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Abstract

This paper presents Rtadf (Right Tail Augmented Dickey-Fuller), an EViews Add-in
that facilitates the performance of time series based tests that help detect, date-
stamp and monitor asset price bubbles. Detection strategy is based on a right-tail
variation of the standard Augmented Dickey–Fuller(ADF) test where the alternative
hypothesis is of a mildly explosive process. Rejection of the null in each of these tests
may serve as empirical evidence for an asset price bubble. The add-in implements
four types of tests: Standard ADF, Rolling window ADF, supremum ADF (SADF)
(Phillips et al., 2011) and generalized SADF (GSADF) (Phillips et al., 2015). This
add-in calculates the test statistics for each of the above four tests, simulates the
corresponding exact �nite sample critical values and p-values via Monte Carlo
and bootstrap methods, and produces a graphical display of the date stamping
procedure.

*Version 2.0. This manuscript is an updated version of “Caspi, I. (forthcoming). Rtadf: Testing
for bubbles with EViews. Journal of Statistical Software.”. I thank Peter C.B. Phillips, Shuping Shi,
Jun Yu, Jonathan Benchimol and Yossi Yakhin for their helpful comments and suggestions. All
remaining errors are mine.

†Research Department; Bank of Israel; P.O. Box 780, Jerusalem 91007, Israel; itamar.caspi@boi.
org.il. The views expressed in this paper are solely those of the author and do not necessarily
re�ect the views of the Bank of Israel or any of its sta�.

https://sites.google.com/site/caspiitamar/
itamar.caspi@boi.org.il
itamar.caspi@boi.org.il


1. Introduction

Empirical identi�cation of asset price bubbles in real time, and even in retrospect,
is surely not an easy task, and it has been the source of academic and professional
debate for several decades.1 One strand of the empirical literature suggests using
time series estimation techniques while exploiting predictions made by �nance
theory in order to test for the existence of bubbles in the data. The main idea,
based on asset pricing theory, suggests that the existence of a bubble component
in an observed asset price should be manifested in its dynamics and its stochastic
properties. More speci�cally, theory predicts that if a bubble exists, prices should
inherit its explosiveness property. This in turn enables formulating statistical tests
aimed at detecting evidence of explosiveness in the data.2

One of the attempts to test for rational bubbles in the context of the stock
market is found in Diba and Grossman (1988), where the authors suggest using
reduced form stationarity tests with regard to stock prices and observable market
fundamentals, and to rule out bubbles if the former is foundnomore explosive than
the latter. Evans (1991), however, questions the power of such stationarity based
tests in the presence of a periodically collapsing bubble (i.e., one that spontaneously
occurs and bursts), an apparent feature of actual stock prices seen in the data. Using
simulation methods, Evans (1991) shows that standard unit root and cointegration
tests fail to reject the null of no bubble in the presence of periodically collapsing
bubbles. Despite his �ndings, Evans (1991) leaves open the question of a better
identi�cation strategy.

More recently, new bubble detection strategies were developed and presented
by Phillips et al. (2011, hereafter PWY) and Phillips et al. (2015, hereafter PSY).
These strategies are based on recursive and rolling ADF unit root tests that enable
us to detect bubbles in the data and to date-stamp their occurrence. These types
of tests use a right tail variation of the Augmented Dickey-Fuller unit root test
wherein the null hypothesis is of a unit root and the alternative is of a mildly
explosive process.3 PWY and PSY show that using recursive and rolling tests

1There is a large amount of academic debate with regard to the theoretical plausibility of
bubbles (Brunnermeier, 2008; Iraola and Santos, 2008). This paper deals with bubbles of the
rational type (a.k.a., ’rational bubbles’), i.e., bubbles consistent with the rational expectations
hypothesis (Blanchard and Watson, 1982).

2For recent surveys on econometric tests for bubbles, see Gürkaynak (2008) and Homm and
Breitung (2012).

3Phillips and Magdalinos (2007) de�ne a mildly explosive root using the following data
generating process

yt � δn yt−1 + εt ,
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results in higher power in the detection of bubbles, compared to standard tests on
the whole sample. In a Monte Carlo study, Homm and Breitung (2012) compare
several time series based tests for the detection of bubbles and �nd that the PWY
strategy performs relatively well in detecting periodically collapsing bubbles and
in real time monitoring. Phillips et al. (2015) show through a Monte Carlo study
that the PSY strategy outperforms the PWY strategy in the presence of multiple
bubbles.

This paper introduces Rtadf, an EViews Add-in that allows end users to easily
test for the existence of bubbles, by readily applying four variations of the right-tail
ADF unit root test, in line with the reduced form approach for bubble detection
described above. Four tests include the standard ADF test and a rolling window
ADF test, and the more recent PWY supremum ADF (SADF) test and the PSY
generalized SADF (GSADF) test. The add-in performs two main tasks. First, it
calculates the relevant test statistic, according to the selected test. Second, the
add-in derives the corresponding exact �nite sample critical values by performing
a Monte Carlo simulation, under the assumption of Gaussian innovations, or
by the bootstrap, which may be more robust in the presence of non-stationary
volatility (Harvey et al., 2016) or facing small sample size (Gutierrez, 2011). The
add-in allows the user to choose between performing a sequential and a parallel
(multicore) simulation. It is shown that using the latter option results in signi�cant
reduction of computational time as the number of recursions needed to complete
the simulation rises. (This is most relevant for the GSADF test.)

