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Abstract

This paper studies nonparametric identification in market level demand models for

differentiated products. We generalize common models by allowing for the distribution

of heterogeneity parameters (random coefficients) to have a nonparametric distribution

across the population and give conditions under which the density of the random coef-

ficients is identified. We show that key identifying restrictions are provided by (i) a set

of moment conditions generated by instrumental variables together with an inversion of

aggregate demand in unobserved product characteristics; and (ii) an integral transform

(Radon transform) that maps the random coefficient density to the aggregate demand.

This feature is shown to be common across a wide class of models, and we illustrate this

by studying leading demand models. Our examples include demand models based on the

multinomial choice (Berry, Levinsohn, Pakes, 1995), the choice of bundles of goods that

can be substitutes or complements, and the choice of goods consumed in multiple units.
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1 Introduction

Modeling consumer demand for products that are bought in single or discrete units has a

long and colorful history in applied Economics, dating back to at least the foundational work

of McFadden (1974, 1981). While allowing for heterogeneity, much of the earlier work on this

topic, however, was not able to deal with the fact that in particular the own price is endogenous.

In a seminal paper that provides the foundation for much of contemporaneous work on discrete

choice consumer demand, Berry, Levinsohn and Pakes (1994, BLP) have proposed a solution

to the endogeneity problem. Indeed, this work is so appealing that it is not just applied in

discrete choice demand and empirical IO, but also increasingly in many adjacent fields, such as

health and urban economics, education and many others. From a methodological perspective,

this line of work is quite different from traditional multivariate choice, as it uses data on the

aggregate level and integrates out individual characteristics1 to obtain a system of nonseparable

equations. This system is then inverted for unobservables for which in turn a moment condition

is then supposed to hold.

Descending in parts from the parametric work of McFadden (1974, 1981), BLP share many

of its features, in particular (parametric) distributional assumptions, but also a linear random

coefficients (RCs) structure for the latent utility. Not surprisingly, there is increasing interest

in the properties of the model, in particular which features of the model are nonparametrically

point identified, and how the structural assumptions affect identification of the parameters

of interest. Why is the answer to these questions important? Because an empricist working

with this model wants to understand whether the results she obtained are a consequence of

the specific parametric assumptions she invoked, or whether they are at least qualitatively

robust. In addition, nonparametric identification provides some guidance on essential model

structure and on data requirements, in particular about instruments. Finally, understanding

the basic structure of the model makes it easier to understand how the model can be extended.

Extensions of the BLP framework that are desirable are in particular to allow for consumption

of bundles and multiple units of a product without modeling every choice as a new separate

alternative.

We are not the first to ask the nonparametric identification question for market demand

models. In a series of elegant papers, Berry and Haile (2011, 2013, BH henceforth) provide im-

portant answers to many of the identification questions. In particular, they establish conditions

under which the “Berry inversion”, a core building block of the BLP model named after Berry

(1994), which allows to solve for unobserved product characteristics, as well as the distribution

of a heterogeneous utility index are nonparametrically identified.

Our work complements this line of work in that we follow more closely the original BLP

1There are extensions of the BLP framework that allow for the use of Microdata, see Berry, Levinsohn
and Pakes (2004, MicroBLP). In this paper, we focus on the aggregate demand version of BLP, and leave an
analogous work to MicroBLP for future research.
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specification and assume in addition that the utility index has a linear random coefficients

(RCs) structure. More specifically, we show how to nonparametrically identify the distribution

of random coefficients in this framework. This result does not just close the remaining gap in

the proof of nonparametric identification of the original BLP model, but is also important for

applications because the distribution of random coefficients allows to characterize the distri-

bution of the changes in welfare due to a change in regressors, in particular the own price (to

borrow an analogy from the treatment effect literature, if we think of a price as a treatment,

BH recover the treatment effect on the distribution, while we recover the distribution of treat-

ment effects). The arguments in establishing nonparametric identification of these changes are

constructive and permit the construction of sample counterparts estimators, using theory in

Hoderlein, Klemelä and Mammen (2010). From this theory it is well known that these esti-

mators reveal that the random coefficients density is only weakly identified, suggesting that

numerical instabilities and problems frequently reported and discussed in the BLP literature,

e.g., Dube, Fox and Su (2013), are caused or aggravated by this feature of the model.

The second contribution in this paper is that we use the insights obtained from the identi-

fication results to extend the market demand framework to cover bundle choice (i.e., consume

complementary goods together), as well as consumption of multiple units. Note that bun-

dles and multiple purchases can in principle be accommodated within the BLP framework by

treating them as separate alternatives. However, this is not parsimonious as the number of

alternatives increases rapidly and with it the number of unobserved product characteristics,

making the system quickly intractable. To fix ideas, suppose there were two goods, say good A

and B. First, we allow for the joint consumption of goods A and B, and second, we allow for the

consumption of several units of either A and/or B, without labeling it a separate alternative.

We model the utility of each bundle as a combination of the utilities for each good and an

extra utility from consuming the bundle. This structure in turn implies that the dimension of

the unobservable product characteristic equals the number of goods J instead of the number

of bundles. There are three conclusions we draw from this contribution: first, depending on

the type of model, the data requirements vary. In particular, to identify all structural parts of

the model, in, say, the model on bundle choice, market shares are not the correct dependent

variable any more. Second, depending on the object of interest, the data requirements and

assumptions may vary depending on whether we want to just recover demand elasticities, or

the entire distribution of random coefficients. Third, the parsimonious features of the structural

model result in significant overidentification of the model, which opens up the way for specifi-

cation testing, and efficient estimation. As in the classical BLP setup, in all setups we may use

the identification argument to propose a nonparametric sample counterpart estimators, but we

also use the insights obtained to propose a parametric estimator for models where there had

not been an estimator before.

Related literature: as discussed above, this paper is closely related to both the original
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BLP line of work (Berry, Levinsohn and Pakes (1994, 2004)), as well as to the recent identi-

fication analysis of Berry and Haile (2011, 2013). Because of its generality, our approach also

provides identification analysis for the “pure characteristics” model of Berry and Pakes (2007),

see also Ackerberg, Benkard, Berry and Pakes (2007) for an overview. Other important work in

this literature that is completely or partially covered by the identification results in this paper

include Petrin (2002) and Nevo (2001). Moreover, from a methodological perspective, we note

that BLP continues a line of work that emanates from a broader literature which in turn was

pioneered by McFadden (1974, 1981); some of our identification results extend therefore beyond

the specific market demand model at hand. Other important recent contributions in discrete

choice demand include Armstrong (2013) and Moon, Shum, and Weidner (2013).

In addition to this line of work, we also share some commonalities with the work on bundle

choice in IO, most notably Gentzkow (2007), and Fox and Lazzati (2013). For some of the

examples discussed in this paper, we use Gale-Nikaido inversion results, which are related to

arguments in Berry, Gandhi and Haile (2013). Because of the GMM type endogeneity, our

approach also relates to nonparametric IV, in particular to Newey and Powell (2003), Andrews

(2011), and Dunker, Florens, Hohage, Johannes, and Mammen (2014). Finally, our arguments

are related to the literature on random coefficients in discrete choice model, see Ichimura and

Thompson (1995), Gautier and Kitamura (2013), Dunker, Hoderlein and Kaido (2013), Fox

and Gandhi (2012), and Matzkin (2012). Since we use the Radon transform introduced by

Hoderlein, Klemelä and Mammen (2010, HKM) into Econometrics, possibly in conjunction

with tensor products as in Dunker, Hoderlein and Kaido (2013), this work is particularly close

to the literature that uses the Radon transform, in particular HKM and Gautier and Hoderlein

(2013).

Structure of the paper: We introduce the model in the next section, including all def-

initions and assumptions in the various setups. We then provide general identification results

which we specify to the individual models. Because of the difference in requirements, this

section is divided into identifying demand elasticities and identifying the entire distribution of

random coefficients. Moreover, we discuss each result for each of the specifications we consider.

Finally, an outlook concludes.

2 Nonparametric Identification

2.1 Set up

We begin with a setting where a consumer faces J ∈ N products and an outside good which

is labeled good 0. Throughout, we index products by j and markets by t. We use upper-case

letters, e.g. Xjt, for random variables (or vectors) that vary across markets and lower-case

letters, e.g. xj, for particular values the random variables (vectors) can take. In addition, we
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use letters without a subscript for products e.g. Xt to represent vectors e.g. (X1t, · · · , XJt).

For each individual in market t, the (indirect) utility from consuming good j depends on its

(log) price Pjt, a vector of observable characteristics Xjt ∈ Rk, and an unobservable scalar

characteristic Ξjt ∈ R. Following Berry, Levinsohn and Pakes (1995), we model the utility from

consuming good j using the linear random coefficient specification:

U∗jt ≡ X ′jtβj + αjPjt + Ξjt, j = 1, · · · , J , (2.1)

where (αj, βj) ∈ Rk+1 is a vector of random coefficients, which varies across individuals. For

notational simplicity, we do not add subscripts for individuals to the random coefficients, but the

assumption that (αj, βj) (and hence the utility) may vary across individuals should be implicitly

understood. Throughout, we assume that Xjt is exogenous, while Pjt can be correlated with

the unobserved product characteristic Ξjt in an arbitrary way. Without loss of generality, we

normalize the utility from the outside good to 0. This mirrors the setup considered in BH

(2013).

Note that in order to reduce notational complexity we suppress an individual specific index

(usually, i). This is justified as we mainly talk about identification, and we would think of a

large sample of individuals as iid copies of this population model. The drawback of such an

approach is that we have to be very explicit about which variables vary across individuals or

markets. The random coefficients for instance vary across individuals in any given market (or,

alternatively, have a distribution in any given market in the population), while the product

characteristics vary solely across markets. We can in principle allow for all random parameters

(α, β) to be individual, alternative and market specific as long as their distribution does not

vary across markets (this includes the commonly employed additive “logit error”, typically

denoted εijt in the sample, which is iid across i, j and t). We can allow for the coefficients

to be alternative j specific, and will indeed do so below. However, parts of the analysis will

subsequently change, and we start out with the more common case where the coefficients are

the same across j.

