function that generates a break in the reduced form

for endogenous regressors, but no break in the deep structural parameters. The methods

developed in this paper allow us to detect and locate not only reduced form parameter

breaks, but also breaks in instrument strength. These breaks are then used to improve

efficiency of structural parameter estimates and shorten their confidence intervals. This is

especially relevant for the confidence sets of NKPC parameters which are often wide and

uninformative when using weak-instrument robust methods over the full sample.

In contrast to Magnusson and Mavroeidis (2014), who focus on constructing confidence sets

that control size regardless of the strength of instruments, and that may therefore be wide,

our methods identify the subsamples over which the instruments are not entirely weak, and

use those subsamples to shorten confidence intervals on the parameters of interest. In other

words, and as suggested by Kleibergen and Mavroeidis (2009), we provide an additional

source of information - namely the change in identification strength - to improve estimation:

”A natural response to the current finding that the NKPC is not well identified [...] is to

look for more information”.

• Example 2: Break in structural error variance with no parameter breaks

Asset returns models provide another example where our methods prove useful. Suppose

we are interested in modeling a financial return on an asset in the home country, rht , as a

4More recently, researchers have identified additional useful instruments such as the long-short interest

rate spread (Gali and Gertler (1999), Gali, Gertler, and Lopez-Salido (2001)), lags of model dependent and

forcing variables from various competing specifications (Dufour, Khalaf, and Kichian (2010)), and factors

extracted from Stock and Watson’s (2005) 132 variables (Kapetanios and Marcellino (2010)).
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function of the same asset returns in foreign countries, rft , and some lags,

rht = θa + θ′br
f
t +

p∑

i=1

θc,ir
h
t−i +

q∑

i=1

θ′d,ir
f
t−i + ǫt.

For example, in Rigobon (2003), rht are sovereign bond yields in Argentina, rft are sovereign

bond yields in the intimately connected foreign bond markets of Mexico, Brazil and US,

and ǫt are structural shocks to the bond market. As Rigobon (2003) forcefully argues, the

structural shock volatility increases substantially in financial crises. Such a break in variance

can then be used for identification purposes. In this paper, we show that even if the model

is identified, a break in the variance of ǫt provides an additional (non-redundant) moment

condition for the estimation of (θa, θb, θc, θd), and thus delivers more efficient estimators of

these parameters.5 More generally, our method produces more efficient estimates of any

asset return model when there is a break in the volatility of structural shocks, such as in a

crisis.

• Example 3: Break in instrument variance with no parameter break

Most macroeconomic variables such as output, consumption, inflation, unemployment, to

mention a few, have experienced a decline in volatility in the mid-1980s. This decline is

referred to as the Great Moderation (see among others Stock and Watson (2002), Bernanke

(2004) and Gali and Gambetti (2008)), and is usually modeled as a break in variance. Since

lags of these macroeconomic variables are often used as instruments for estimation of various

structural parameters, the Great Moderation effect amounts to a change in instrument

variance, which can be used to construct additional moment conditions, and improve the

efficiency of estimated structural parameters.

• Example 4: Break in parameters of the equation of interest

Suppose that we want to model interest rate via the Taylor rule. Orphanides (2001) writes

down the simplest Taylor rule as6

ft = θ1 + θ2πt + θ3yt + ǫt,

with ft the federal funds real interest rate, πt the inflation, and yt the output gap. The

parameters θ2 and θ3 reflect the weight monetary policy puts on targeting inflation and

5Our result holds whether rft is endogenous or not: see section 5.2 for the exogenous case.
6Formulations with a backward looking component are also allowed (see Clarida, Gali and Gertler (1998)).
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output, respectively. In this model, both πt and yt are endogenous, and their lags along

with some other macroeconomic variables are usually employed to estimate (θ1, θ2, θ3).

Since θ2 and θ3 are policy parameters, they are not immune to Lucas critique, and there

is considerable evidence of a break in monetary policy in early 1980s; see e.g. Stock and

Watson (2002) and Ahmed, Kevin, and Wilson (2004). The seminal paper of Stock and

Watson (2002) convincingly shows that since the 1980s, monetary policy is more committed

to fighting inflation, which translates in a bigger θ2.
7,8 This provides an example where the

equation of interest has parameter breaks, while the reduced forms of πt and yt may not

experience breaks over the sample period of interest. Our methods show how to improve

efficiency of parameter estimates in the presence of such a break in the equation of interest.

3 Two simplified frameworks of interest

Our framework extends the linear regression model with endogenous variables to allow

structural parameters and identification strength to change over time. In this section, we

start with two simplified frameworks: first, the case where the parameters of interest remain

stable; second, the case where the reduced form remains stable. In each case, we introduce a

new GMM-type estimator that uses additional valid information from the model. We study

its asymptotic properties, including its efficiency with respect to existing estimators.

3.1 Unstable identification strength

Our first framework of interest extends the standard linear IV regression model to allow in-

stability in the reduced form over time, while the structural parameters remain stable. More

specifically, the (stable) structural equation with p1 exogenous variables Zt, p2 endogenous

variables Yt, and p = p1 + p2 parameters of interest θ0, writes

yt = Z ′
tθ

0
z + Y ′

t θ
0
y + ut = X ′

tθ
0 + ut , with X ′

t = [Z ′
t Y

′
t ] and θ0′ = [θ0′z θ0′y ]. (3.1)

7This break is at the core of the debate ”Good policy or good luck?”, which aims at explaining the

reasons for the Great Moderation. Many studies, including Stock and Watson’s (2002) and Ahmed, Kevin,

and Wilson’s (2004), found that the Great Moderation was partly due to improved policy - that is, breaks

in the Taylor rule parameters - and partly due to luck - or a break downward in the variance of shocks ǫt.
8It can be argued that θ2 is smaller again in recent years, because the federal funds rate was kept low

and constant during the crisis, and was not used to fight inflation.
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For a given vector of q valid instruments Wt with q ≥ p2 that includes the exogenous

regressors Zt, the unstable reduced form now writes

Y ′
t =

{
W ′

t
Π1

r1T
+ v′t , t ≤ T ∗

W ′

t
Π2

r2T
+ v′t , t > T ∗

, T ∗ = [Tν0] , (3.2)

with T ∗ the break point, ν0 the break fraction, riT = 1, or riT → ∞, and Πi a full-rank

matrix of size (q, p2) for i = 1, 2. For now, we consider the simplest framework where

all the instruments have the same (unknown) identification strength over each subsample.

More general identification patterns allowing the strength to vary across instruments and

directions of the parameter space are discussed in section 5.1.

The above break point T ∗ may capture two kinds of changes in the associated parameters:

• the identification strength remains stable over the whole sample, that is9 r1T ∝ r2T

and Π1 6= Π2;

• the identification strength changes, that is r1T = o(r2T ), or r2T = o(r1T ).

We are especially interested in cases where the identification strength changes. We show

that, in such a case, only the magnitude of the change matters for identifying the true break

point (that is the change from rate riT to rate rjT ), and not the change in the value of

the reduced form parameters Πi. To our knowledge, this is the first paper that explicitly

accounts for changes in identification strength. Such changes are important because they can

lead to improved inference about the structural parameters with more efficient estimators

converging at faster rates than full-sample estimators.

As an illustration, consider the following example where the structural equation is stable

over time, while the reduced form has one break. In the first subsample, the identification is

strong, while in the second subsample the identification is semi-strong10 at some (unknown)

rate r̃T (with r̃T = o(
√
T )). Conditional on knowing the break point T ∗, the (same) struc-

tural parameters can be estimated at rate
√
T when using data from the first subsample, but

only at rate
√
T/r̃T when using data from the second subsample.11 Our GMM-type estima-

tor combines information from both subsamples to deliver more efficient estimators of the

structural parameters (that converge at the fast rate
√
T ); see Theorems 1 and 2. Of course,

these results are asymptotic, but our simulations show that there are cases where such infor-

mation can be used to draw sharper inference (or tighter confidence regions) on structural

9r1T ∝ r2T ⇔ r1T /r2T
T→ c with c a real number such that 0 < |c| < ∞.

10See additional discussions about identification strength in Appendix A.1.
11Standard estimators (e.g. 2SLS or GMM) can be computed without knowing the rate of weakness r̃T .
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parameters of interest. A similar result holds when the break is unknown and when the

weakest subsample is actually weak with r̃T =
√
T . In such a case, the advantage is even

more striking: consistent estimation of the structural parameters is now possible through

GMM-type inference procedures and (conservative) weak-identification robust procedures

are not necessary anymore.

SE: 0 break

RF: 1 break

0 T
6

T ∗

Strong Semi-strong

Rate
√
T Rate

√
T/r̃T

Before introducing our GMM-type estimator of θ0, we first define the break point estimator.

For any given (candidate) break point ⌊Tν⌋, Π̂1(ν) and Π̂2(ν) denote the OLS estimators

computed in (3.2) over each associated subsample. The break point estimator T̂ ∗ ≡ ⌊T ν̂⌋
of T ∗ is defined as in Bai and Perron (1998):

ν̂ = argmin
ν

[
QOLS

(
ν, Π̂s

vec(ν)
)]

,

QOLS

(
ν, Π̂s

vec(ν)
)
=

1

T

⌊Tν⌋∑

t=1

(
Y s
t −W ′

t Π̂
s
1(ν)

)2
+

1

T

T∑

t=⌊Tν⌋+1

(
Y s
t −W ′

t Π̂
s
2(ν)

)2
,

where, for a given choice of s, Y s
t denotes the sth element of Yt, Π̂

s
i (ν) the sth column of

Π̂i(ν) for i = 1, 2, and Π̂s
vec(ν) = vec (Π̂s

1(ν), Π̂
s
2(ν)) with s ∈ {1, . . . , p2}.12,13

We now introduce three estimators of the structural parameters. These estimators will be

considered in the simulation study in section 6.

• The full-sample 2SLS estimator uses first-stage predicted regressors X̂t = vec (Zt, Ŷt).

It is defined as in Hall, Han, and Boldea (2012),

12The vec (·) notation is defined as follows: for any ℓ1 × ℓ2 matrices A1, . . . , Aℓ3 , let vec (A1, . . . , Aℓ3) be

the (ℓ1ℓ2ℓ3)× 1 vector that stacks all ℓ2 columns of each matrix A1, . . . , Aℓ3 , in order.
13For our purposes, only the consistency of the break point estimator and the associated rate stated

in Theorem 1(i) are relevant, and not how the estimator is obtained. The asymptotic distribution of the

OLS estimators Π̂vec(ν) is unaffected by the choice of s (or the precision of the break point estimator). In

practice, one can also use the multivariate methods of Qu and Perron (2007) to estimate the break point

common to all reduced forms; evaluation of the latter methods is beyond the scope of our paper.
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θ̂2SLS =

(
T∑

t=1

X̂tX̂
′
t

)−1 T∑

t=1

X̂tyt, Ŷ ′
t =




W ′

t Π̂1, t ≤ T̂ ∗

W ′
t Π̂2, t > T̂ ∗

, with Π̂i = Π̂i(ν̂) , i = 1, 2.

• The full-sample (or standard) GMM estimator is defined as:

θ̂GMM = argmin
θ

[
g′T (θ)Ŝ

−1
u gT (θ)

]
,

with gT (θ) =
1

T

T∑

t=1

Wt(yt −X ′
tθ) and Ŝu

p→ AVar
(
T 1/2gT (θ

0)
)
.

It ignores the break point in the reduced form, and is such that

θ̂GMM =
(
X ′WŜ−1

u W ′X
)−1 (

X ′WŜ−1
u W ′y

)
.

• The modified GMM estimator is defined as:

θ̂MOD = argmin
θ

[
ğ′T (θ)(Ŝ

a
u)

−1ğT (θ)
]
,

with ğT (θ) =

( ∑T̂ ∗

t=1Wt(yt −X ′
tθ)/T̂

∗

∑T
t=T̂ ∗+1Wt(yt −X ′

tθ)/(T − T̂ ∗)

)
and Ŝa

u

p→ AVar
(
T 1/2ğT (θ

0)
)
.

It uses information about the break point and is such that,

θ̂MOD =
(
X ′W̆ (Ŝa

u)
−1W̆ ′X

)−1 (
X ′W̆ (Ŝa

u)
−1W̆y

)
,

with W̆ the T × 2q matrix defined as W̆ ′ =

(
W1 · · · WT̂ ∗ 0 · · · 0

0 · · · 0 WT̂ ∗+1 · · · 0

)
.

These GMM-type estimators are known as ”partial-sample GMM estimators”. They

were used in Andrews (1993) to derive the properties of a break point test (but for a

break in θ0 rather than in the reduced form) under local alternatives. Note that the

above 2SLS is a special case of the GMM-MOD, but it is not the traditional 2SLS.

To derive asymptotic properties of the above estimators, we impose the following regularity

assumptions.

Assumption 1. (Regularity of the break fraction, error terms and reduced form)

(i) 0 < ν0 < 1, and the candidate break fractions ν are such that

max(⌊Tν], T − [Tν⌋) ≥ max(q, ǫT ), for some ǫ > 0 such that ǫ < min(ν0, 1 − ν0) and so

ν ∈ Λǫ = [ǫ, 1− ǫ].
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(ii) Let ht = Wt ⊗ vec (ut, vt) with ith element ht,i.

- The eigenvalues of S = AVar
(
T−1/2

∑T
t=1 ht

)
are O(1).

- E(ht,i) = 0 and for some d > 2, ‖ht,i‖d < ∞ for t = 1, · · · , T and i = 1, · · · , (p2 + 1)q.

- {ht,i} is near epoch dependent with respect to some process {ξt}, ‖ht −E(ht|Gt+m
t−m)‖2 ≤ νm

with νm = O(m−1/2) where Gt+m
t−m is a σ-algebra based on (ξt−m, · · · , ξt+m).

- {ξt} is either φ-mixing of size m−d/[2(d−1)] or α-mixing of size m−d/(d−2).

(iii) Πi is full column-rank equal to p2 for i = 1, 2.

Assumption 1 is common for the break point literature, and is similar to Hall, Han and

Boldea (2012). Part (i) ensures that there are enough observations in each subsample to

identify the true break point. Part (ii) allows for general patterns of weak dependence in

the data. Part (iii) ensures that the instruments are not redundant.

Assumption 2. (Regularity of the identification strength)

Let rT = min(r1T , r2T ). We assume that rT = o(
√
T ).

Since the slowest sequence riT is associated with the subsample with the strongest identi-

fication, the sequence rT corresponds to the strongest subsample. Assumption 2 prevents

the identification strength to be weak over the whole sample. For instance, when there

is a change in identification strength with stronger identification over subsample i, that

is riT = o(rjT ), identification can be weak over the weakest subsample j, but not over

subsample i. However, when there is no change in identification strength, riT ∝ rjT , the

identification cannot be weak. We show in Theorem 1 below that such an assumption gua-

rantees that the structural parameters can be consistently estimated.

Assumption 3. (Regularity of the instrumental variables)

Let Q̂1(r) = T−1
∑⌊Tr⌋

t=1 WtW
′
t . Then Q̂1(r)

p→ Q1(r), uniformly in r ∈ [0, 1] (u.r.) where

Q1(r) is positive definite and strictly increasing in r.

Assumption 4. (Regularity of the variances)

AVar


T−1/2

⌊Tr⌋∑

t=1

ht


 = S1(r) =

(
Su,1(r) S ′

uv,1(r)

Suv,1(r) Sv,1(r)

)
,

u.r, where S1(r) is positive definite and strictly increasing in r, with Su,1(r), Sv,1(r) of size

q × q, respectively (p2q)× (p2q).

12



Assumptions 3 and 4 are typical for the break point literature. Assumption 3 ensures that

there is enough variation in the instruments to identify the break point. It also allows for

the variance of instruments to change over the sample, as in the Great Moderation Example

3 discussed in section 2. Assumption 4 allows for heteroskedasticity in the sample moments

of the structural equation and the reduced form. It also allows for a break in the variance

of structural errors ut, as in Example 2 due to financial crises.

The following theorem collects asymptotic results about the above estimators of the break

fraction and the structural parameters.

Theorem 1. (Consistency of ν̂ and Asymptotic normality of θ̂2SLS, θ̂GMM , and θ̂MOD)

(i) Under Assumptions 1 to 3, we have ‖ν̂ − ν0‖ = OP (r
2
T/T ).

(ii) Let ΛT = diag(T 1/2Ip1 , T
1/2r−1

T Ip2) with rT defined in assumption 2.

Under Assumptions 1 to 4, ΛT (θ̂2SLS −θ0), ΛT (θ̂GMM −θ0), and ΛT (θ̂MOD−θ0) are asymp-

totically normally distributed with mean 0 and asymptotic variances, respectively,

− when riT = rjT ,






V2SLS = (Ai + Aj)
−1(Bi +Bj)(Ai + Aj)

−1

VGMM =
[
(Πa′

i Qi +Πa′

j Qj)(Su,i + Su,j)
−1(QiΠ

a
i +QjΠ

a
j )
]−1

VMOD =
[
Πa′

i QiS
−1
u,iQiΠ

a
i +Πa′

j QjS
−1
u,jQjΠ

a
j

]−1

− when riT = o(rjT ),





V2SLS = (Ai + Az
j )

−1(Bi +Bz
j )(Ai + Az

j )
−1

VGMM =
[
(Πa′

i Qi +Πa′

z Qj)(Su,i + Sz
u,j)

−1(QiΠ
a
i +QjΠ

a
z)
]−1

VMOD =
[
Πa′

i QiS
−1
u,iQiΠ

a
i +Πa′

z QjS
−1
u,jQjΠ

a
z

]−1

with Q1 = Q(ν0), Q2 = Q1(1)−Q1(ν
0), Su,1 = Su,1(ν

0), Su,2 = Su(1)− Su,1(ν
0),

and Ai = Πa′

i Qi Π
a
i , A

z
i = Πa′

z QiΠ
a
z , Bi = Πa′

i Su,iΠ
a
i , B

z
i = Πa′

z Su,iΠ
a
z , Π

a
i = (Πz,Πi), and

Πa
z = (Πz, Oq×p2), for i 6= j and either i = 1 or 2.14

Comments:

(i) The consistency of the estimated break fraction extends results developed by Bai and

Perron (1998) and Bai (1997) for r1T = r2T = 1. Here, we show that even with a change

in identification strength, riT = o(rjT ) (for i 6= j and either i = 1 or 2), the break fraction

14Note that while Πi are the reduced form parameters of the endogenous regressors, Πz denotes the

implicit ”reduced form” parameters for exogenous regressors, with elements equal to one for the correlation

of exogenous regressors with themselves, and zero for the other instruments. Thus, Πa
i is the matrix of

all ”reduced form” coefficients (including those on the exogenous regressors) and is only used to facilitate

presentation of all results in a unified way across models with and without exogenous regressors.
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estimator is consistent at the rate inherited from the strongest subsample. This holds even

when the weakest subsample is weakly identified, rjT =
√
T . Intuitively, only the magnitude

of the break (in this case o(
√
T )) matters for consistency of the break fraction estimator.

(ii) The rates of convergence of estimated parameters of the exogenous variable θ0z (standard

rate
√
T ) and the estimated parameters of the endogenous variables θ0y (slower rate

√
T/rT )

are extensions of the results developed by Antoine and Renault (2009) over stable reduced

forms. The rate
√
T/rT comes from the strongest subsample and holds even when the

weakest subsample is genuinely weak.

(iii) To our knowledge, the consistency of both GMM-type estimators θ̂GMM and θ̂MOD -

even when the weakest subsample is genuinely weak (that is rjT =
√
T ) - is new. Hence,

ignoring the break point does not lead to a loss of consistency. However, using such in-

formation (to construct 2q valid sample moments) is crucial for efficiency as shown below

in Theorem 2. The asymptotic normality of 2SLS-type estimator θ̂ is an extension of the

results developed by Hall, Han, and Boldea (2012) for riT = 1.

The following assumptions are useful to derive some of our efficiency results.

Assumption 5. (Homogeneity of the second moments)

(i) Q1(r) = rQ; (ii) S1(r) = rS.

The above assumption prevents changes in the second moments of the instruments and in

their correlation with the error terms of the reduced form. For example, a break in Var(vtWt)

at T 0 means that Var(vtWt) changes once at some T 0, so the homogeneity assumption 5(ii)

is violated. In addition, a break in E(WtW
′
t ) implies that E(WtW

′
t ) changes once as t = T 0,

so the homogeneity assumption 5(i) is violated.

Assumption 6. (Conditional homoskedasticity in subsamples)

Si = Φ⊗Qi, where Φ = E

[(
u2
t utv

′
t

utvt vtv
′
t

)
|Ft

]
=

(
Φu Φ′

uv

Φuv Φv

)
,

with Ft the σ-algebra generated by {Wt,Wt−1, . . .}, and i = 1, 2.

Assumption 6 is only used in special cases to compare the above estimators - see e.g. The-

orem 2(ii).

Theorem 2. (Efficiency of estimated structural parameters)

(i) Under Assumptions 1 to 4, θ̂MOD is always at least as efficient as θ̂2SLS and θ̂GMM

asymptotically.
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(ii) In addition, VMOD = VGMM ⇔ S−1
u,iQiΠ

a
i =

{
S−1
u,jQjΠ

a
j when riT = rjT ,

S−1
u,jQjΠ

a
z when riT = o(rjT ) .

(iii) Under Assumptions 1 to 6, VGMM > V2SLS.

Comments:

(i) Using the additional information about the reduced form break leads to more efficient

estimators (e.g. θ̂MOD). Intuitively, the break does not impact the validity of traditional full-

sample moment conditions, however more information can be extracted from the subsample

moments due to their derivative changing over the sample. Condition (ii) above is hard

to satisfy unless Assumption 5 holds. So, in general, θ̂MOD is strictly more efficient than

θ̂GMM .

