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Abstract

This paper studies nonparametric identification in market level demand models for
differentiated products. We generalize common models by allowing for the distribution
of heterogeneity parameters (random coefficients) to have a nonparametric distribution
across the population and give conditions under which the density of the random coef-
ficients is identified. We show that key identifying restrictions are provided by (i) a set
of moment conditions generated by instrumental variables together with an inversion of
aggregate demand in unobserved product characteristics; and (ii) an integral transform
(Radon transform) that maps the random coefficient density to the aggregate demand.
This feature is shown to be common across a wide class of models, and we illustrate this
by studying leading demand models. Our examples include demand models based on the
multinomial choice (Berry, Levinsohn, Pakes, 1995), the choice of bundles of goods that

can be substitutes or complements, and the choice of goods consumed in multiple units.
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1 Introduction

Modeling consumer demand for products that are bought in single or discrete units has a
long and colorful history in applied Economics, dating back to at least the foundational work
of McFadden (1974, 1981). While allowing for heterogeneity, much of the earlier work on this
topic, however, was not able to deal with the fact that in particular the own price is endogenous.
In a seminal paper that provides the foundation for much of contemporaneous work on discrete
choice consumer demand, Berry, Levinsohn and Pakes (1994, BLP) have proposed a solution
to the endogeneity problem. Indeed, this work is so appealing that it is not just applied in
discrete choice demand and empirical IO, but also increasingly in many adjacent fields, such as
health and urban economics, education and many others. From a methodological perspective,
this line of work is quite different from traditional multivariate choice, as it uses data on the
aggregate level and integrates out individual characteristics! to obtain a system of nonseparable
equations. This system is then inverted for unobservables for which in turn a moment condition
is then supposed to hold.

Descending in parts from the parametric work of McFadden (1974, 1981), BLP share many
of its features, in particular (parametric) distributional assumptions, but also a linear random
coefficients (RCs) structure for the latent utility. Not surprisingly, there is increasing interest
in the properties of the model, in particular which features of the model are nonparametrically
point identified, and how the structural assumptions affect identification of the parameters
of interest. Why is the answer to these questions important? Because an empricist working
with this model wants to understand whether the results she obtained are a consequence of
the specific parametric assumptions she invoked, or whether they are at least qualitatively
robust. In addition, nonparametric identification provides some guidance on essential model
structure and on data requirements, in particular about instruments. Finally, understanding
the basic structure of the model makes it easier to understand how the model can be extended.
Extensions of the BLP framework that are desirable are in particular to allow for consumption
of bundles and multiple units of a product without modeling every choice as a new separate
alternative.

We are not the first to ask the nonparametric identification question for market demand
models. In a series of elegant papers, Berry and Haile (2011, 2013, BH henceforth) provide im-
portant answers to many of the identification questions. In particular, they establish conditions
under which the “Berry inversion”, a core building block of the BLP model named after Berry
(1994), which allows to solve for unobserved product characteristics, as well as the distribution
of a heterogeneous utility index are nonparametrically identified.

Our work complements this line of work in that we follow more closely the original BLP

!There are extensions of the BLP framework that allow for the use of Microdata, see Berry, Levinsohn
and Pakes (2004, MicroBLP). In this paper, we focus on the aggregate demand version of BLP, and leave an
analogous work to MicroBLP for future research.



specification and assume in addition that the utility index has a linear random coefficients
(RCs) structure. More specifically, we show how to nonparametrically identify the distribution
of random coefficients in this framework. This result does not just close the remaining gap in
the proof of nonparametric identification of the original BLP model, but is also important for
applications because the distribution of random coefficients allows to characterize the distri-
bution of the changes in welfare due to a change in regressors, in particular the own price (to
borrow an analogy from the treatment effect literature, if we think of a price as a treatment,
BH recover the treatment effect on the distribution, while we recover the distribution of treat-
ment effects). The arguments in establishing nonparametric identification of these changes are
constructive and permit the construction of sample counterparts estimators, using theory in
Hoderlein, Klemeld and Mammen (2010). From this theory it is well known that these esti-
mators reveal that the random coefficients density is only weakly identified, suggesting that
numerical instabilities and problems frequently reported and discussed in the BLP literature,
e.g., Dube, Fox and Su (2013), are caused or aggravated by this feature of the model.