Having specified the model on individual level, the outcomes of individual decisions are then

aggregated in every market. The econometrician observes exactly these market level outcomes

Sl,t, where l belongs to some index set denoted by L. Below, we give the three main settings we

consider. The first example is the setting of BLP, where individuals choose a single good out

of J products, where J can be any natural number. The second and third examples consider

choices among bundles generated from combining two goods. They are settings commonly

considered in the literature; see e.g., Gentzkow (2007) and references therein.2 Throughout the

following examples, the random coefficient vector is denoted by θ ∈ Rdθ and is assumed to have

2In this paper, we focus on the bundle choice with two goods. We conjecture that bundles generated from
more than two goods could potentially be handled with some additional structure, which we leave as future
work.
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a joint probability density function fθ with respect to Lebesgue measure, i.e., be continuously

distributed.

Example 1 (BLP). Each individual chooses the product that maximizes her utility out of

J ∈ N products. Hence, product j is chosen if

U∗jt > U∗it , ∀i 6= j . (2.2)

The demand for good j in market t is obtained by aggregating the individual demand with

respect to the distribution of individual preferences. For example, if (αj, βj) = (α, β) for all j,

a.s., the aggregate demand is given by

ϕj(Xt, Pt,Ξt) =

∫
1{X ′jtb+ aPjt > −Ξjt}1{(Xjt −X1t)

′b+ a(Pjt − P1t) > −(Ξjt − Ξ1t)}

· · · 1{(Xjt −XJt)
′b+ a(Pjt − PJt) > −(Ξjt − ΞJt)}fθ(b, a)dθ , (2.3)

for j = 1, · · · , J , while the aggregate demand for good 0 is given by

ϕ0(Xt, Pt,Ξt) =

∫
1{X ′1tb+ aP1t < −Ξ1t} · · · 1{X ′Jtb+ aPJt < −ΞJt}fθ(b, a)dθ . (2.4)

The researcher then observes the market shares of products Slt = ϕl(Xt, Pt,Ξt), l ∈ L, where

L = {0, 1, · · · , J}.

Example 2 (Bundles). Each individual faces J = 2 products and decides whether or not to

consume a single unit of each of the products. There are therefore four possible combinations

(Y1, Y2) of consumption units, which we call bundles. In addition to the utility from consuming

each good as in (2.1), the individuals gain additional utility (or disutility) ∆ if the two goods

are consumed simultaneously. Here, ∆ is also allowed to vary across individuals. The utility

U∗(Y1,Y2),t from each bundle is therefore specified as follows:

U∗(0,0),t = 0, U∗(1,0),t = X ′1tβ1 + α1P1t + Ξ1t

U∗(0,1),t = X ′2tβ2 + α2P2t + Ξ2t, U∗(1,1),t = X ′1tβ1 +X ′2tβ2 + α1P1t + α2P2t + ∆ + Ξ1t + Ξ2t ,

(2.5)

Each individual chooses a bundle that maximizes her utility. Hence, bundle (y1, y2) is chosen

when U∗(y1,y2),t > U∗(y′1,y′2),t for all (y′1, y
′
2) 6= (y1, y2). For example, assuming (βj, αj) = (β, α) for

all j, bundle (1, 0) is chosen if

X ′1tβ + αP1t + Ξ1t > 0, and X ′1tβ + αP1t + Ξ1t > X ′2tβ + αP2t + Ξ2t, and

X ′1tβ + αP1t + ξ1t > X ′1tβ + αP1t + Ξ1t +X ′2tβ + αP2t + Ξ2t + ∆ . (2.6)
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Suppose the random coefficients θ = (β′, α,∆) have a joint density fθ. The aggregate structural

demand for (1, 0) can then be obtained by integrating over the set of individuals satisfying (2.6)

with respect to the distribution of the random coefficients:

ϕ(1,0)(Xt, Pt,Ξt) =

∫
1{X ′1tb+ aP1t > −Ξ1t}1{(X1t −X2t)

′b+ a(P1t − P2t) > Ξ2t − Ξ1t}

× 1{X ′2tb+ aP2t + ∆ < −Ξ2t}fθ(b, a,∆)dθ . (2.7)

The aggregate demand on other bundles can be obtained similarly. The econometrician then

observes a vector of aggregate demand on the bundles: Sl,t = ϕl(Xt, Pt,Ξt), l ∈ L where

L ≡ {(0, 0), (1, 0), (0, 1), (1, 1)}.

Example 3 (Multiple Units of Consumption). Each individual faces J = 2 products, but she

may consume multiple units of each product. For simplicity, we consider the simplest setup

where Y1 ∈ {0, 1, 2} and Y2 ∈ {0, 1}. The utility from consuming y1 units of product 1 and y2

units of product 2 is specified as follows:

U∗(y1,y2),t = y1U
∗
1t + y2U

∗
2t + ∆(y1,y2) , (2.8)

where ∆(y1,y2) is the additional utility (or disutility) from consuming the particular bundle

(y1, y2). This specification allows, e.g., for decreasing marginal utility (with the number of

units), as well as interaction effects. We assume that ∆(1,0) = ∆(0,1) = 0 as U∗1t and U∗2t give the

utility from consuming a single unit of each of the two goods. Throughout this example, we

assume that U∗(y1,y2),t is concave in (y1, y2). Then, a bundle is chosen if its utility exceeds those

of the neighboring alternatives. For example, assuming (βj, αj) = (β, α) for all j, bundle (2, 0)

is chosen if it is preferred to bundles (1,0), (1,1) and (2,1). That is,

2(X ′1tβ + αP1t + Ξ1t) + ∆(2,0) > X ′1tβ + αP1t + Ξ1t ,

2(X ′1tβ + αP1t + Ξ1t) + ∆(2,0) > X ′1tβ + αP1t + Ξ1t +X ′2tβ + αP2t + Ξ2t + ∆(1,1)

and 2(X ′1tβ + αP1t + Ξ1t) + ∆(2,0) > 2(X ′1tβ + αP1t + Ξ1t) +X ′2tβ + αP2t + Ξ2t + ∆(2,1).

(2.9)

The aggregate structural demand can be obtained as

ϕ(2,0)(Xt, Pt,Ξt) =

∫
1{X ′1tb+ aP1t + ∆(2,0) > −Ξ1t}

× 1{(X1t −X2t)
′b+ a(P1t − P2t) + ∆(2,0) −∆(1,1) > −Ξ1t + Ξ2t}

× 1{X ′2tb+ aP2t + ∆(2,1) −∆(2,0) < −Ξ2t}fθ(b, a)dθ . (2.10)

The observed aggregate demand on the bundles are similarly defined for Sl,t = ϕl(Xt, Pt,Ξt), l ∈
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L where L ≡ {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (2, 1)}.

In Examples 2 and 3, we assume that the econometrician observes the aggregate demand

for all the respective bundles. We emphasize this point as it changes the data requirement,

and an interesting open question arises about what happens if these requirements are not met.

Example of data sets that would satisfy these requirements are when 1 individual observations

are collected through direct survey or scanner data on individual consumption (in every market),

2. aggregate variables (market shares) are collected, but augmented with a survey that asks

individuals whether they consume each good separately or as a bundle. 3. Finally, another

possible data source are producer’s direct record of sales of bundles, provided each bundles are

recorded separately (e.g., when they are sold through promotional activities). When discussing

examples 2 and 3, we henceforth tacitly assume to have access to such data in principle.

2.2 Inversion and Identification of Structural Demand

The first step toward identification of fθ is to use a set of moment conditions generated by

instrumental variables to identify the aggregate demand function ϕ. Following BH (2013), we

partition the covariates as Xjt = (X
(1)
jt , X

(2)
jt ) ∈ R × Rk2 , where k2 = k − 1 and make the

following assumption.

Assumption 2.1. (i) The coefficient β
(1)
j on X

(1)
jt is non-random for all j and is normalized

to 1; (ii) (βj, αj) = (β, α) for all j, a.s.

Assumption 2.1 (i) requires that at least one coefficient on the covariates is non-random.

Since we may freely choose the scale of utility, we normalize the utility by setting β
(1)
j = 1

for all j. Assumption 2.1 (ii) requires that the random coefficients (βj, αj) are common across

alternatives. Requiring that the coefficients on Xjt is common is standard in the literature.

Assumption 2.1 (ii), however, excludes an alternative specific additive error. Hence, this setting

falls in the scope of the pure characteristic model studied in Berry and Pakes (2007). It

is possible to relax this assumption. We will discuss this extension in Section 3.1. Under

Assumption 2.1, the utility for product j can be written as U∗jt = X
(2)
jt
′(2) + αPjt + Djt, where

Djt ≡ X
(1)
jt + Ξjt is the part of the utility that is common across individuals. Assumption 2.1

(i) is arguably strong but will provide a way to obtain valid instruments required to identify

the structural demand (see BH, 2013, Section 7 for details). Under this assumption, U∗jt is

strictly increasing in Djt but unaffected by Dit for all i 6= j. In Example 1, together with a

mild regularity condition, this is sufficient for inverting the demand system to obtain Ξt as a

function of the market shares St, price Pt, and exogenous covariates Xt (Berry, Gandhi, and

Haile, 2013). In Examples 2 and 3, one may also obtain Ξt as a function of (St, Pt, Xt) in a similar

manner. Since we observe aggregate demand for more than two distinct bundles and have two

unknowns (Ξ1t,Ξ2t), we may use a subsystem of the demand equations to obtain an inversion.
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We therefore make the following high-level assumption. For this, we redefine the aggregate

demand as a function of (X
(2)
t , Pt, Dt) instead of (Xt, Pt,Ξt) by φ(X

(2)
t , Pt, Dt) ≡ ϕ(Xt, Pt,Ξt),

where Xt = (X
(1)
t , X

(2)
t ) and Dt = Ξt +X

(1)
t .

Assumption 2.2. For some subset L̃ of L whose cardinality is J , there exists a unique function

ψ : RJk2 × RJ × RJ → RJ such that Djt = ψj(X
(2)
t , Pt, S̃t) for j = 1, · · · , J , where S̃t is a

subvector of St, which stacks the components of St whose indices belong to L̃.

Under Assumption 2.2, we may write

Ξjt = ψj(X
(2)
t , Pt, S̃t)−X(1)

jt . (2.11)

This can be used to generate moment conditions in order to identify the aggregate demand

function.

Example 1 (BLP, continued). Let L̃ = {1, · · · , J}. In this setting, the inversion discussed

above is the standard Berry inversion of demand. A key condition for the inversion is that

the products are connected substitutes (Berry, Gandhi, and Haile (2013)). The linear random

coefficient specification as in (2.1) is known to satisfy this condition. Then, Assumption 2.2

follows.