(ii) The strict efficiency gain of θ̂MOD also occurs when there is no break in the reduced

form (i.e. Π1 = Π2 = Π and r1T = r2T = rT ), as long as one of the homogeneity assumption,

5(i) or 5(ii), is violated. We now discuss two such violations: a) a break in structural error

variance as in Example 2; b) a break in instrument variance as in Example 3.

a) In the first case, Assumption 5(ii) is violated: for example, when the structural sample

moment variance increases from Var(Wtut) = S∗
u,1 for t ≤ T 0 to Var(Wtut) = S∗

u,2 > S∗
u,1

for t > T 0. In Example 2, these breaks occur because a financial crisis can induce a

break in the structural error variance ut. Then, even with no break in the reduced form

parameters, the variance break provides additional information that is used in θ̂MOD to

obtain a strictly more efficient estimator. The strict efficiency gain occurs because the

condition in Theorem 2(ii) can still be violated. For example, under Assumption 5(i), the

condition writes S∗−1
u,1 QΠa = S∗−1

u,2 QΠa, and does not hold in general when S∗
u,2 > S∗

u,1.

b) The second case refers to violations of Assumption 5(i). Example 3 discusses the Great

Moderation, where the instrument variance decreases at T 0, so that E(WtW
′
t ) = Q∗

1 for

t ≤ T 0, and E(WtW
′
t ) = Q∗

2 < Q∗
1 for t > T 0. Then, under Assumption 5(ii), with no break

in the reduced form parameters, the condition in Theorem 2(ii) writes Q∗
1Π = Q∗

2Π, and

does not hold in general when Q∗
1 > Q∗

2.

(iii) Finally, we consider a change in instrument strength, as in Example 1 for NKPC. Then,

with no exogenous regressors, θ̂MOD is strictly more efficient than θ̂GMM . With at least one

exogenous regressor, θ̂MOD is still more efficient whenever Assumptions 5 and 6 hold.15

15Without exogenous regressors, see the proof of Theorem 2, case (b)(i) in the Appendix; with exogenous

regressors, see the proof in the Supplemental Appendix.
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For efficiency purposes, it is therefore essential to detect breaks in the reduced form equation

and associated changes in the identification strength. The latter is done to ensure that at

least one subsample is not weakly identified. Testing for weak identification16 must be done

over each (stable) subsample, which requires consistent estimation of the break fraction.

Before testing for weak identification, one can test for a break in the reduced form using

the sup-Wald statistic of Bai and Perron (1998). Define the null hypothesis for a certain

endogenous regressor s as H0 : Πs
1/r1T = Πs

2/r2T (i.e. Πs
1 = Πs

2 and r1T = r2T ), versus the

alternative HA that Πs
1 6= Πs

2 or riT = o(rjT ) for i 6= j and either i = 1 or 2. Then, Bai and

Perron’s (1998) sup-Wald test statistic for testing for a break in the reduced form is:

Sup−WaldRF
T = sup

ν∈Λǫ

WaldRF
T (ν) ,

where WaldRF
T (ν) =

[
T Π̂s′

vec(ν)R′
q (Rq Ĝ

s
RF (ν)R′

q)
−1Rq Π̂

s
vec(ν)

]
,

Ĝs
RF (ν) = diag[ Q̂−1

1 (ν) Ŝs
v,1(ν) Q̂

−1
1 (ν), Q̂−1

2 (ν) Ŝs
v,2(ν) Q̂

−1
2 (ν) ] ,

Gs
RF (ν) = diag[ Q−1

1 (ν) Ss
v,1(ν) Q

−1
1 (ν), Q−1

2 (ν) Ss
v,2(ν) Q

−1
2 (ν) ],

Rq = (1,−1)⊗ Iq ,

and Ss
v,i(ν) the sth diagonal (q × q) block of Sv,i(ν) with Ŝs

v,i(ν)
p→ Ss

v,i(ν), uniformly in ν.

The asymptotic distribution of the sup-Wald test is stated below.

Theorem 3. (Test for a break in the reduced form )

(i) Under H0, and Assumptions 1 to 5, the above Sup-Wald test has the same null asymptotic

distribution as in Bai and Perron (1998),

Sup−WaldRF
T ⇒ sup

ν∈Λǫ

||Bq(ν)− νBq(1)||2
ν(1 − ν)

,

where ”⇒” indicates weak convergence in Skorohod metric, || · || is the Euclidean norm, and

Bq(ν) is a q × 1 vector of independent standard Brownian motions defined on [0, 1].

(ii) Under HA, and Assumptions 1 to 4, Sup−WaldRF
T

p→ ∞. In addition, if Assumption 5

holds, then the implicit break fraction estimator ν̂W = arg(Sup−WaldRF
T )

p→ ν0. Otherwise,

ν̂W p→ ν0 is not guaranteed.

Comments:

(i) It is important to point out that result (i) holds even when rT =
√
T , that is, when the

instruments are weak over the whole sample.

16In our simulations, we rely on Staiger and Stock’s (1997) rule-of-thumb to test weak identification.
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(ii) While the above Sup-Wald test has power one against the alternative hypothesis HA

and should be employed because of its robustness to conditional heteroskedasticity and

autocorrelation, the implicit break point estimator ν̂W is not always consistent unless the

homogeneity assumption 5 holds. Thus, if the test rejects, it is still desirable to use ν̂ as a

break point estimator, which is consistent even if assumption 5 is violated.

3.2 Unstable structural parameters

Our second framework of interest extends the standard linear IV regression model to allow

instabilities in the structural parameters over time, while the identification strength remains

stable. Example 4 shows that this can occur when the equation of interest is a policy

function, while the reduced forms originate from a structural model that does not change

over time.17 More specifically, the equation of interest with a break point is:

yt =

{
Z ′

tθ
0
z,1 + Y ′

t θ
0
y,1 + ut , t ≤ ⌊Tλ0⌋

Z ′
tθ

0
z,2 + Y ′

t θ
0
y,2 + ut , t > ⌊Tλ0⌋

, (3.3)

We also define the vector of all (unknown) parameters of interest, θ0vec = vec (θ01, θ
0
2) with

θ0i = vec (θ0z,i, θ0y,i) for i = 1, 2. The stable reduced form is

Y ′
t =

W ′
tΠ

rT
+ v′t , (3.4)

where rT = 1, or rT → ∞ with rT = o(
√
T ), and Wt is uncorrelated with vt and ut.

Before introducing our GMM-type estimator of θ0vec, we first define the break point estimator.

We extend results of Hall, Han, and Boldea (2012) to show that minimizing a 2SLS criterion

provides consistent estimators of both the break fraction λ0 and the structural parameters

θ0vec. In the first stage, the reduced form for Yt is estimated over the full-sample by OLS to

get Ŷt = Π̂′Wt, with Π̂ the OLS estimator in (3.4), and the augmented projected regressors

X̂t = vec (Zt, Ŷt) = Π̂a′Wt, where Π̂
a = (Πz, Π̂). In the second stage, we define the following

2SLS criterion given a candidate break point [Tλ] and θvec = vec (θ1, θ2),

Q2SLS(λ, θvec) =

[Tλ]∑

t=1

(
yt − X̂ ′

tθ1

)2
+

T∑

t=[Tλ]+1

(
yt − X̂ ′

tθ2

)2
.

17To see another explicit system of equations with breaks that can give rise to a stable reduced form, see

Appendix A.2.
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We concentrate with respect to θvec to get the 2SLS estimators for each candidate break

point, θ̂vec(λ) = vec (θ̂1(λ), θ̂2(λ)), and then minimize Q2SLS(λ, θ̂vec(λ)) over all possible

valid partitions of the sample defined by [Tλ]. The 2SLS estimators of the break point

T̂ = [T λ̂] and of the structural parameters θ̂vec, are defined as

λ̂ = argmin
λ

Q2SLS(λ, θ̂vec(λ)) and θ̂vec = vec (θ̂1(λ̂), θ̂2(λ̂)) = vec (θ̂1, θ̂2).

We now turn to GMM estimation of θ0vec. We know from Hall, Han, and Boldea (2012) that

minimizing a GMM criterion directly with respect to λ and θ0vec (instead of the above 2SLS

criterion) does not deliver consistent estimators of the break fraction. However, we show

below that if we use the above 2SLS break point estimator T̂ = [T λ̂] to partition the sample,

the resulting partial-sample GMM estimators are consistent. Intuitively, λ̂ converges faster

than the parameter estimates, explaining the consistency result for GMM. We now introduce

two GMM-type estimators of θ0vec.

• The partial-sample GMM estimators using T̂ are defined as follows:

θ̂GMM,vec =

(
θ̂GMM,1

θ̂GMM,2

)
= argmin

θ1,θ2

[
g′T (θ1, θ2)Ŝ

−1
u gT (θ1, θ2)

]
,

where gT (θ1, θ2) =

[
T̂−1

∑T̂
t=1Wt (yt − Y ′

t θy,1 − Z ′
tθz,1)

(T − T̂ )−1
∑T

t=T̂+1Wt (yt − Y ′
t θy,2 − Z ′

tθz,2)

]
, (3.5)

and Ŝu = diag [Ŝu,1, Ŝu,2]
p→ AVar

[
T 1/2gT (θ

0
1, θ

0
2)
]
with Ŝu,i of size (q × q).

These GMM estimators were defined in Andrews (1993) to study local properties of a break

point test. Here, we derive their asymptotic distribution under a stable reduced form, and

compare them with their 2SLS counterparts. Similar to 2SLS estimators, we show that

the GMM estimators of the structural parameters associated with the endogenous variables

are asymptotically normally distributed at rate
√
T/rT , whereas those associated with the

exogenous regressors are asymptotically normally distributed at the standard rate
√
T .

However, these GMM estimators, θ̂GMM,vec, are not the most efficient, because they ignore

the information that the reduced form is stable, while the 2SLS estimators θ̂vec take this

information into account. This suggests that a (augmented) GMM estimator that takes this

information into account will also be more efficient than θ̂GMM,vec.

• The ”augmented” GMM estimator is built by adding moment conditions from the

reduced form. In the absence of breaks, the reduced form moments are redundant to the
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structural form moments, because adding just-identified nuisance parameters leaves the

GMM estimators asymptotically unaffected (see Ahn and Schmidt (1995)).

The same intuition applies when adding the just-identified q full-sample moments of the

reduced form. However, it does not apply when we add the 2q subsample moments of the

reduced form, before and after T 0. In other words, we add 2qp2 moment conditions and

qp2 nuisance parameters Π (recall that Π is stable over the whole sample). These added

reduced form moment conditions over-identify Π. In addition, we show in Theorem 5 that

they are not redundant and deliver a more efficient estimator.

Our new (augmented) GMM estimator θ̂MOD,vec = vec (θ̂MOD,1, θ̂MOD,2) (along with the

new reduced form estimator ΠMOD,vec = vec (Π̂MOD)) are based on the following moments:

ğT (θvec,Πvec) =

(
gT (θvec)

gT,2(Πvec)

)
with gT as in (3.5), and

gT,2(Πvec) stacks the OLS moment conditions from the subsamples of the reduced form with

Πvec = vec (Π) for any Π. More precisely, we have:

gT,2(Πvec) =




T̂−1
∑T̂

t=1Wt(Y
1
t −W ′

tΠ
1)

. . .

T̂−1
∑T̂

t=1Wt(Y
p2
t −W ′

tΠ
p2)

(T − T̂ )−1
∑T

t=T̂+1Wt(Y
1
t −W ′

tΠ
1)

. . .

(T − T̂ )−1
∑T

t=T̂+1Wt(Y
p2
t −W ′

tΠ
p2)




,

where Y s
i and Πs are the sth columns of Y ′

t and Π, for s = 1, . . . , p2. Then, the optimal

MOD estimators are defined as:
(

θ̂MOD,vec

Π̂MOD,vec

)
= arg min

θvec,Π

[
ğ′T (θvec,Πvec) Ŝ−1 ğT (θvec,Πvec)

]
,

where Ŝ p→ AVar[
√
T ğT (θ

0
vec,Π

0
vec)] with Π0

vec = vec (Π).

In order to discuss asymptotic properties of the above estimators, we impose the following

regularity assumptions. Those are quite similar to the regularity assumptions of section 3.1.

Assumption 7. (Regularity of the break fraction λ0, and reduced form)

(i) 0 < λ0 < 1, and the candidate break points satisfy max([Tλ], T − [Tλ]) > max(p −
1, ǫT ) for some ǫ > 0 such that ǫ < min(λ0, 1− λ0) and so λ ∈ Λǫ = [ǫ, 1− ǫ].

(ii) Rank (Π) = p2.
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The following theorem collects asymptotic results about the above estimators of the break

fraction, the structural and reduced form parameters.

Theorem 4. (Consistency of λ̂ and Asymptotic normality of θ̂vec, θ̂GMM,vec and θ̂MOD,vec)

(i) Under Assumptions 1(ii), 2 to 4, and 7, ‖λ̂− λ0‖ = OP (T
−1).

(ii) Define ΛT as in Theorem 1. Under Assumptions 1(ii), 2 to 4, and 7, [I2⊗ΛT ](θ̂vec−θ0vec),

[I2 ⊗ ΛT ]
(
θ̂GMM,vec − θ0vec

)
, and [I2 ⊗ ΛT ]

(
θ̂MOD,vec − θ0vec

)
are asymptotically normally

distributed with mean zero and asymptotic variances defined explicitly in the appendix.

(iii) Under Assumptions 1(ii), 2 to 4, and 7, diag(I2 ⊗ ΛT , T
1/2Ip2q)

[
θ̂MOD,vec − θ0vec

Π̂MOD,vec − Π0
vec/rT

]

is asymptotically normally distributed with mean zero and asymptotic variance explicitly

defined in the appendix.

Comments:

(i) The structural equation break fraction estimator converges faster to its true value than

its reduced form counterpart; in fact it does so at the fastest available rate T . This stems

from the presence of breaks in the exogenous regressor parameters; intuitively, the exogenous

regressors are their own strong instruments, and so the strength of the endogenous regressor

instruments determines the fast convergence rate. However, part (ii) shows that estimators

of the endogenous regressor parameters, θ0y,i, converge at rate
√
T/rT , which is slower than

usual: such slow rate is due to the presence of instruments Wt that are not strong. The other

parameters, θ0z,i, are not affected by the instruments, and their estimators are asymptotically

normally distributed at the standard rate
√
T .

(ii) The explicit formulas for the asymptotic variance-covariance matrices are provided in

the appendix because they require cumbersome notations.

The following theorem compares the asymptotic variance of the proposed estimators.

Theorem 5. (Efficiency of estimated structural parameters)

(i) Under Assumptions 1(ii), 2 to 4, and 7, θ̂MOD,vec is always as efficient as θ̂GMM,vec.

(ii) Under Assumptions 1(ii), 2 to 4, and 5 to 7, for i = 1, 2,

AVar(θ̂2SLS,i) ≤ AVar(θ̂GMM,i) ⇔ 2Φ′
uvθ

0
y,i + θ0

′

y,iΦvθ
0
y,i ≤ 0

AVar(θ̂MOD,i) ≤ AVar(θ̂2SLS,i) ⇔ 2Φ′
uvθ

0
y,i + θ0

′

y,iΦvθ
0
y,i ≥ − δΦ2

u

1 + δΦu

,

with δ = Φ−2
u Φ′

uv(Φv − ΦuvΦ
−1
u Φ′

uv)
−1Φuv.
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Comments:

(i) MOD estimators are more efficient than the usual partial sample GMM estimators,

because they exploit the additional information that the reduced form is stable. In general,

the added moment conditions gT,2(·) are not redundant, because of two key reasons: first, Π

is over-identified; second, the added moment conditions are correlated with the initial ones.

Even when the first subsample moments of the reduced form first are redundant for the

second subsample moments of the reduced form - as it is the case under Assumptions 5 and

6 - they are not overall redundant for the estimation of θ0vec. This intuition is similar to

Theorem 4 in Breusch, Qian, Schmidt, and Wyhowski (1999), where it is shown that with

three moment conditions, say (g1, g2, g3), g3 redundant given g2 does not imply that g3 is

redundant given (g1, g2). The above non-redundancy result is also related to recent results

by Antoine and Renault (2014) who extends Breusch et al. (1999) to frameworks that allow

different identification strengths.

(ii) 2SLS estimators are not a special case of partial-sample GMM estimators: in fact,

the latter only use subsample information for estimation of parameters θ01 and θ02, while

2SLS estimators use both subsample and full-sample information. As a result, the 2SLS

estimators considered here can be more efficient than partial-sample GMM estimators. The

above condition,

2Φ′
uvθ

0
y,i + θ0

′

y,iΦvθ
0
y,i ≤ 0 ⇔ Φu + 2Φ′

uvθ
0
y,i + θ0

′

y,iΦvθ
0
y,i ≤ Φu

is actually equivalent to the following condition on conditional variance of the errors,

Var(ut + v′tθ
0
y,i|Ft) ≤ Var(ut|Ft) , with Ft the information set available at time t.

Heuristically, it states that 2SLS estimators are more efficient when the second-stage error

after using the full-sample reduced form for estimation on a subsample is less than the

structural GMM error.

(iii) 2SLS estimators are not a special case of MOD estimators either.18 In general, our MOD

estimators are more efficient even under homogeneity and conditional homoskedasticity, as

long as

Φ′
uvθ

0
y,i + θ0

′

y,iΦvθ
0
y,i ≥ − δΦ2

u

1 + δΦu
.

This condition is harder to interpret, but it is automatically satisfied with a single en-

dogenous regressor and no exogenous regressors, that is p2 = 1, p1 = 0. In such a case,

18This is related to results in Hall, Han and Boldea (2012) about the relationship between 2SLS and

GMM estimators that breaks down in the presence of break points.
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Φuδ = Φ2
uv(ΦvΦu − Φ2

uv)
−1, and the above condition becomes,

2Φuvθ
0
y,i + (θ0y,i)

2Φv ≥ −Φ2
uv

Φv
⇔
(
θ0y,i +

Φuv

Φv

)2

≥ 0.

In this case, MOD is always at least as efficient as 2SLS. MOD and 2SLS estimators are

asymptotically equivalent when −θ0y,i =
Φuv

Φv
for i = 1, 2. To interpret this condition, assume

the regressors are fixed. Then β0 =
Φuv

Φv
is the limiting coefficient of a regression of ut on

vt, suggesting that the MOD estimator ”purges” ut of the true correlation with vt. On the

other hand, the 2SLS estimator transforms the error ut into (ut+ v′tθ
0
y,i) through an orthog-

onal projection, so that −θ0y,i plays the role of β0 for each subsample. As a result, when

these two are equal, say over subsample 1, the two associated estimators 2SLS and MOD

are asymptotically equivalent over subsample 1, but the MOD estimator is more accurate

over subsample 2.

So far, our analysis assumes that the existence of the break point in the structural equation

(3.3) is known. In practice, this existence often needs to be established. To that end, we

consider the sup-Wald test of Hall, Han and Boldea (2012) for which the null and alternative

hypotheses are: H0 : Rpθ
0 = 0 versus HA : Rpθ

0 6= 0, with Rp = (1,−1) ⊗ Ip. The test

statistic is:

Sup−WaldT = sup
λ∈Λǫ

WaldT (λ), (3.6)

where WaldT (λ) = T θ̂′vec(λ)R′
p

[
Rp Ĝ(λ)R′

p

]−1

Rpθ̂vec(λ) ,

Ĝ = diag[ Ĝ1(λ), Ĝ2(λ)] with Ĝi(λ) = Â−1
i (λ)Ĥi(λ)Â−1

i (λ) ,

Âi(λ) = T−1
∑

t∈Ii

X̂tX̂
′
t , I1 = {1, . . . , [Tλ]} , I2 = {[Tλ] + 1, . . . , T} ,

and Ĥi(λ) is a HAC estimator such that

Λ−1
T Ĥi(λ)Λ

−1
T

p→ Hi(λ) = AVar

[
∑

t∈Ii

Λ−1
T X̂t(ut + v′tθ

0
y,i)

]
.

The following theorem provides the limiting distribution of the sup-Wald test statistic.

Theorem 6. (Test for a break in the structural equation)

(i) Under H0 : θ
0
1 = θ02, Assumptions 1(ii), 2 to 4, 5, and 7,

Sup−WaldT ⇒ sup
λ∈Λǫ

||Bp(λ)− λBp(1)||2
λ(1− λ)

,
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where Bp(λ) is a p× 1 vector of independent standard Brownian motions defined on [0, 1].

(ii) Under HA : θ0∆ = θ01−θ02 6= 0, and Assumptions 1(ii), 2 to 4, and 7, Sup−WaldT
p→ ∞

such that

Sup−WaldT =

{
Op(T/r

2
T ) without exogenous regressors (p1 = 0)

Op(T ) in presence of exogenous regressors (p1 6= 0)

In addition, if Assumption 5 holds and either p1 = 0, p2 = 1 (only one endogenous regressor,

no exogenous regressors) or θ0y,1 = θ0y,2, then the implicit break fraction estimator

λ̂W = arg(Sup−WaldRF
T )

p→ λ0. Otherwise, λ̂W p→ λ0 is not guaranteed.

Comments:

(i) The above Sup-Wald test should be used because of its robustness to conditional het-

eroskedasticity and autocorrelation. However, if one is not willing to impose the homogeneity

assumption 5, then the implicit break fraction estimator may not be consistent under HA,

that is λ̂W 6 p→ λ0. In such a case, the break point estimator λ̂ should be used instead. This

is similar to the properties of the Sup-Wald test in the reduced form highlighted in the

previous section.

(ii) The rate of divergence under the alternative HA depends on the presence of exogenous

regressors: without exogenous regressors, the rate of divergence is affected by the identifica-

tion strength of the instruments and is equal to T/r2T ; in presence of exogenous regressors,

the rate is standard equal to T , and not affected by the identification strength.

4 Common Break

In this section, we combine the two frameworks of interest introduced in the previous section,

allowing for a common break in the equation of interest and in the reduced form:

yt =

{
Z ′

tθ
0
z,1 + Y ′

t θ
0
y,1 + ut , t ≤ ⌊Tλ0⌋

Z ′
tθ

0
z,2 + Y ′

t θ
0
y,2 + ut , t > ⌊Tλ0⌋

(4.1)

Y ′
t =

{
W ′

t
Π1

r1T
+ v′t , t ≤ ⌊Tλ0⌋

W ′

t
Π2

r2T
+ v′t , t > ⌊Tλ0⌋

, (4.2)

where riT = 1, or riT → ∞, with i = 1, 2, and Wt is not correlated with vt and ut.