The second contribution in this paper is that we use the insights obtained from the identi-
fication results to extend the market demand framework to cover bundle choice (i.e., consume
complementary goods together), as well as consumption of multiple units. Note that bun-
dles and multiple purchases can in principle be accommodated within the BLP framework by
treating them as separate alternatives. However, this is not parsimonious as the number of
alternatives increases rapidly and with it the number of unobserved product characteristics,
making the system quickly intractable. To fix ideas, suppose there were two goods, say good A
and B. First, we allow for the joint consumption of goods A and B, and second, we allow for the
consumption of several units of either A and/or B, without labeling it a separate alternative.
We model the utility of each bundle as a combination of the utilities for each good and an
extra utility from consuming the bundle. This structure in turn implies that the dimension of
the unobservable product characteristic equals the number of goods J instead of the number
of bundles. There are three conclusions we draw from this contribution: first, depending on
the type of model, the data requirements vary. In particular, to identify all structural parts of
the model, in, say, the model on bundle choice, market shares are not the correct dependent
variable any more. Second, depending on the object of interest, the data requirements and
assumptions may vary depending on whether we want to just recover demand elasticities, or
the entire distribution of random coefficients. Third, the parsimonious features of the structural
model result in significant overidentification of the model, which opens up the way for specifi-
cation testing, and efficient estimation. As in the classical BLP setup, in all setups we may use
the identification argument to propose a nonparametric sample counterpart estimators, but we
also use the insights obtained to propose a parametric estimator for models where there had
not been an estimator before.

Related literature: as discussed above, this paper is closely related to both the original



BLP line of work (Berry, Levinsohn and Pakes (1994, 2004)), as well as to the recent identi-
fication analysis of Berry and Haile (2011, 2013). Because of its generality, our approach also
provides identification analysis for the “pure characteristics” model of Berry and Pakes (2007),
see also Ackerberg, Benkard, Berry and Pakes (2007) for an overview. Other important work in
this literature that is completely or partially covered by the identification results in this paper
include Petrin (2002) and Nevo (2001). Moreover, from a methodological perspective, we note
that BLP continues a line of work that emanates from a broader literature which in turn was
pioneered by McFadden (1974, 1981); some of our identification results extend therefore beyond
the specific market demand model at hand. Other important recent contributions in discrete
choice demand include Armstrong (2013) and Moon, Shum, and Weidner (2013).

In addition to this line of work, we also share some commonalities with the work on bundle
choice in 10, most notably Gentzkow (2007), and Fox and Lazzati (2013). For some of the
examples discussed in this paper, we use Gale-Nikaido inversion results, which are related to
arguments in Berry, Gandhi and Haile (2013). Because of the GMM type endogeneity, our
approach also relates to nonparametric IV, in particular to Newey and Powell (2003), Andrews
(2011), and Dunker, Florens, Hohage, Johannes, and Mammen (2014). Finally, our arguments
are related to the literature on random coefficients in discrete choice model, see Ichimura and
Thompson (1995), Gautier and Kitamura (2013), Dunker, Hoderlein and Kaido (2013), Fox
and Gandhi (2012), and Matzkin (2012). Since we use the Radon transform introduced by
Hoderlein, Klemeld and Mammen (2010, HKM) into Econometrics, possibly in conjunction
with tensor products as in Dunker, Hoderlein and Kaido (2013), this work is particularly close
to the literature that uses the Radon transform, in particular HKM and Gautier and Hoderlein
(2013).

Structure of the paper: We introduce the model in the next section, including all def-
initions and assumptions in the various setups. We then provide general identification results
which we specify to the individual models. Because of the difference in requirements, this
section is divided into identifying demand elasticities and identifying the entire distribution of
random coefficients. Moreover, we discuss each result for each of the specifications we consider.

Finally, an outlook concludes.