The rest of the paper is organized as follows. Section 2 presents a basic the-
oretical model of rational bubbles in a standard asset pricing model. Section 3
introduces the details of the econometric strategy used to detect explosive behavior
in asset prices. Section 4 provides general instructions on how to use the Rtadf
add-in within the EViews environment. Section 6 presents a hands-on illustration
of Rtadf. Finally, Section 7 concludes.

where δn � 1 + c
kn
, and where (kn)n∈N is a sequence increasing to∞ such that kn � o(n) as n →∞.

Limit theory for mildly explosive processes is developed in Phillips and Magdalinos (2007).
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2. Asset pricing with rational bubbles

In this section a formal model of asset pricing with a rational bubble is presented.
We start by specifying the de�nition of the single period return on an asset:

Rt+1 ≡
Pt+1 + Dt+1

Pt
(1)

where Rt+1 > 1 is the gross return on holding the asset from period t to t + 1, Pt is
the price of the asset measured at the end of period t (i.e., the ex-dividend price)
and Dt+1 is the dividend the asset holder is entitled to for holding the stock from
period t to t + 1

Next, following Campbell and Shiller (1988) we write a log-linear approxima-
tion of Equation (1)

pt � κ + ρpt+1 +
�
1 − ρ

�
dt+1 − rt+1 (2)

where pt ≡ log(Pt), dt ≡ log(Dt), rt ≡ log(Rt), ρ � 1/
[
1 + e

(
p−d

) ]
with p − d being

the average log price-to-dividend ratio, and

κ � − log(ρ) − (1 − ρ) log
(
1
ρ
− 1

)
.

Solving Equation (2) by forward iteration and taking expectations yields the
following log-linear approximation of the log price-to-dividend ratio:

pt − dt �
κ

1 − ρ +
∞∑

i�0
ρiEt (∆dt+1+i − rt+1+i) + lim

i→∞
ρiEt

�
pt+i − dt+i

�
. (3)

The right hand side of Equation (3) can be decomposed into two components,

pt − dt � ft + bt (4)

where

ft �
κ

1 − ρ +
∞∑

i�0
ρiEt (∆dt+1+i − rt+1+i) , (5)

is the fundamental component, stated in terms of the expected dividend growth
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rate and expected returns, and where

bt � lim
i→∞

ρiEt
�
pt+i − dt+i

�
, (6)

is commonly referred to as the rational bubble component. The latter is the focus
of the bubble tests described below.

Under the transversality condition, which implies no-Ponzi game, limi→∞ ρiEt pt+i �

0, and the possibility of a bubble is ruled out. Thus, the observed price equals
the fundamental price. In contrast, the existence of a strictly positive bubble
component, i.e., the situation where actual price exceeds what is implied by funda-
mentals, requires that investors expect to be compensated for overpayment (over
the fundamental price) by the expected appreciation of the bubble component. In
other words, investors are willing to pay a premium over the fundamental price
only because they expect this premium to appreciate in the next period. Note that
this behavior is completely consistent with the rational expectations assumption,
hence the name ‘rational bubble’.

More importantly, note that Equation (6) implies a submartingale property for
bt since

Et(bt+1) � 1
ρ

bt �

[
1 + e(p−d)

]
bt , (7)

where
[
1 + e(p−d)] > 0. Thus, when bt , 0, the log bubble component grows at

rate 1, where 1 � e(p−d) > 0.
This model reveals important insights regarding the stochastic properties of

pt − dt , according to which, we can formulate an econometric test designed to rule
out the presence of a rational bubble component in an observed asset price. To see
this, note that the stochastic properties of pt − dt , implied by (3), are determined by
those of ft and bt . In turn, the dynamics of ft are determined by expected ∆dt and
rt . If ∆dt and rt are at most I(1) processes, evidence of explosiveness in pt − dt (in
this model) can only be the result of the presence of a bubble, i.e., bt , 0. Thus, a
test for the presence of a bubble can be formulated as a test for explosive behavior
in log price-to-dividend ratio, pt − dt .
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3. Testing for bubbles

Following the conventions of PSY, assume the following random walk process
with an asymptotically negligible drift:

yt � dT−η + θyt−1 + et , et
iid
∼ N(0, σ2), θ � 1 (8)

where d is a constant, η is a localizing coe�cient that controls the magnitude of
the drift as the sample size, T, approaches in�nity and εt is the error term.4

Four test strategies implemented by the Rtadf add-in (which includes the ones
suggested by PWY and PSY) are all based on some variation of the following
reduced form empirical equation:

yt � µ + δyt−1 +
p∑

i�1
φi∆yt−i + εt . (9)

where yt is the variable in question (e.g., the price of a stock), µ is an intercept, p is
the maximum number of lags, φi for i � 1 . . . p are the di�erenced lags coe�cients
and εt is the error term. Testing for a bubble (explosive behavior) is based on a
right-tail variation of the standard ADF unit root test where the null hypothesis is
of a unit root and the alternative is of a mildly explosive autoregressive coe�cient.
Formally, we test for

H0 : δ � 1
H1 : δ > 1.

Before proceeding to a description of the tests included in Rtadf, some notation
is needed. For simplicity of exposition, we use a sample interval of [0, 1] (i.e.,
we normalized the original sample by T). Denote by δr1 ,r2 and by ADFr1 ,r2 the
coe�cient estimated by Equation (9) and its corresponding ADF statistic over the
(normalized) sample [r1, r2]. In addition, denote by rw the (fractional) window
size of the regression, de�ned by rw � r2 − r1 and by r0 the �xed initial window,
set by the user. The di�erence between the tests relates to the manner of setting r1
and r2.