When there is no change in the identification strength, r1T ∝ r2T , (4.2) naturally extends the

unstable reduced form models considered in Hall, Han and Boldea (2012) to weaker identi-

fication patterns. Otherwise, (4.2) captures changes in identification strength concomitant
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to those in the parameter of interest θ0vec. Our goal is to detect and locate both parameter

instability and changes in the strength of identification, as well as to provide correct and

sharp inference on θ0vec. This goal is met by combining results developed in section 3.

1. First stage: the reduced form.

(a) Test whether there is a break in the reduced form using Sup−WaldRF
T .

(b) If a break is detected, use the break point estimator T̂ ∗ and subsample OLS to construct

Ŷt as discussed in section 3.1. Otherwise, construct Ŷt by full-sample OLS.

2. Second stage: the structural equation.

(a) If no break has been detected in the reduced form, test for a break in the main equation

using Sup−WaldT . If a break is found, proceed with inference using λ̂, θ̂MOD,i or θ̂i.

(b) If a break point has been detected in the reduced form, impose the above estimated

break point T̂ ∗ and work over the associated subsamples separately. Since on each such

subsample the reduced form is stable, we use the results developed in section 3.2.

3. Third stage: the common break structure.

(a) If a break point has been detected in the reduced form, impose the break T̂ ∗ in (4.1) and

test whether the break is common to the structural equation using the test WaldcT described

below.

(b) If the test does not reject, the main equation is stable. Use θ̂MOD for inference as dis-

cussed in section 3.1. If the test rejects, the break is common to both equations, so proceed

with inference using T̂ and the partial sample estimators θ̂MOD,i or θ̂i.

It is important to mention that the estimation of the above break points and the inference

described in this paper are feasible when the identification is ”not weak” over at least one of

the subsamples. Thus, one needs to test for weak versus ”not weak” identification over each

subsample. For simplicity, we rely on Staiger and Stock’s (1997) popular rule-of-thumb in

our simulations. When both subsamples have weak instruments, weak-identification robust

inference procedures should be used.19

We now present our Wald test for common break. Consider the case where the reduced form

break T ∗ has been detected and estimated by T̂ ∗ using the methods described in section

3.1. To test whether T ∗ is a common break to the main equation, we test whether the 2SLS

parameter estimates defined over each subsample are equal to each other. These parameter

19See Magnusson and Mavroeidis (2014) for suggestions.
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estimates are defined as

θ̂ci =



∑

Î∗
i

X̂t,iX̂
′
t,i




−1

∑

Î∗
i

X̂t,iyt


 , with X̂t,i = vec (Zt, Ŷt,i) , and Ŷ ′

t,i = W ′
t Π̂i ,

i = 1, 2, and Î∗1 = {1, . . . , T̂ ∗} and Î∗2 = {T̂ ∗+1, . . . , T}. The Wald test for a common break

is:

WaldcT = T θ̂c′vec R′
p (Rp Ĝ

c R′
p)

−1R′
p θ̂

c
vec,

with θ̂cvec = vec (θ̂c1, θ̂
c
2) , Rp = (1,−1)⊗ Ip ,

Ĝc = diag
[
Ĝc

1, Ĝ
c
2

]
, Ĝc

i = (Âc
i)

−1B̂c
i (Â

c
i)

−1 ,

Âc
i = T−1

∑

Î∗
i

X̂t,iX̂
′
t,i ,

B̂c
i such that Λ−1

iT B̂
c
iΛ

−1
iT

p→ Bc
i = AVar[T−1/2

∑

Î∗
i

Λ−1
iT X̂t,iut] ,

and ΛiT = diag(T 1/2Ip1, T
1/2r−1

iT Ip2) .

The following theorem provides the limiting distribution of the above Wald test statistic.

Theorem 7. (Wald test for common break)

(i) Under H0 : θ
0
1 = θ02, Assumptions 1(ii), 2 to 4, 5, and 7, WaldcT

d→ χ2
p.

(ii) Under HA : θ01 6= θ02, Assumptions 1(ii), 2 to 4, 5, and 7, we have

WaldcT =

{
Op(T ) in presence of exogenous regressors (p1 6= 0)

Op(T/r
2
T ) without exogenous regressors (p1 = 0) and rT = maxi(riT ).

Comment:

The above test for common break is somewhat similar to the break point test defined in

section 3.2 to detect a break in the main equation. There are two main differences: first, the

above test is simpler than Sup-Wald test because it is computed directly at the estimated

break point coming from the reduced form; second, the rate of divergence is different in

absence of exogenous regressors.

5 Extensions and related results

5.1 General characterization of the identification strength

In this section, we consider a more general characterization of the identification strength

by allowing each instrument and direction in the parameter space to display their own
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identification pattern. More specifically, the reduced form equation (3.2) now writes,

Y ′
t =

{
W ′

tΠ
(1)
T + v′t , t ≤ T ∗

W ′
tΠ

(2)
T + v′t , t > T ∗

where each element (k, l) of matrices Π
(j)
T (j = 1, 2) is allowed to display its own rate of

convergence, that is π
(j)
kl,T = π

(j)
kl /r

(j)
kl,T with r

(j)
kl,T = 1, or r

(j)
kl,T

T→ ∞ with r
(j)
kl,T = O(

√
T ). The

break point T ∗ now captures changes in the identification strength of some instruments only,

changes of different magnitudes, as well as changes in different directions of the parameter

space. We focus on the following three special cases:

- Case a): the (overidentified) case with one endogenous variable and two instruments

with different identification strengths;

- Case b): the (just-identified) case with two endogenous variables and associated struc-

tural parameters identified at different rates;

- Case c): the (just-identified) case with two endogenous variables where the instrument

strength is the same for each reduced form, but differs across instruments.

• Case a): instruments with different identification strengths.

In practice, instruments often display different identification strengths. For instance, in

Example 1 in section 2, lags of inflation are usually relatively strong instruments for inflation,

but lags of output gap are not.

We consider the (overidentified) case with one endogenous variable, no additional exogenous

variable, and two instruments associated with two different identification strengths:

yt = Ytα
0 + ut , Yt =





W1tπ
(1)
1

r
(1)
1T

+
W2tπ

(1)
2

r
(1)
2T

+ v′t , t ≤ T ∗

W1tπ
(2)
1

r
(2)
1T

+
W2tπ

(2)
2

r
(2)
2T

+ v′t , t > T ∗
, r

(j)
iT = o(r

(j)
kT ) (i 6= k)

with E(ut) = 0, E(W1tut) = E(W2tut) = 0, and E(W1tvt) = E(W2tvt) = 0.

The above framework now captures changes in the strength of one instrument only (e.g.

when r
(1)
2T = r

(2)
2T ), changes in the strength of both instruments but of different magnitudes,

as well as the case where one instrument becomes weaker, while the other becomes stronger.

From the results of section 3.1, when there is one break and two instruments with the same

strength r
(j)
T over subsample j, we know that with rT = min(r

(1)
T , r

(2)
T ) and rT = o(

√
T ),

26



(i) the estimated break fraction is consistent at rate r2T/T ;

(ii) only the magnitude of the break matters;

(iii) the MOD estimator of α0 is always at least as efficient as the modified 2SLS and the

full-sample GMM.

From Theorem 2 in Antoine and Renault (2014), we also know that when there is no break,

and two instruments with different strengths r̃iT such that min(r̃1T , r̃2T ) = o(
√
T ),

(iv) the (standard) over-identified GMM estimator of α0 that relies on both instrumentsW1

and W2 is more efficient (in terms of asymptotic variance) even when W2 is genuinely

weak, as long as (W1tut) and (W2tut) are correlated.

These results and intuition directly transfer to the above framework after redefining rT as

the slowest rate over all possible rates displayed in both matrices Π
(j)
T (j = 1, 2).20

• Case b): structural parameters identified at different rates.

In practice, some parameters are often known to be more difficult to estimate accurately. For

example, in the intertemporally separable consumption based capital asset pricing model

with constant relative risk-aversion preferences, this is usually the case for the risk-aversion

parameter, but not for the discount factor. In Stock and Wright (2000), the discount factor

is modeled as strongly identified, whereas the risk-aversion is weakly identified.

Accordingly, we consider the (just-identified) case with two endogenous variables21, no ad-

ditional exogenous variable, and two orthogonal instruments. Over each subsample, W1 and

W2 are both strong instruments for Y1, but they are both weaker instruments for Y2:

yt = Y1tα
0 + Y2tβ

0 + ut

Y1t =

{
W1tπ

(1)
11 + W2tπ

(1)
21 + v1t , t ≤ T ∗

W1tπ
(2)
11 + W2tπ

(2)
21 + v1t , t > T ∗

Y2t =

{
W1tπ

(1)
12 /r

(1)
2,T + W2tπ

(1)
22 /r

(1)
2,T + v2t , t ≤ T ∗

W1tπ
(2)
12 /r

(2)
2,T + W2tπ

(2)
22 /r

(2)
2,T + v2t , t > T ∗

with E(ut) = 0, E(W1tut) = E(W2tut) = 0, E(W1tvt) = E(W2tvt) = 0, and E(W1tW2t) = 0.

20The current proof of Theorem 1 goes through with the new definition of rT .
21This example also relates to earlier discussions with one exogenous regressor and one endogenous one.
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Taken over each subsample j, this is the (linear) framework of Stock and Wright (2000)

where the structural parameters α0 and β0 are identified at different rates. The associated

moment functions over subsample j

{
g
(j)
1 (α, β) = E[W1t(yt − Y1tα− Y2tβ)]

g
(j)
2 (α, β) = E[W2t(yt − Y1tα− Y2tβ)]

⇔
{

g
(j)
1 (α, β) = (α0 − α)E(W 2

1t)π
(j)
11 + (β0 − β)E(W 2

1t)π
(j)
12 /r

(j)
2,T

g
(j)
2 (α, β) = (α0 − α)E(W 2

2t)π
(j)
21 + (β0 − β)E(W 2

2t)π
(j)
22 /r

(j)
2,T

contain a ”strong part” that only depends on α and is not drifting toward zero. It follows

that α0 is strongly identified, while β0 is not. In addition, when r
(j)
2,T = o(

√
T ), the standard

GMM estimator of (α0, β0) is such that

( √
T (α̂− α0)√
T/r

(j)
2,T (β̂ − β0)

)
is asymptotically normal

with mean 0; see Antoine and Renault (2009).

The above framework now captures changes in the identification strength of one parameter

only, or even in both parameters but of different magnitudes.

Since the instrument strength is the same across the two reduced forms, the results developed

in section 3.1 (e.g. estimation of the break point) apply equation by equation. For efficient

estimation of the structural parameters, it is always better to consider the MOD estimator,

as already discussed.

• Case c): each instrument has the same identification strength across all reduced forms.

For example, the intercept is always a strong instrument. We consider the (just-identified)

case with two endogenous variables, no additional exogenous variable, and two orthogonal

instruments. Over each subsample, W1 is a strong instrument for both Y1 and Y2, while W2

is a weaker instrument for both Y1 and Y2,

yt = Y1tα
0 + Y2tβ

0 + ut

Y1t =

{
W1tπ

(1)
11 + W2tπ

(1)
21 /r

(1)
2,T + v1t , t ≤ T ∗

W1tπ
(2)
11 + W2tπ

(2)
21 /r

(2)
2,T + v1t , t > T ∗

Y2t =

{
W1tπ

(1)
12 + W2tπ

(1)
22 /r

(1)
2,T + v2t , t ≤ T ∗

W1tπ
(2)
12 + W2tπ

(2)
22 /r

(2)
2,T + v2t , t > T ∗

with E(ut) = 0, E(W1tut) = E(W2tut) = 0, E(W1tvt) = E(W2tvt) = 0, and E(W1tW2t) = 0.
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Different directions in the parameter space (or linear combinations of α0 and β0) can now

be identified at different rates. The associated moment functions over subsample j write:

{
g
(j)
1 (α, β) = (α0 − α)E(W 2

1t)π
(j)
11 + (β0 − β)E(W 2

1t)π
(j)
12

g
(j)
2 (α, β) = (α0 − α)E(W 2

2t)π
(j)
21 /r

(j)
2,T + (β0 − β)E(W 2

2t)π
(j)
22 /r

(j)
2,T

The (strong) instrument W1 delivers the strongly identified moment g
(j)
1 , while W2 delivers

the weakly identified moment g
(j)
2 . It follows that only one (specific) direction in the pa-

rameter space is strongly identified. However, unlike case b), the strong direction does not

necessarily correspond to any structural parameter; e.g. the structural parameters will not

be strongly identified. Following Antoine and Renault (2009), the strong direction can be

found through a reparametrization that is based on the orthogonal of the null space of the

Jacobian associated with the (strong) moment g
(j)
1 . In our case, this Jacobian vector is

J
(j)
1 =

∂g
(j)
1 (α0, β0)

∂[α β]
= −[E(W 2

1t)π
(j)
11 E(W 2

1t)π
(j)
12 ] ,

and the orthogonal of its null space is spanned by the vector e
(j)
s =

(
π
(j)
11

π
(j)
12

)
.

It is interesting to realize that different strong directions are identified over each subsample

whenever e
(1)
s and e

(2)
s are not parallel to each other, that is e

(1)
s 6= ce

(2)
s for some constant

c 6= 0. For example, this is the case when either π11 or π12 changes (but not both), or when

they both change but not by a proportional amount: we expect this to happen more often

than not in practice. It also means that when considering moments from both subsamples

together, two (different) directions in the parameter space will be strongly identified, and

therefore the entire parameter space (including α0 and β0!).

The MOD estimator of (α0, β0) (see section 3.1) is defined by stacking the four moments

obtained from both subsamples: g
(1)
1 and g

(2)
1 are the two strong moments that drive the

strength of the identification of the parameter space, but for efficiency, the other two mo-

ments should also be included as already discussed in case a).

5.2 Efficient estimators for the reduced form

In this section, we show that in the presence of breaks, we can construct not only more

efficient GMM estimators of the structural form, but also more efficient estimators of the

reduced form. To formalize this, consider the following reduced form where we are interested
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in efficiently estimating Π. For simplicity, we consider one endogenous regressor Yt and no

additional exogenous regressor (p1 = 0, p2 = 1), and we also impose strong identification.

Yt = W ′
tΠ + vt .

The parameter Π is stable, however we allow for potential breaks in Var(vtWt), E(WtW
′
t ),

or both at T 0, which is assumed known for simplicity. A break in Var(vtWt) at T
0 implies

that the homogeneity assumption 5(ii) is violated. A break in E(WtW
′
t ) implies that the

homogeneity assumption 5(i) is violated.

In section 3.2, we have introduced two estimators of Π: the usual OLS estimator,

Π̂ = (W ′W )−1W ′Y , and the MOD estimator Π̂MOD based on the moment conditions,

ğT (θvec,Π) =





gT (θvec)

gT,2(Π)
.

We now introduce a third estimator that ignores the structural form and relies on the

subsample moment conditions before and after the break, gT,2(Π). We call this estimator

Π̂GMM because it is the optimal estimator that uses the 2q moments gT,2(Π) to estimate q

parameters. The following theorem shows that Π̂MOD is the most efficient.

Theorem 8. (Efficiency of reduced form estimators)

(i) Under Assumptions 1(ii), 2 to 4, and 7,
√
T (Π̂−Π),

√
T (Π̂GMM−Π), and

√
T (Π̂MOD−Π)

are asymptotically normally distributed with mean zero and respective asymptotic variance-

covariance matrices,

VOLS,Π = (Q1 +Q2)
−1(Sv,1 + Sv,2)(Q1 +Q2)

−1

VGMM,Π = (Q1S
−1
v,1Q1 +Q2S

−1
v,2Q2)

−1

VMOD,Π = (V −1
GMM,Π + G ′

∗G∗)
−1 with G∗ defined in the appendix.

(ii) Under Assumptions 1(ii), 2 to 4, and 7: VMOD,Π ≤ VGMM,Π ≤ VOLS,Π.

(iii) Under Assumptions 1(ii), 2 to 4, and 7, and 5 or 6: VMOD,Π ≤ VGMM,Π = VOLS,Π.

Comments:

(i) The inference developed to construct more efficient GMM estimators of the structural

parameters carries over to provide more efficient estimators of the reduced form parameters

in the presence of breaks. In other words, the OLS estimators of the reduced form parameters

are no longer the most efficient in presence of breaks in second moments of the instruments,
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or in their correlation with the error terms. It is important to note that OLS estimators

remain the most efficient under conditional homoskedasticity, that is if the regressors W are

independent of the errors v and can be treated as fixed. Consequently, our results do not

conflict with the Gauss-Markov Theorem, which states that OLS estimators are the most

efficient given W .

(ii) In addition, if the regressors are independent of the errors, Π̂GMM and Π̂MOD are more

efficient than Π̂, even under (unconditional) homoskedasticity. Thus, our estimators correct

not only for heteroskedasticity across subsamples, but also for changes in the second moment

of the regressors.

6 Monte-Carlo simulations

We consider the framework of section 3.1 with one endogenous regressor Y , q valid instru-

ments (including the intercept), and one break in the reduced form:

yt = α + Ytβ + σtǫt , Yt =

{
1 +W ′

tΠ1 + vt t ≤ T ∗

1 +W ′
tΠ2 + vt t > T ∗

, E[ǫtWt] = 0 , E[vtWt] = 0 .

The errors (ǫt, vt) are i.i.d. jointly normally distributed with mean 0, variance 1 and cor-

relation ρ; the instruments Wt are i.i.d jointly normally distributed with mean zero and

variance-covariance matrix equal to the identity matrix, and independent of (ǫt, vt). The

parameters of the model are such that, with ιk denoting the vector of ones of size k,

(α β) = (0 0) , Πi = diιq−1 , (i = 1, 2) with d1 =

√
R2

1

(q − 1)(1− R2
1)

, d2 = d1 + b .

We consider two versions of the model: homoskedasticity with σ2
t = 1; conditional he-

teroskedasticity (Garch) with σ2
t = 0.1 + 0.6u2

t−1 + 0.3σ2
t−1 and ut = σtǫt.

We are interested in the slope parameter β. In experiments 1 and 2, we compare the

performance of three estimators of β: (i) the new MOD estimator proposed in this paper

(that relies on the break); (ii) the 2SLS estimator proposed by Hall, Han and Boldea (2012)

(that also relies on the break); (iii) the standard full-sample GMM that ignores the break.

In experiment 1, their performances are evaluated by computing the Monte-Carlo bias,

standard deviation, root-mean squared errors (RMSE), as well as the length and coverage

of corresponding 95% confidence intervals22, for various configurations of the model. In

22The standard errors of each estimator are computed using the formulas in Theorem 1. We use HAC-type

estimators under conditional heteroskedasticity.
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experiment 2, we investigate these performance measures as a function of the location of

the break. In experiment 3, we compare the power curves of two types of inference to test

H0 : β = β0 over a range of values for β0. We consider the identification-robust inference

procedure that ignores the break and the inference procedure proposed in this paper that

relies on the detection and estimation of the break, as well as the detection of weak identi-

fication.

• Experiment 1:

Our benchmark model is such that the sample size is T = 400, the endogeneity parameter

is ρ = 0.5, the true break is located at T ∗ = 160 with break size b = 1. We use q = 4

instruments (including the intercept), and the R-square over the first subsample is R2
1 =

0.2, which corresponds to a first-stage F-test statistic equal to 13 and somewhat strong

identification.23 The implied reduced form parameters are d1 = 0.29 and d2 = 1.29.

We then explore different configurations of the model. First, we decrease R2
1 to display

weaker identification in the first subsample, while the second subsample remains strong:

R2
1 = 0.05 (and F1 = 2.7), and R2

1 = 0.01 (and F1 = 0.5). The break size is still b = 1,

but the implied reduced form parameters are now d1 = 0.13 and d1 = 0.06, respectively.

Then, we consider larger sample size, T = 800, more instruments, q = 6, larger endogeneity

parameter, ρ = 0.75. In all these experiments, the break is assumed to be known, and the

results are displayed in Tables 1 and 2 (for the homoskedastic and Garch cases). The results

for cases where the break location is unknown and estimated are displayed in Tables 3 and 4

(for the homoskedastic and Garch cases): three break sizes, 1, 0.5, and 0.2, are considered;

R2
1 = 0.2 and d1 = 0.29 throughout, while d2 =1.29, 0.79, and 0.49. All the results are

based on 5,000 replications.

- When the break is known, the main results do not vary much over the different specifica-

tions. We then focus on the benchmark case. Under homoskedasticity, the performances of

MOD and 2SLS are very close when considering the bias, the standard deviation, and the

RMSE. And their RMSEs are significantly smaller than for GMM. It is worth mentioning

that the biases of MOD and 2SLS tend to be larger than for GMM, but they are well-

compensated by the gains in terms of standard deviation; in addition, when the sample size

increases, such biases decrease as expected. When looking at the 95% confidence intervals

of the slope parameter, MOD displays the shortest ones while maintaining good coverage

23Recall the link between the R2 and the first-stage F-statistic F = R2

(1−R2) ×
(T−q)
(q−1) . Staiger and Stock’s

(1997) rule-of-thumb declares the instruments weak when the F-test statistic is below 10.
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properties. Under conditional heteroskedasticity (Garch case), the standard deviation and

RMSE of MOD are much smaller than for 2SLS as expected.

- When the break point is treated as unknown, the actual break size is important for the

accuracy of the estimated break location. With a break size of 1, the estimated break is

quite reliable with an average (over the estimated breaks) very close to the actual break:

the average is 161.3 with a true break at 160. When the break size decreases, the quality of

the estimator of the break location deteriorates: for instance, with a true break at 160 and

a break size of 0.2, the average is 172.4. Reliable estimation of the location of the break is

crucial for the bias properties of MOD and 2SLS. We can see that when the break is not

accurately estimated, their biases increase, and the coverage properties of the confidence

intervals also worsen.24 This bias should not be too much of a concern, because it only ap-

pears when the break size is small, and, oftentimes, such small breaks cannot be detected;

see also experiment 3 below.

• Experiment 2: Performance as a function of the true location of the break.

We have shown the asymptotic efficiency of MOD (compared to GMM and 2SLS). And,

at least asymptotically, it is always efficient to ”split” the sample in order to double the

number of moments. Intuitively, it seems reasonable when the break is somewhat in the

middle of the sample. We now investigate how the performance of the three estimators,

MOD, 2SLS and GMM, varies with the (true) location of the break.