For the next two examples, we consider an alternative procedure (Lemma 1 given in the

appendix) for inverting the demand. This is because these examples share a specific structure.

We note that the inversion of Berry, Gandhi, and Haile (2013) can still be applied to bundles

if one treats each bundle as a separate good and recast the bundle choice problem into a

standard multinomial choice problem. However, as can be seen from (2.5) and (2.8), Examples

2 and 3 have the additional structure that the utility of a bundle is the combination of the

utilities for each good and extra utilities, and hence the model does not involve any bundle

specific unobserved characteristic. This structure in turn implies that the dimension of the

unobservable product characteristic Ξt equals the number of goods J , while the econometrician

observes dim(S) = ΠJ
j=1(dj + 1) aggregate choice probabilities over bundles, where dj is the

maximum number of consumption units allowed for each good (e.g. in Example 2, J = 2, and

dim(S) = 4). This suggests that (i) using only a part of the demand system is sufficient for

obtaining an inversion, which can be used to identify fθ and (ii) using additional subcomponents

of S, one may potentially overidentify the parameter of interest. We therefore consider an

inversion that exploits a monotonicity property of the demand system that follows from this

structure.3 For this, we assume that the following condition is met.

3The additional structure can potentially be tested. For example, in Example 2, one may identify the
demand for bundles (1,0) and (1,1) using the inversion described below under the hypothesis that eq. (2.5)
holds. Further, treating (1,0), (0,1), and (1,1) as three separate goods (and (0,0) as an outside good) and
applying the inversion of Berry, Gandhi, and Haile (2013), one may identify the demand for bundles (1,0) and
(1,1) without imposing (2.5). The specification can then be tested by comparing the demand functions obtained
from these distinct inversions. We are indebted to Phil Haile for this point.
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Condition 2.1. The random coefficient density fθ is continuously differentiable. (β(2), α) and

D have full support in Rk2+1 and R2 respectively.

Example 2 (Bundles, continued). Let L̃ = {(1, 0), (1, 1)}. From (2.7), it is straightforward to

show that ϕ(1,0) is increasing in D1 but is decreasing in D2, while ϕ(1,1) is increasing both in D1

and D2. Hence, the Jacobian matrix is non-degenerate. Together with a mild support condition

on (D1, D2), this allows to invert the demand (sub)system and write Ξj = ψj(X
(2)
t , Pt, S̃t)−X(1)

jt ,

where S̃t = (S(1,0),t, S(1,1),t). One may alternatively choose L̃ = {(0, 0), (0, 1)}, and the argument

is similar. This inversion is valid even if the two goods are complements. This is because the

inversion uses the monotonicity property of the aggregate choice probabilities on bundles (e.g.

φ(1,0) and φ(1,1)) with respect to (D1, D2). Hence, even if the aggregate share of each good

(e.g. aggregate share on good 1: σ1 = φ(1,0) + φ(1,1)) is not invertible in the price Pt due to

the presence of complementary goods, one can still obtain a useful inversion provided that

aggregate choice probabilities on bundles are observed.

Example 3 (Multiple units, continued). Let L̃ = {(2, 0), (2, 1)}. From (2.9), ϕ(2,0) is increasing

in D1 but is decreasing in D2. Similarly, ϕ(2,1) is increasing in both D1 and D2. The rest of

the argument is similar to Example 2. One may alternatively take L̃ = {(0, 0), (0, 1)} and use

the same line of argument. Note, however, that (1,0) or (1,1) cannot be included in L̃ as φ(1,0)

and φ(1,1) are not monotonic in one of (D1, D2). This is because increasing D1 while fixing D2,

for example, makes good 1 more attractive and creates both an inflow of individuals who move

from (0,0) to (1,0) and an outflow of individuals who move from (1,0) to (2,0). Hence, the

demand for (1,0) does not necessarily change monotonically.

The inverted system in (2.11), together with the following assumption, yields a set of moment

conditions the researcher can use to identify the structural demand.

Assumption 2.3. There is a vector of instrumental variables Zt ∈ RdZ such that (i) E[Ξjt|Zt, Xt] =

0, a.s.; (ii) for any B : RJk2 × RJ × RJ → R with E[|B(X
(2)
t , Pt, S̃t)|] <∞, it holds that

E[B(X
(2)
t , Pt, S̃t)|Zt, Xt] = 0 =⇒ B(X

(2)
t , Pt, S̃t) = 0, a.s.

Assumption 2.3 (i) is a mean independence assumption on Ξjt given a set of instruments

Zt, which also normalizes the location of Ξjt. Assumption 2.3 (ii) is a completeness condition,

which is common in the nonparametric IV literature, see BH (2013) for a detailed discussion.

However, the role it plays here is slightly different, as the moment condition leads to an integral

equation which is different from nonparametric IV (Newey & Powell, 2003), and more resembles

GMM. As such, the construction of a sample counterpart estimator is less clear. In Section 3.2,

we discuss an approach based on a strengthening of the mean independence condition to full

independence. In case such a strengthening is economically palatable, we still retain the sum

X
(1)
jt + Ξjt, which has a closer analogy to a dependent variable in nonparametric IV.
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Given Assumption 2.3 and (2.11), the unknown function ψ can be identified through the

following conditional moment restrictions:

E[ψj(X
(2)
t , Pt, St)−X(1)

jt |Zt, Xt] = 0, j = 1, · · · , J. (2.12)

We here state this result as a theorem.

Theorem 2.2. Suppose Assumptions 2.1-2.3 hold. Then, ψ is identified.

Once ψ is identified, the structural demand φ can be identified nonparametrically in Exam-

ples 1 and 2.

Example 1 (BLP, continued). Recall that ψ is a unique function such that

Sjt = φj(X
(2)
t , Pt, Dt), j = 1, · · · , J ⇔ Ξjt = ψj(X

(2)
t , Pt, S̃t)−X(1)

jt , j = 1, · · · , J,
(2.13)

where S̃t = (S1t, · · · , SJt). Hence, the structural demand (φ1, · · · , φJ) is identified by Theorem

2.2 and the equivalence relation above. In addition, φ0 is identified through the identity:

φ0 = 1−
∑J

j=1 φj.

Example 2 (Bundles, continued). Let L̃ = {(1, 0), (1, 1)} as before. ψ is then a unique function

such that

Slt = φl(X
(2)
t , Pt, Dt), l ∈ L̃ ⇔ Ξjt = ψj(X

(2)
t , Pt, S̃t)−X(1)

t , j = 1, 2, (2.14)

where S̃t = (S(1,0),t, S(1,1),t). Theorem 2.2 and the equivalence relation above then identify the

demand for bundles (1, 0) and (1, 1). This, therefore, only identifies subcomponents of φ.

Although these subcomponents are sufficient for recovering the random coefficient density as

we will show in the next section, one may also identify the rest of the subcomponents by taking

L̃ = {(0, 0), (0, 1)} and applying Theorem 2.2 again.

In Example 3, identification of ψ allows to identify key components of φ but not the entire

vector.

Example 3 (Multiple units, continued). Analogous to Example 2, ψ is a unique function that

satisfies (2.14) with L̃ = {(2, 0), (2, 1)}. Theorem 2.2 and the equivalence relation in (2.14) then

identify the demand for the bundles as in the last example. Similarly, one may identify the

demand for bundles (0, 0) and (0, 1) by taking L̃ = {(0, 0), (0, 1)}. However, the demand for the

middle alternatives (1, 0) and (1, 1) are not directly identified due to their lack of monotonicity

in (D1, D2). We will revisit identification of the demand for these alternatives in the next

section.
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2.3 Identification of the Random Coefficient Density

Our goal is to identify the random coefficient density fθ. Identification of this object is par-

ticularly important for welfare analysis. For example, consider a change in the characteristic

of good j from (x
(2)
j , pj, δj) to (x̃

(2)
j , p̃j, δ̃j). The change may be due to a new regulation,

an improvement of the quality of a product, or an introduction of a new product. Knowl-

edge of fθ would allow the researcher to calculate the distribution of the welfare change:

(x̃
(2)
j − x

(2)
j )′(2) + α(p̃j − pj) + (δ̃j − δj). This, for example, allows to predict the fraction of

consumers who would benefit from the change and therefore prefers the product with a new

characteristic.

Our strategy for identification of the random coefficient density is to construct a function

from the structural demand, which is related to the density through an integral transform known

as the Radon transform. More precisely, for some l ∈ L, we construct a function Φl(w, u) such

that
∂Φl(w, u)

∂u
= R[fθ](w, u) , (2.15)

where w ∈ Sdθ−1 is a unit vector that depends on (x
(2)
j , pj) for some j ∈ {1, · · · , J}, and u ∈ R

is a scalar that depends on (x
(2)
j , pj, δj). R is the Radon transform defined pointwise by

R[f ](w, u) =

∫
Pw,u

f(v)dµw,u(v). (2.16)

where Pw,u denotes the hyperplane {v ∈ Rdθ : v′w = u}, and µw,u is the Lebesgue measure on

Pw,u. (See for example Helgason (1999) for details on the properties of the Radon transform

including its injectivity.) Our identification strategy is constructive and will therefore suggest

a natural nonparametric estimator. Applications of the Radon transform to random coeffi-

cients models have been studied in Hoderlein, Klemelä, and Mammen (2010), and Gautier and

Hoderlein (2013).

Let S(Rdθ) be the space of rapidly decreasing functions (Schwartz space) on Rdθ . Through-

out, we maintain the following assumption.

Assumption 2.4. (i) For all i ∈ {1, · · · , J}, (X
(2)
it , Pit, Dit) are absolutely continuous with

respect to Lebesgue measure on Rk2+2; (ii) For some j ∈ {1, · · · , J}, (X
(2)
jt , Pjt, Djt) has a full

support; (iii) the random coefficients θ are independent of (Xt, Pt, Dt), and its density fθ is in

S(Rdθ).

Assumption 2.4 (i) requires that (X
(2)
it , Pit, Dit) are continuously distributed for all i. As-

sumption 2.4 (ii) then requires that for at least one product, (X
(2)
jt , Pjt) has full support, and by

Assumption 2.4 (iii), we assume that the covariates (Xt, Pt, Dt) are exogenous to the individual

heterogeneity. These conditions are used to invert the Radon transform in (2.16). The con-

struction of Φl requires slightly different arguments and sets of assumptions across Examples

12



1-3. We therefore discuss them separately.