The �rst test included in Rtadf is a simple right-tailed version of the standard
ADF unit root test. In this case, r1 and r2 are �xed to the �rst and last observations,
respectively, of the whole sample, where in this case, rw � r0 � 1 (see Figure 1).5

4PSY set d, η and θ to unity, while PWY e�ectively set η → ∞ (i.e., random walk without a
drift).

5The t-statistic from this test matches the one reported by EViews.
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However, the critical values for testing the null hypothesis di�er from the ones
used in the usual ADF unit root test sincewe nowneed the right tail of the statistic’s
nonstandard distribution.

Figure 1. Illustration of the ADF procedure.

0 1

r1
rw � 1

r2

Sample interval

The second type of test, the rolling ADF (RADF) test, is a rolling version of
the �rst test in which the ADF statistic is calculated over a rolling window of
�xed size speci�ed by the user, i.e., rw � r0 for all estimations. At each step of the
RADF procedure, the window’s start and end point (r1 and r2 respectively) are
incremented one observation at a time (see Figure 2). Each estimation yields an
ADF statistic, denoted as ADFr1 ,r2 . The RADF statistic is de�ned as the supremum
ADFr1 ,r2 statistic among all possible windows.6

Figure 2. Illustration of the RADF procedure.

0 1

r1
rw � r0 r2

r2

Sample interval

r2r1
r1

rw � r0
rw � r0

The SADF test, suggested by PWY, is based on recursive calculations of the
ADF statistics with a �xed starting point and an expanding window, where the
initial size of the window is set by the user. The estimation procedure is as follows
(see Figure 3): The �rst observation in the sample is set as the starting point of
the estimation window, r1, i.e., r1 � 0. Next, the end point of the initial estimation
window, r2, is set according to some choice of minimal window size, r0, such that
the initial window size is rw � r2 (again, in fraction terms). Finally, the regression
is recursively estimated, while incrementing the window size, r2 ∈ [r0, 1], one
observation at a time. Each estimation yields an ADF statistic denoted as ADFr2 .
Note that in the last step, estimation will be based on the whole sample (i.e., r2 � 1
and the statistic will be ADF1). The SADF statistic is de�ned as the supremum value

6Note that the windows in the RADF procedure are overlapping.
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of the ADFr2 sequence for r2 ∈ [r0, 1]:

SADF(r0) � sup
r2∈[r0 ,1]

{ADFr2} (10)

Figure 3. Illustration of the SADF procedure.

0 1

r1

rw � r2 r2
r2

r2

Sample interval

The fourth and last test is the generalized SADF (GSADF), suggested by PSY.
This test generalizes the SADF test by allowing more �exible estimation windows,
wherein, unlike the SADF procedure, the starting point, r1, is also allowed to vary
within the range [0, r2 − r0] (see Figure 4). Formally, the GSADF statistic is de�ned
as

GSADF(r0) � sup
r2∈[r0 ,1]

r1∈[0,r2−r0]

{ADFr2
r1 } (11)

Figure 4. Illustration of the GSADF procedure.

0 1

r1
rw � r1 − r2 r2 r2 r2

Sample interval

r2 r2 r2
r1

r2 r2 r2
r1

rw � r1 − r2

rw � r1 − r2

Table 1. A summary of the tests’ null and alternative hypotheses according to Phillips et al.
(2015).

Test Null hypothesis Alternative hypothesis

ADF Unit root Explosive process
SADF Unit root Single periodically collapsing bubble period
GSADF Unit root Multiple periodically collapsing bubbles
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3.1. Date-stamping bubble periods

As PWY and PSY show, the SADF and GSADF procedures can also be used,
under general regularity conditions, as a date-stamping strategy that consistently
estimates the origination and termination of bubbles. In other words, if the null
hypothesis of either of these tests is rejected, one can estimate the start and end
points of a speci�c bubble (or bubbles). The date-stamping procedures will now
be presented in brief.7

The �rst date-stamping strategy is based on the SADF test. PWY propose
comparing each element of the estimated ADFr2 sequence to the correspond-
ing right-tailed critical values of the standard ADF statistic to identify a bubble
initiating at time Tr2. The estimated origination point of a bubble is the �rst
chronological observation, denoted by Tre , in which ADFr2 crosses the correspond-
ing critical value from below, while the estimated termination point is the �rst
chronological observation after Tre , denoted by Tr f , in which ADFr2 crosses the
critical value from above. Formally, the estimates of the bubble period (as fractions
of the sample) are de�ned by

r̂e � inf
r2∈[r0 ,1]

{
r2 : ADFr2 > cvβT

r2

}
(12)

r̂ f � inf
r2∈[r̂e ,1]

{
r2 : ADFr2 < cvβT

r2

}
(13)

where cvβT
r2 is the 100(1 − βT)% critical value of the standard ADF statistic based

on [Tr2] observations.8 , 9
Similarly, the estimates of the bubble period based on the GSADF are given by

r̂e � inf
r2∈[r0 ,1]

{
r2 : BSADFr2(r0) > cv

βTr2
r2

}
(14)

r̂ f � inf
r2∈[r̂e ,1]

{
r2 : BSADFr2(r0) < cv

βTr2
r2

}
(15)

where cvβT
r2 is the 100(1 − βT)% critical value of the sup ADF statistic based on

[Tr2] observations. BSADF(r0) for r2 ∈ [r0, 1], is the backward sup ADF statistic

7For a detailed presentation see Phillips et al. (2011), Phillips and Yu (2011) and Phillips et al.
(2015).