We consider three versions of the above model, all with T = 400, ρ = 0.5, q = 4, and

R2
1 = 0.1 (which corresponds to d1 = 0.1925 and F1 = 5.8):

• model (i): the R-square remains the same over both subsamples: R2
1 = R2

2 = 0.1. The

associated break size is b = −0.385, and d2 = −0.1925. The identification strength is

borderline weak over the second subsample with F2 = 8.7.

• model (ii): the R-square increases over the second subsample, R2
2 = 0.22. The asso-

ciated break size is b = −0.5, and d2 = −0.3075. In this model, the identification is

strong over the second subsample with F2 = 22.2.

• model (iii): the R-square is smaller over the second subsample, R2
2 = 0.025. The

24One remedy consists in discarding the data around the estimated break (e.g. in a confidence interval

for the break location). This simple strategy should mitigate the drawback from estimating the break

inaccurately, and using partly misspecified moments. However, it does require the asymptotic distribution

of the break, which is beyond the scope of this paper.
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associated break size is b = −0.1, and d2 = 0.0925. In this model, the identification is

weak over the second subsample with F2 = 2.

The results under homoskedasticity and conditional heteroskedasticity are presented in Fig-

ures 1 and 2: two measures of performance are considered, the Monte-Carlo RMSE (left),

and the Monte-Carlo standard deviation (right). All results are based on 5,000 replications.

- In model (i), both Monte-Carlo RMSE and standard deviations for MOD and 2SLS are

stable as the break location changes from (0.1× 400) to (0.9× 400). This is quite different

for GMM: first, both its RMSE and standard deviation are quite larger than those of MOD

and 2SLS (as expected from the results of experiment 1); second, both are increasing as

a function of the location of the break until it is in the middle of the sample, then they

are decreasing to return to their original levels. Results for model (ii) are very similar, and

available upon request.

- In model (iii), both Monte-Carlo RMSE and standard deviations for all inference proce-

dures are decreasing functions of the location of the break. This is not very surprising since

the explanatory power over the second subsample is quite smaller than over the first one

(R2
1 = 0.1 and R2

2 = 0.025).

• Experiment 3: Power curves of the overall inference procedure.

We now compare the power curves of two types of inference procedures to test H0 : β =

β0 for a range of β0 values: (i) an identification-robust procedure (IdR hereafter) that

ignores the break; (ii) our suggested procedure (MOD hereafter) (that tests for break and

identification strength). When using IdR, we compute a 95% confidence interval for β, and

check whether the tested value β0 belongs to it. We consider two IdR procedures, Anderson-

Rubin (hereafter AR) and Kleibergen (2005, hereafter K).25 When using our suggested

procedure, we first test 0 vs 1 break: if 0 break, we test for weak over the whole sample and

use either GMM or IdR to compute the confidence interval for β; if 1 break, we estimate

it, and conditional on the estimated break, we test for weak over each subsample, and use

either MOD or IdR. We test for the presence of break with the Sup-Wald test at 95%;

we use Staiger and Stock’s rule-of-thumb to test for weak identification. We consider two

versions of MOD: one where we simply use a 95% confidence interval for β; the other,

MOD-adj, where we adjust the size of the test using a Bonferroni-type correction, and use

25These procedures are more computationally-friendly than other IdR procedures, because their critical

values are known and do not need to be simulated for each tested value.
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a (1 − 0.05/2)% confidence interval. When MOD (or MOD-adj) relies on K, we denote it

MOD-K (or MOD-K-adj); when it relies on AR, we denote it MOD-AR (or MOD-AR-adj).

We consider the three versions of the homoskedastic model from experiment 2, models (i),

(ii) and (iii). All results are based on 5,000 replications, and are reported in Figures 3, 4,

and 5. We also report the rejection probability at the true value, the probability of detecting

the break, and the probability of detecting weak identification when the break is ignored

(full-sample F-test), and when the detection of the break is taken into account (full-sample

F-test when no break is detected, and subsample F-test when a break is detected). The

results for AR are very close to K (with a slight lack of power for AR as expected) and are

not reproduced here; they are available upon request.

Comments:

(i) Test of weak identification in presence of a break.

Interestingly, accounting for the presence of a break matters a lot when testing weak iden-

tification. When the break is ignored, the sample is declared weak much more often, even

though it is not necessarily weak over each subsample. For example, for model (ii), the

identification is strong over the second subsample (F2 = 22). Yet, the sample is almost

always declared weak when the break is ignored. However, when the break is accounted

for, the sample is never declared weak, as expected. This means that there is valuable and

reliable information contained in the break that can be used to improve estimation as we

discuss next. As a robustness check, it is also worth mentioning that for model (iii) with

a second subsample that is quite weak (F2 = 2), accounting for the break does not change

how often the sample is declared weak: both probabilities are approximately 0.76.

(ii) IdR vs MOD.

Overall the power properties of MOD are better than K. This means that confidence intervals

for β will be narrower when using MOD. Of course, MOD is slightly oversized due to the

pretest: instead of 5%, the rejection probabilities at the true value are between 8% and 10%

across all simulation designs. However, our simple Bonferroni-type adjustment is sufficient

to control the size across all simulation designs without affecting the power properties much.

Fully accounting for the error of pretesting is beyond the scope of this paper. We refer the

interested reader to the powerful size-correction methods recently developed by McCloskey

(2012); see also references therein.

In model (i), K does not have any power, while MOD (and MOD-adj) both display the

usual well-shaped power curve achieving a power equal to 0.5 for tested values |β0| > 0.6.

In model (ii), all inference procedures have some power. However, MOD has much more
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power: it is equal to 1 for tested values |β0| > 0.6 for MOD, and less than 0.5 for K. Finally,

in model (iii), the identification is quite weak over the second subsample, and all inference

procedures behave very similarly. It is reassuring to see that when the identification is weak

over the whole sample, there does not seem to be a cost in accounting for the break.

7 Conclusion

There is a lot of empirical evidence that macroeconomic models such as the NKPC are sub-

ject to parameter instability and identification issues. In this paper, we consider both issues

in a unified framework, and provide a comprehensive treatment of the link between them.

To our knowledge, it is the first paper that explicitly accounts for the connection between

parameter instability and changes in identification strength. Such changes in identification

strength provide an additional source of information that is used to improve estimation.

As long as at least one subsample is not weakly identified, we show that standard procedures

can be used to detect and estimate break points. In addition, given the estimated break

point, we propose a GMM-type estimator for the parameters of interest that is more efficient

than competitors (e.g. the full-sample GMM and the 2SLS estimator of Hall, Han and

Boldea (2012)). When parameter instability is confined to the main equation, we exploit

the stability of the reduced form equation to propose another efficient GMM-type estimator

when the identification is not weak. More generally, we show that detecting and locating

changes in instrument strength is essential for correct and efficient asymptotic inference,

and we provide a step-by-step guide for practitioners.

In our simulation study, our inference procedures rely on Staiger and Stock’s (1997) popular

rule-of-thumb (based on the first stage F-test) to distinguish weak and ”not weak” identifi-

cation, either on the whole sample, or on each subsample. The associated results, especially

the power curves of our global inference procedures, are very promising. We expect such

results to be even better with more elaborate and powerful tests of weak identification such

as those proposed in Antoine and Renault (2013).
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Appendix

This Appendix contains three parts (denoted A, B, and C). Appendix A provides additional

discussions about identification and parameter instability in the linear IV regression model.

Appendix B contains the proofs of the theoretical results of the paper. Appendix C contains

the tables of results of the Monte-Carlo study.

A Identification and instability

We now discuss identification and parameter instability in the linear IV regression model.

A.1 Identification in the stable linear IV regression model

We start with an overview of the identification settings and associated asymptotic results

commonly used in the stable linear IV model. The associated moment restrictions write

E
[
Wt

(
yt − Z ′

tθ
0
z − Y ′

t θ
0
y

)]
= 0 , (A.1)

with yt the dependent variable, Yt the vector of p2 endogenous variables, Zt the vector

of p1 exogenous variables, Wt the vector of q (valid) instrumental variables including Zt,

Xt = vec (Zt, Yt), θ
0 = vec (θ0z , θ0y), and p = p1 + p2.

In such a setting, weak identification is often modeled by assuming that these unconditional

moments flatten around θ0 as the sample size T increases. Typically, Antoine and Renault

(2009), in the line of Staiger and Stock (1997), assume that, for any k between 1 and q,

E [Wk,t (yt − Z ′
tθz − Y ′

t θy)] =
mk(θ)

rk,T
, (A.2)

where θ = vec (θz, θy), mk(.) is a constant function, rk,T is a deterministic real sequence

such that rk,T = 1 or rk,T
T→ ∞. The faster the unknown sequence rk,T diverges to infinity,

the weaker the associated instrumental variable (IV), or moment condition is. Three cases

of interest have been distinguished in the literature:

• When rk,T = 1, the IV is strong. This is the standard case. When all the moment

conditions are strong, standard inference procedures deliver
√
T -consistent estimators

of the structural parameters.
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• When rk,T
T→ ∞ and rk,T = o(

√
T ), the IV is semi-strong.26 When all the moment

conditions are semi-strong at the same rate rT , standard inference procedures are still

asymptotically valid, and feasible without knowing the exact rate rT . However, conver-

gence rates of associated estimators are slower and depend on the degree of weakness,√
T/rT . When moment conditions are associated with different rates, the structural

parameters are usually identified at the slowest available rate, [
√
T/max

k
(rk,T )]. The

interested reader is referred to sections 2.1 and 4.1 in Antoine and Renault (2010) for

a thorough discussion of such cases.

• When rk,T =
√
T , the IV is weak. Consistent estimation of the structural parameters is

not possible anymore and one must rely on so-called ”identification-robust” inference

techniques. See e.g. the surveys by Stock, Wright, and Yogo (2002), Dufour (2003),

Andrews and Stock (2005), and references therein.

Our paper considers a framework where the exact identification pattern is unknown, and

allowed to change over the sample. In sections 3 and 4, we consider cases where all in-

struments have the same identification strength. In section 5.1, we consider more general

characterizations of identification strength.

A.2 Parameter instability in the stable linear IV regression model

In this section, we motivate why parameter instability may be relevant either in the reduced

form, in the main equation of interest, or in both. Intuitively, if parameters in the main

equation are ”deep” parameters of an underlying structural model (such as preferences), they

may not change in response to a change in policy specified by a reduced form. However, if

these parameters are not ”deep” parameters, they may change without any change in policy,

or in response to the change in policy, which can lead to changes in the main equation that

are either idiosyncratic or concomitant with the breaks in reduced form. Below we provide

such an example.

Consider a reduced form as implicitly derived from a structural system, say

[y Y ]

[
1 Γ12

Γ21 Γ22

]
= ZΘ̃ + U .

26We use the terminology introduced by Andrews and Cheng (2012). Earlier literature referred to such

cases as ”near-weak” identification: see Hahn and Kuersteiner (2002).
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Provided Γ is invertible, this implies that, with obvious notations,

y = −Y Γ21 + ZΘ̃1 + U1

Y = [ZΘ̃Γ−1]22 + [UΓ−1]22
def
=== ZΠ+ V .

Thus, whenever either Γ12, Γ22, or Θ̃2 changes, so do Π and Var(V ), but not the structural

equation. In light of this, we propose in section 3.1 a framework where reduced-form param-

eters can change while structural ones do not. We also propose in section 3.2 a framework

where parameters in the main equation can change while reduced-form ones do not, which

can happen if Γ12 = 0. In such a case, provided Γ22 is invertible, the reduced form equation

writes

Y = ZΘ̃2Γ
−1
22 + U2Γ

−1
22

def
=== ZΠ+ V .

and breaks in the main equation (whever Γ21 or Θ̃1 changes) do not transmit to the reduced

form. Finally, whenever Γ12 6= 0, any break in Γ21 or Θ̃1 will appear in both the main and

the reduced form equations. This case is discussed in section 4.

B Proofs of the theoretical results

To simplify the exposition, all the proofs below are written for a single endogenous regressor

(p2 = 1) and no exogenous regressors, p1 = 0. Complete proofs in presence of multiple

endogenous regressors and exogenous regressors can be found in the Supplemental Appendix.

• Proof of Theorem 1: Asymptotic properties of ν̂, θ̂2SLS, θ̂GMM , and θ̂MOD.

We assume that T̂ ∗ < T ∗. The proof for T̂ ∗ ≥ T ∗ is similar and omitted for simplicity.

• (i) Consistency of ν. We drop the subscripts s on Π̂s
1, Π̂

s
2 and Y s

t , since for one endogenous

regressor, Y s
t = Yt, both scalars. Let v̂t

def
=== Yt −W ′

tΠ̂1 in interval [1, T̂ ∗], v̂t
def
=== Yt −W ′

tΠ̂2

in interval [T̂ ∗ + 1, T ], and d∗t
def
=== v̂t − vt. By definition of the sum of squared residuals,

T∑

t=1

v̂2t ≤
T∑

t=1

v2t ⇒ 2

T∑

t=1

vtd
∗
t +

T∑

t=1

(d∗t )
2 ≤ 0 . (B.1)

We show consistency by contradiction in two steps. In step 1, we show that27:

T∑

t=1

(d∗t )
2 = OP (Tr

−2
T ) and

T∑

t=1

vtd
∗
t = OP (T

1/2r−1
T ) (B.2)

27If rT = T 1/2, then
∑T

t=1(d
∗

t )
2 and 2

∑T
t=1 vtd

∗

t are of the same order, and our argument does not apply.
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Then, (B.2) ⇒
T∑

t=1

(d∗t )
2 >> 2

T∑

t=1

vtd
∗
t (” >> ” means ”dominates asymptotically”)

⇒ plim(r2TT
−1)

T∑

t=1

(d∗t )
2 ≤ 0

⇒ plim(r2TT
−1)

T∑

t=1

(d∗t )
2 = 0 by non-negativity (B.3)

In step 2, we show that if ν̂ 6 p→ ν0, then, with positive probability, (r2TT
−1)
∑T

t=1(d
∗
t )

2 > 0,

which contradicts (B.3).

- Step 1. Let ΠiT
def
=== Πi/riT , and Ψv

1(r)
def
=== T−1/2

∑[Tr]
t=1 Wtvt, Ψ

v
2(r)

def
=== T−1/2

∑T
t=[Tr]+1Wtvt,

Ψv
∆

def
=== T−1/2

∑[Tν0]
t=[T ν̂]+1Wtvt, and Ψv

i (ν
0)

def
=== Ψv

i , for i = 1, 2. Note that:

d∗t = v̂t − vt =




Yt −W ′

t Π̂1 − vt, t ≤ T̂ ∗

Yt −W ′
t Π̂2 − vt, t > T̂ ∗

=





W ′
t(Π1T − Π̂1), t ≤ T̂ ∗

W ′
t(Π1T − Π̂2), T̂ ∗ + 1 ≤ t ≤ T ∗

W ′
t(Π2T − Π̂2), t > T ∗

T∑

t=1

vtd
∗
t = (Π1T − Π̂1)

′[T 1/2Ψv
1(ν̂)] + (Π1T − Π̂2)

′[T 1/2Ψv
∆] + (Π2T − Π̂2)

′[T 1/2Ψv
2]. (B.4)

By Assumptions 1(i), (ii), and the functional CLT (FCLT) in Wooldridge and White (1988),

Theorem 2.11, Ψv
i (r) = OP (1), uniformly in r ∈ [0, 1] (u.r. thereafter). Thus, Ψv

1(ν̂) =

OP (1),Ψ
v
∆ = OP (1),Ψ

v
2 = OP (1).

Recall Q̂1(r) = T−1
∑[Tr]

t=1 WtW
′
t , Q̂2(r) = Q̂ − Q̂1(r), and let Q̂∆

def
=== T−1

∑[Tν0]
t=[T ν̂]+1WtW

′
t .

Then, by Assumption 3, Q̂i(r) = OP (1) and Q∆ = OP (1), hence:

Π1T − Π̂1 = −Q̂−1
1 (ν̂) [T−1/2Ψv

1(ν̂)] = OP (1) OP (T
−1/2) = OP (T

−1/2). (B.5)

On the other hand, with Π∆
T

def
=== Π1T − Π2T = OP (r

−1
T ),

Π2T − Π̂2 = −Q̂−1
2 (ν̂) [T−1/2Ψv

2(ν̂)]− Q̂−1
2 (ν̂) Q̂∆ Π∆

T = OP (r
−1
T ) (B.6)

Π1T − Π̂2 = Π∆
T + (Π2T − Π̂2) = OP (r

−1
T ). (B.7)

Substituting (B.5)-(B.7) into (B.4) yields
∑T

t=1 vtd
∗
t = OP (T

1/2r−1
T ). Next, note that:

T∑

t=1

(d∗t )
2 =

T̂ ∗∑

t=1

(d∗t )
2 +

T ∗∑

T̂ ∗+1

(d∗t )
2 +

T∑

t=T ∗+1

(d∗t )
2 = (Π1T − Π̂1)

′ T Q̂1(ν̂) (Π1T − Π̂1)

+ (Π1T − Π̂2)
′ T Q̂∆ (Π1T − Π̂2) + (Π2T − Π̂2)

′ T Q̂2(ν
0) (Π2T − Π̂2)

= OP (1) +OP (r
−1
T )OP (T )OP (r

−1
T ) +OP (r

−1
T )OP (T )OP (r

−1
T ) = OP (Tr

−2
T )�
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- Step 2. Define ‖ · ‖ as the Euclidean norm for vectors, and ‖J‖ as the square root

of the maximum eigenvalue of J ′J for matrices. If ν̂ 6 p→ ν0, then there exists η ∈ (0, 1),

such that with positive probability ǫ, T ∗ − T̂ ∗ = [Tν0] − [T ν̂] ≥ Tη. Because Q̂ν0,η =

T−1
∑[Tν0]

t=[Tν0]−Tη+1WtW
′
t is a symmetric pd matrix, ‖Q̂ν0,η‖ ≥ mineig(Q̂ν0,η). By Assump-

tion 3, mineig(Q̂ν0,η) > 0 in probability limit. Let Π̂2 be the OLS estimator of the reduced

form in interval {[Tν0 − Tη] + 1, T}. Then, with positive probability ǫ,

r2T T−1

T∑

t=1

(d∗t )
2 ≥ r2T T−1

(
T ∗∑

t=T ∗−Tη+1

(d∗t )
2

)
= rT (Π1T − Π̂2)

′ η Q̂ν0,η rT (Π1T − Π̂2)

≥ ‖rTΠ∆
T + rT (Π2T − Π̂2)‖2 ηmineig(Q̂ν0,η). (B.8)

From (B.6), rT

(
Π2T − Π̂2

)
= −[Q̂2(ν

0 − η)]−1 Q̂ν0,η rTΠ
∆
T + oP (1)

def
=== −Q̃ rTΠ

∆
T + oP (1),

which can be substituted into (B.8).

- When r1T = r2T = rT , we have:

r2TT
−1

T∑

t=1

(d∗t )
2 ≥ ‖(I − Q̃)(Π1 − Π2)‖2 ηmineig(Q̂ν0,η)

≥ ‖(Π1 − Π2)‖2[mineig2(I − Q̃)] ηmineig(Q̂ν0,η)

which is positive with probability ǫ for large T , because Qν0,η is pd by Assumption 3, as

well as I − Q̃ = I − [Q̂2(ν
0 − η)]−1 Q̂ν0,η = [Q̂2(ν

0 − η)]−1Q2(ν
0) is pd.

- When riT = o(rjT ) (i 6= j), we have, using similar arguments,

r2T T−1
T∑

t=1

(d∗t )
2 ≥ ‖(I − Q̃)Πi‖2ηmineig(Qν0,η)

which is positive with probability ǫ for large T , because rank(Πi) = 1 by assumption 1(iii).�

• (i) Convergence rate of ν̂. Since ν̂
p→ ν0, any break point estimator T̂ ∗ = [T ν̂] is such that

T ∗ − T̂ ∗ ≤ ǫ∗T , for some chosen ǫ∗ > 0 (thus uniformly over ν̂). We find the convergence

rate by contradiction as well. For chosen C∗ > 0, assume that T ∗ − T̂ ∗ > C∗r2T , uniformly

over ν̂. Define SSR∗
1, SSR

∗
2 and SSR∗

3 as the sum of squared residuals in the reduced form

obtained with break points T̂ ∗, T ∗ and (T̂ ∗, T ∗) respectively. Then, by definition of OLS,

min
T̂ ∗ s.t. C∗r2

T
<T ∗−T̂ ∗≤ǫ∗T

(SSR∗
1 − SSR∗

2) ≤ 0.

We show that if C∗r2T < T ∗ − T̂ ∗ ≤ ǫ∗T for some large but fixed C∗ and small but fixed ǫ∗,

then plim(SSR∗
1 − SSR∗

2) > 0, contradicting the above. It follows that T ∗ − T̂ ∗ ≤ C∗r2T ,
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and by symmetry of the argument, if T̂ ∗ ≥ T ∗, T̂ ∗ − T ∗ ≤ C∗r2T , establishing the desired

convergence rate for the break fraction estimator.

We show that plim(SSR∗
1−SSR∗

2) > 0 in two steps. Denote by (Π̂1, Π̂2) the OLS estimators

based on sample partition (1, T̂ ∗, T ), by (Π̂1, Π̂∆, Π̃2) the ones based on (1, T̂ ∗, T ∗, T ), and

by (Π̃1, Π̃2) the ones based on (1, T ∗, T ). In step 1, we show that:

SSR∗
1 − SSR∗

3 = (Π̃2 − Π̂∆)
′[TQ̂∆](Π̃2 − Π̂∆)− (Π̃2 − Π̂∆)

′[TQ̂∆Q̂
−1
2 (ν0)Q̂∆](Π̃2 − Π̂∆)

def
=== N∗

1 −N∗
2 . (B.9)

By the same arguments, we also have:

SSR∗
2 − SSR∗

3 = (Π̂1 − Π̂∆)
′[TQ̂∆](Π̂1 − Π̂∆)− (Π̂1 − Π̂∆)

′[TQ̂∆Q̂
−1
1 (ν0)Q̂∆](Π̂1 − Π̂∆)

def
=== N∗

3 −N∗
4 .