Example 1 (BLP, continued). Recall that the demand for good j with the product charac-

teristics (Xt, Pt,Ξt) is as given in (2.3). Since Dt = X
(1)
t + Ξt, the demand in market t with

(X
(2)
t , Pt, Dt) = (x(2), p, δ) is given by:

φj(x
(2), p, δ) =

∫
1{x(2)

j
′b(2) + apj > −δj}1{(x(2)

j − x
(2)
1 )′b(2) + a(pj − p1) > −(δj − δ1)}

· · · 1{(x(2)
j − x

(2)
J )′b(2) + a(pj − pJ) > −(δj − δJ)}fθ(b(2), a)dθ . (2.17)

For any subset J of {1, · · · , J} \ {j}, let MJ denote the map (x(2), p, δ) 7→ (x́(2), ṕ, δ́) that is

uniquely defined by the following properties:

(x́
(2)
j − x́

(2)
i , ṕj − ṕi, δ́j − δ́i) = −(x

(2)
j − x

(2)
i , pj − pi, δj − δi), ∀i ∈ J , (2.18)

(x́
(2)
i , ṕi, δ́i) = (x

(2)
i , pi, δi), ∀i /∈ J . (2.19)

We then define

Φ̃j(x
(2)
j , pj, δj) ≡ −

∑
J⊆{1,···J}\{j}

φj ◦MJ (x(2), p, δ) . (2.20)

Eq (2.20) combines the structural demand function for good j in different markets to define a

function which can be related to the random coefficient density in a simple way. This operation

can be easily understood when J = 2, where for example φ1 is given by

φ1(x(2), p, δ) =

∫
1{x(2)

1
′b(2) + ap1 < −δ1}

× 1{(x(2)
1 − x

(2)
2 )′b(2) + a(p1 − p2) < −(δ1 − δ2)}fθ(b(2), a)dθ . (2.21)

Then, Φ̃1 is given by

Φ̃1(x
(2)
1 , p1, δ1) = −φ1 ◦M∅(x

(2)
1 − x

(2)
2 , p1 − p2, δ1 − δ2)− φ1 ◦M{2}(x

(2)
1 − x

(2)
2 , p1 − p2, δ1 − δ2)

= −
∫

1{x(2)
1
′b(2) + ap1 < −δ1}

(
1{(x(2)

1 − x
(2)
2 )′b(2) + a(p1 − p2) < −(δ1 − δ2)}

+ 1{(x(2)
1 − x

(2)
2 )′b(2) + a(p1 − p2) > −(δ1 − δ2)}

)
fθ(b

(2), a)dθ

= −
∫

1{x(2)
1
′b(2) + ap1 < −δ1}fθ(b(2), a)dθ (2.22)

This shows that aggregating the demand in the two markets with (X
(2)
t , Pt, Dt) = (x(2), p, δ)

and (X
(2)
t′ , Pt′ , Dt′) = (x́(2), ṕ, δ́) yields Φ̃1 which depends only on the utility from products 1

and 0, where the latter is normalized to 0. Eq. (2.20) generalizes this argument to more general

settings with J ≥ 2.
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Under the condition we provide below, there is a product l = j and a function Φ̃l, which

can be written in general as Φ̃l(X
(2)
j , Pj, Dj) =

∫
1{X(2)

j
′(2) + aPj < −Dj}fθ(b(2), a)dθ. Let

w ≡ (x
(2)
j , pj)/‖(x(2)

j , pj)‖ and u ≡ δj/‖(x(2)
j , pj)‖. Define

Φl(w, u) ≡ Φ̃l

( x
(2)
j

‖(x(2)
j , pj)‖

,
pj

‖(x(2)
j , pj)‖

,
δj

‖(x(2)
j , pj)‖

)
= Φ̃l(x

(2)
j , pj, δj), (2.23)

where the second equality holds because normalizing the scale of (x
(2)
j , pj, δj) does not change

the value of Φ̃l. Φl then satisfies

Φl(w, u) = −
∫

1{w′θ < −u}fθ(b(2), a)dθ

= −
∫ −u
−∞

∫
Pw,r

fθ(b
(2), a)dµw,r(b

(2), a)dr = −
∫ −u
−∞
R[fθ](w, r)dr , (2.24)

Hence, by taking a derivative with respect to u, we may relate Φl to fθ through the Radon

transform:
∂Φl(w, u)

∂u
= R[fθ](w, u). (2.25)

Note that since the structural demand φ is identified by Theorem 2.2, Φl is nonparametrically

identified as well. Hence, Eq. (2.25) gives an operator that maps the random coefficient density

to an object identified by the moment condition studied in the previous section. The following

condition then ensures identification of fθ.

Assumption 2.5. (i) For any J ⊆ {1, · · · , J} \ {j} and any (x(2), p, δ) ∈ supp(X(2)
t , Pt, Dt),

we have MJ (x(2), p, δ) ∈ supp(X(2)
t , Pt, Dt).

Assumption 2.5 is a condition needed to ensure that Φl is well defined. It requires that

for any(x(2), p, δ) ∈ supp(X
(2)
t , Pt, Dt) and J ⊆ {1, · · · , J} \ {j}, the operation MJ gives

another point in the support. A full support assumption on (X
(2)
jt , Pjt, Djt) is sufficient for this

condition.4

Theorem 2.3. Suppose Assumptions 2.1-2.5 hold. Then, fθ is identified in Example 1, where

θ = (β(2), α).

Example 2 (Bundles, continued). Identification strategies depend on whether the two goods

are substitutes or complements. First, we make the following assumption and analyze the case

of substitutes.

4Our identification argument based on Assumption 2.5 constructs Φl without relying on any “thin” (lower-

dimensional) subset of the support of (X
(2)
jt , Pjt, Djt). If Assumption 2.5 does not hold, however, one may

alternatively rely on an identification argument that uses a lower dimensional subset and retain the same
identification result. This alternative approach will be discussed in the next example.
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Assumption 2.6. ∆ ≤ 0 with probability 1.

Under this assumption, products 1 and 2 are substitutes (Gentzkow, 2007). We may then

use demand on bundles (0,0) and (1,1) to identify the random coefficient density. The demand

for bundle (0,0) then reduces to

φ(0,0)(x
(2), p, δ) =

∫
1{x(2)

1
′b(2) + ap1 < −δ1}1{x(2)

2
′b(2) + ap2 < −δ2}

× 1{(x(2)
1 + x

(2)
2 )′b(2) + a(p1 + p2) + ∆ < −δ1 − δ2}fθ(b(2), a,∆)dθ

=

∫
1{x(2)

1
′b(2) + ap1 < −δ1}1{x(2)

2
′b(2) + ap2 < −δ2}fθ(b(2), a,∆)dθ , (2.26)

where the second equality follows from Assumption 2.6. Given product j ∈ {1, 2}, let −j denote

the other product. Let thenN−j denote the map (x(2), p, δ) 7→ (x́(2), ṕ, δ́) that is uniquely defined

by the following properties:

(x́
(2)
−j , ṕ−j, δ́−j) = −(x

(2)
−j , p−j, δ−j) , and (x́

(2)
j , ṕj, δ́j) = (x

(2)
j , pj, δj) . (2.27)

We then define Φl as in (2.23) with l = (0, 0), where

Φ̃(0,0)(x
(2)
j , pj, δj) ≡ −φ(0,0)(x

(2), p, δ)− φ(0,0) ◦ N−j(x(2), p, δ) . (2.28)

Similar to the map MJ in the previous section, N−j combines markets with different charac-

teristics to produce a function that is related to the joint density fβ(2),α of (β(2), α) through a

Radon transform.5 Arguing as in (2.22), it is straightforward to show that ∂Φ(0,0)(w, u)/∂u =

R[fβ(2),α](w, u) with w ≡ (x
(2)
j , pj)/‖(x(2)

j , pj)‖ and u ≡ δj/‖(x(2)
j , pj)‖. Hence, one may identify

fβ(2),α by inverting the Radon transform under the following assumption.

Assumption 2.7. (i) For any (x(2), p, δ) ∈ supp(X
(2)
t , Pt, Dt), we have N−j(x(2), p, δ) ∈

supp(X
(2)
t , Pt, Dt).

If the researcher is only interested in the distribution of (β(2), α) but not in the bundle

effect, the demand for (0, 0) is enough for recovering their density. However, ∆ is often of

primary interest. The demand on (1,1) can be used to recover its distribution by the following

argument.

Under Assumption 2.6, an argument similar to (2.26) yields

φ(1,1)(x
(2), p, δ)

=

∫
1{x(2)

1
′b(2) + ap1 + ∆ > −δ1}1{x(2)

2
′b(2) + ap2 + ∆ > −δ2}fθ(b(2), a,∆)dθ. (2.29)

5Since the bundle effect ∆ does not appear in (2.26), one may only identify the joint density of the subvector

(β(2), α) from the demand for bundle (0,0).
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Note that ∆ can be viewed as a random coefficient on the constant whose sign is fixed. Hence,

the set of covariates includes a constant. In this setting, the map Nj cannot be used to yield a

function that depends only on (x
(2)
j , pj, δj). This is because Assumption 2.7 cannot be satisfied

due to the presence of the constant term, i.e. N−j(x(2), p, δ, 1) /∈ supp(X(2)
t , Pt, Dt, 1). Hence,

we consider alternative approaches.

One approach would be to assume that at least one of Djts, say D−jt, has a large support

so that X
(2)
−jt
′b(2) +αP−jt + ∆ > −D−jt with probability 1 provided that D−jt being sufficiently

large. Another alternative approach would be to condition on the set of covariates such that

the observable characteristics of the two products except X
(1)
jt are equal to each other.6 That

is,

x
(2)
1 = x

(2)
2 = x̄(2) , and p1 = p2 = p̄ , (2.30)

for some (x̄(2), p̄). This then reduces (2.29) to

φ(1,1)(x
(2), p, δ) =

∫
1{x(2)

1
′b(2) + ap1 + ∆ > max{−δ1,−δ2}}fθ(b(2), a,∆)dθ .

Conditioning on the markets with δ1 < δ2 and normalizing the arguments by the norm of

(x(2), p) yield a function Φ(1,1) that is related to fθ as in (2.16). Either of the two approaches

uses a lower dimensional subset of the support of the covariates. Hence, care must be taken in

practice to decide which approach would retain more information in the data.