8In order to asymptotically eliminate type I errors, there is a need to let βT → 0 as T → 0.
However, in applied work it is convenient to use a constant βT such as 5%.

9Phillips and Yu (2011) argue that the dating rule requires that the duration of the bubble be
non-negligible. In Phillips et al. (2015) the authors de�ne log(T)/T as a minimal lasting time for a
bubble period.

8



that relates to the GSADF statistic by the following relation:

GSADF(r0) � sup
r2∈[r0 ,1]

{BSADFr2(r0)}. (16)

4. Instructions and details

4.1. Installation

In essence, EViews Add-ins are EViews programs packed in a way that makes
them feel and look like built-in EViews procedures.10 This relatively new feature
enables adding procedures and functionalities that have yet to be implemented in
o�cial releases of EViews. By using the Add-ins feature and program language,
the user is able to augment standard written programs with an interactive user
interface, thus making them more general purposed and user friendly. Moreover,
unlike regular EViews programs, add-ins have the ability to run directly from
EViews objects and/or by commands.

EViews add-ins are available for EViews users with versions 7.1 and above.
Installing the Rtadf add-in (or any other add-in for that matter) on an existing copy
of EViews can be done manually by downloading the self extracting installation
�le from the download section at the EViews website at http://www.eviews.com/
Addins/addins.shtml where it is listed under Rtadf∗.11 Alternatively, EViews
users with version 8 can download the add-in while inside EViews by clicking
Add-ins→Manage Add-ins, selecting the Rtadf add-in from the list presented
under the Available tab and clicking the Install button. In general, note that all
other add-ins available on the list are written either by the EViews sta� or by
outside users.

Each add-in published on the EViews website (including Rtadf) has a corre-
sponding support thread in the EViews Add-in Support forum, which can be
found at http://forums.eviews.com/viewforum.php?f=2.

4.2. Using the add-in

The Rtadf add-in can only be run from a series object. Initiating the add-in’s dialog
box is done by opening a series object and than clicking Proc→ Add-ins→ Right

10To R users, the concept is similar to R packages as with MATLAB users and tool-boxes.
11The asterisk next to the add-in’s name indicates the add-in was developed by an EViews user

rather than by IHS EViews.
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Tail ADF tests. The test dialog box, presented in Figure 5, enables the user to set
the sample period, type of test, initial window size (as a fraction or number of
observations), deterministic terms in the test equation and the number of lags
in the ADF equation (p in Equation 9), where it can be either �xed by the user,
or automatically selected according to some information criterion. In addition,
it allows the user to choose the option of simulating critical values for the test
(thus prompting the simulation dialog box described below) and whether to view
a graph that includes the sequence of ADF statistics, the corresponding critical
value sequence and the actual series.

Figure 5. Dialog box.

As for the critical values, the add-in currently provides �ve options. Choos-
ing none will skip the simulation part altogether and just show the estimated
test statistic. Choosing either Monte Carlo (with EViews) or Monte Carlo (with
MATLAB will prompt the simulation dialog box (see Figure 6). Note that simula-
tion via MATLAB is only available for the RADF, SADF and GSADF and requires
having the MATLAB as well as the Parallel Computing Toolbox. Alternativly, we
can choose to base our inference on the bootstrap method by choosong Bootstrap.
Finally, choosing the “use existing simulation output” will base the statistical
inference and a previously run (Monte Carlo) simulation. This can save time in
cases where existing critical values are appropriate for the new series at hand (in
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the sense of sample size, minimum window, etc.).12

5. Finite sample inference

Whenever one of the ‘simulate critical values’ options are checked (Monte Carlo or
Bootstrap), a new dialog box will prompted (see Figure 6), where all the necessary
speci�cations for the simulation experiment can be edited. The output of the simu-
lation experiment includes the 90, 95 and 99 percent quantiles of the approximate
�nite sample distribution of the statistic in question, the corresponding p-value of
the test statistic and the critical values sequence for the date-stamping process.

Figure 6. Critical values simulation dialog box.

(a) Monte Carlo. (b) Bootstrap.

The add-in provides two main methods for conducting �nite sample inference.
The �rst method, which is based on Monte Carlo simulation, is used in Phillips
et al. (2011); Phillips and Yu (2011); Phillips et al. (2015). The secondmethod, which
is based on the bootstrap method, is used in Gutierrez (2011), Harvey et al. (2016)
and Milunovich et al. (2016).

In what follows we provide details on how exactly the add-in generates the
data needed for statistical inference, i.e., critical values and p-values.

12Before using the “use existing simulation output” option we need to make sure that the
necessary objects exist in our main work�le. For example, is we run the GSADF test with “use
existing simulation output” checked, the objects ‘gsadf’, ‘gsadf_cv’, ‘gsadf_dist’ and ‘cv’ must exist
in the work�le.
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5.1. Monte Carlo based inference

When the Monte Carlo simulation option is chosen, whether it is with EViews or
MATLAB, critical values for all four tests are performed according to the following
algorithm:

Step 1: Draw one realization at length T based on the null model (given by Equa-
tion (8)).

Step 2: Estimate Equation 9 by OLS (with or without recursion, depending on
the test).

Step 3: Store the relevant test statistic (ADF/RADF/SADF/GSADF).