2 Nonparametric Identification

2.1 Set up

We begin with a setting where a consumer faces J € N products and an outside good which
is labeled good 0. Throughout, we index products by 5 and markets by t. We use upper-case
letters, e.g. X}, for random variables (or vectors) that vary across markets and lower-case

letters, e.g. x;, for particular values the random variables (vectors) can take. In addition, we



use letters without a subscript for products e.g. X; to represent vectors e.g. (X4, -+, X ).
For each individual in market ¢, the (indirect) utility from consuming good j depends on its
(log) price Pj;, a vector of observable characteristics Xj; € R*, and an unobservable scalar
characteristic Z; € R. Following Berry, Levinsohn and Pakes (1995), we model the utility from

consuming good j using the linear random coefficient specification:
]*tEX‘;t/Bj_l_a]Pjt_FE]t; ]:1, ,J, (21)

where (o, Bj) € R*1 is a vector of random coefficients, which varies across individuals. For
notational simplicity, we do not add subscripts for individuals to the random coefficients, but the
assumption that (;, 3;) (and hence the utility) may vary across individuals should be implicitly
understood. Throughout, we assume that X, is exogenous, while P;; can be correlated with
the unobserved product characteristic =;; in an arbitrary way. Without loss of generality, we
normalize the utility from the outside good to 0. This mirrors the setup considered in BH
(2013).

Note that in order to reduce notational complexity we suppress an individual specific index
(usually, 7). This is justified as we mainly talk about identification, and we would think of a
large sample of individuals as itd copies of this population model. The drawback of such an
approach is that we have to be very explicit about which variables vary across individuals or
markets. The random coefficients for instance vary across individuals in any given market (or,
alternatively, have a distribution in any given market in the population), while the product
characteristics vary solely across markets. We can in principle allow for all random parameters
(a, B) to be individual, alternative and market specific as long as their distribution does not
vary across markets (this includes the commonly employed additive “logit error”, typically
denoted ¢;;; in the sample, which is iid across 4,j and t). We can allow for the coefficients
to be alternative j specific, and will indeed do so below. However, parts of the analysis will
subsequently change, and we start out with the more common case where the coefficients are
the same across j.

Having specified the model on individual level, the outcomes of individual decisions are then
aggregated in every market. The econometrician observes exactly these market level outcomes
Si.t, where [ belongs to some index set denoted by L. Below, we give the three main settings we
consider. The first example is the setting of BLP, where individuals choose a single good out
of J products, where J can be any natural number. The second and third examples consider
choices among bundles generated from combining two goods. They are settings commonly
considered in the literature; see e.g., Gentzkow (2007) and references therein.? Throughout the

following examples, the random coefficient vector is denoted by § € R% and is assumed to have

%In this paper, we focus on the bundle choice with two goods. We conjecture that bundles generated from
more than two goods could potentially be handled with some additional structure, which we leave as future
work.



a joint probability density function fy with respect to Lebesgue measure, i.e., be continuously
distributed.

Example 1 (BLP). Each individual chooses the product that maximizes her utility out of
J € N products. Hence, product j is chosen if

Up>Uy, Vi#E]. (2.2)

The demand for good j in market ¢ is obtained by aggregating the individual demand with
respect to the distribution of individual preferences. For example, if (ay, 8;) = (a, 3) for all j,

a.s., the aggregate demand is given by

(pj(Xt, Pt, Et) = /1{X;tb + CL.Pjt > _Ejt}]-{(th — X1t>,b + a(Pjt — Plt) > _(Ejt — Elt)}

- H{(Xje — X)) b+ a(Pje — Pr) > — (S50 — E0)}o(b,a)dl , (2.3)
for y =1,---,J, while the aggregate demand for good 0 is given by
SOO(XIH Pt, Et) = / 1{X{tb + aplt < _Elt} e 1{Xfftb + CLPJt < —EJt}f9<b7 a)d@ . (24)

The researcher then observes the market shares of products Sy = ¢,;(Xy, P, Z¢),1 € L, where
L={0,1,---,J}.

Example 2 (Bundles). Each individual faces J = 2 products and decides whether or not to
consume a single unit of each of the products. There are therefore four possible combinations
(Y71, Y3) of consumption units, which we call bundles. In addition to the utility from consuming
each good as in (2.1), the individuals gain additional utility (or disutility) A if the two goods
are consumed simultaneously. Here, A is also allowed to vary across individuals. The utility

U Vi, ¥a) from each bundle is therefore specified as follows:

U(*O,O),t =0, U(*l,o),t = X,/ + a1Piy + En

U(*O,l),t = XétﬁQ + Oégpgt + Egt, U(*l,l),t = X{tﬁl + XétﬁQ + Oélplt + OCQPQt + A+ Elt + E.Qt s
(2.5)