In step 2, we show that N∗
1 dominates N∗

2 , N
∗
3 , N

∗
4 for large C∗ and small ǫ∗. We also show

that N∗
1 > 0 at the limit, for large C∗ and small ǫ∗, hence:

plim(SSR∗
1 − SSR∗

2) = N∗
1 −N∗

2 −N∗
3 +N∗

4 > 0 .

- Step 1. We have:

SSR∗
1 − SSR∗

3 =

T ∗∑

t=T̂ ∗+1

[(Yt −W ′
t Π̂2)

2 − (Yt −W ′
t Π̂∆)

2] +

T∑

t=T ∗+1

[(Yt −W ′
t Π̂2)

2 − (Yt −W ′
t Π̃2)

2]

= T 1/2(Π̂∆ − Π̂2)
′
[
2Ψv

∆ + Q̂∆T
1/2[(Π1T − Π̂2) + (Π1T − Π̂∆)]

]

+ (Π̃2 − Π̂2)
′
[
Ψv

2(ν
0) + Q̂2(ν

0)T 1/2[(Π2T − Π̂2) + (Π2T − Π̃2)]
]

(B.10)

For simplicity, let D
def
=== Q̂∆ and E

def
=== Q̂2(ν

0). By definition of OLS,

(D + E)Π̂2 = T 1/2Ψv
2(ν̂) = T 1/2Ψv

∆ + T 1/2Ψv
2(ν

0) = DΠ̂∆ + EΠ̃2.

Thus, we have:

Π̂∆ − Π̂2 = Π̂∆ − (D + E)−1[DΠ̂∆ + EΠ̃2] = (D + E)−1[(D + E)Π̂∆ −DΠ̂∆ − EΠ̃2]

= (D + E)−1E(Π̂∆ − Π̃2),

Π̃2 − Π̂2 = (D + E)−1[(D + E)Π̃2 −DΠ̂∆ − EΠ̃2] = (D + E)−1D(Π̃2 − Π̂∆).
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Substituting this into (B.10) and noting that D,E are symmetric, we obtain:

T−1(SSR∗
1 − SSR∗

3)

= (Π̂∆ − Π̃2)
′E(D + E)−1[2D(Π̂∆ −Π1T ) +D(Π1T − Π̂2) +D(Π1T − Π̂∆)]

+ (Π̃2 − Π̂∆)
′D(D + E)−1[2E(Π̃2 − Π2T ) + E[(Π2T − Π̂2) + E(Π2T − Π̃2)]

= (Π̂∆ − Π̃2)
′E(D + E)−1D(Π̂∆ − Π̂2) + (Π̃2 − Π̂∆)

′D(D + E)−1E(Π̃2 − Π̂2)

= (Π̂∆ − Π̃2)
′E(D + E)−1D(D + E)−1E(Π̂∆ − Π̃2)

+ (Π̃2 − Π̂∆)
′D(D + E)−1E(D + E)−1D(Π̃2 − Π̂∆)

= (Π̂∆ − Π̃2)
′[E(D + E)−1D(D + E)−1E +D(D + E)−1E(D + E)−1D](Π̂∆ − Π̃2).

To prove (B.9), we are left with showing that:

E(D + E)−1D(D + E)−1E +D(D + E)−1E(D + E)−1D = D −D(D + E)−1D.

Let F1
def
=== E(D + E)−1 and F2

def
=== D(D + E)−1. Then F1 + F2 = I, F ′

1 + F ′
2 = I and

F1 = I − F2, so:

E(D + E)−1D(D + E)−1E +D(D + E)−1E(D + E)−1D = F1 D F ′
1 + F2 E F ′

2

= (I − F2) D (I − F ′
2) + F2 E F ′

2 = D −DF ′
2 − F2D + F2DF ′

2 + F2EF ′
2

= D −D(D + E)−1D −D(D + E)−1D +D(D + E)−1(D + E)(D + E)−1D

= D −D(D + E)−1D.

- Step 2. Since T ∗ − T̂ ∗ ≤ ǫ∗T , by Assumption 3,

(D + E)−1D = Q̂−1
2 (ν̂)Q̂∆ = OP (1)OP (ǫ

∗) = OP (ǫ
∗) ⇒ N∗

1 >> N∗
2 ,

for ǫ∗ small enough. Similarly, N∗
3 >> N∗

4 . To show that N∗
1 >> N∗

3 , we need to compare

(Π̃2 − Π̂∆) and (Π̂1 − Π̂∆). Since Π̂1 and Π̂∆ are both subsample estimators of Π1T ,

Π̂1 − Π̂∆ = (Π̂1 − Π1T )− (Π̂∆ − Π1T ) = OP (T
−1/2) +OP (T

−1/2) = OP (T
−1/2).

Since Π̃2 is the estimator of Π2T in subsample [T ∗ + 1, T ], Π̃2 − Π2T = OP (T
−1/2), so

Π̃2 − Π̂∆ = (Π̃2 − Π2T )− (Π̂∆ − Π1T )− Π∆
T = OP (T

−1/2)− Π∆
T = OP (r

−1
T ).

Thus, (Π̃2−Π̂∆) >> (Π̂1−Π̂∆), implying that N∗
1 >> N∗

3 , and so N∗
1 >> N∗

j , for j = 2, 3, 4.

We show that N∗
1 > 0 at the limit, for small ǫ∗ and large enough C∗. For large enough C∗,

TQ̂∆/(T
∗ − T̂ ∗) =

T ∗∑

t=T̂ ∗+1

WtW
′
t/(T

∗ − T̂ ∗) = OP (1)
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⇒ r2TN
∗
1 = r2T (T

∗ − T̂ ∗)[OP (T
−1/2)−Π∆

T ]
′[T Q̂∆/(T

∗ − T̂ ∗)] [OP (T
−1/2)− Π∆

T ]

≥ C∗rT Π∆′

T [Q1 −Q1(ν̂)] rT Π∆
T + oP (1) .

By Assumption 3, Q̂∆ = Q̂1 − Q̂1(ν̂)] is pd uniformly in ν̂, and so N∗
1 > 0 at the limit

if rTΠ
∆
T 6→ 0. When r1T = r2T , rTΠ

∆
T = Π1 − Π2 6= 0 by construction. Similarly, when

riT = o(rjT ), |rTΠ∆
T | → |Πi| 6= 0.

• (ii) Asymptotic distribution of 2SLS. LetW 1 be the (T̂
∗×q) matrix with rowsW ′

1, . . . ,W
′
T̂ ∗
,

W 2 the ((T − T̂ ∗)× q) matrix with rows W ′
T̂ ∗+1

, . . . ,W ′
T and,

W =

(
W 1 OT̂ ∗×q

O(T−T̂ ∗)×q W 2

)
and W

0
=

(
W

0

1 OT ∗×q

O(T−T ∗)×q W
0

2

)
,

W andW
0
are the diagonal partition at T̂ ∗ and T ∗, respectively. Then Ŷ

def
=== vec (Ŷ1, . . . , ŶT )

can be written as Ŷ = W Π̂vec, with Π̂vec = vec (Π̂1, Π̂2). Let y
def
=== vec (y1, . . . , yT ),

Y
def
=== vec (Y1, . . . , YT ) and U

def
=== vec (u1, . . . , uT ), the 2SLS estimator is:

θ̂ = (Ŷ ′Ŷ )−1Ŷ ′y = (Ŷ ′Ŷ )−1Ŷ ′(Ŷ θ0 + (Y − Ŷ )θ0 + U) = θ0 + (Ŷ ′Ŷ )−1Ŷ ′Ũ ,

with Ũ = (Y − Ŷ )θ0 + U . It follows that:

T 1/2r−1
T (θ̂ − θ0) = (r2TT

−1Ŷ ′Ŷ )−1rTT
−1/2Ŷ ′Ũ . (B.11)

In step 1, we show that:

r2TT
−1 Ŷ ′Ŷ = r2T [ Π′

1T Q1 Π1T +Π′
2T Q2 Π2T ] + oP (1) (B.12)

rTT
−1/2 Ŷ ′Ũ = rT [ Π′

1T Ψu
1 +Π′

2T Ψu
2 ] + oP (1), (B.13)

where (Ψu
i (·),Ψu

∆(·)) are defined as (Ψv
i (·),Ψv

∆(·)), with ut replacing vt, and Ψj
i

def
=== Ψj

i (ν
0),

j ∈ {u, v}, i = 1, 2. Equations (B.12) and (B.13) imply that T 1/2r−1
T (θ̂ − θ0) has the same

asymptotic distribution as if ν0 was known. In step 2, we derive this asymptotic distribution.

- Step 1. Consider r2TT
−1 Ŷ ′Ŷ = r2T Π̂′

vec (T
−1W

′
W ) Π̂vec.

By Theorem 1(i) and Assumption 3,

Q̂∆ = T−1
T ∗∑

T̂ ∗+1

WtW
′
t =

T ∗ − T̂ ∗

T


 1

T ∗ − T̂ ∗

T ∗∑

T̂ ∗+1

WtW
′
t


 = OP (r

2
T/T )OP (1) = oP (1) ,

and so, T−1W
′
W − T−1W

0′
W

0
= oP (1). (B.14)
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Next, we analyze Π̂vec, or equivalently Π̂i for i = 1, 2. Under Assumptions 1(i), (ii), and the

FCLT in Wooldridge and White (1988), Theorem 2.11,

Ψv
∆ =

[
T ∗ − T̂ ∗

T ∗

]1/2 
(T ∗ − T̂ ∗)−1/2

T ∗∑

t=T̂ ∗+1

Wtvt


 = OP (rT/T

1/2)OP (1) = oP (1),

so Ψv
1(ν̂)−Ψv

1 = −Ψv
∆ = oP (1) and Ψv

2(ν̂)−Ψv
2 = Ψv

∆ = oP (1). From these and (B.14),

T 1/2(Π̂1 −Π1T ) = Q̂−1
1 (ν̂)Ψv

1(ν̂) = Q−1
1 Ψv

1 + oP (1) = OP (1)

T 1/2(Π̂2 −Π2T ) = Q̂−1
2 (ν̂)Ψv

2(ν̂) + Q̂−1
2 (ν̂) Q̂∆T

1/2Π∆
T

= Q−1
2 Ψv

2 +OP (1)OP (r
2
TT

−1)OP (T
1/2r−1

T ) = OP (1).

It follows that Π̂1 = Π1T + oP (1), Π̂2 = Π2T + oP (1), and with (B.14) these imply:

r2TT
−1Ŷ ′Ŷ = r2T

(
T−1

T ∗∑

t=1

Ŷ 2
t + T−1

T∑

t=T ∗+1

Ŷ 2
t

)
+ oP (1) = r2T [Π

′
1TQ1Π1T +Π′

2TQ2Π2T ] + oP (1).

The latter proves (B.12). Next, we show (B.13). By the above, defining Ψ̃i, Ψ̃i(·), Ψ̃∆ as

Ψu
i ,Ψ

u
i (·),Ψu

∆, but with ũt replacing ut, for i = 1, 2,

rTT
−1/2Ŷ ′Ũ = rT Π̂

′
1Ψ̃1(ν̂) + rT Π̂

′
2Ψ̃2(ν̂) = rTΠ

′
1T Ψ̃1(ν̂) + rTΠ

′
2T Ψ̃2(ν̂). (B.15)

First, ‖T−1/2WŨ − T−1/2W
0
Ũ‖ = ‖T−1/2

∑T ∗

t=T̂ ∗+1Wtũt‖. Also, note that:

ũt = ut + (Yt − Ŷt)θ
0 =






ut + vtθ
0 −W ′

t (Π̂1 − Π1T )θ
0, t ≤ T̂ ∗

ut + vtθ
0 −W ′

t (Π̂2 − Π1T )θ
0, T̂ ∗ + 1 ≤ t ≤ T ∗

ut + vtθ
0
y −W ′

t (Π̂2 − Π2T )θ
0, t > T ∗

Ψuv
i ,Ψuv

i (·),Ψuv
∆ are defined as before, but with ut replaced by (ut + vtθ

0), for i = 1, 2,

Ψ̃∆
def
=== T−1/2

∑T ∗

t=T̂ ∗+1Wtũt, and so,

Ψ̃∆ = Ψuv
∆ − Q̂∆ [T 1/2(Π̂2 − Π1T )] θ

0 = OP (rTT
−1/2)−OP (r

2
TT

−1)OP (T
1/2r−1

T ) = oP (1).

Hence Ψ̃i(ν̂) − Ψ̃i = −Ψ̃∆ = oP (1). Next, we analyze Ψ̃i. Ψ̃1 = Ψuv
1 − Q̂1(ν

0) [T 1/2(Π̂1 −
Π1T )] θ

0 + oP (1) = Ψuv
1 − Ψv

1 θ0 + oP (1) = Ψu
1 + oP (1). Similarly, Ψ̃2 = Ψu

2 + oP (1). From

this, Ψ̃i(ν̂) = Ψ̃i + oP (1), and from (B.15), rTT
−1/2Ŷ ′Ũ = rT [Π′

1TΨ
u
1 +Π′

2TΨ
u
2 ] + oP (1),

which coincides with (B.13). In step 2, we derive the limits in (B.13).

49



- Step 2. When r1T = r2T = rT . Then (B.13) becomes:

T 1/2r−1
T (θ̂ − θ0) = [Π′

1Q1Π1 +Π′
2Q2Π2]

−1rT [Π′
1TΨ

u
1 +Π′

2TΨ
u
2 ] + oP (1)

= (A1 + A2)
−1rT [Π′

1TΨ
u
1 +Π′

2TΨ
u
2 ] + oP (1). (B.16)

By Assumption 1(ii), Ψu
1 ⊥ Ψu

2 asymptotically, so by the CLT, rT [Π
′
1TΨ

u
1 + Π′

2TΨ
u
2 ]

d→
N (0, B1 +B2). Thus, T

1/2r−1
T (θ̂ − θ0)

d→ N (0, (A1 + A2)
−1(B1 +B2)(A1 + A2)

−1).

- When riT = o(rjT ) and wlog i = 1, we have rT = r1T , rT (Π1T ,Π2T ) → (Π1, Oq×1),

and T 1/2r−1
T (θ̂ − θ0) = [Π′

1Q1Π1]
−1Π′

1Ψ
u
1 + oP (1)

d→ A−1
1 N (0, B1) = N (0, A−1

1 B1A
−1
1 ).

• (ii) Asymptotic distribution of GMM.

θ̂GMM =

[
Y ′W

T
Ŝ−1
u

W ′Y

T

]−1
Y ′W

T
Ŝ−1
u

W ′

T
(Y θ0 + U)

⇔ T 1/2r−1
T

(
θ̂GMM − θ0

)
=

[
rT

Y ′W

T
Ŝ−1
u rT

W ′Y

T

]−1

rT
Y ′W

T
Ŝ−1
u

W ′U

T 1/2

with rTT
−1Y ′W = rTΠ

′
1T Q̂1(ν

0) + rTΠ
′
2T Q̂2(ν

0) + rTT
−1/2Ψv

1 + rTT
−1/2rTΨ

v
2 + oP (1)

= rTΠ
′
1TQ1 + rTΠ

′
2TQ2 + oP (1) since Ψv

i = OP (1).

Also, as before, T−1/2W ′U = Ψu
1 +Ψu

2
d→ N (0, Su). Let µi

def
=== QiΠi (i = 1, 2).

- When r1T = r2T = rT . Then rTT
−1Y ′W = Π′

1Q1 + Π′
2Q2 + oP (1) = µ′

1 + µ′
2 + oP (1).

Hence, using the optimal GMM estimator with Ŝu
p→ AVar(T 1/2gT (θ

0)) = Su,

T 1/2r−1
T (θ̂GMM − θ0)

d→ N
(
0, [(µ1 + µ2)

′S−1
u (µ1 + µ2)]

−1
)
= N (0, VGMM) .

- When r1T = o(r2T ) = rT , rTΠ2T → 0, rTT
−1Y ′W

p→ µ′
1, and T 1/2r−1

T (θ̂GMM − θ0)
d→

N (0, [µ′
1 S−1

u µ1]
−1) .

• (ii) Asymptotic distribution of MOD. For the weighting matrix (Ŝa
u)

−1, we have:

θ̂MOD =
[
Y ′W̆ (Ŝa

u)
−1W̆ ′Y

]−1

Y ′W̆ (Ŝa
u)

−1W̆ ′(Y θ0 + U),

where W̆ ′ = [W
′

1/T̂
∗,W

′

2/(T − T̂ ∗)] and W 1, W 2 defined in part (ii). So,

T 1/2r−1
T [θ̂MOD − θ0] =

[
rTY

′W̆ (Ŝa
u)

−1W̆ ′Y
]−1

rTY
′W̆ (Ŝa

u)
−1[W̆ ′U

√
T ] (B.17)

Now, Y ′W̆ = [
∑T̂ ∗

t=1 YtW
′
t/T̂

∗,
∑T

t=T̂ ∗+1 YtW
′
t/(T − T̂ ∗)], and from the results for θ̂GMM ,

rT

T̂ ∗∑

t=1

YtW
′
t/T̂

∗ = rT
T

T̂ ∗



T−1

T̂ ∗∑

t=1

YtW
′
t



 = rTΠ
′
1TQ1/ν

0 + oP (1).
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Similarly, rT
∑T

t=T̂ ∗+1 YtW
′
t/(T − T̂ ∗) = rTΠ

′
2TQ2/(1− ν0) + oP (1), hence:

rTY
′W̆ =

[
rTΠ

′
1TQ1/ν

0, rTΠ
′
2TQ2/(1− ν0)

]
+ oP (1)

def
=== K + oP (1). (B.18)

In addition, W̆ ′U
√
T = [

√
T
∑T̂ ∗

t=1 utW
′
t/T̂

∗,
√
T
∑T

t=T̂ ∗+1 utW
′
t/(T − T̂ ∗)], and using argu-

ments similar to the proof for 2SLS, the difference between the quantities above evaluated

at the true break T ∗ and at the estimated break T̂ ∗ is oP (1), so:

√
T

T̂ ∗∑

t=1

utW
′
t/T̂

∗ = T (T̂ ∗)−1Ψu
1 + oP (1)

d→ N
(
0, Su,1/(ν

0)2
)

√
T

T∑

t=T̂ ∗+1

utW
′
t/(T − T̂ ∗)

d→ N
(
0, Su,2/(1− ν0)2

)
.

Because
√
T
∑T̂ ∗

t=1 utW
′
t/T̂

∗ ⊥
√
T
∑T

t=T̂ ∗+1 utW
′
t/(T − T̂ ∗) asymptotically by Assumption

1(ii), W̆ ′U
√
T

d→ N (0, Sa
u) , where S

a
u = diag[Su,1/(ν

0)2, Su,2/(1−ν0)2]. From (B.17)-(B.18),

T 1/2r−1
T [θ̂MOD − θ0] is asymptotically normally distributed with mean 0 and asymptotic

variance-covariance matrix VMOD with

V̂MOD = [K(Ŝa
u)

−1K ′]−1K(Ŝa
u)

−1Sa
u(Ŝ

a
u)

−1K ′[K(Ŝa
u)

−1K ′]−1 p→ VMOD and Ŝa
u

p→ Sa
u.

- When rT = r1T = r2T , K = [ µ′
1/ν

0, µ′
2/(1− ν0) ] + o(1), and

VMOD =
[
µ′
1(Su,1)

−1µ1 + µ′
2(Su,2)

−1µ2

]−1
.

- When rT = r1T = o(r2T ), K = [ µ′
1/ν

0, O1×q ], and VMOD = [µ′
1(Su,1)

−1µ1]
−1
. �

• Proof of Theorem 2: Efficiency of estimated structural parameters

We prove the following equivalent results.

• Case (a): under Assumptions 1 to 4, and when r1T = r2T ,

(i) VMOD ≤ V2SLS; VMOD ≤ VGMM , and VMOD = VGMM iff S−1
u,1Q1Π

a
1 = S−1

u,2Q2Π
a
2;

(ii) In general, VGMM >< V2SLS. However, under Assumptions 5 and 6, VGMM > V2SLS.

• Case (b): under Assumptions 1 to 4, when riT = o(rjT ),

(i) VMOD ≤ V2SLS; VMOD ≤ VGMM , with equality only for S−1
u,iQiΠ

a
i = S−1

u,jQjΠ
a
z (note that

if p1 = 0, then the inequality is strict);

(ii) In general, VGMM >< V2SLS. However, under Assumptions 5 and 6, VGMM > V2SLS.
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• Proof of case (a). Recall that:

V2SLS = [Π′
1Q1Π1 +Π′

2Q2Π2]
−1[Π′

1Su,1Π1 +Π′
2Su,2Π2][Π

′
1Q1Π1 +Π′

2Q2Π2]
−1

VGMM = [(Π′
1Q1 +Π′

2Q2)(Su,1 + Su,2)
−1(Q1Π1 +Q2Π2)]

−1

VMOD = [Π′
1Q1(Su,1)

−1Q1Π1 +Π′
2Q2(Su,2)

−1Q2Π2]
−1.

(i) By construction, θ̂MOD is the optimal version of θ̂2SLS, so VMOD ≤ V2SLS. In step 1,

we show that V −1
MOD ≥ V −1

GMM . In step 2, we establish the conditions under which VMOD =

VGMM .

- Step 1. Let Su = Su,1 + Su,2, µ = vec (µ1, µ2) (with µi = QiΠi), and L = Su,2S
−1
u,1.

V −1
MOD − V −1

GMM = µ′
1S

−1
u,1µ1 + µ′

2S
−1
u,2µ2 − (µ1 + µ2)

′S−1
u (µ1 + µ2)

= µ′

(
S−1
u,1 O

O S−1
u,2

)
µ− µ′

(
S−1
u S−1

u

S−1
u S−1

u

)
µ

= µ′

(
S−1
u,1 − S−1

u −S−1
u

−S−1
u S−1

u,2 − S−1
u

)
µ = µ′

(
S−1
u L −S−1

u

−S−1
u S−1

u L−1

)
µ

def
=== f(µ) ,

because S−1
u,1 − S−1

u = S−1
u [Su − Su,1]S

−1
u,1 = S−1

u Su,2S
−1
u,1 = S−1

u L,

and S−1
u,2 − S−1

u = S−1
u [Su − Su,2]S

−1
u,2 = S−1

u Su,1S
−1
u,2 = S−1

u L−1.