Repeat steps 1–3 N times (where N is a large number.)

Step 4: Calculate the 90%, 95% and 99% quantiles of the distribution of the rele-
vant statistic.

As can be seen in Figure 6(a), simulation setup in Rtadf is very �exible, allowing
the user to specify the type of test, appropriate sample size, number of replications,
deterministic terms in the test equation, initial window size, signi�cance level
for the critical value sequence (i.e., β), speci�cation for the parameters of the
data generating process for the null hypothesis (i.e., set values for d, η and θ in
Equation (8)). In addition the user can choose whether to use T or Trw in the null
model when calculating the simulated critical value sequence (the latter is more
accurate but can be very time consuming for large samples while the former is
less accurate but runs faster).13

5.1.1. Run-time comparisons

Because of their recursive nature, applying the available tests available in the
Rtadf add-in tend to be time consuming as the number of observations increases.
Nonetheless, running time can be signi�cantly decreased by using the multi-core
capabilities of your machine.

The results of the running time simulations are presented in Table 2. All
tests were run using EViews 9 and MATLAB 2014a (with the Parallel Computing
Toolbox installed). The hardware used includes a core i7-4702MQ CPU with 16
GB RAM.

13Note that by default, sample size and the initial window size used in the previous step are
shown in the simulation dialog box.
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The table includes the running time (in seconds) for all four tests and for two
sample sizes - 100 and 200 observations. As we can see, for 100 observations, in
the RADF and the SADF tests, there is not much of a di�erence in running times
between EViews and MATLAB. The reason for this similarity is that for a small
number of replications, the communication time between EViews and MATLAB
and the time it takes to set up a multi-core session, outweighs the bene�ts of the
parallelized simulation. When the sample size is doubled to 200 observations, the
e�ciency of multi core calculations kicks in, and enables MATLAB to outperform
EViews by roughly 50% faster than the single core simulation in EViews. As for
the GSADF test, which involves many more estimations per replication, using the
parallel computing option improves running time by more than 90% (!).

Table 2. Comparison of tests’ running time (in seconds).

Test type T � 100
r0�0.19

T � 200
r0�0.14

EViews MATLAB EViews MATLAB

ADF 0.538 - 0.53
RADF 16.75 17.52 34.60 17.52
SADF 16.56 15.19 34.71 17.90
GSADF 715.45 62.29 3197.87 232.75

5.2. Bootstrap based inference

When the Bootstrap option is chosen within the dialog box, the critical values are
calculated according to the following algorithm. First, note that under the null,
the model can be written as

∆yt � µ +
p∑

j�1
φ j∆yt− j + εt (17)

Step 1: De�ne the sample of innovations as εt � ∆yt if the coe�cients for the
autoregressive lags and deterministic (constant and trend) are constrained
to zero, and εt � ∆yt − µ̂ −

∑p
j�1 φ̂ j∆yt− j otherwise, where µ and ,φ j for

j � 1, . . . , p are estimated by OLS.

Step 2: Generate T observations of bootstrapped innovations. For the wild boot-
strap innovations are de�ned as ε∗t � wtεt , where wt ∼ i.i.d.N(0, 1), in-
dependent of εt . For the sieve method, the innovations are re-sampled
(with replacement) from the centered residuals εt − ε̄t , where ε̄t � (T − p −
1)−1 ∑T

t�2+p εt .
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Step 3: If the coe�cients for the autoregressive lags and deterministic (constant
and trend) are constrained to zero, construct the bootstrapped sample y∗t as
yt∗ �

∑T
j�1 ε

∗

t , where y∗1 � 0. Otherwise, generate y∗t using the OLS estimates
of µ and φ j for j � 1, . . . , p,

y∗t � µ̂ +
k∑

j�1
φ̂ j∆y∗t− j + ε

∗

t (18)

where ∆y∗t � ∆yt for t � 2, . . . , p + 1 and y∗t � y1

Step 4: Compute the test statistic (ADF/RADF/SADF/GSADF) for y∗t and repeat
steps 1-4 B times in order to derive the bootstrap distribution of the test
statistic.

Step 5: Calculate the 90%, 95% and 99% quantiles of the distribution of the rele-
vant statistic.

As can be seen in Figure 6(b), the bootstrap setup in Rtadf is very �exible, allowing
the user to specify the method of bootstrap used (wild or sieve), type of test,
appropriate sample size, number of replications, deterministic terms in the test
equation, initial window size, signi�cance level for the critical value sequence (i.e.,
β), speci�cation for the parameters of the data generating process for the bootstrap
model (i.e., deterministic terms and lag length).14

5.3. Approximate p-values

Quantiles calculated in step 4 (Monte Carlo) and step 5 (bootstrap) are used for
testing the null of unit root against the alternative of an explosive process. In
addition, the simulation output includes the p-value of the test statistic, de�ned
as the probability of observing a statistic as extreme as under the null, that is
calculated as

p(τ̂) � 1
N

N∑
j�1
I(τ j > τ̂), (19)

where τ̂ is the estimated test statistic (ADF/RADF/SADF/GSADF), N is the
number of replications, I(·) denotes the indicator function which is equal to 1
if the argument is true and 0 otherwise and τ j are the simulated test statistics

14Note that by default, the initial window size used in the previous step are shown in the
simulation dialog box.
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( j � 1, · · · ,N). The sequences of critical values, which are necessary for the
date-stamping procedure, are also derived by the simulation.