Each individual chooses a bundle that maximizes her utility. Hence, bundle (y1,y,) is chosen
when Ug > Ugy 4 for all (1, v5) # (Y1, 92). For example, assuming (53, a;) = (5, «) for

all j, bundle (1,0) is chosen if

X,B+aP;+Z; >0, and X[,08+ aPy+ 2y > X508+ aPsy + 2o, and
X, B+aPy+&, > X,B+aPy;+Z;+ X580+ aPy+Zy+A . (2.6)



Suppose the random coefficients § = (', &, A) have a joint density fy. The aggregate structural
demand for (1, 0) can then be obtained by integrating over the set of individuals satisfying (2.6)

with respect to the distribution of the random coefficients:

90(1,0)(Xt7 Pt, Et) = / 1{X{tb + ClPlt > _Elt}l{(Xlt — th)/b + G(Pu — P2t) > EQt — Elt}

X ].{Xétb + apgt + A < —Egt}fe(b, a, A)d& . (27)

The aggregate demand on other bundles can be obtained similarly. The econometrician then

observes a vector of aggregate demand on the bundles: S;; = ¢;(X¢, P, Z¢),l € L where
L = {(0,0),(1,0),(0,1), (1, 1)}.

Example 3 (Multiple Units of Consumption). Each individual faces J = 2 products, but she
may consume multiple units of each product. For simplicity, we consider the simplest setup
where Y] € {0,1,2} and Y5 € {0,1}. The utility from consuming y; units of product 1 and ys
units of product 2 is specified as follows:

ngyl,yz)vt - left + y2U§t + A(y17y2) ) (2‘8>

where A, .,y is the additional utility (or disutility) from consuming the particular bundle
(y1,y2). This specification allows, e.g., for decreasing marginal utility (with the number of
units), as well as interaction effects. We assume that A gy = A1y = 0 as Uy, and U, give the
utility from consuming a single unit of each of the two goods. Throughout this example, we
assume that U(*yl,yz),t
of the neighboring alternatives. For example, assuming (3;, a;) = (5, «) for all j, bundle (2, 0)

is chosen if it is preferred to bundles (1,0), (1,1) and (2,1). That is,

is concave in (y1,y2). Then, a bundle is chosen if its utility exceeds those

2(X1,8 +aPy +Zy) + Apoy) > X160+ aPy + =y
2(X1,0 + aPy + Ey) + A0y > X108+ Py +Z1 + X5,0 + aPy + Sy + AVERD)

and Q(X{tﬁ + OéPlt + Elt) + A(270) > 2<X{tﬁ + Oéplt + Elt) + Xétﬁ -+ OéP2t + Egt + A(gyl).
(2.9)

The aggregate structural demand can be obtained as

S0(2:0)()(1“ P, 5) = / H{X[b+ aPy + Apo) > —Zu}

X H{( X1t — Xo)'b4 a(Piy — Pa) + Do) — Aay > —Z1 + Zae}
X ]_{Xétb + G,Pgt + A(QJ) — A(Q,O) < —Ezt}fg(b, a)d@ . (210)

The observed aggregate demand on the bundles are similarly defined for S;; = ¢, (X, P, Z¢),1 €



L where L = {(0,0), (1,0), (0, 1), (1, 1), (2,0), (2, 1)}.

In Examples 2 and 3, we assume that the econometrician observes the aggregate demand
for all the respective bundles. We emphasize this point as it changes the data requirement,
and an interesting open question arises about what happens if these requirements are not met.
Example of data sets that would satisfy these requirements are when 1 individual observations
are collected through direct survey or scanner data on individual consumption (in every market),
2. aggregate variables (market shares) are collected, but augmented with a survey that asks
individuals whether they consume each good separately or as a bundle. 3. Finally, another
possible data source are producer’s direct record of sales of bundles, provided each bundles are
recorded separately (e.g., when they are sold through promotional activities). When discussing

examples 2 and 3, we henceforth tacitly assume to have access to such data in principle.

2.2 Inversion and Identification of Structural Demand

The first step toward identification of f is to use a set of moment conditions generated by
instrumental variables to identify the aggregate demand function ¢. Following BH (2013), we

partition the covariates as Xj; = (X(l) X](-f)) € R x R* where ky = k — 1 and make the

jt
following assumption.

Assumption 2.1. (i) The coefficient 65.1) on X;tl) 1s non-random for all j and is normalized
to 1; (ii) (B;,a;) = (B,a) for all j, a.s.