It is well known that for any symmetric matrix such that M =

(
A B

B C

)
, with A,C square

symmetric matrices of the same dimension, and C pd, M is psd (positive semi-definite)

iff (A − BC−1B) (the Schur complement of C) is psd. Let M =

(
S−1
u L −S−1

u

−S−1
u S−1

u L−1

)
.

S−1
u L−1 = S−1

u,2− (Su,1+Su,2)
−1 is pd by construction, and its Schur’s complement is S−1

u L−
S−1
u LSuS

−1
u = O. Thus, M is psd, and f(µ) ≥ 0. This implies that V −1

MOD ≥ V −1
GMM , and

therefore VMOD ≤ VGMM .

- Step 2. Since f(µ) ≥ 0 and convex, we solve the first-order conditions to find its minimum:

∂f(µ)

∂µ1
= 2S−1

u (Lµ1 − µ2) and
∂f(µ)

∂µ2
= 2S−1

u (L−1µ2 − µ1) = 0 .

Then VGMM = VMOD ⇔ Lµ∗
1 = µ∗

2 ⇔ S−1
u,1Q1Π1 = S−1

u,2Q2Π2.

(ii) In general, VGMM >< V2SLS, but under Assumptions 5,6, we show VGMM > V2SLS.

Under Assumption 6, Su,i = ΦuQi, with Φu scalar, and so

V −1
2SLS = Φu(Π

′
1Q1Π1 +Π′

2Q2Π2)

V −1
GMM = Φu(Π

′
1Q1 +Π′

2Q2)(Q1 +Q2)
−1(Q1Π1 +Q2Π2).
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Under Assumption 5, Q1 = ν0Q and Q2 = (1− ν0)Q, and

V −1
2SLS/Φu = ν0Π′

1QΠ1 + (1− ν0)Π′
2QΠ2

V −1
GMM/Φu = [Π′

1ν
0 +Π′

2(1− ν0)]Q[Π1ν
0 +Π2(1− ν0)]

⇒ V −1
GMM/Φu − V −1

2SLS/Φu = −ν0(1− ν0)(Π1 −Π2)
′Q(Π1 − Π2) < 0 ,

and we get VGMM > V2SLS.

• Proof of Case (b): wlog let rT = r1T = o(r2T ).

V2SLS = (Π′
1Q1Π1)

−1
(Π′

1Su,1Π1) (Π
′
1Q1Π1)

−1

VGMM = [Π′
1Q1(Su,1 + Su,2)

−1Q1Π1]
−1

VMOD = [Π′
1Q1(Su,1)

−1Q1Π1]
−1.

(i) By construction, θ̂MOD is the optimal version of θ̂2SLS, so VMOD ≤ V2SLS. Also, V
−1
MOD −

V −1
GMM = Π′

1Q1[S
−1
u,1 − (Su,1 + Su,2)

−1]Q1Π1 > 0, thus VMOD < VGMM .

(ii) In general, VGMM >< V2SLS, but under Assumption 6, Su,i = ΦuQi, and then,

V −1
2SLS/Φu = Π′

1Q1Π1 and V −1
GMM/Φu = (Π′

1Q1)(Q1 +Q2)
−1(Q1Π1).

Thus, V −1
2SLS − V −1

GMM = ΦuΠ
′
1Q1[Q

−1
1 − (Q1 +Q2)

−1]Q1Π1 ≥ 0, and V2SLS < VGMM . �

• Proof of Theorem 3: Test for a break in the reduced form

• (i) Let ΠT
def
=== Πi/riT (i = 1, 2), and ι2

def
=== (1, 1)′. Then,

RqT
1/2Π̂vec(ν) = Rq

(
T 1/2(Π̂1(ν)− ΠT )

T 1/2(Π̂2(ν)− ΠT )

)
= RqT

1/2(Π̂vec(ν)− ι2 ⊗ ΠT ).

Under H0, T
1/2(Π̂1(ν) − ΠT ) = Q̂1(ν)Ψ

v
1(ν). Under Assumptions 3 and 5, Q̂1(ν)

p→ νQ.

Under Assumptions 1(ii) and 4, by the FCLT, Ψv
1(ν) ⇒ S

1/2
v Bq(ν). Hence,

T 1/2(Π̂1(ν)− ΠT ) ⇒ [Q−1S1/2
v ]Bq(ν)/ν

def
=== G

1/2
RF Bq(ν)/ν with GRF

def
=== Q−1SvQ

−1.

Using similar arguments, we also have:

T 1/2(Π̂2(ν)− ΠT ) ⇒ [Q−1S1/2
v ][Bq(1)− Bq(ν)]/(1− ν) = G

1/2
RF [Bq(1)− Bq(ν)]/(1− ν).

Let Υ
def
=== diag(ν, 1− ν). Then, the above imply:

T 1/2(Π̂vec(ν)− ι2 ⊗ΠT ) ⇒ (Υ−1 ⊗G
1/2
RF )BBq(ν) (B.19)

with BBq(ν)
def
===

(
Bq(ν)

Bq(1) − Bq(ν)

)

and AV ar[T 1/2(Π̂vec(ν)− ι2 ⊗ΠT )] = (Υ−1 ⊗G
1/2
RF ) (Υ⊗ Iq) (Υ

−1 ⊗G
1/2′
RF )

= (Υ−1ΥΥ−1) (G
1/2
RFG

1/2′
RF ) = Υ−1 ⊗GRF (B.20)
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Using (B.19)-(B.20) and letting rq
def
=== (1,−1)′, such that R′

q = rq ⊗ Iq, we obtain:

WaldRF
T (ν) = T Π̂′(ν) R′

q [Rq ĜRF R′
q]
−1Rq Π̂′(ν)

⇒ BB′
q(ν) (Υ

−1 ⊗G
1/2′
RF )(rq ⊗ Iq)

[
(r′q ⊗ Iq)(Υ

−1 ⊗G
1/2
RF )(rq ⊗ Iq)

]−1
(r′q ⊗ Iq)(Υ

−1 ⊗G
1/2
RF ) BBq(ν)

= BB′
q(ν) [(Υ

−1rq)⊗G
1/2′
RF ] [(r′qΥ

−1rq)⊗GRF ]
−1[(r′qΥ

−1)⊗G
1/2
RF ] BBq(ν)

= BB′
q(ν) [(Υ

−1rq)⊗G
1/2′
RF ] [(r′qΥ

−1rq)
−1 ⊗G−1

RF ] [(r
′
qΥ

−1)⊗G
1/2
RF ] BBq(ν)

= BB′
q(ν)

{
[Υ−1rq(r

′
qΥ

−1rq)
−1r′qΥ

−1]⊗ Iq
}

BBq(ν).

We can show that Υ−1rq(r
′
qΥ

−1rq)
−1r′qΥ

−1 =
1

ν(1 − ν)

(
(1− ν)2 −ν(1− ν)

−ν(1− ν) ν2

)
, and so:

BB′
q(ν)

{
[Υ−1rq(r

′
qΥ

−1rq)
−1r′qΥ

−1]⊗ Iq
}
BBq(ν) =

‖Bq(ν)− νBq(1)‖2
ν(1 − ν)

.

• (ii) We now show that for Π∆ = limT→∞ rT (Π1/r1T − Π2/r2T ), we have:

T−1r2TSup−WaldRF
T

p→ sup
ν∈Λǫ




Π′

∆Q2 Q−1
2 (ν) [GRF (ν)]

−1Q−1
2 (ν) Q2 Π∆ ν ≤ ν0

Π′
∆Q1 Q−1

1 (ν) [GRF (ν)]
−1Q−1

1 (ν) Q1 Π∆ ν > ν0

with GRF (ν) = Q−1
1 (ν)Sv,1(ν)Q

−1
1 +Q−1

2 (ν)Sv,2Q
−1
2 (ν).

If ν ≤ ν0, we use similar arguments to part (i), to show that, uniformly in ν (u. ν),

Π̂1(ν)−Π1T = Q̂−1
1 (ν)T−1/2Ψv

1(ν) = OP (T
−1/2)

Π̂2(ν)−Π2T = Q̂−1
2 (ν)T−1/2Ψv

2(ν) + Q̂−1
2 (ν)Q̂∆Π

∆
T

= OP (T
−1/2) +Q−1

2 (ν) [Q2(ν)−Q2] Π
∆
T = OP (T

−1/2) + {I −Q−1
2 (ν)Q2}Π∆

T .

It follows that u. ν,

RqΠ̂vec(λ) = Π̂1(ν)− Π̂2(ν) = (Π̂1(ν)−Π1T )− (Π̂2(ν)−Π2T ) + Π∆
T

= OP (T
−1/2) + {I − I +Q−1

2 (ν)Q2} Π∆
T = OP (T

−1/2) + [Q−1
2 (ν)Q2] Π

∆
T .

Hence, with ĜRF (ν) = Q̂−1
1 (ν)Ŝv,1(ν)Q̂

−1
1 + Q̂−1

2 (ν)Ŝv,2Q̂
−1
2 (ν)

p→ GRF (ν),

WaldRF
T (ν) = OP (T

1/2r−1
T ) + TΠ∆′

T Q2Q
−1
2 (ν)ĜRF (ν)Q

−1
2 (ν)Q2Π

∆
T ,

where the latter term dominates because it is OP (Tr
−2
T ). This implies that u. ν ≤ ν0,

WaldRF
T (ν) = OP (T

1/2r−1
T ) + TΠ∆′

T Q2Q
−1
2 (ν)G

−1
RF (ν)Q

−1
2 (ν)Q2Π

∆
T .

Similarly, it can be shown that u. ν > ν0,

WaldRF
T (ν) = OP (T

1/2r−1
T ) + TΠ∆′

T Q1Q
−1
1 (ν)G

−1
RF (ν)Q

−1
1 (ν)Q1Π

∆
T .
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Under Assumption 5, Q1(ν) = νQ, Sv,1(ν) = νSv, Q1 = ν0Q, thus u. ν,

WaldRF
T (ν) = OP (T

1/2r−1
T ) +




(1− ν0)2 ν

1−ν [ TΠ∆′

T Q S−1
v Q Π∆

T ], ν ≤ ν0

(ν0)2 1−ν
ν [T Π∆′

T Q S−1
v Q Π∆

T ], ν > ν0.

Since the probability limit of T−1r2T WaldRF
T (ν) is continuous in ν, with the supremum attained

at ν0, by the continuous mapping theorem, ν̂W = arg
[
supν∈Λǫ

WaldRF
T (ν)

] p→ ν0. However, if

Assumption 5 is violated, ν̂W
p→ ν0 is not always satisfied. As a counterexample, let Q2(ν

∗) =
√
eQ1(ν

∗) for some ν∗ < ν0 and 0 < e < 1. Then rTΠ
∆
T

p→ Π∆, and:

T−1r2T WaldRF
T (ν∗)

p→ Π′
∆Q2[eSv,1(ν

∗) + Sv,2(ν
∗)]−1Q2Π

′
∆ = TΠ′

∆Q2[(e− 1)Sv,1(ν
∗) + Sv]

−1Q2Π∆

T−1r2T WaldRF
T (ν0)

p→ Π′
∆Q2S

−1
v Q2Π∆.

Since Sv,1(ν
∗) is symmetric, pd, e < 1 and Sv is symmetric, pd, [(e−1)Sv,1(ν

∗)+Sv]
−1 > S−1

v ,

so plim[WaldRF
T (ν∗)−WaldRF

T (ν0)] > 0, meaning that ν̂W 6 p→ ν0. �

For Theorems 4-6, Qi and Su,i, Sv,i, Suv,i are as before, but with λ0 replacing ν0.

• Proof of Theorem 4: Asymptotic properties of λ̂, θ̂vec, θ̂GMM,vec, and θ̂MOD,vec

- We prove the following statements (with explicit formulas for the asymptotic variances):

(i) Under Assumptions 1(ii), 2 to 4, 7, ‖λ̂− λ0‖ = OP (T
−1).

(ii) Under Assumptions 1(ii), 2 to 4, 7,

[I2 ⊗ ΛT ] (θ̂vec − θ0vec)
d→ N (0, V2SLS),

with V2SLS =

[
D′

1Ω1D1 D′
1Ω12D2

D′
2Ω

′
12D1 D′

2Ω2D2

]
, where ΛT = diag(T 1/2Ip1 , T

1/2r−1
T Ip2), Ai = Πa′QiΠ

a,

Di = A−1
i (Πa′M ′

i), M
′
1 = (I, Q2Q

−1,−Q1Q
−1), M ′

2 = (I, Q1Q
−1,−Q2Q

−1), ai = θ0y,i ⊗ Iq,

Ωi =




Su,i a′iSuv,i O

S ′
uv,iai a′iSv,iai O

O O a′i(Sv − Sv,i)ai


 , Ω12 =




O O a′2Suv,1

O O a′1Sv,1a2

S ′
uv,2a1 a′1Sv,2a2 O


 .

(iii) Under Assumptions 1(ii), 2 to 4, 7, with rT = o(
√
T ),

[I2 ⊗ ΛT ]
(
θ̂GMM,vec − θ0vec

)
d→ N (0, VGMM,vec),

where VGMM,vec = diag(VGMM,1, VGMM,2), and VGMM,i =
[
Πa′ Qi (Su,i)

−1Qi Π
a
]−1

.

(iv) Under Assumptions 1(ii), 2 to 4, 7, with rT = o(
√
T ),

diag(I2 ⊗ ΛT , T
1/2Ip2q)

[
θ̂MOD,vec − θ0vec

Π̂MOD,vec − Π0
vec/rT

]
d→ N (0, [Γ′S−1Γ]−1), where:
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S =




Su,1 O S ′
uv,1 O

O Su,2 O S ′
uv,2

Suv,1 O Sv,1 O

O Suv,2 O Sv,2



, Γ = −




Q1Π
a O O

O Q2Π
a O

O O

[
Ip2 ⊗Q1

Ip2 ⊗Q2

]



= − diag(Γ1,Γ2),

with Γ1 = diag(Q1Π
a, Q2Π

a) and Γ2 =

[
Ip2 ⊗Q1

Ip2 ⊗Q2

]
. Thus,

[I2 ⊗ ΛT ]
(
θ̂MOD,vec − θ0vec

)
d→ N (0, VMOD,vec),

where VMOD,vec = (V −1
GMM,vec +H′E−1/2MJ E−1/2H)−1,

with E = diag(Sv,1 − Suv,1S
−1
u,1S

′
uv,1 , Sv,2 − Suv,2S

−1
u,2S

′
uv,2), MJ = I − J (J ′J )−1J ′,

J = E−1/2 Γ2, and H = [diag (Suv,1 S−1
u,1, Suv,2 S−1

u,2)] Γ1.

- To facilitate the proof, let θ0(t)
def
=== θ011[t ≤ T 0] + θ021[t > T 0] and ũt

def
=== yt − Ŷtθ

0(t) =

ut + (Yt − Ŷt)θ
0(t) = ut + vtθ

0(t) +W ′
t (ΠT − Π̂), and ΠT

def
=== Π/rT . Also, for simplicity,

let Â1(r)
def
=== T−1r2T

∑[Tr]
t=1 Ŷ

2
t , Â2(r)

def
=== Â1(1) − Â1(r), ξ1(r)

def
=== rTT

−1/2
∑[Tr]

t=1 Ŷtũt, and

ξ2(r)
def
=== ξ1(1)− ξ1(r). Let Ai

def
=== Π′QiΠ (as in Theorem 1(ii) but with Π1 = Π2 = Π, and

ν0 replaced by λ0), and ξi(λ
0)

def
=== ξi. With this notation, T 1/2r−1

T (θ̂i − θ0i ) = Â−1
i (λ̂) ξi(λ̂).

- We start by proving the following preliminary Lemma.

Lemma 1. Under Assumptions 1(ii), 4, and 7, (i) Â1(r) = Op(1), uniformly in r (u.r.

thereafter); (ii) ξ1(r) = Op(1) u.r.

Proof of Lemma 1:

• (i) Note that Â1(r) = r2TT
−1
∑[Tr]

t=1 Ŷ
2
t = (rT Π̂

′) Q̂1(r) (rT Π̂), and Q̂1(r)
p→ Q1(r), u.r.,

respectively rT Π̂
p→ Π. So, Â1(r) = OP (1)×OP (1)×OP (1) = OP (1) u.r.

• (ii) If we set Π1T = Π2T = ΠT in the Proof of Theorem 1(i), T 1/2(Π̂ − ΠT ) = OP (1),

independently of r. Also, by the FCLT in Wooldridge and White (1988), Theorem 2.11,

Ψuv
1 (r) = T−1/2

∑[Tr]
t=1 Wt(ut + vtθ

0(t)) = OP (1) u.r. It follows that:

ξ1(r) = rTΠ
′
T Ψ̃1(r) + oP (1) = Π′Ψuv

1 (r)−Π′Q̂1(r) [T
1/2(Π̂− ΠT )] + oP (1)

= OP (1) +OP (1)×OP (1) + oP (1) = OP (1) u.r.

�

- We now return to the proof of the main results. Assume wlog T̂ < T . The proof for T̂ ≥ T

is similar and omitted for simplicity.
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• (i) Consistency of λ̂. Let ût
def
=== yt − Ytθ̂1 for t ∈ {1, . . . , T̂}, ût

def
=== yt − Ytθ̂2 otherwise,

and dt
def
=== ût − ũt. We show consistency by contradiction, in two steps. By definition,

∑T
t=1 û

2
t ≤

∑T
t=1 ũ

2
t , hence 2

∑T
t=1 ũtdt +

∑T
t=1 d

2
t ≤ 0. In step 1, we show that:

T∑

t=1

d2t = OP (Tr
−2
T ) and

T∑

t=1

ũtdt = OP (T
1/2r−1

T ), (B.21)

implying that
∑T

t=1 d
2
t >> 2

∑T
t=1 ũtdt and so28 plim(r2T/T )

∑T
t=1 d

2
t ≤ 0. Because we have

(r2T/T )
∑T

t=1 d
2
t ≥ 0, it follows that plim(r2T/T )

∑T
t=1 d

2
t = 0. In step 2, if λ̂ 6 p→ λ0, then with

positive probability, (r2T/T )
∑T

t=1 d
2
t > 0, contradicting plim(r2T/T )

∑T
t=1 d

2
t = 0, so λ̂

p→ λ0.

- Step 1. Note that:

dt = ût − ũt =





yt − Ŷtθ̂1 − yt + Ŷtθ

0(t), t ≤ T̂

yt − Ŷtθ̂2 − yt + Ŷtθ
0(t), t > T̂

=






Ŷt(θ
0
1 − θ̂1), t ≤ T̂

Ŷt(θ
0
1 − θ̂2), T̂ + 1 ≤ t ≤ T 0

Ŷt(θ
0
2 − θ̂2), t > T 0

.

It follows that, for ξ∆ = ξ1(λ
0)− ξ1(λ̂),

rTT
−1

T∑

t=1

ũtdt = T 1/2(θ01 − θ̂1)ξ1(λ̂) + T 1/2(θ01 − θ̂2)ξ∆ + T 1/2(θ02 − θ̂2)ξ2(λ̂).

By Lemma 1, ξ1(λ̂) = OP (1), ξ2(λ̂) = OP (1), ξ∆ = OP (1). Also, recall θ0∆
def
=== θ01 − θ02 and

Â∆
def
=== Â1(λ̂)− Â1, then

T 1/2r−1
T [θ̂1 − θ01] = Â−1

1 (λ̂) ξ1(λ̂) = OP (1)

T 1/2r−1
T [θ̂2 − θ02] = Â−1

2 (λ̂) ξ2(λ̂) + Â1(λ̂)Â∆T
1/2r−1

T θ0∆

= OP (1) +OP (T
1/2r−1

T ) = OP (T
1/2r−1

T ).

Hence, T 1/2r−1
T [θ̂2 − θ01] = OP (1) − T 1/2r−1

T θ0∆ = OP (T
1/2r−1

T ). Adding these together,
∑T

t=1 ũtdt = OP (T
1/2r−1

T ). Next, note that

T∑

t=1

d2t =
T̂∑

t=1

d2t +
T 0∑

T̂+1

d2t +
T∑

t=T 0+1

d2t

= (θ01 − θ̂1)
2 Tr−2

T Â1(λ̂) + (θ01 − θ̂2)
2 Tr−2

T Â∆ + (θ02 − θ̂2)
2 Tr−2

T Â2(λ̂)

= OP (1)OP (Tr
−2
T ) +OP (1)OP (Tr

−2
T ) +OP (1)OP (Tr

−2
T ) = OP (Tr

−2
T ).

28If rT = T 1/2, then
∑T

t=1 d
2
t and 2

∑T
t=1 ũtdt are of the same order, and our argument does not apply.

57



- Step 2. If λ̂ 6 p→ λ0, then there exists η ∈ (0, 1), such that with positive probability ǫ,

T 0 − T̂ = [Tλ0]− [T λ̂] ≥ Tη. Then, with probability ǫ, for some C > 0,

r2TT
−1

T∑

t=1

d2t ≥ r2TT
−1




T 0∑

t=T 0−Tη+1

d2t


 = (θ01 − θ̂2)

2[Â1(λ
0)− Â1(η)] > C + oP (1)

• (i) Rate of convergence of λ̂. From above, any break point estimator T̂ = [T λ̂] is such

that T 0 − T̂ ≤ ǫT , for some chosen ǫ > 0. Assume that for chosen C > 0, T 0 − T̂ > Cr2T .

Define SSR1, SSR2 and SSR3 as the 2SLS sum of squared residuals in the structural

equation, obtained with break points T̂ , T 0 and (T̂ , T 0) respectively. As for Theorem 1(i),

it is sufficient to show that if Cr2T < T 0 − T̂ ≤ ǫT for some large but fixed C and small

but fixed ǫ, then plim(SSR1 − SSR2) > 0, which cannot hold by definition. It follows that

T 0 − T̂ ≤ Cr2T , and by symmetry of the argument, if T̂ ≥ T 0, T̂ − T 0 ≤ Cr2T , establishing

the desired convergence rate for the break fraction estimator.