5.4. Usage via a command line

The Rtadf add-in can also be called upon via a command line. This feature enables
using the add-in’s capabilities as an integrated part of other EViews programs.
The syntax is given by:

series_name.rtadf(options)

15



Table 3. Options for the command line.

Basic options
const (default) Include a constant in the test equation.

trend Include a constant and a linear time trend in the test equation.

none Do not include a constant or time trend.

info = arg (default = ’�xed’) Either �xed or information criterion to use when computing automatic
lag length selection: ’aic’ (Akaike), ’sic’ (Schwarz), ’hqc’ (Hannan-Quinn),
’maic’ (Modi�ed Akaike), ’msic’ (Modi�ed Schwarz), ’mhqc’ (Modi�ed
Hannan-Quinn).

lag = integer (default=0) Either a �xed number of lags (if ’�xed’ is chosen for the ’info’ option) or
maximum lag length to consider when performing automatic lag length
selection.

Test options
model = integer (default=1) Type of test: ’1’ (ADF), ’2’ (RADF), ’3’ (SADF), ’4’(GSADF)

win = number (default=bT(0.01 + 1.8/
√

T)c) Initial window size (in fraction terms or in number of observations).

Simulation options
usecurrent Use previously simulated critical values that are stored in the work�le.

sim Simulate critical values (Monte Carlo with EViews as default).

matlab Parallel Monte Carlo simulation via MATLAB.

d = number (default=1) See Equation (8). (Only relevant for Monte Carlo methods)

eta = number (default=1) See Equation (8). (Only relevant for Monte Carlo methods)

theta = number (default=1) See Equation (8). (Only relevant for Monte Carlo methods)

boot Bootstrap critical values. (Wild bootstrap as default)

sieve Bootstrap critical values using the sieve method.

bnone (default) Do not include a constant or time trend in the bootstrap model.

bconst Include a constant in the bootstrap model.

trend Include a constant and a linear time trend in the bootstrap model.

blag number of lags to include in the bootstrap model.

rep = integer (default=1000) Simulation’s number of replications.

beta = [0,1] (default=0.95) Signi�cance level for the critical values sequence. (see section 3.1.)

Trw Use Trw instead of T (default) for calculating of the sequence of critical
values.

Other options
graph Create a graph of the results.

print Print output from the test.
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where the available options are detailed in Table 3. Next, we show a couple of
command line examples. First, the command:

snp.rtadf(const,model = 3, print)

performs an SADF test on the series SNP with the test equation including a constant term
and prints the results. Second, the command:

nasdaq.rtadf(trend, model = 4, info = aic, lag = 4, win = 0.02, sim,

rep = 2000, graph, print)

performs a GSADF test on the series NASDAQwhere the test equation includes a constant
and a deterministic linear time trend and the initial window size is set to 2% of the sample,
simulates critical values using 2000 replications, generates a graph and prints the results.

Third, the command:

nasdaq.rtadf(trend, model = 4, info = aic, lag = 4, win = 0.02, sim, matlab,

rep = 2000, graph, print)

is similar to the above command, only now the simulation is run in parallel mode using
MATLAB.

Fourth, the command:

nasdaq.rtadf(trend, model = 4, info = aic, lag = 4, win = 0.02, usecurrent

graph, print)

is similar to the above command, only now the statistical inference is based on a previously
run simulation.15

The following examples show how to use the command line options in the context of
the bootstrap. First, the command:

brent.rtadf(model = 3, sim, boot, rep=999, graph, print)

runs the SADF test on the series BRENT and simulates critical values based on (wild)
bootstrap using 999 replications, generates a graph and prints the results.

The command:

15Before using the ’usecurrent’ option we need to make sure that the necessary objects exist in
our main work�le. For example, is we run the GSADF test with ’usecurrent’ the objects ‘gsadf’,
‘gsadf_cv’, ‘gsadf_dist’ and ‘cv’ must exist in the work�le.

17



brent.rtadf(model = 3, sim, boot, sieve, rep=999, graph, print)

is similar to the above command, only now the bootstrap method is set to ‘sieve’.

Lastly, the command:

brent.rtadf(model = 3, sim, lag=2, boot, rep=999, bconst, blag=2, graph,

print)

runs the SADF test on the series BRENT where the lag length in the test regression is set
to 2, and simulates critical values based on (wild) bootstrap using 999 replications, where
the bootstrap model includes an intercept and two lagged �rst di�erences, generates a
graph and prints the results.

6. Illustration

In this section we demonstrate in detail how to use Rtadf using two examples. In the �rst
example we replicate the results of the SADF test on the S&P 500 price=to-dividend ratio.
In the second example we demonstrate the use of the bootstrap version of the SADF test
by replicating some of the results that appear in Harvey et al. (2016).

6.1. S&P 500 price-to-dividend ratio

We now turn to replicating the results reported in Phillips et al. (2015), Table 8 (pp. 33) and
Figure 8 (pp. 35). The analysis is based on monthly data of the S&P 500 price-dividend
ratio (the series object name in this example is SNP) over the period of 1871:M1 to 2010:M12
that includes 1680 observations, see Figure 7.16

In order to start the bubble detection process with the price-dividend ratio (SNP)
series, �rst open the SNP series object and then click Proc→ Add-ins→ Right tail ADF
tests (see Figure 8). Next, specify the test parameters as in PSY–see Figure 9(a) below–and
then click the OK button. Note that just like in PSY, the initial window size is set to 36
observations (which constitutes approximately 2% of the whole sample), the lag length of
the ADF test (p in Equation 9) is set to zero. Make sure that the “simulating critical values”
option is checked so that the output includes the necessary critical values for testing the
null hypothesis.