Assumption 2.1 (i) requires that at least one coefficient on the covariates is non-random.
Since we may freely choose the scale of utility, we normalize the utility by setting ﬁg-l) =1
for all j. Assumption 2.1 (ii) requires that the random coefficients (3;, ;) are common across
alternatives. Requiring that the coefficients on Xj; is common is standard in the literature.
Assumption 2.1 (ii), however, excludes an alternative specific additive error. Hence, this setting
falls in the scope of the pure characteristic model studied in Berry and Pakes (2007). It
is possible to relax this assumption. We will discuss this extension in Section 3.1. Under
Assumption 2.1, the utility for product j can be written as U}, = Xj(f)’(z) + aPj + Dj;, where
Dy=X j(tl ) 4 Zj¢ is the part of the utility that is common across individuals. Assumption 2.1
(i) is arguably strong but will provide a way to obtain valid instruments required to identify
the structural demand (see BH, 2013, Section 7 for details). Under this assumption, Uj is
strictly increasing in Dj; but unaffected by D; for all ¢« # j. In Example 1, together with a
mild regularity condition, this is sufficient for inverting the demand system to obtain =, as a
function of the market shares S;, price P;, and exogenous covariates X; (Berry, Gandhi, and
Haile, 2013). In Examples 2 and 3, one may also obtain Z; as a function of (S, P;, X;) in a similar
manner. Since we observe aggregate demand for more than two distinct bundles and have two

unknowns (=14, Z;), we may use a subsystem of the demand equations to obtain an inversion.

8



We therefore make the following high-level assumption. For this, we redefine the aggregate
demand as a function of (Xt@), P,, D;) instead of (X, P,,E;) by (b(Xt@), P, D)) = (X4, P, Zy),
where X; = (Xt(l),Xt(Z)) and D, = =, + Xt(l).

Assumption 2.2. For some subset L of L whose cardinality is J, there exists a unique function

Y R x R x R — R such that Dy, = w‘(Xt(Q),Pt,St) for j =1,---,J, where S is a

J
subvector of Sy, which stacks the components of Sy whose indices belong to L.

Under Assumption 2.2, we may write
Z50 = (X7 P Sy - X, (2.11)

This can be used to generate moment conditions in order to identify the aggregate demand

function.

Example 1 (BLP, continued). Let . = {1,---,J}. In this setting, the inversion discussed
above is the standard Berry inversion of demand. A key condition for the inversion is that
the products are connected substitutes (Berry, Gandhi, and Haile (2013)). The linear random
coefficient specification as in (2.1) is known to satisfy this condition. Then, Assumption 2.2

follows.

For the next two examples, we consider an alternative procedure (Lemma 1 given in the
appendix) for inverting the demand. This is because these examples share a specific structure.
We note that the inversion of Berry, Gandhi, and Haile (2013) can still be applied to bundles
if one treats each bundle as a separate good and recast the bundle choice problem into a
standard multinomial choice problem. However, as can be seen from (2.5) and (2.8), Examples
2 and 3 have the additional structure that the utility of a bundle is the combination of the
utilities for each good and extra utilities, and hence the model does not involve any bundle
specific unobserved characteristic. This structure in turn implies that the dimension of the
unobservable product characteristic Z; equals the number of goods J, while the econometrician
observes dim(S) = II7_,(d; 4+ 1) aggregate choice probabilities over bundles, where d; is the
maximum number of consumption units allowed for each good (e.g. in Example 2, J = 2, and
dim(S) = 4). This suggests that (i) using only a part of the demand system is sufficient for
obtaining an inversion, which can be used to identify fy and (ii) using additional subcomponents
of S, one may potentially overidentify the parameter of interest. We therefore consider an
inversion that exploits a monotonicity property of the demand system that follows from this

structure.® For this, we assume that the following condition is met.

3The additional structure can potentially be tested. For example, in Example 2, one may identify the
demand for bundles (1,0) and (1,1) using the inversion described below under the hypothesis that eq. (2.5)
holds. Further, treating (1,0), (0,1), and (1,1) as three separate goods (and (0,0) as an outside good) and
applying the inversion of Berry, Gandhi, and Haile (2013), one may identify the demand for bundles (1,0) and
(1,1) without imposing (2.5). The specification can then be tested by comparing the demand functions obtained
from these distinct inversions. We are indebted to Phil Haile for this point.