For simplicity, suppose that we take the first approach and assume that D−jt has a large

enough support.

Theorem 2.4. Suppose Assumption 2.1-2.4, and 2.6 hold. (a) If Assumption 2.7 holds, then

fβ(2),α is nonparametrically identified in Example 2 where the two goods are substitutes; (b) If

D−jt has a large enough support, then fθ is nonparametrically identified in Example 2 where

the two goods are substitutes, and θ = (β(2), α,∆).

We also consider identification of fθ when the products are complements.

Assumption 2.8. ∆ ≥ 0 with probability 1.

Under this assumption, products 1 and 2 are complements. Let L̃ = {(1, 0), (0, 1)}. The

6In practice, one should look for markets where the two products are similar in terms of (X
(2)
jt , Pjt).
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demand for bundles (1,0) and (0,1) then reduce to

φ(1,0)(x
(2), p, δ) =

∫
1{x(2)

1
′b(2) + ap1 > −δ1}1{x(2)

2
′b(2) + ap2 + ∆ < −δ2}fθ(b(2), a,∆)dθ ,

(2.31)

φ(0,1)(x
(2), p, δ) =

∫
1{x(2)

2
′b(2) + ap2 > −δ2}1{x(2)

1
′b(2) + ap1 + ∆ < −δ1}fθ(b(2), a,∆)dθ ,

(2.32)

Hence, if Assumption 2.7 holds, by arguing as in the case of substitutes, we may use φ(1,0) or

φ(0,1) to recover fθ. For example, suppose Assumption 2.7 holds with j = 1 and −j = 2. Then,

one may construct

Φ̃(0,1)(x
(2)
1 , p1, δ1) = −φ(0,1)(x

(2), p, δ)− φ(0,1) ◦ N2(x(2), p, δ). (2.33)

Define Φl as in (2.23) with l = (0, 1) and arguing as before, it is then straightforward to show

that ∂Φ(0,1)(w, u)/∂u = R[fθ](w, u) with w = (x
(2)
1 , p1, 1)/‖(x(2)

1 , p1, 1)‖ and u = −δ1/‖(x(2)
1 , p1, 1).

We summarize the identification result below.

Theorem 2.5. Suppose Assumptions 2.1-2.4, 2.7, and 2.8 hold, then fθ is nonparametrically

identified in Example 2, where the two goods are complements and θ = (β(2), α,∆).

Example 3 (Multiple units, continued). The nonparametric IV step identifies φl for l ∈
{(0, 0), (0, 1), (2, 0), (2, 1)}. Using them, we may first recover the joint density of some of the

random coefficients: θ = (β(2), α,∆(1,1),∆(2,0),∆(2,1))
′. We begin with the demand for (0, 1),

(2, 0), and (2, 1) given by

φ(0,1)(x
(2), p, δ) =

∫
1{x(2)

2
′b(2) + ap2 > −δ2}

× 1{(x(2)
1 − x

(2)
2 )′b(2) + a(p1 − p2) < −δ1 + δ2}

× 1{x(2)
1
′b(2) + ap1 + ∆(1,1) > −δ1}fθ(b(2), a,∆(1,1),∆(2,0),∆(2,1))dθ ,

φ(2,0)(x
(2), p, δ) =

∫
1{x(2)

1
′b(2) + ap1 + ∆(2,0) > −δ1}

× 1{(x(2)
1 − x

(2)
2 )′b(2) + a(p1 − p2) + ∆(2,0) −∆(1,1) > −δ1 + δ2}

× 1{x(2)
2
′b(2) + ap2 + ∆(2,1) −∆(2,0) < −δ2}fθ(b(2), a,∆(1,1),∆(2,0),∆(2,1))dθ

φ(2,1)(x
(2), p, δ) =

∫
1{x(2)

1
′b(2) + ap1 + ∆(2,1) −∆(1,1) > −δ1}

× 1{x(2)
1
′b(2) + ap1 + ∆(2,1) −∆(2,0) > −δ2}

× 1{(x(2)
1 + x

(2)
2 )′b(2) + a(p1 + p2) + ∆(2,1) < −δ1 − δ2}fθ(b(2), a,∆(1,1),∆(2,0),∆(2,1))dθ .
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Hence, if D2 has a large support, by taking δ2 sufficiently small, we may define

Φ̃(0,1)(x
(2)
1 , p1, δ1) ≡ −φ(0,1)(x

(2), p, δ)

= −
∫

1{x(2)
1
′b(2) + ap1 + ∆(1,1) > −δ1}fθ(b(2), a,∆(1,1),∆(2,0),∆(2,1))dθ , (2.34)

Φ̃(2,0)(x
(2)
1 , p1, δ1) ≡ −φ(2,0)(x

(2), p, δ)

= −
∫

1{x(2)
1
′b(2) + ap1 + ∆(2,0) > −δ1}fθ(b(2), a,∆(1,1),∆(2,0),∆(2,1))dθ , (2.35)

Φ̃(2,1)(x
(2)
1 , p1, δ1) ≡ −φ(2,1)(x

(2), p, δ)

=

∫
1{x(2)

1
′b(2) + ap1 + ∆(2,1) −∆(1,1) > −δ1}fθ(b(2), a,∆(1,1),∆(2,0),∆(2,1))dθ . (2.36)

Then, defining Φl, l ∈ {(0, 1), (2, 0), (2, 1)} as in (2.23) and arguing as in Example 2, Φl is

related to the random coefficient densities by

∂Φl(w, u)

∂u
= R[fl](w, u), l ∈ {(0, 1), (2, 0), (2, 1)},

where w ≡ −(x
(2)
1 , p1, 1)/‖(x(2)

1 , p1, 1)‖ and u ≡ δ1/‖(x(2)
1 , p1, 1)‖. Here, fls are proper joint

densities of subcomponents of θ, which are given by7

f(0,1) = f(β(2),α,∆(1,1))
, f(2,0) = f(β(2),α,∆(2,0))

, f(2,1) = f(β(2),α,∆(2,1)−∆(1,1))
. (2.37)

The joint density of θ is identified by making the following assumption.

Assumption 2.9. (i) (∆(1,1),∆(2,0),∆(2,1)) are independent of each other conditional on (β(2), α);

(ii) The characteristic function of ∆(1,1) conditional on (β(2), α) is nonzero a.e.

Assumption 2.9 (i) means that, relative to the benchmark utility given as an index function

of (X
(2)
t , Pt, Dt), the additional utilities from the bundles are independent of each other. As-

sumption 2.9 (ii) is a regularity condition for recovering the distribution of ∆(2,1) from those of

∆(2,1) −∆(1,1) and ∆(1,1) through deconvolution.

Identification of the joint density fθ allows one to recover the demand for the middle alter-

native: (1,0), which remained unidentified in our analysis in Section 2.2. To see this, we note

7Alternative assumptions can be made to identify the joint density of different components of the random
coefficient vector. For example, a large support assumption on D1 would allow one to recover the joint density
of (β(2), α,∆(2,1) −∆(2,0)) from the demand for bundle (2,0).
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that the demand for this bundle is given by

φ(1,0)(x
(2), p, δ) =

∫
1{0 < x

(2)
1
′b(2) + ap1 + δ1 < −∆(2,0)}

× 1{x(2)
2
′b(2) + ap2 + δ2 < −∆(1,1)}1{(x(2)

1 − x
(2)
2 )′b(2) + a(p1 − p2) < −(δ1 − δ2)}

× 1{(x(2)
1 + x

(2)
2 )′b(2) + a(p1 + p2) + ∆(2,1) < −(δ1 + δ2)}fθ(b(2), a,∆(1,1),∆(2,0),∆(2,1))dθ.

(2.38)

Since the previously unknown density fθ is identified, this demand function is identified. This

and φ(1,1) = 1 −
∑

l∈L\{(1,1)} φl further imply that all components of φ are now identified. We

summarize these results below as a theorem.

Theorem 2.6. Suppose U(y1,y2),t is concave in (y1, y2). Suppose Condition 2.1 and Assumptions

2.1, 2.3-2.4 hold. Suppose further that Assumption 2.9 holds. Then, fθ is identified in Example

3, where θ = (β(2), α,∆(1,1),∆(2,0),∆(2,1))
′. Further, all components of the structural demand φ

are identified.

3 Extensions

3.1 Alternative specific coefficients

So far, we have maintained Assumption 2.1 (ii), which requires (βj, αj) = (β, α), a.s. for all

j. This excludes alternative specific random coefficients. However, this is not essential in our

analysis. One may allow some or all components of (βj, αj) to be different random variables

across j and identify their joint distribution under an extended support condition on the product

characteristics. A leading example is that the utility contains an alternative specific additive

unobserved heterogeneity term εj:

U∗jt = X
(1)
jt β

(1) +X
(2)
jt
′β(2) + αPjt + εj + Ξjt,

In this setting, one has βj = (β(1), β(2), εj) and Xjt = (X
(1)
jt , X

(2)
jt
′, 1)′, and therefore, only

the last component of βj differs across alternatives. Following Berry and Pakes (2007), we call

{εj, j = 1, · · · , J} unobserved tastes for products.8 Theorem 2.2 indeed still holds if Assumption

2.1 (ii) is dropped. Hence, the identification of the structural demand does not require any

major modification. Another point to note is that the argument does not change even if the

unobserved heterogeneity also varies across markets in an iid manner. That is, (β
(2)
jt , αjt) varies

8Berry and Pakes (2007) provide detailed discussions on how a model with unobserved tastes for products
differs from the pure characteristic model in terms of allowed substitution patterns and welfare implications.
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across individuals and markets independently and follows an identical distribution f
(β

(2)
j ,αj)

.

For example, it is commonly assumed that the additive unobserved error εt ≡ (ε1t, · · · , εJt)
varies across individuals and markets independently following some joint distribution fε (e.g.

independent Type-I extreme value distributions, typically denoted εijt in the literature), but this

does not change the conclusion of Theorem 2.2. This is because the identification argument in

Theorem 2.2 is based on the properties of the aggregate demand φ. These properties, including

the invertibility of φ, depend on the distribution of the random coefficients but not on particular

realizations.

Given that the aggregate demand is identified as before, the marginal densities f
(β

(2)
j ,αj)

can

be identified for all js that satisfy Assumption 2.4 (ii) using the same identification strategy in

the previous section. For this, we note that the maps MJ or N−j cannot be used as the use

of these maps are justified by Assumption 2.1 (ii). However, the large support assumption on

Di, i 6= j can be used to construct Φj.