We now show that plim(SSR1 − SSR2) > 0. Denote by (θ̂1, θ̂2) the 2SLS estimators based

on sample partition (1, T̂ , T ), (θ̂1, θ̂∆, θ̃2) the ones based on (1, T̂ , T 0, T ), and (θ̃1, θ̃2) the

ones based on (1, T 0, T ), all using the full-sample first stage predictor Ŷt. Then by similar

arguments as for the proof of Theorem 1(i), we have:

SSR1 − SSR3 = (θ̃2 − θ̂∆)
2 Tr−2

T Â∆ − (θ̃2 − θ̂∆)
2 Tr−2

T Â∆Â
−1
2 (λ̂)Â∆

def
=== N1 −N2

SSR2 − SSR3 = (θ̂1 − θ̂∆)
2 Tr−2

T Â∆ − (θ̂1 − θ̂∆)
2 Tr−2

T Â∆Â
−1
1 (λ̂)Â∆

def
=== N3 −N4

Since Â∆ contains T 0 − T̂ ≤ [ǫT ] terms, Â∆ = OP (ǫ), while A2(λ̂) = OP (1) by Lemma 1.

It follows that for small ǫ, N1 >> N2. Because θ̃2 is estimating θ02 with observations only

in the second regime, [T 0 +1, T ], it can be shown that θ̃2 − θ02 = OP (T
−1/2rT ); on the other

hand, θ̂∆ is estimating θ01 in subsample [T̂ + 1, T 0], so for large enough C, it can be shown

that θ̂∆ − θ01 = OP (T
−1/2rT ), hence θ̃2 − θ̂∆ = θ0∆ + oP (1), and so:

N1 = [(θ0∆)
2 + oP (1)]×OP (1) = OP (1).

For N3, it can be shown that θ̂1 − θ01 = OP (T
−1/2rT ), and since θ̂∆ − θ01 = OP (T

−1/2rT ),

θ̂1 − θ̂∆ = OP (T
−1/2rT ), and therefore N3 = OP (T

−1r2T ) × OP (1) = oP (1). Similarly to

N1 >> N2, it can be shown that N3 >> N4. It follows that N1 >> Nj , for j = 2, 3, 4 for

chosen small ǫ and large C, and so SSR1 − SSR2 = N1 + oP (1), hence

plim Tr−2
T (SSR1 − SSR2) = (θ0∆)

2 plim Â∆ = (θ0∆)
2 plim inf

t
[Π′E(WtW

′
t)Π] > 0,
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because inftE(WtW
′
t ) is pd by Assumption 3. Thus, plim(SSR1 − SSR2) > 0.

• (ii) Asymptotic distribution of 2SLS. Recall that T 1/2r−1
T [θ̂1 − θ01] = Â−1

1 (λ̂)ξ1(λ̂). First

analyze Â−1
1 (λ̂) knowing that T̂ − T 0 = OP (r

2
T ). Since

Â∆ = T−1r2T

T 0∑

T̂+1

Ŷ 2
t = (T 0 − T̂ )/T (r2T/(T

0 − T̂ ))

T 0∑

T̂+1

Ŷ 2
t = OP (r

2
TT

−1) ,

Â1(λ̂) = Â1(λ
0)−Â∆ = Â1(λ

0)+oP (1). Similarly, Â2(λ̂) = Â2(λ
0)+oP (1), and Âi(λ

0)
p→ Ai,

with Ai = Π′QiΠ, Qi = Qi(λ
0), so:

T 1/2r−1
T [θ̂1 − θ01] = A−1

1 ξ1(λ̂) + oP (1) = A−1
1 Π′Ψ̃1(λ̂) + oP (1)

T 1/2r−1
T [θ̂2 − θ02] = A−1

2 ξ2(λ̂) + oP (1) = A−1
2 Π′Ψ̃2(λ̂) + oP (1).

It remains to analyze the asymptotic distributions of Ψ̃i(λ̂). Note that Ψ̃1(λ̂) = Ψ̃1(λ
0)−Ψ̃∆.

It can be shown that Ψ̃∆ = OP (rTT
−1/2) because it contains only observations in the

subsample {T̂ + 1, . . . , T 0}, with T̂ − T 0 = OP (r
2
T ). Thus, Ψ̃i(λ̂) = Ψ̃i(λ

0) + oP (1). As

before, let Ψ̃i(λ
0)

def
=== Ψ̃i,Ψ

j
i (λ

0)
def
=== Ψj

i , where λ
0 replaces ν0 in the notation for the Proof

of Theorem 1(ii), and j = u, v, uv. Thus:

Ψ̃1 = Ψ̃uv − Q̂1(λ
0)Q−1(Ψv

1 +Ψv
2)θ

0
1 = Ψu

1 + (I −Q1Q
−1)Ψv

1θ
0
1 − (Q1Q

−1)Ψv
2θ

0
1 + oP (1)

def
=== M ′

1Ψ1,vec + oP (1) with Ψ1,vec = vec (Ψu
1 ,Ψ

v
1θ

0
1,Ψ

v
2θ

0
1) .

Recall that M ′
1

def
=== (I, Q2Q

−1,−Q1Q
−1). Note that extra terms involving vt show up here

because of the full-sample first-stage. They would not show up in the absence of breaks.

From the CLT, Ψ1,vec
d→ N (0,Ω1). Thus, Ψ̃1

d→ N (0,M ′
1Ω1M1), so T 1/2r−1

T [θ̂1 − θ01]
d→

N (0, D′
1Ω1D1) . Using similar arguments, Ψ̃2(λ̂)

d→ N (0,M ′
2Ω2M2). Hence, T 1/2r−1

T [θ̂2 −
θ02]

d→ N (0, D′
2Ω2D2) . Moreover, because of the full-sample first-stage, asymptotically,

T 1/2r−1
T [θ̂1−θ01] 6⊥ T 1/2r−1

T [θ̂2−θ02 ], and ACov
{
T 1/2r−1

T [θ̂1 − θ01], T
1/2r−1

T [θ̂2 − θ02]
}
= D′

1Ω12D2.

• (ii) Asymptotic distribution of GMM.

We first prove that the asymptotic distribution of subsample GMM estimators is the same

whether we use T 0 or T̂ to split the sample. Heuristically, it holds because we showed

that T̂ − T 0 = OP (r
2
T ) uniformly in a r2T -neighborhood. As in Theorem 1(ii), we denote

the partition of W at T̂ and T 0 (rather than T̂ ∗, T ∗) as W and W
0
. We also partition

Y = vec (Y 1, Y 2) = vec (Y
0

1, Y
0

2) at T̂ , respectively T 0, y = vec (y1, y2) = vec (y01, y
0
2),

U = vec (U 1, U 2) = vec (U
0

1, U
0

2), and V = vec (V 1, V 2) = vec (V
0

1, V
0

2). Then for the

weighting matrices Ŝ−1
u,i ,

θ̂GMM,i = (Y
′

iW i Ŝ
−1
u,i W

′

iY i)
−1 Y

′

iW i Ŝ
−1
u,i W

′

iyi.

59



Note that T−1/2W
′

1y1 = T−1/2
∑T 0

t=1Wtyt + oP (1) = T−1/2W
0′

1 y
0
1 + oP (1), by similar argu-

ments as for the previous proof. Also, rTT
−1W

′

1Y 1 = rTT
−1W

0′

1 Y
0

1 + oP (1). It follows

that θ̂GMM,1 is asymptotically equivalent to the estimator using T 0 instead of T̂ , and sim-

ilarly for θ̂GMM,2. The asymptotic distributions for the subsample GMM estimators using

T 0 instead of T̂ follow from standard arguments. In particular, T−1rTY
0′

i W
0

i

p→ Π′Qi,

T−1/2W
0′

i U
0

i
d→ N (0, Su,i), T

1/2r−1
T [θ̂GMM,i − θ0i ]

d→ N (0, (Π′QiS
−1
u,iQiΠ)

−1) since Ŝu,i
p→ Su,i

(i = 1, 2); and, they are asymptotically independent by Assumption 1(ii).

• (iii) Asymptotic distribution of MOD. Let β̂
def
===

[
θ̂MOD,vec

Π̂MOD

]
, β0

T
def
===

[
θ0vec

Π/rT

]
, and Λ̆T

def
===

diag(I2 ⊗ ΛT , T
1/2Iq). Since θ̂MOD,vec is based on the same quantities as θ̂GMM,vec and θ̂vec,

we can show using similar arguments that the asymptotic distribution of Λ̆T (β̂−β0
T ) is as if

the break point T 0 was known. For the rest of the proof, assume wlog that the break point

is known. Then, the estimator β̂ is based on the following moment conditions29:

ğT (β) =






gT,1(θvec)
def
=== T−1W

0′

(y − Y
0
θvec)

gT,2(Π)
def
=== T−1



W
0′

1

(
Y

0

1 −W
0

1Π
)

W
0′

2

(
Y

0

2 −W
0

2Π
)




,

where we use the notations introduced in part (ii). Then, for some β = (θ′vec Π
′)′,

ğT (β) =T−1




W

0′

(y − Y
0
θvec)

W
0
(Y −WΠ)

= T−1

[
W

0
O

O W
0

]′([
y

Y

]
−
[
Y

0
O

O W

]
β

)
.

Hence, the estimation of β0
T is written as a usual GMM problem. Therefore, from Assump-

tions 1(ii), 6, 7 and usual GMM asymptotics,

Λ̆T (β̂ − β0
T )

d→ N (0, [Γ′S−1Γ]−1), (B.22)

with Γ = plim
∂ğT (β

0)

∂β ′
(T−1/2Λ̆−1

T ) = −T−1 plim

[
W

0
O

O W
0

]′ [
Y

0
O

O W

]
(T−1/2Λ̆−1

T )

= −
[
plim[(T−1W

0′

Y
0
)(I2 ⊗ diag(Ip1, rT Ip2))] O

O plim(T−1W
0′

W )

]
= − diag(Γi),

S = AVar



T−1/2

[
W

0
O

O W
0

]′ [
U

V

]
 = AVar

[
T−1/2W

0′

U

T−1/2W
0′

V

]
def
===

[
S1,1 S1,2

S ′
1,2 S2,2

]
,

29Note that for simplicity we scale the subsample moment conditions by T−1 instead of T̂−1 and (T−T̂ )−1.

The scaling is irrelevant since it cancels out in the formula for the GMM estimator.
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where S1,1 and S2,2 are (q × q), and Γ1 and Γ2 are derived below. Note that the results

above are obtained because under Assumption 3, we have:

Γ1 = − diag[ plim(T−1W
0′

1 Y
0

1 diag(Ip1 , rT Ip2)) , plim(T−1W
0′

2 Y
0

2 diag(Ip1 , rT Ip2)) ]

= − diag[ plim(T−1W
0′

1 W
0

1)Π , plim(T−1W
0′

2 W
0

2)Π ] = − diag(QiΠ),

Γ2 = − plim (T−1W
0′

W ) = −
[
plim (T−1W

0′

1 W
0

1)

plim(T−1W
0′

2 W
0

2)

]
= −

[
Ip2 ⊗Q1

Ip2 ⊗Q2

]
.

By Assumptions 1(ii), 4 and 6, S =

[
S1,1 S1,2

S1,2 S2,2

]
, with:

S1,1 = AVar(T−1/2W
0′

U) = diag(Su,i)

S1,2 = ACov(T−1/2W
0′

U, T−1/2W
0′

V )

= diag

[
ACov

(
T−1/2

T 0∑

1

Wtut,
T 0∑

1

Wtvt

)
,ACov

(
T−1/2

T∑

T 0+1

Wtut,
T∑

T 0+1

Wtvt

)]

= diag(Suv,i),

S2,2 = AVar(T−1/2W
0′

V ) = AVar

[
T−1/2W

0′

1 V
0

1

T−1/2W
0′

2 V
0

2

]

= diag[AVar T−1/2W
0′

i V
0

i ]

= diag

[
AVar

(
T−1/2

T 0∑

1

Wtvt

)
,AVar

(
T−1/2

T∑

T 0+1

Wtvt

)]
= diag(Sv,i).

Given the above results, we use as in Antoine and Renault (2014) the partitioned inverse

formula in Abadir and Magnus (2005), pp. 106, to get the desired result. In particular, for

any A,B,C,D matrices, with nonsingular A,D, E = D − CA−1B, and F = A−BD−1C,

[
A B

C D

]−1

=

[
A−1 +A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

]
=

[
F−1 −F−1BD−1

−D−1CF−1 D−1 +D−1CF−1BD−1

]
.

We use the first formula for S−1, and the second for (Γ′S−1Γ)−1. Let E = S2,2−S2,1S−1
1,1S1,2.

S−1 =

[
S1,1 S1,2

S ′
1,2 S2,2

]−1

=

[
S−1
1,1 + S−1

1,1 S1,2 E−1 S ′
1,2 S−1

1,1 −S−1
1,1 S1,2 E−1

−E−1 S ′
1,2 S−1

1,1 E−1

]
,

Γ′S−1Γ =

[
Γ′
1(S−1

1,1 + S−1
1,1 S1,2 E−1 S ′

1,2 S−1
1,1 )Γ1 −Γ′

1S−1
1,1 S1,2 E−1Γ2

−Γ′
2E−1 S ′

1,2 S−1
1,1Γ1 Γ′

2E−1Γ2

]
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Then, according to the second formula above, VMOD,vec = F−1, with:

F = Γ′
1(S−1

1,1 + S−1
1,1 S1,2 E−1 S ′

1,2 S−1
1,1 )Γ1 − (Γ′

1S−1
1,1 S1,2 E−1Γ2)(Γ

′
2E−1Γ2)

−1Γ′
2E−1 S ′

1,2 S−1
1,1Γ1.

Since J = E−1/2Γ2 and H = S ′
1,2 S−1

1,1Γ1, it follows that:

F = Γ′
1S−1

1,1Γ1 +H′E−1/2(I − J (J ′J )−1J ′)E−1/2H = Γ′
1S−1

1,1Γ1 +H′E−1/2MJ E−1/2H.

Note that from the above, Γ′
1S−1

1,1Γ1 = V −1
GMM,vec, so that whenever H′E−1/2MJ E−1/2H = 0,

the extra moment conditions gT,2(ΠT ) are asymptotically redundant. �

• Proof of Theorem 5: Efficiency of estimated structural parameters

• (i) Showing that θ̂MOD,vec is more efficient than θ̂GMM,vec is equivalent to showing that the

additional moment conditions gT,2(·) are asymptotically non-redundant for the estimation of

θ0vec (even though their derivative with respect to θvec is zero). The necessary and sufficient

condition for non-redundancy follows from the proof of Theorem 4 and we can show that it

is the same as Antoine and Renault’s (2014) inequality on pp. 11:

(MJ E−1/2H)′MJE−1/2H 6= 0 and is positive semidefinite (psd). (B.23)

With G = MJE−1/2H, (B.23) can be written as G ′G 6= 0 and psd. G ′G is psd by construction

(see Abadir and Magnus (2005), pp. 214, Exercise 8), and we only need to show G 6= 0.

H = S ′
1,2S−1

1,1Γ1 = diag(Suv,i) diag(S
−1
u,i ) [− diag(QiΠ)]

= − diag[Suv,i S
−1
u,i QiΠ]

def
=== − diag[Γi],

E = diag(Sv,i − Suv,i S
−1
u,i S ′

uv,i)
def
=== diag[Ei],

E−1/2H = − diag[E−1/2
i Γi]

J = −E−1/2Γ2 = −
[
E−1/2
1 O

O E−1/2
2

][
Ip2 ⊗Q1

Ip2 ⊗Q2

]
= −

[
E−1/2
1 Q1

E−1/2
2 Q2

]
def
=== −

[
E1

E2

]
,

J ′J = E′
1E1 + E′

2E2, (J ′J )−1 = (E′
1E1 + E′

2E2)
−1,

MJ = I − J (J ′J )−1J ′ =

[
I − E1(E

′
1E1 + E′

2E2)
−1E′

1 −E1(E
′
1E1 + E′

2E2)
−1E′

2

−E2(E
′
1E1 + E′

2E2)
−1E′

1 I − E2(E
′
1E1 + E′

2E2)
−1E′

2.

]

It is important to note that E−1
i exists, because Ei is the Schur complement of Su,i in the

variance matrix Si =

[
Su,i S ′

uv,i

Suv,i Sv,i

]
. Since Su,i and Si are pd by construction, so is Ei.
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Therefore, Ei is invertible, and so E−1/2
i and Ei exist. It follows that:

−G = −MJ E−1/2H def
===

[
G11 G12

G21 G22

]
with

G11 = [I −E1(E
′
1E1 + E′

2E2)
−1E′

1] E−1/2
1 Γ1 , G12 = −E1(E

′
1E1 + E′

2E2)
−1E′

2 E−1/2
2 Γ2

G22 = [I −E2(E
′
1E1 + E′

2E2)
−1E′

2] E−1/2
2 Γ2 , G21 = −E2(E

′
1E1 + E′

2E2)
−1E′

1 E−1/2
1 Γ1

To show G 6= 0, we now show that G12 6= 0. Since Ei and Qi are pd, so is Ei = E−1/2
i Qi. It

follows that E1(E
′
1E1 + E′

2E2)
−1E′

2 is pd and invertible, and

G12 = 0 ⇔ E−1/2
2 Γ2 = 0 ⇔ Γ2 = 0 ⇔ Suv,2 S−1

u,2 Q2Π = 0 ⇔ Π = 0 ,

since Suv,2 is a q × q pd covariance matrix by Assumptions 3 and 4. The latter cannot

hold because it contradicts Assumption 7(ii). Hence, G12 6= 0, so G 6= 0, and the additional

moment conditions for θ̂MOD,vec are not redundant.

Note that under Assumptions 4 and 5, G ′G is of rank 1, thus rank deficient. This implies

that some linear combinations of θ̂MOD,vec will be asymptotically equivalent to the same

linear combinations of θ̂GMM,vec, but in general they will be asymptotically more efficient.

• (ii) Let c = Φu + 2(1 − λ0)Φuvθ
0
1 + (1 − λ0)Φv(θ

0
1)

2. Under Assumptions 5 and 6, we

can show that M ′
1Ω1M1 = λ0cQ. Since Ai = Π′Q1Π = λ0Π′QΠ

def
=== λ0A, it follows that

V −1
2SLS,1 = λ0A/c. On the other hand, V −1

GMM,1 = λ0A/Φu, so we can compare the two by

comparing c with Φu.

c− Φu = (1− λ0)θ01(2Φuv + Φvθ
0
1) = (1− λ0)Φvθ

0
1(2Φuv/Φv + θ01) ≤ 0

⇔ θ01(2Φuv/Φv + θ01) ≤ 0 .

This implies that V −1
2SLS,1 ≥ V −1

GMM,1, so V2SLS,1 ≤ VGMM,1. The proof for V2SLS,2 ≤ VGMM,2

is similar.

- From the calculations above, we have:

V2SLS,1 =
c

λ0
A−1 =

Φu

λ0
+

1− λ0

λ0
θ01(2Φuv + θ01Φv).

On the other hand, with δ
def
=== Φ−2

u Φ2
uvE

−1
, we have VMOD,vec = F−1, with

F = Γ′
1S−1

1,1Γ1 +H′E−1/2MJ E−1/2H = diag(λ0
iΦ

−1
u A) + G ′G

=

[
λ0[Φ−1

u + (1− λ0)δ] −λ0(1− λ0)δ

−λ0(1− λ0)δ (1− λ0)[Φ−1
u + λ0δ]

]
⊗A

def
=== F ⊗ A,

VMOD,vec = F−1 def
=== F−1 ⊗ A−1.
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Below we calculate F−1
:

detF = λ0(1− λ0){[Φ−1
u + (1− λ0)δ][Φ−1

u + λ0δ]− λ0(1− λ0)δ2}
= λ0(1− λ0)(Φ−2

u + Φ−1
u δ) = λ0(1− λ0)Φ−2

u (1 + Φuδ)

F−1
=

Φ2
u

λ0(1− λ0)(1 + Φuδ)

[
(1− λ0)[Φ−1

u + λ0δ] λ0(1− λ0)δ

λ0(1− λ0)δ λ0[Φ−1
u + (1− λ0)δ]

]

=
Φ2

u

(1 + Φuδ)

[
1
λ0 [Φ−1

u + λ0δ] δ

δ 1
1−λ0 [Φ

−1
u + (1− λ0)δ]

]
.

It follows that VMOD,1 = cMODA
−1, V2SLS = cA−1, and

cMOD =
Φu(1 + λ0Φuδ)

λ0(1 + Φuδ)
=

Φu

λ0
+

Φu(1 + λ0Φuδ)

λ0(1 + Φuδ)
− Φu

λ0

=
Φu

λ0
+

Φu(1 + λ0Φuδ − 1− Φuδ)

λ0(1 + Φuδ)
=

Φu

λ0
− 1− λ0

λ0

Φ2
uδ

1 + Φuδ
,

c =
Φu

λ0
+

1− λ0

λ0
θ01(2Φuv + θ0y,1Φv),

c− cMOD =
1− λ0

λ0

(
θ01(2Φuv + θ01Φv) +

Φ2
uδ

1 + Φuδ

)
≥ 0

⇔ θ01(2Φuv + θ01Φv) ≥ − Φ2
uδ

1 + Φuδ
.

Hence, θ01(2Φuv+θ01Φv) ≥ − Φ2
uδ

1 + Φuδ
≡ V2SLS,1 ≥ VMOD,1. The proof for VMOD,2 and V2SLS,2

is similar and therefore omitted. �

• Proof of Theorem 6: Test for a break in the main equation

• (i) Let θ0 be the common value of (θ0i ) under the null hypothesis, for i = 1, 2. The

asymptotic distribution of the Wald test is determined by that of T 1/2r−1
T (θ̂i(λ) − θ0) =

Â−1
i (λ) ξi(λ). From Lemma 1, the proof of Theorem 4 and Assumption 5, Âi(λ)

p→ λA.