Condition 2.1. The random coefficient density fy is continuously differentiable. (ﬁ(Q),oz) and
D have full support in R¥2*1 and R? respectively.

Example 2 (Bundles, continued). Let L = {(1,0), (1,1)}. From (2.7), it is straightforward to
show that ¢, o) is increasing in Dy but is decreasing in Dy, while ¢4 3y is increasing both in D
and D,. Hence, the Jacobian matrix is non-degenerate. Together with a mild support condition
on (D1, Dy), this allows to invert the demand (sub)system and write Z; = 1) (Xt(2), P, 5, —X;tl),
where S; = (S(1,0),¢, S(1,1),t)- One may alternatively choose . = {(0,0), (0,1)}, and the argument
is similar. This inversion is valid even if the two goods are complements. This is because the
inversion uses the monotonicity property of the aggregate choice probabilities on bundles (e.g.
b0y and ¢ 1)) with respect to (D1, D). Hence, even if the aggregate share of each good
(e.g. aggregate share on good 1: o1 = ¢ ) + ¢11)) is not invertible in the price P; due to
the presence of complementary goods, one can still obtain a useful inversion provided that

aggregate choice probabilities on bundles are observed.

Example 3 (Multiple units, continued). Let L = {(2,0), (2,1)}. From (2.9), ¥ (2,0) 18 increasing
in Dy but is decreasing in Dy. Similarly, ¢, ;) is increasing in both D; and D,. The rest of
the argument is similar to Example 2. One may alternatively take L. = {(0,0), (0,1)} and use
the same line of argument. Note, however, that (1,0) or (1,1) cannot be included in L as D1,0)
and ¢, ;) are not monotonic in one of (Dy, Dy). This is because increasing D; while fixing Dy,
for example, makes good 1 more attractive and creates both an inflow of individuals who move
from (0,0) to (1,0) and an outflow of individuals who move from (1,0) to (2,0). Hence, the

demand for (1,0) does not necessarily change monotonically.

The inverted system in (2.11), together with the following assumption, yields a set of moment

conditions the researcher can use to identify the structural demand.

Assumption 2.3. There is a vector of instrumental variables Z; € R such that (i) E[Ej|Z;, Xi] =
0,a.s.; (i) for any B : R7® x R x R — R with E[|B(Xt(2), P, 5,)|] < oo, it holds that

E[B(X?, P, 8)|Z:, X)) =0 = B(X? P, 5,) =0, as.

Assumption 2.3 (i) is a mean independence assumption on =j given a set of instruments
Z;, which also normalizes the location of =j;. Assumption 2.3 (ii) is a completeness condition,
which is common in the nonparametric IV literature, see BH (2013) for a detailed discussion.
However, the role it plays here is slightly different, as the moment condition leads to an integral
equation which is different from nonparametric IV (Newey & Powell, 2003), and more resembles
GMM. As such, the construction of a sample counterpart estimator is less clear. In Section 3.2,
we discuss an approach based on a strengthening of the mean independence condition to full
independence. In case such a strengthening is economically palatable, we still retain the sum

X ](tl )+ Zj¢, which has a closer analogy to a dependent variable in nonparametric IV.

10



Given Assumption 2.3 and (2.11), the unknown function ¢ can be identified through the

fOHOWiIlg conditional moment restrictions:
FE -X(Q)PS —X(I)ZX =0 =1,---,J 2.12
[¢]( t 4t t) gt | ty t] y ] ) y e ( . )

We here state this result as a theorem.
Theorem 2.2. Suppose Assumptions 2.1-2.3 hold. Then, 1 is identified.

Once ¥ is identified, the structural demand ¢ can be identified nonparametrically in Exam-

ples 1 and 2.