Simulation parameters’ speci�cations are also set in accordance with PSY by adjusting
the parameters in the simulation dialog box, which prompts right after clicking the OK

16The data used by in PSY can be downloaded from https://sites.google.com/site/
shupingshi/PrgGSADF.zip?attredirects=0.
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Figure 7. S&P 500 price-dividend ratio, 1871:M1–2010:M12.
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Figure 8. S&P 500 object and the Rtadf proc menu.

button in the main dialog box, see Figure 9(b). Clicking OK results in �nite sample critical
values for the conduction the SADF test.17

Summary output of the SADF test is displayed in Figure 10(a). The output is presented
within the series object and it includes two panels.18 The top panel is a table that holds
the estimated SADF t-statistic followed by the corresponding (right tail) 90%, 95% and
99% critical values derived from the simulated statistic’s distribution. Note that the sup
value of this sequence is 3.443, whereas in Phillips et al. (2015) it equals 3.30. However,

17The simulation in this example may take a while since it involves running (1680− 36)× 2000 �

3, 288, 000 regressions. (On an Intel Core i5 with 4GB of memory it took over an hour.)
18In this example, the output was extracted to an EViews spool object by clicking on the ‘Freeze’

button.
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Figure 9. Parameter settings for the S&P 500 SADF test and simulation.

(a) Test dialog box. (b) Simulation dialog box.

using the MATLAB code published by PSY, gives an SADF statistic that equals 3.443.19
The simulated critical values, which appear below the SADF statistic, match exactly those
in PSY, Table 8.

Table 4. Comparison of date-stamping procedures results for the S&P 500.

Period No. Phillips et al. (2015) Rtadf

1 1879:M10–1880:M4 1879:M5–1880:M4
2 1997:M07–2001:M8 1997:M7–2002:M5

The bottom panel of the spool presents the date-stamping procedure for the SADF test.
The graph includes the SNP series (in green), the ADFr2 statistic sequence (in blue) and
the corresponding 95% critical values sequence (in red). The data used to plot the graph
are now available as series objects within the work�le under the names ’sadf’ (the blue
line) and ’sadf_cv’ (the red line), see Figure 10(b).20 The add-in successfully identi�es two
bubble periods, just like in PSY, though with minor di�erences in the start and end point
(see Table 4). In addition, the add-in identi�es one bubble period lasting four months in
the beginning of the sample and a couple of ’blips’ of bubbles lasting for one observation
(i.e., one month). The source of discrepancy might be di�erences in the random number
generator used by each software. However, if we ignore “too-short-lasting” bubble periods

19The add-in’s estimate of the GSADF statistic for the SNP series (not shown) is the same as the
one in PSY (2013).

20The names of these series will change according to the test we use. For instance, if we apply
the GSADF test, the output will include two new series objects named ’gsadf’ (the sequence of
the BSADF statistics values) and ’gsadf_cv’ (the sequence of the corresponding critical values).
Note that each run of the test runs over the previous output. Hence, if there is a need to save these
series, copy them under di�erent names.
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(PSY recommend to restrict identi�cation to ones lasting more than log(T) units of time
measures, which in this case equals log(1680) ≈ 7 months), the results are very similar.
Note that the whole procedure described in this section can be accomplished via the

Figure 10. S&P 500 SADF output.

(a) Output spool.
(b) Work�le with the added objects.
(marked with the red ractangle.)

execution of a single command line:

snp.rtadf(model = 3, win = 36, sim, rep = 2000, Trw, graph, print)

Concluding the illustration, the SADF test results point to the presence of at least
one bubble in the S&P 500 price index at the 1% signi�cance level (since 3.443 > 2.141).
However, since there seems to be evidence for at least two bubble periods (1879-80 and
1997-2002), as a second step (which is not pursued here), there is a strong support to using
the GSADF test in the next step.

6.2. WTI and Brent oil prices

Next, we turn to replicating the results reported inHarvey et al. (2016), Table 4 (pp. 566). In
their paper, Harvey et al. (2016) apply the standard SADF test along with a wild bootstrap
version of the test to several real commodity prices. Our illustration focuses on monthly
data of real WTI and Brent oil prices (the series object names in this example are WIT_R
and BRENT_R) over the period of 2000:M1 to 2013:M12 (168 observations), see Figure 7.21
For comparison purposes, the number of lags and minimal window size are set as in
Harvey et al. (2016) – BIC and r0 � 0.15.

21The data used in this example was kindly provided by David I. Harvey and A.M. Taylor.
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The commands

wti_r.rtadf(model=3,win=0.15,info=sic,lag=6,sim,rep=9999,print,graph)

and

brent_r.rtadf(model=3,win=0.15,info=sic,lag=6,sim,rep=9999,print,graph)

calculate the SADF statistic (which is denoted as PWY statistic in Harvey et al.) and
provide critical values p-values by Monte Carlo methods with 9,999 replications (which is
denoted as PWY in Harvey et al.).

The commands

wti_r.rtadf(model=3,win=0.15,info=sic,lag=6,sim,boot,rep=9999,print,graph)

and

brent_r.rtadf(model=3,win=0.15,info=sic,lag=6,sim,boot,rep=9999,print,graph)

calculate the SADF statistic (denoted as PWY statistic by Harvey et al.) and provide critical
values p-values based on the wild bootstrap with 9’999 replications (denoted as PWY∗ by
Harvey et al.).