Also, under Assumptions 1(ii), 4 and 5, by the FCLT,

ξ1(λ) = oP (1) + Π′Ψuv
1 (λ)− Π′[Q̂1(λ)Q̂

−1
1 (1)]Ψv(1)θ0

= Π′Ψuv
1 (λ)− Π′λ Ψv(1)θ0 + oP (1) ⇒ Π′[P 1/2Bq(λ)− λ(P ∗)1/2B∗

q(1)], (B.24)

where P ∗1/2B∗
q (λ) and P 1/2Bq(λ) are two (dependent) q× 1 Brownian motions generated by

partial sums of (Wtvtθ
0), respectively [Wt(ut+ vtθ

0)], and P = Su+(Suv +S ′
uv)θ

0+Sv(θ
0)2,

P ∗ = Sv(θ
0)2. Let G∗ = A−1 [Π′P ∗Π]A−1 = A−2[Π′P ∗Π], G = A−2 [Π′PΠ], because A is a
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scalar here. Also, G1/2G1/2′ = G, and (G∗)1/2(G∗)1/2
′

= G∗, with (G∗)1/2 = A−1Π′(P ∗)1/2

and G1/2 = A−1Π′P 1/2. Then, from (B.24),

T 1/2r−1
T (θ̂1(λ)− θ0) ⇒ G1/2Bq(λ)

λ
− (G∗)1/2B∗

q (1)

T 1/2r−1
T (θ̂2(λ)− θ0) ⇒ G1/2Bq(1)− Bq(λ)

1− λ
− (G∗)1/2B∗

q (1)

RpT
1/2r−1

T θ̂vec(λ) = T 1/2r−1
T (θ̂1(λ)− θ0)− T 1/2r−1

T (θ̂2(λ)− θ0)

⇒ G1/2Bq(λ)

λ
−G1/2Bq(1)− Bq(λ)

1− λ
= G1/2Bq(λ)− λBq(1)

λ(1− λ)
.

Recall that BBq(λ)
def
=== Bq(λ)− λBq(1). Since Ĥi(λ)

p→ λiΠ
′PΠ, for λ1 = λ, λ2 = 1− λ, it

follows that Ĝi(λ)
p→ λ−1

i G. Hence, RpĜ(λ)R′
p = Rp diag(λ

−1G, (1−λ)−1G)R′
p =

G

λ(1− λ)
.

Thus,

[
T θ̂′(λ)R′

p [Rp Ĝi(λ)R′
p ]

−1Rpθ̂(λ)
]
⇒ BB′

q(λ) [G
1/2′G−1G1/2]BBq(λ)

λ(1− λ)
=

BB′

1(λ)BB1(λ)

λ(1− λ)
,

because G1/2′(G)−1G1/2 is a projection matrix of rank p = p2 = 1, thus selecting only the first

element of BBq(λ) (for an extensive proof, see Hall, Han and Boldea (2012, Supplemental

Appendix, pp. 23-27).

• (ii) We show that under HA : θ0∆ = θ01 − θ02 6= 0, Assumptions 1(ii), 3, 2 and 7,

T−1r2TWaldT (λ)
p→





{
A−1

2 A2(λ) G
−1(λ) A2(λ)A

−1
2

}
(θ0∆)

2 λ ≤ λ0

{
A−1

1 A1(λ) G
−1(λ) A1(λ)A

−1
1

}
(θ0∆)

2 λ > λ0,

where G(λ) = G1(λ) +G2(λ), Gi(λ) = A−1
i (λ)Hi(λ)A

−1
i (λ) (i = 1, 2).

If λ ≤ λ0, uniformly in λ (u. λ),

θ̂1(λ)− θ01 = Â−1
1 (λ)T−1/2rT ξ1(λ) = OP (T

−1/2rT )

θ̂2(λ)− θ02 = Â−1
2 (λ)T−1/2rT ξ2(λ) + Â−1

2 (λ)Â∆θ
0
∆

= OP (T
−1/2rT ) +A−1

2 (λ) [A2(λ)−A2] θ
0
∆ = OP (T

−1/2rT ) + {I −A−1
2 (λ)A2}θ0∆.

It follows that u. λ, Rpθ̂vec(λ) = θ̂1(λ) − θ̂2(λ) = OP (T
−1/2rT ) + [A−1

2 (λ)A2] θ0∆. We have

RpĜ(λ)R′
p = Ĝ1(λ) + Ĝ2(λ) = OP (r

2
T ), and r2T [Ĝ1(λ) + Ĝ2(λ)]

p→ G1(λ) + G2(λ)
def
=== G(λ).

Hence, u. λ ≤ λ0,

T−1r2T WaldT (λ)
p→
{
A2A

−1
2 (λ) G−1(λ) A−1

2 (λ)A2

}
(θ0∆)

2.

Similarly, it can be shown that u. λ > λ0,

T−1r2T WaldT (λ)
p→
{
A1A

−1
1 (λ) G−1(λ) A−1

1 (λ)A1

}
(θ0∆)

2.
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Under Assumption 5, Ai(λ) = λiA, AiA
−1
i (λ) = A−1

i (λ)Ai = λ−1
i λ0

i , where λ1 = λ, λ2 = 1 − λ,

and λ0
2 = 1− λ0

1, and

Gi(λ) = A−1
i (λ)Hi(λ)A

−1
i (λ) = λ−2

i A−2Hi(λ) = λ−2
i A−2(λiΠ

′(Su + (Suv + S′
uv)θ

0
i + Sv(θ

0
i )

2)Π)

= A−2(λ−1
i Π′(Su + (Suv + S′

uv)θ
0
i + Sv(θ

0
i )

2)Π)
def
=== A−2(λ−1

i hi)

G(λ) = G1(λ) +G2(λ) = A−2

(
H1

λ
+

H2

1− λ

)
= A−2[λH2 + (1− λ)H1]

1

λ(1 − λ)

G−1(λ) = A2λ(1− λ) [λH2 + (1− λ)H1]
−1.

Note that because Su+(Suv+S′
uv)θ

0
i +Sv(θ

0
i )

2 = AVar(ut+ vtθ
0
i ), it is pd, so Hi = Π′[Su+(Suv+

S′
uv)θ

0
i + Sv(θ

0
i )

2]Π > 0 since Π 6= 0. It follows that:

T−1r2T WaldT (λ)
p→ A2




(1− λ0)2 λ/(1−λ)

λH2+(1−λ)H1
λ ≤ λ0

(λ0)2 (1−λ)/λ
λH2+(1−λ)H1

λ > λ0.

It can be shown that WaldT (λ) is asymptotically maximized at λ0, thus, by continuous mapping

theorem, λ̂W p→ λ0. However, if Assumption 5 doesn’t hold, and for some λ∗ < λ0, Q2(λ) =

e Q1(λ), for a scalar e, then it can be shown that for 0 < e < 1, WaldT (λ
∗) > WaldT (λ

0)+ oP (1),

so λ̂W 6 p→ λ0.�

• Proof of Theorem 7: Wald test for common break

• (i) Let θ0 be the common value of θ0i under the null hypothesis. By arguments similar to the Proof

of Theorem 1(ii), the distribution of the subsample 2SLS estimators θ̂ci is as if the break point ν0

was known, so T 1/2riT [θ̂
c
i −θ0]

d→ N (0, Gc
i ), where Gi

def
=== (Ac

i )
−1 Bc

i (A
c
i )

−1, Ac
i

def
=== Πa′

i Qi(ν
0)Πa

i ,

and Bc
i

def
=== Πa′

i Su,i(ν
0)Πa

i . Moreover, θ̂c1 ⊥ θ̂c2 asymptotically, because they are constructed with

asymptotically independent subsamples in the first-stage. Also, by construction, r2iT B̂
c
i

p→ Bc
i , and

r−2
iT Ĝc

i
p→ Gc

i .

- When rT = r1T = r2T ,

T 1/2r−1
T Rp θ̂

c
vec

d→ N (0, Gc) with r−2
T RpĜ

cR′
p

p→ Gc
1 +Gc

2 = Gc

and WaldcT = [T 1/2r−1
T Rp θ

c
vec]

′ [r−2
T RpG

cR′
p]
−1 [T 1/2r−1

T Rp θ̂
c
vec]

p→ χ2
1

- When riT = o(rjT ), and wlog i = 1,

T 1/2r−1
2T Rp θ̂

c
vec = [r1T /r2T ] T

1/2r−1
1T (θ̂

c
1 − θ0)− T 1/2r−1

2T (θ̂c2 − θ0)

= oP (1)− T 1/2r−1
2T (θ̂c2 − θ0)

d→ N (0, Gc
2)

r−2
2T RpĜ

cR′
p

p→ Gc
2

WaldcT = [T 1/2r−1
2T Rp θ̂

c
vec]

′ [r−2
2T RpĜ

cR′
p]
−1 [T 1/2r−1

2T Rp θ̂
c
vec]

p→ χ2
1,
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and the test reduces to a J-test on the weaker subsample. This is not the case if p1 6= 0 (see the

Supplemental Appendix for a detailed proof).

• (ii) - We now show that when r1T = r2T = rT , T
−1r2T WaldcT

p→ θ0
′

∆(G
c)−1 θ0∆. We have:

T 1/2rT (θ̂
c
1 − θ01) = Â−1

1 (ν̂) ξ1(ν̂) = OP (1) and T 1/2rT (θ̂
c
2 − θ02) = Â−1

2 (ν̂) ξ2(ν̂) = OP (1)

It follows that T 1/2r−1
T Rpθ̂

c
vec = T 1/2r−1

T [θ̂c1 − θ̂c2] = OP (1) + T 1/2r−1
T θ0∆.

Also, r−2
T RpĜ

cR′
p

p→ Gc, hence T−1r2T WaldcT
p→ θ0

′

∆(G
c)−1θ0∆.

- We now show that when riT = o(rjT ),

T−1r2jT WaldcT
p→ θ0

′

∆(G
c
j)

−1 θ0∆ .

We assume wlog that rT = r1T << r2T . Then:

T 1/2r−1
2T Rp θ̂

c
vec = [r1T /r2T ] T

1/2r−1
1T (θ̂

c
1 − θ01)− T 1/2r−1

2T (θ̂c2 − θ02) + T 1/2r−1
2T θ

0
∆

= oP (1)−OP (1) + T 1/2r−1
2T θ

0
∆

r−2
2T Ĝ

c p→ diag[O,Gc
2] ⇔ r−2

2T RpĜ
cR′

p
p→ Gc

2, so T−1r22T WaldcT
p→ θ0

′

∆ (Gc
2)

−1 θ0∆.�

• Proof of Theorem 8: Efficiency of reduced form estimators

VMOD,Π is explicitly defined as in the Theorem with G′
∗G∗ = H′

∗E
−1/2
∗ MJ∗

E−1/2
∗ H∗)

−1 and,

E∗ = diag(Su,1 − S′
uv,1S

−1
v,1Suv,1 , Su,2 − S′

uv,2S
−1
v,2Suv,2) , MJ∗

= I − J∗(J ′
∗J∗)

−1J ′
∗ ,

J∗ = E−1/2
∗ Γ1 , H = diag(S′

uv,1S
−1
v,1 , S

′
uv,2S

−1
v,2) Γ2 , Γ1 = diag(Q1Π

a, Q2Π
a) , Γ2 =

[
Ip2 ⊗Q1

Ip2 ⊗Q2.

]

• (i) The distribution of Π̂ is derived by usual OLS asymptotics; for Π̂GMM with the optimal

weighting matrix (Ŝa
v )

−1 p→ diag(Sv,1, Sv,2), we have:

T 1/2(Π̂GMM −Π) = [(T−1W ′W
0
)(Ŝa

v )
−1(T−1W

0′

W )]−1(T−1W ′W
0
)(Ŝa

v )
−1T−1/2W

0
v

T−1/2W
0
v

d→ N (0, diag(Sv,1, Sv,2)), T−1W
0′

W
p→ vec (Q1, Q2),

⇒ T 1/2(Π̂GMM −Π)
d→ N (0, (Q1S

−1
v,1Q1 +Q2S

−1
v,2Q2)

−1).

The distribution of Π̂MOD follows from Theorem 4, by similar arguments as for VMOD,vec.

• (ii) VOLS,Π = (Q1+Q2)
−1(Sv,1+Sv,2)(Q1+Q2)

−1 and VGMM,Π = (Q1S
−1
v,1Q1+Q2S

−1
v,2Q2)

−1.

Using similar arguments as for Theorem 2(ii), but replacing µi with Qia, for any q×1 vector

a, it follows that VGMM,Π ≤ VOLS,Π, with equality iff S−1
v,1Q1a = S−1

v,2Q2a for all a. Similarly

to Theorem 5(i), VMOD,Π ≤ VGMM,Π, because:

H∗ = S1,2S−1
2,2Γ2 = −vec (S ′

uv,iS
−1
v,iQi)

def
=== −vec (Γi∗),

E∗ = diag(Su,i − S ′
uv,iS

−1
v,i Suv,i)

def
=== diag(E−1/2

i∗ ).
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So Ei∗,Γi∗ play the role of Ei,Γi in the proof of Theorem 5(i), and VMOD,Π ≤ VGMM,Π because

VMOD,Π = VGMM,Π ⇒ E−1/2
2∗ Γ2∗ = 0 ⇔ Γ2∗ = 0 ⇔ S ′

uv,2 S−1
v,2 Q2 = 0, which cannot hold.

• (iii) From the above, it follows that even under Assumptions 5-6, VMOD,Π ≤ VGMM,Π.

However, from (ii), VGMM,Π = VOLS,Π iff S−1
v,1Q1a = S−1

v,2Q2a for all vectors a. Under As-

sumption 5, S−1
v,iQi = (λ0

iSv)
−1λ0

iQ = S−1
v Q, so VGMM,Π = VOLS,Π. Also, under Assumption

6, Sv,i = ΦvQi, so S−1
v,iQi = ΦvIq. �.

C Results of the Monte-Carlo experiments
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Benchmark case:

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0023 0.0297 0.0298 0.1123 0.9340

2SLS 0.0023 0.0293 0.0294 0.1480 0.9860

GMM 0.0005 0.0342 0.0342 0.1305 0.9416

Decrease the R2
1 from 0.2 to 0.05:

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0031 0.0341 0.0342 0.1294 0.9342

2SLS 0.0030 0.0337 0.0338 0.1694 0.9852

GMM 0.0008 0.0416 0.0416 0.1590 0.9432

Decrease the R2
1 from 0.2 to 0.01:

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0035 0.0366 0.0367 0.1389 0.9356

2SLS 0.0034 0.0361 0.0363 0.1815 0.9850

GMM 0.0010 0.0464 0.0464 0.1775 0.9422

Increase sample size from 400 to 800:

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0010 0.0193 0.0193 0.0755 0.9478

2SLS 0.0010 0.0192 0.0192 0.0988 0.9882

GMM 0.0003 0.0219 0.0219 0.0862 0.9496

Increase the number of IV from 3 to 6:

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0025 0.0209 0.0211 0.0778 0.9322

2SLS 0.0026 0.0205 0.0206 0.1032 0.9830

GMM 0.0014 0.0240 0.0241 0.0917 0.9416

Increase endogeneity from 0.5 to 0.75:

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0034 0.0296 0.0298 0.1122 0.9332

2SLS 0.0033 0.0293 0.0294 0.1478 0.9840

GMM 0.0008 0.0342 0.0342 0.1305 0.9400

Table 1: Experiment 1 with known break location in the homoskedastic case.
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Benchmark case:

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0015 0.0245 0.0246 0.0876 0.9342

2SLS 0.0015 0.0284 0.0284 0.1282 0.9894

GMM 0.0004 0.0305 0.0305 0.1106 0.9490

Decrease the R2
1 from 0.2 to 0.05:

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0019 0.0285 0.0286 0.1018 0.9344

2SLS 0.0020 0.0325 0.0326 0.1459 0.9884

GMM 0.0006 0.0372 0.0372 0.1350 0.9508

Decrease the R2
1 from 0.2 to 0.01:

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0022 0.0309 0.0309 0.1097 0.9358

2SLS 0.0023 0.0349 0.0350 0.1561 0.9874

GMM 0.0007 0.0414 0.0414 0.1508 0.9522

Increase sample size from 400 to 800:

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0006 0.0171 0.0171 0.0621 0.9340

2SLS 0.0007 0.0203 0.0203 0.0895 0.9880

GMM -0.0001 0.0201 0.0201 0.0746 0.9502

Increase the number of IV from 3 to 6:

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0014 0.0165 0.0166 0.0578 0.9198

2SLS 0.0015 0.0211 0.0211 0.0899 0.9874

GMM 0.0005 0.0196 0.0196 0.0728 0.9408

Increase endogeneity from 0.5 to 0.75:

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0023 0.0245 0.0247 0.0875 0.9314

2SLS 0.0023 0.0284 0.0285 0.1281 0.9884

GMM 0.0006 0.0306 0.0306 0.1106 0.9498

Table 2: Experiment 1 with known break location in the Garch case.
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Break size is equal to 1

Monte-Carlo average of estimated break location is T̂ = 161.35

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0030 0.0290 0.0292 0.1124 0.9380

2SLS 0.0029 0.0287 0.0288 0.3827 1.0000

GMM -0.0003 0.0338 0.0338 0.1307 0.9490

Break size is equal to 0.5

Monte-Carlo average of estimated break location is T̂ = 162.2

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0083 0.0461 0.0468 0.1771 0.9310

2SLS 0.0080 0.0454 0.0460 0.2865 0.9970

GMM -0.0000 0.0508 0.0508 0.1964 0.9470

Break size is equal to 0.2

Monte-Carlo average of estimated break location is T̂ = 172.4

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0229 0.0686 0.0723 0.2619 0.9190

2SLS 0.0222 0.0675 0.0710 0.2430 0.9095

GMM 0.0008 0.0729 0.0729 0.2815 0.9475

Table 3: Experiment 1 with unknown location of the break in the benchmark homoskedastic

case. The location of the break is estimated for three different break sizes (1, 0.5 and 0.2),

and the true break location is T ∗ = 160.
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Break size is equal to 1

Monte-Carlo average of estimated break location is T̂ = 161.35

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0021 0.0245 0.0246 0.0876 0.9346

2SLS 0.0021 0.0284 0.0285 0.4288 0.9978

GMM 0.0004 0.0305 0.0305 0.1106 0.9490

Break size is equal to 0.5

Monte-Carlo average of estimated break location is T̂ = 162.2

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0057 0.0382 0.0386 0.1362 0.9290

2SLS 0.0062 0.0454 0.0458 0.3189 0.9846

GMM 0.0009 0.0459 0.0459 0.1660 0.9482

Break size is equal to 0.2

Monte-Carlo average of estimated break location is T̂ = 172.4

Estimator Bias Std dev RMSE Length Coverage

MOD 0.0158 0.0557 0.0579 0.1976 0.9058

2SLS 0.0176 0.0696 0.0717 0.2687 0.8996

GMM 0.0018 0.0658 0.0658 0.2375 0.9458

Table 4: Experiment 1 with unknown location of the break in the benchmark Garch case.

The location of the break is estimated for three different break sizes (1, 0.5 and 0.2), and

the true break location is T ∗ = 160.
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Figure 1: Experiment 2 for model (i) in the homoskedastic case (top) and in the Garch

case (bottom). Left panel is RMSE and right panel is Standard deviation for MOD (red x),

2SLS (blue o), and GMM (green +).
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Figure 2: Experiment 2 for model (iii) in the homoskedastic case (top) and in the Garch

case (bottom). Left panel is RMSE and right panel is Standard deviation for MOD (red x),

2SLS (blue o), and GMM (green +).
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Rejection probabilities (at the true value β0 = 0):

MOD-K MOD-K-adj K MOD-AR MOD-AR-adj AR

(represented on the graph) (not represented on the graph)

0.0982 0.0568 0.0518 0.0858 0.0496 0.0240

Probability of detecting the break 0.9994

Probability of weak identification∗ (ignoring the break info) 1

Probability of weak identification∗ (with break info) 0.5056

∗ We use Staiger and Stock’s rule-of-thumb to test weak identification.

Figure 3: Experiment 3 for model (i) in the homoskedastic case, no change in R2: R2
1 =

R2
2 = 0.1. We represent the power curves when testing H0 : β = β0 at α = 5% using

(a) MOD-K (red o) where we either use MOD or K depending on the tests for break and

weakness; (b) MOD-adj (black +) after adjusting the size of the test using a Bonferroni-type

correction, αadj = α/2 = 0.025; (c) K (blue x) where we use Kleibergen’s procedure ignoring

the break.
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Rejection probabilities (at the true value β0 = 0):

MOD-K MOD-K-adj K MOD-AR MOD-AR-adj AR

(represented on the graph) (not represented on the graph)

0.0810 0.0530 0.0502 0.0808 0.0530 0.0244

Probability of detecting the break 1

Probability of weak identification∗ (ignoring the break info) 0.9858

Probability of weak identification∗ (with break info) 0.0038

∗ We use Staiger and Stock’s rule-of-thumb to test weak identification.

Figure 4: Experiment 3 for model (ii) in the homoskedastic case, R2 larger over the second

subsample: R2
1 = 0.1 and R2

2 = 0.22. We represent the power curves when testing H0 : β =

β0 at α = 5% using (a) MOD-K (red o) where we either use MOD or K depending on the

tests for break and weakness; (b) MOD-adj (black +) is MOD-K after adjusting the size of

the test using a Bonferroni-type correction, αadj = α/2 = 0.025; (c) K (blue x) where we

use Kleibergen’s procedure ignoring the break.
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Rejection probabilities (at the true value β0 = 0):

MOD-K MOD-K-adj K MOD-AR MOD-AR-adj AR

(represented on the graph) (not represented on the graph)

0.0798 0.0476 0.0506 0.0620 0.0372 0.0238

Probability of detecting the break 0.2298

Probability of weak identification∗ (ignoring the break info) 0.7764

Probability of weak identification∗ (with break info) 0.7510

∗ We use Staiger and Stock’s rule-of-thumb to test weak identification.

Figure 5: Experiment 3 for model (iii) in the homoskedastic case, R2 smaller over the

second subsample: R2
1 = 0.1 and R2

2 = 0.025. We represent the power curves when testing

H0 : β = β0 at α = 5% using (a) MOD-K (red o) where we either use MOD or K depending

on the tests for break and weakness; (b) MOD-adj (black +) is MOD-K after adjusting the

size of the test using a Bonferroni-type correction, αadj = α/2 = 0.025; (c) K (blue x) where

we use Kleibergen’s procedure ignoring the break.
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