Identification of the joint density fθ requires an extension of our identification strategy. To

see this, we take Example 2 as an illustration below. Consider identifying the joint density of

θ = (β
(2)
1 , β

(2)
2 , α1, α2,∆) under Assumption 2.8. In this setting, we may use the demand for

(1, 0), which can be written as

φ(1,0)(x
(2), p, δ) =

∫
1{x(2)

1
′b

(2)
1 + a1p1 > −δ1}

× 1{x(2)
2
′b

(2)
2 + a2p2 + ∆ < −δ2}fθ(b(2)

1 , b
(2)
2 , a1, a2,∆)dθ. (3.1)

To recover the joint density, one has to directly work with this demand function without

simplifying it further. A key feature of (3.1) is that it involves multiple indicator functions

and that distinct subsets of θ show up in each of these indicator functions. For example, the

first indicator function in (3.1) involves (β
(2)
1 , α1), while the second indicator function involves

(β
(2)
2 , α2,∆). Integral transforms of this form are studied in Dunker, Hoderlein, and Kaido

(2013) in their analysis of random coefficients discrete game models. They use tensor products

of integral transforms to study nonparametric identification of random coefficient densities.

Using their framework, one may show that

∂2φ(1,0)(w1, w2, δ1, δ2)

∂δ1∂δ2

= (R⊗R)[fθ](w1, w2, δ1,−δ2), (3.2)

where w1 = −(x
(2)
1 , p1)/‖(x(2)

1 , p1)‖, w2 = (x
(2)
2 , p2)/‖(x(2)

2 , p2)‖, and R⊗R is the tensor product

of Radon transforms, which can be inverted to identify fθ. The main principle of our identifi-

cation strategy is therefore the same as before. Inverting the transform in (3.2) to identify fθ

requires Assumption 2.4 (ii) to be strengthened as follows.

Assumption 3.1. (X
(2)
1t , P1t, D1t, X

(2)
2t , P2t, D2t) has a full support.
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This is a stronger support condition than Assumption 2.4 (ii) as it not only requires a full

support condition for the characteristics of one good but also for the characteristics of both

goods. This condition is violated, for example, when there is a common covariate that enters

the characteristics of both goods. This is in line with the previous findings in the literature

that identifying the joint distribution of potentially correlated unobservable tastes for products

(e.g. ε1 and ε2) requires variables that are excluded from one or more goods (see e.g. Keane,

1992 and Gentzkow, 2007). Identification of fθ is then established by the following theorem.9

Theorem 3.1. In Example 2, let θ = (β1, β2, α1, α2,∆). Suppose that Assumptions 2.1 (i),

2.2-2.3 hold. Then, ψ is identified. Suppose further that Assumptions 2.4 (i), (iii), 2.8 and 3.1

hold. Then, fθ is identified.

3.2 Nonparametric identification of ψ with full independence

In Section 2.2, we discussed the the nonparametric identification of the functions ψj in the

equation Ξjt = ψj(X
(2)
t , Pt, S̃t) − X

(1)
jt . Following BH (2013), we proposed to identify the

structural functions by the conditional moment equations

E
[
ψj

(
X

(2)
t , Pt, St

) ∣∣∣Zt = zt, Xt =
(
x

(1)
t , x

(2)
t

) ]
= x

(1)
jt , j = 1, · · · , J.

with instrumental variables Zt. The identification relies on the assumption that the unobserv-

able Ξjt is mean independent of the instruments. However, in many applications researchers

choose instruments by arguing that they are independent of the unobservable. Using only

mean independence means using only parts of the available information. Thereby, the iden-

tifying power is weakened. Adding the stronger independence assumption when it is justified

will improve identification as well as estimation. Therefore, we propose an approach similar to

Dunker et. al. (2014) by formally assuming

Ξjt ⊥⊥ (Zt, Xt) and E[Ξjt] = 0 for all j, t.

This leads to the nonlinear equation

0 =

(
P [ψj(X

(2)
t , St, Pt)−X(1)

jt ≤ ξ]− P [ψj(X
(2)
t , St, Pt)−X(1)

jt ≤ ξ|Zt = zt, Xt = xt]

E[ψj(X
(2)
t , St, Pt)−X(1)

jt ]

)

for all ξ, zt, xt. Nonparametric estimation of problems involving this type of nonlinear restric-

tions are studied in Chen and Pouzo (2012) and Dunker et. al. (2014). To give sufficient

9We omit the proof of this result for brevity.
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conditions for identification, we define the operator

F (ϕ) (ξ, zt, xt) :=

(
P [ϕ(X

(2)
t , St, Pt)−X(1)

jt ≤ ξ]− P [ϕ(X
(2)
t , St, Pt)−X(1)

jt ≤ ξ|Zt = zt, Xt = xt]

E[ϕ(X
(2)
t , St, Pt)−X(1)

jt ]

)
.

The function ψj is a root of the operator F . It is, therefore, globally identified under the

following assumption.

Assumption 3.2. The operator F has a unique root.

On first sight this may appear as a strong assumption due to the complexity of the operator.

It is, however, weaker than the usual completeness assumption for the mean independence

assumption. This is because, if Ξjt ⊥⊥ (Zt, Xt) and the usual completeness assumption hold,

then F has only one root. On the other hand, completeness is not necessary for F to have

a unique root. Hence, when Ξjt ⊥⊥ (Zt, Xt), Assumption 3.2 is weaker than Assumption 2.3.

Another important advantage of this method is that because the Dj do not vanish, we have a

close analog to nonparametric IV with full independence, see, e.g., Dunker et al (2014), where

Dj now plays the role of the dependent variable.

3.3 Covariates with bounded support

Our basic identification strategy is to invert the Radon transform in (2.15). This inversion

requires rich variation in w. In practice, however, one may not be able to vary w flexibly when

(X
(2)
j , Pj) has a limited support. Even in such a setting, identification of fθ is still possible under

an additional assumption on the moments of the random coefficients. To cover all examples

considered, we let θj denote the j-th component of θ.

Assumption 3.3. All the absolute moments of θj, j = 1, · · · , dθ are finite, and for any fixed

z ∈ R+, liml→∞
zl

l!
(E[|θ1|l] + · · ·+ E[|θdθ |l]]) = 0.

Under Assumption 3.3, the characteristic function w 7→ ϕθ(tw) of θ (a key element of the

Radon inversion) is uniquely determined by its restriction to a non-empty full dimensional sub-

set of Sdθ .10 Hence, fθ can still be identified if one may vary w on a non-empty full dimensional

subset. For example, if (X
(2)
j , Pj)’s support contains an open ball in Rk2+1, this is sufficient for

the identification of fθ.

10This follows from analytic continuation. See Hoderlein, Holzman, and Meister (2014) and Masten (2014)
for details.
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4 Suggested estimation methods

4.1 Nonparametric estimator

The structure of the nonparametric identification suggests a nonparametric estimation strategy

in a natural way. It consists of three steps. The first step is the estimation of the structural

function ψj. The second step is to derive the function Φj from the estimated ψ̂j. This requires

only straightforward algebraic manipulation which were presented in Section 2.3. We will not

further comment on these computations. The last step of the estimation is the inversion of a

Radon transform.

The mathematical structure of the first step is similar to nonparametric IV. The conditional

expectation operator on the left hand side of the equation

E[ψj(x
(2)
t , Pt, St)|Zt = zt, Xt = xt] = x

(1)
jt for all xt, zt

has to be inverted. Let us denote this linear operator by T and rewrite the problem as

(Tψj)(zt, xt) = x
(1)
jt . Here x

(1)
jt should be interpreted as a function in xt and zt which is constant

in x
(2)
t , zt, and x

(1)
it for i 6= j. The operator depends on the joint density of (Xt, Pt, St, Zt)

which has to be estimated nonparametrically, e.g. by kernel density estimation. This gives an

estimator T̂ . As in nonparametric IV the operator equation is usually ill-posed. Regularized

inversion schemes must be applied. We propose Tikhonov regularization for this purpose:

ψ̂j := min
ψ
‖T̂ψ − x(1)

jt ‖2
L2(Xt,Zt)

+ αR(ψ). (4.1)

As usual α ≥ 0 is a regularization parameter and R a regularization functional. The usual

choice would be R(ψ) = ‖ψ‖2
L2 . If more smoothness is expected, this could be a squared

Sobolev norm or some other norm as well. In the case of bundles and multiple goods we

know that ψ must be monotonically increasing or decreasing in St. One may incorporate

this a priori knowledge by setting R(ψ) = ∞ for all functions ψ not having this property.

Monotonicity is a convex constraint. Hence, even with this choice of R, equation (4.1) is a

convex minimization problem. Solving the problem is computationally feasible. We refer to

Eggermont (1993), Burger and Osher (2004), and Resmerita (2005) for regularization with

general convex regularization functional. Furthermore, we refer to Newey and Powell (2003)

for the related nonparametric IV problem.

The third step of our nonparametric estimation strategy is the inversion of a Radon trans-

form. A popular and efficient method for the problem is the filtered back projection

f̂θ(ϑ) = R∗
(

Ωr ∗δ
∂Φj(x

(2)
j , pj, δj)

∂δj

)
(ϑ).
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Here ϑ = (b, a) or (b, a,∆) depending on the application, (R∗g)(x) :=
∫
‖w‖=1

g(w,w′x)dw is

the adjoint of the Radon transform, and ∗δ denotes the convolution with respect to the last

variable δj, and Ωr is the function

Ωr(s) :=
1

4π2

(cos(rs)− 1)/s2 for s 6= 0,

r2/2 for s = 0.

For more details on this algorithm in a deterministic setting we refer to Natterer (2001). A

similar estimator for random coefficients is proposed and analyzed in HKM.

4.2 Parametric estimators for bundle choice models

Our nonparametric identification analysis shows that the choice of bundles and multiple units

of consumption can be studied very much in the same way as the standard BLP model (or the

pure characteristic model). This suggests that one may construct parametric estimators for

these models by extending standard estimation methods, given appropriate data. Below, we

take Example 2 and illustrate this idea.