Table 5 presents the output resulting from the above commands, along with the
corresponding results that appear in Harvey et al. As can bee seen in the third column
of the table, the estimated SADF statsitics, for both WTI_r and BRENT_r exactly match
those shown in Harvey et al. (2016). The fourth and �fth column of the table hold the
p-values that are derived from both Monte Carlo and the bootstrap methods. Notably the
Rtadf p-values di�er from the ones reported in Harvey et al. Nonetheless, the qualitative
conclusions remain roughly the same.22

Table 5. Comparison of SADF test result for the real 4WTI and Brent oil prices.

Series Source SADF statistic p-value

Monte Carlo Bootstrap

BRENT_R Rtadf 2.073 0.019 0.1033
Harvey et al. (2016) 2.073 0.026 0.097

WTI_R Rtadf 2.230 0.014 0.1056
Harvey et al. (2016) 2.230 0.021 0.105

22The discrepancies in the Monte Carlo simulations based p-values are mostly due to the fact
that within the simulation, the Rtadf add-in runs the ADF regressions without any di�erenced
lags while Harvey et al. (2016) run ADF regressions with lag length chosen according to the BIC.
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7. Concluding remarks

This paper presents a new EViews add-in, Rtadf, that implements newly developed asset
price bubble detection strategies, all based on right tail versions of the standard reduced
form ADF unit root test, where the null of unit root is tested against the alternative of a
mildly explosive process. In this case, rejection of the null for a speci�c time series may
serve as evidence of an asset price bubble.

This paper began with a short background on the methodological developments of
reduced form econometric approaches for bubble detection alongside a theoretical asset
pricing model which helps to clarify the rationale behind the reduced form approach.
Next, we gave a brief technical discussion on the bubble detection tests included in Rtadf,
and �nally, two illustration of using the add-in in the context of the S&P 500 stocks index
and oil prices were presented.

23



References

Blanchard, O. J. and Watson, M. W. (1982). Bubbles, Rational Expectations and
Financial Markets. NBER Working Paper, (w0945).

Brunnermeier, M. K. (2008). Bubbles. In Durlauf, S. N. and Blume, L. E., editors,
The New Palgrave Dictionary of Economics. Palgrave Macmillan, Basingstoke.

Campbell, J. Y. and Shiller, R. J. (1988). The Dividend-Price Ratio and Expectations
of Future Dividends and Discount Factors. Review of �nancial studies, 1(3):195–
228.

Diba, B. T. and Grossman, H. I. (1988). Explosive Rational Bubbles in Stock Prices?
The American Economic Review, 78(3):520–530.

Evans, G. W. (1991). Pitfalls in Testing for Explosive Bubbles in Asset Prices. The
American Economic Review, 81(4):922–930.

Gürkaynak, R. (2008). Econometric tests of asset price bubbles: Taking stock.
Journal of Economic Surveys, 22(1):166–186.

Gutierrez, L. (2011). Bootstrapping asset price bubbles. Economic Modelling,
28(6):2488–2493.

Harvey, D. I., Leybourne, S. J., Sollis, R., and Taylor, A. R. (2016). Tests for explosive
�nancial bubbles in the presence of non-stationary volatility. Journal of Empirical
Finance, 38:548–574.

Homm, U. and Breitung, J. (2012). Testing for Speculative Bubbles in Stock Mar-
kets: A Comparison of Alternative Methods. Journal of Financial Econometrics,
10(1):198–231.

Iraola, M. A. and Santos, M. S. (2008). Speculative Bubbles. In Durlauf, S. N.
and Blume, L. E., editors, The New Palgrave Dictionary of Economics. Palgrave
Macmillan, Basingstoke.

MATLAB (2010). version 7.10.0 (R2014a). The MathWorks Inc., Natick, Mas-
sachusetts.

Milunovich, G., Shi, S.-P., and Tan, D. (2016). Bubble detection and sector trading
in real time. Available at SSRN 2827051.

Phillips, P. C. B. and Magdalinos, T. (2007). Limit Theory for Moderate Deviations
from a Unit Root. Journal of Econometrics, 136(1):115–130.

Phillips, P. C. B., Shi, S., and Yu, J. (2015). Testing for multiple bubbles: Historical
episodes of exuberance and collapse in the S&P 500. International Economic
Review, 56(4):1043–1078.

Phillips, P. C. B., Wu, Y., and Yu, J. (2011). Explosive behavior in the 1990sNASDAQ:
When did exuberance escalate asset values? International Economic Review,
52(1):201–226.

Phillips, P. C. B. and Yu, J. (2011). Dating the Timeline of Financial Bubbles During
the Subprime Crisis. Quantitative Economics, 2(3):455–491.

Quantitative Micro Software (2016). EViews, Version 9.5. Irvine CA, USA.

24


	RIEDP_4-16.pdf
	1 Introduction
	2 Asset pricing with rational bubbles
	3 Testing for bubbles
	3.1 Date-stamping bubble periods

	4 Instructions and details
	4.1 Installation
	4.2 Using the add-in

	5 Finite sample inference
	5.1 Monte Carlo based inference
	5.1.1 Run-time comparisons

	5.2 Bootstrap based inference
	5.3 Approximate  p -values
	5.4 Usage via a command line

	6 Illustration
	6.1 S&P 500 price-to-dividend ratio
	6.2 WTI and Brent oil prices

	7 Concluding remarks