Let θ = (β(2), α,∆) be random coefficients and let fθ(·; γ) be a parametric density function,

where γ belongs to a finite dimensional parameter space Γ ⊂ Rdγ . The estimation procedure

consists of the following steps:

Step 1 : Compute the aggregate share of bundles as a function of parameter γ conditional on

the set of covariates.

Step 2 : Use numerical methods to solve demand systems for (D1, D2), where Dj = Ξj +

X
(1)
j , j = 1, 2 and obtain the inversion in eq. (2.14).

Step 3 : Form a GMM criterion function using instruments and minimize it with respect to

γ over the parameter space.

The first step is to compute the aggregate share. In the pure characteristic model, one may

approximate the aggregate share of each bundle such as the one in (2.7) by simulating θ from

fθ(·; γ) for each γ. Specifically, when the conditional CDF of α given (β(2),∆) has an analytic

form, the two-step method in BLP and Berry and Pakes (2007) can be employed. We take the

demand for bundle (1,0) in eq. (2.7) as an example. Conditional on the product characteristics

y ≡ (x(2), p, δ) and the rest of the random coefficients (β(2),∆), bundle (1,0) is chosen when

A(y, β(2),∆) < α < A(y, β(2),∆), (4.2)
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where

A(y, β(2),∆) ≡ −x
(2)
2
′(2) −∆− δ2

p2

,

A(y, β(2),∆) ≡ min{−x
(2)
2
′(2) − δ2

p1

,
(x

(2)
2 − x

(2)
1 )′(2) + (δ2 − δ1)

p1 − p2

}.

Let Fα(·|β(2),∆) denote the conditional CDF of α. Then, (4.2) implies that the aggregate share

of bundle (1,0) is given by

φ(1,0)(x
(2), p, δ; γ) =

∫ (
Fα(A(y, b(2),∆)|b(2),∆)− Fα(A(y, b(2),∆)|b(2),∆)

)
× 1{A(y, β(2),∆) > A(y, β(2),∆)}fβ(2),∆(b,∆; γ)dθ. (4.3)

This can be approximated by the simulated moment:

φ̂(1,0)(x
(2), p, δ; γ) =

1

nS

nS∑
i=1

(
Fα(A(y, b

(2)
i ,∆i)|b(2)

i ,∆i)− Fα(A(y, b
(2)
i ,∆i)|b(2)

i ,∆i)
)

× 1{A(y, b
(2)
i ,∆i) > A(y, b

(2)
i ,∆i)}, (4.4)

where the simulated sample {(b(2)
i ,∆i), i = 1, · · · , nS} is generated from fβ(2),∆(·; γ).11 Com-

putation of the aggregate demand for other bundles is similar. This step therefore gives the

model predicted aggregate demand φ̂l for all bundles under a chosen parameter value γ.

The next step is then to invert subsystems of demand and obtain ψ numerically. Given

φ̂l, l ∈ L from Step 1, this step can be carried out by numerically calculating inverse mappings.

For example, take L̃ = {(1, 0), (1, 1)}. Then, (δ1, δ2) 7→ (φ̂(1,0)(x
(2), p, δ; γ), φ̂(1,1)(x

(2), p, δ; γ))

defines a mapping from R2 to [0, 1]2. Standard numerical methods such as the Newton-Raphson

method or the homotopy method (see Berry and Pakes, 2007) can then be employed to calculate

the inverse of this mapping12, which then yields ψ̂(·; γ) ≡ (ψ̂1(·; γ), ψ̂2(·; γ)) such that

Ξ1,t = ψ̂1(X
(2)
t , Pt, S(1,0),t, S(1,1),t; γ)−X(1)

1t , Ξ2,t = ψ̂2(X
(2)
t , Pt, S(1,0),t, S(1,1),t; γ)−X(1)

2t (4.5)

where (S(1,0),t, S(1,1),t) are observed shares of bundles. One may further repeat this step with

L̃ = {(0, 0), (0, 1)}, which yields

Ξ1,t = ψ̂3(X
(2)
t , Pt, S(0,0),t, S(0,1),t; γ)−X(1)

1t , Ξ2,t = ψ̂4(X
(2)
t , Pt, S(0,0),t, S(0,1),t; γ)−X(1)

2t (4.6)

This helps generate additional moment restrictions in the next step.

11One may also use an importance sampling method.
12Whether the demand subsystems admit an analog of BLP’s contraction mapping method is an interesting

open question, which we leave for future research.
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The third step is to use (4.5)-(4.6) to generate moment conditions and estimate γ by GMM.

There are four equations in total, while because the shares sum up to 1 one equation is re-

dundant. Hence, by multiplying instruments to the residuals from the first three equations, we

define the sample moment:

gn(Xt, Pt, St, Zt; γ) ≡ 1

n

n∑
t=1

ψ̂1(X
(2)
t , Pt, S(1,0),t, S(1,1),t; γ)−X(1)

1t

ψ̂2(X
(2)
t , Pt, S(1,0),t, S(1,1),t; γ)−X(1)

2t

ψ̂3(X
(2)
t , Pt, S(0,0),t, S(0,1),t; γ)−X(1)

1t

⊗(Zt
Xt

)
.

LettingWn(γ) be a (possibly data dependent) positive definite matrix, define the GMM criterion

function by

Qn(γ) ≡ gn(Xt, Pt, St, Zt; γ)′Wn(γ)gn(Xt, Pt, St, Zt; γ).

The GMM estimator γ̂ of γ can then be computed by minimizing Qn over the parameter space.

A key feature of this method is that it uses the familiar BLP methodology (simulation, inversion

& GMM) but yet allows one to estimate models that do not fall in the class of multinomial

choice models. Employing our procedure may, for example, allow one to estimate bundle choices

(e.g. print newspaper, online newspaper, or both) or platform choices using market level data.

5 Outlook

This paper is concerned with the nonparametric identification of models of market demand.

It provides a general framework that nests several important models, including the workhorse

BLP model, and provides conditions under which these models are point identified. Important

conclusions include that the assumption necessary to recover various objects differ; in partic-

ular, it is easier to identify demand elasticities and more difficult to identify the individual

specific random coefficient densities. Moreover, the data requirements are also shown to vary

with the model considered. The identification analysis is constructive, extends the classical

nonparametric BLP identification as analyzed in BH to other models, and opens up the way for

future research on sample counterpart estimation. A particularly intriguing part hereby is the

estimation of the demand elasticities, as the moment condition is different from the one used

in nonparametric IV. Understanding the properties of these estimators, and evaluating their

usefulness in an application, is an open research question that we hope this paper stimulates.
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Appendix A: Notation and Definitions

The following is a list of notations and definitions used throughout the appendix.

Sdθ−1 : The unit sphere Sdθ−1 ≡ {v ∈ Rdθ : ‖v‖ = 1}.
H− : The hemisphere H− ≡ {v = (v1, v2, · · · , vdθ ) ∈ Sdθ−1 : vdθ ≤ 0}.
Pw,r : The hyperplane: Pw,r ≡ {v ∈ Rdθ : v′w = r}.
µw,r : Lebesgue measure on Pw,r.
R : Radon transform: R[f ](w, u) =

∫
Pw,u

f(v)dµw,u(v).

MJ : The map (x(2), p, δ) 7→ (x́(2), ṕ, δ́) defined for any J ⊆ {1, · · · , J} \ {j} by

(x́
(2)
j − x́

(2)
i , ṕj − ṕi, δ́j − δ́i) = −(x

(2)
j − x

(2)
i , pj − pi, δj − δi), ∀i ∈ J ,

(x́
(2)
i , ṕi, δ́i) = (x

(2)
i , pi, δi), ∀i /∈ J .

N−j : The map (x(2), p, δ) 7→ (x́(2), ṕ, δ́) defined by

(x́
(2)
−j , ṕ−j , δ́−j) = −(x

(2)
−j , p−j , δ−j) , (x́

(2)
j , ṕj , δ́j) = (x

(2)
j , pj , δj) .

Appendix B: Proofs

Lemma 1. Suppose the Assumptions 2.1 and Condition 2.1 hold and that φl is given as in Example

2 or Example 3 with l ∈ L̃ = {(0, 1), (0, 0)}. Then for all (x(2), p) =
(
x

(2)
1 , x

(2)
2 , p1, p2

)
∈ R2k with

(x
(2)
1 , p1) 6= (x

(2)
2 , p2) the function φ : R2k × R2 → [0, 1]2 defined as

φ(x
(2)
1 , x

(2)
2 , p1, p2, d1, d2) ≡

[
φ(0,0)

(
x

(2)
1 , x

(2)
2 , p1, p2, d1, d2

)
, φ(0,1)

(
x

(2)
1 , x

(2)
2 , p1, p2, d1, d2

)]
is invertible in (d1, d2) on any bounded subset of R2. This holds for other appropriate choices of L̃ as

well.

Proof of Lemma 1. We start with the observation that φ(0,0)(x
(2), p, d) is monotonically decreasing in

d1 and also in d2 while φ(0,1)(x
(2), p, d) is monotonically decreasing in d1 and monotonically increasing

in d2 by definition. It is straight forward to check in the definition of φl that the intersection of

the sets characterized by the index functions in the integrals are non empty. Furthermore, the set

depending only on d1 and the set only depending on d2 never completely contain one another unless

the assumption (x
(2)
1 , p1) 6= (x

(2)
2 , p2) is violated. Therefore, the full support of (β, α) implies that

φ(0,0) and φ(0,1) are strictly increasing or decreasing in d1 and d2

∂φ(0,0)(x
(2), p, d)

∂d1
< 0,

∂φ(0,0)(x
(2), p, d)

∂d2
< 0,

∂φ(0,1)(x
(2), p, d)

∂d1
< 0,

∂φ(0,1)(x
(2), p, d)

∂d2
> 0.

Hence, the determinant of the Jacobian of d 7→ φ(x(2), p, d) as well as their principle minors are strictly

negative for all d ∈ supp (D)

det(Jφ)(x, d) =
∂φ(0,0)(x

(2), p, d)

∂d1

∂φ(0,1)(x
(2), p, d)

∂d2
−
∂φ(0,1)(x

(2), p, d)

∂d1

∂φ(0,0)(x
(2), p, d)

∂d2
< 0.
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Thus, on every rectangular domain in R2 the assumptions of the Gale-Nikaido theorem are fulfilled.

Since any bounded subset in R2 is contained in some rectangular domain, φ is invertible on any

bounded subset of R2.

Proof of Theorem 2.2. The proof of the theorem is immediate from Theorem 1 in BH (2013). We

therefore give a brief sketch. By Assumptions 2.1 and 2.2, we note that there exists a function

ψ : RJk2 × RJ × RJ → RJ such that for some subvector S̃t of St,

Ξjt = ψj(X
(2)
t , Pt, S̃t)−X(1)

jt , j = 1, · · · , J,

and by Assumption 2.3, the following moment condition holds:

E[ψj(X
(2)
t , Pt, S̃t)−X(1)

jt |Zt, Xt] = 0 .

Identification of ψ then follows from applying the completeness argument in the proof of Theorem 1

in BH (2013).

Proof of Theorem 2.3. First, under the linear random coefficient specification, the connected substi-

tutes assumption in Berry, Gandhi, and Haile (2013) is satisfied. By Theorem 1 in Berry, Gandhi,

and Haile (2013), Assumption 2.2 is satisfied. Then, by Assumptions 2.1-2.3 and Theorem 2.2, ψ is

identified. Further, the aggregate demand φ is identified by (2.13) and the identity φ0 = 1−
∑J

j=1 φj .

By Assumptions 2.4-2.5, for each (x(2), p, δ) and J ⊆ {1, · · · , J}\{j},MJ (x(2), p, δ) is in the support

of (X(2), Pt, Dt). Hence, one may construct

Φ̃j(x
(2)
j , pj , δj) =

∑
J⊆{1,··· ,J}\{j}

φj ◦MJ (x(2), p, δ) =

∫
1{x(2)

j
′b(2) + apj < −δj}fθ(b(2), a)dθ, (5.1)

where the second equality follows because of the following. First,MJ replaces the indicators in φj of

the form 1{(x(2)
j −x

(2)
i )′b(2) +a(pj−pi) < −(δj−δi)} with 1{(x(2)

j −x
(2)
i )′b(2) +a(pj−pi) > −(δj−δi)}

for i ∈ J . The random coefficients are assumed to be continuously distributed. We therefore have

1{(x(2)
j − x

(2)
i )′b(2) + a(pj − pi) < −(δj − δi)}+ 1{(x(2)

j − x
(2)
i )′b(2) + a(pj − pi) > −(δj − δi)} = 1, a.s.

Therefore,
∑
J⊆{1,··· ,J} φj ◦ MJ (x(2), p, δ) = 1. Since Φ̃j is constructed by summing φj ◦ MJ

over subsets of {1, · · · , J} except {j}, we are left with the integral of the single indicator function

1{x(2)
j
′b(2) + apj < −δj} with respect to fθ. This ensures (5.1). Now for l = j, define Φl as in (2.23).

Then, it follows that

Φl(w, u) = −
∫

1{w′θ < −u}fθ(b(2), a)dθ

= −
∫ −u
−∞

∫
Pw,r

fθ(b
(2), a)dµw,r(b

(2), a)dr = −
∫ −u
−∞
R[fθ](w, r)dr . (5.2)

Taking a derivative with respect to u then yields (2.25). Note that by Assumption 2.4 (i)-(ii),
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(X
(2)
j , Pj , Dj) is supported on Rk2 × R × R. This implies that ∂Φl(w, u)/∂u is well-defined for all

(w, u) ∈ Sdθ−1 × R. The conclusion of the theorem then follows from Assumption 2.4 (iii), injectivity

of the Radon transform on S(Rdθ) (Theorem 2.4 in Helgason, 1999) and Φl being identified.

Proof of Theorem 2.4. First, let L̃ = {(1, 0), (1, 1)}. By Assumptions 2.1-2.3 and Theorem 2.2, ψ

is identified. Further, the aggregate demand {φl, l = (1, 0), (1, 1)} is identified by (2.14). Second,

take L̃ = {(0, 0), (0, 1)}. Then by the same argument, the aggregate demand {φl, l = (0, 0), (0, 1)} is

identified as well. Hence, the entire aggregate demand vector φ is identified.

By Assumption 2.6 ∆ ≤ 0 almost surely. Then, the demand for bundle (0,0) satisfies (2.26). By

Assumption 2.7, it then follows that

Φ̃(0,0)(x
(2)
j , pj , δj) = −φ(0,0)(x

(2), p, δ)− φ(0,0) ◦ N−j(x(2), p, δ)

= −
∫

1{x(2)
1
′b(2) + ap1 < −δ1}

(
1{x(2)

2
′b(2) + ap2 < −δ2}+ 1{x(2)

2
′b(2) + ap2 > −δ2}

)
fθ(b

(2), a,∆)dθ

= −
∫

1{x(2)
1
′b(2) + ap1 < −δ1}fβ(2),α(b(2), a)dθ, (5.3)

where Φ̃(0,0) is identified because it is constructed from φ(0,0). The rest of the proof is then the same

as the proof of Theorem 2.3. This establishes the first claim of the theorem.

Under Assumption 2.6, the demand for bundle (1,1) can be written as (2.29). It then follows that

for δ−j sufficiently large, one may define

Φ̃(1,1)(x
(2)
j , pj , δj) ≡ φ(1,1)(x

(2), p, δ) =

∫
1{x(2)

j
′b(2) + apj + ∆ > −δj}fθ(b(2), a,∆)dθ .

Let l = (1, 1), w ≡ −(x
(2)
j , pj , 1)/‖(x(2)

j , pj , 1)‖ and u ≡ δj/‖(x(2)
j , pj , 1)‖. Define Φl as in (2.23).

Arguing as in (5.2) and taking a derivative with respect to u, we have ∂Φl(w, u)/∂u = R[fθ](w, u).

However since w is a vector of normalized covariates including a constant, it takes values in H−,

where H− is the hemisphere in Rdθ defined by H− ≡ {w = (w1, w2, · · · , wdθ) ∈ Sdθ−1 : wdθ ≤ 0}.
Therefore, ∂Φl(w, u)/∂u is well-defined for all (w, u) ∈ H− × R. Note that the Radon transform

satisfies the symmetry R[fθ](w, u) = R[fθ](−w,−u). Hence, for any w ∈ Sdθ−1 \ H−, we have

∂Φl(w
′, u′)/∂u′|(w′,u′)=(w,u) = R[fθ](w, u) = R[fθ](−w,−u) = ∂Φl(w

′, u′)/∂u′|(w′,u′)=(−w,−u). Since

(−w,−u) ∈ H− × R, this means that ∂Φl(w, u)/∂u is also well-defined on Sdθ−1 × R. The conclusion

of the theorem then follows from the injectivity of the Radon transform and Φl being identified.

Proof of Theorem 2.5. Arguing as in the Proof of Theorem 2.4, Assumptions 2.1-2.3 and Theorem 2.2

ensure identification of φ. The aggregate demand on (0,1) is then given by

φ(0,1)(x
(2), p, δ) =

∫
1{x(2)

2
′b(2) + ap2 > −δ2}

× 1{(x(2)
2 − x

(2)
1 )′b(2) + a(p2 − p1) > −(δ2 − δ1)}1{x(2)

1
′b(2) + ap1 + ∆ < −δ1}fθ(b(2), a,∆)dθ ,

32



By Assumption 2.8, ∆ ≥ 0, a.s.. This implies that

φ(0,1)(x
(2), p, δ) =

∫
1{x(2)

2
′b(2) + ap2 > −δ2}1{x(2)

1
′b(2) + ap1 + ∆ < −δ1}fθ(b(2), a,∆)dθ

Without loss of generality, suppose Assumption 2.7 holds with j = 1 and −j = 2. Then, Φ̃(0,1)

in (2.33) is well-defined. Define Φl as in (2.23) with l = (0, 1), w = (x
(2)
1 , p1, 1)/‖(x(2)

1 , p1, 1)‖ and

u = −δ1/‖(x(2)
1 , p1, 1). The rest of the proof is then the same as the proof of Theorem 2.4 (ii).

Proof of Theorem 2.6. First, let L̃ = {(2, 0), (2, 1)}. By Condition 2.1 and Lemma 1, Assumption 2.2

is satisfied. By Assumptions 2.1-2.3 and Theorem 2.2, ψ is identified. This implies that the aggregate

demand {φl, l = (2, 0), (2, 1)} is identified by (2.14). Second, take L̃ = {(0, 0), (0, 1)}. Then by the same

argument, the aggregate demand {φl, l = (0, 0), (0, 1)} is identified as well. Again by Condition 2.1,

we may let δ2 sufficiently large so that Φ̃l, l ∈ {(0, 1), (2, 0), (2, 1)} in (2.34)-(2.36) are well defined.

For each l ∈ {(0, 1), (2, 0), (2, 1)}, define Φl as in (2.23) with w ≡ −(x
(2)
1 , p1, 1)/‖(x(2)

1 , p1, 1)‖ and

u ≡ δ1/‖(x(2)
1 , p1, 1)‖. Then, it follows that

∂Φl(w, u)

∂u
= R[fl](w, u), l ∈ {(0, 1), (2, 0), (2, 1)},

where f(0,1) = f(β(2),α,∆(1,1))
, f(2,0) = f(β(2),α,∆(2,0))

, and f(2,1) = f(β(2),α,∆(2,1)−∆(1,1))
. By inverting the

Radon transform, the random coefficient densities fl, l ∈ {(0, 1), (2, 0), (2, 1)} are identified. It remains

to construct the joint density from these marginal densities. In what follows, the arguments are made

conditional on (β(2), α) unless otherwise noted. From the previous step, the marginal densities of

∆(2,1)−∆(1,1) and ∆(1,1) are identified. Further, we note that ∆(2,1)−∆(1,1) is a convolution of ∆(2,1)

and −∆(1,1). By Assumption 2.9 (ii), Proposition 8 of Carrasco and Florens (2010) applies. Hence,

the marginal density of ∆(2,1) is identified. By Assumption 2.9 (i), ∆(1,1) ⊥ ∆(2,0) ⊥ ∆(2,1) conditional

on (β(2), α), and each of the marginal densities was identified in the previous step. Therefore, the

joint density f(∆(1,1),∆(2,0),∆(2,1))|(β(2),α) is identified as the product of the marginal densities. Finally,

since the density of (β(2), α) can also be identified from any of fl, l ∈ {(0, 1), (2, 0), (2, 1)}, we may

identify the joint density fθ as fθ = f(∆(1,1),∆(2,0),∆(2,1))|(β(2),α)f(β(2),α). This establishes the claim of

the theorem.
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