Example 1 (BLP, continued). Recall that 1 is a unique function such that

Sjt:(bj(Xt(Z)7PtaDt)7 j:17 >J = Ejt:wj(Xt(Q)aptﬂgt)_X]('tl)a ]:17 7*]7
(2.13)

where S; = (Sy, -+ ,Sy;). Hence, the structural demand (¢, , ¢;) is identified by Theorem
2.2 and the equivalence relation above. In addition, ¢, is identified through the identity:

J
¢y =1- Zj:l ¢j'
Example 2 (Bundles, continued). Let L. = {(1,0), (1,1)} as before. 1 is then a unique function
such that

Sy=¢(XP P.D), lel & Z,=v,X? P8 -x", j=12 (2.14)

J

where S; = (Sa,0),t,S01,1),.)- Theorem 2.2 and the equivalence relation above then identify the
demand for bundles (1,0) and (1,1). This, therefore, only identifies subcomponents of ¢.
Although these subcomponents are sufficient for recovering the random coefficient density as
we will show in the next section, one may also identify the rest of the subcomponents by taking
L = {(0,0),(0,1)} and applying Theorem 2.2 again.

In Example 3, identification of ¢ allows to identify key components of ¢ but not the entire

vector.

Example 3 (Multiple units, continued). Analogous to Example 2, v is a unique function that
satisfies (2.14) with L. = {(2,0), (2,1)}. Theorem 2.2 and the equivalence relation in (2.14) then
identify the demand for the bundles as in the last example. Similarly, one may identify the
demand for bundles (0, 0) and (0, 1) by taking . = {(0,0), (0, 1)}. However, the demand for the
middle alternatives (1,0) and (1, 1) are not directly identified due to their lack of monotonicity
in (D1, Dy). We will revisit identification of the demand for these alternatives in the next

section.
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2.3 Identification of the Random Coefficient Density

Our goal is to identify the random coefficient density fy. Identification of this object is par-
ticularly important for welfare analysis. For example, consider a change in the characteristic
of good j from (x§2),pj,5j) to (505-2),@-,&). The change may be due to a new regulation,
an improvement of the quality of a product, or an introduction of a new product. Knowl-
edge of fp would allow the researcher to calculate the distribution of the welfare change:
P -

consumers who would benefit from the change and therefore prefers the product with a new

2))’(2) + a(p; — pj) + (5] — 0;). This, for example, allows to predict the fraction of

characteristic.

Our strategy for identification of the random coefficient density is to construct a function
from the structural demand, which is related to the density through an integral transform known
as the Radon transform. More precisely, for some [ € L., we construct a function ®;(w, u) such
that

0P
O] R fulw, ) (2.15)
where w € S%~! is a unit vector that depends on (.T§<2)7pj) for some j € {1,--- ,J},and u € R

(2)

is a scalar that depends on (z;”,p;,d;). R is the Radon transform defined pointwise by

RIf](w, u) = ; (V) pty 0 (V). (2.16)
where P, ,, denotes the hyperplane {v € R% : v'w = u}, and [ 18 the Lebesgue measure on
P, . (See for example Helgason (1999) for details on the properties of the Radon transform
including its injectivity.) Our identification strategy is constructive and will therefore suggest
a natural nonparametric estimator. Applications of the Radon transform to random coeffi-
cients models have been studied in Hoderlein, Klemeld, and Mammen (2010), and Gautier and
Hoderlein (2013).

Let S(R%) be the space of rapidly decreasing functions (Schwartz space) on R%. Through-

out, we maintain the following assumption.

Assumption 2.4. (i) For all i € {1,---,J}, (Xi(f),Pit,Dit) are absolutely continuous with
respect to Lebesgue measure on R¥%2; (i) For some j € {1,---,J}, (X](?), Pj1,Dji) has a full
support; (iii) the random coefficients 0 are independent of (Xy, P, Dy), and its density fq is in
S(R%).

Assumption 2.4 (i) requires that (XZ-(E), Py, D;;) are continuously distributed for all i. As-
sumption 2.4 (ii) then requires that for at least one product, (X j(f ), P;;) has full support, and by
Assumption 2.4 (iii), we assume that the covariates (X3, P;, D;) are exogenous to the individual
heterogeneity. These conditions are used to invert the Radon transform in (2.16). The con-

struction of ®; requires slightly different arguments and sets of assumptions across Examples
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1-3. We therefore discuss them separately.

Example 1 (BLP, continued). Recall that the demand for good j with the product charac-
teristics (Xy, P, =) is as given in (2.3). Since D; = Xt(l) + =, the demand in market ¢ with
(Xt(2)7 Pta Dt) = (x(Q)apa 6) is given by

6,(z®,p,6) = / P +ap; > —5,31{(2'? — 2)b® + alp; — p1) > —(5; — &)}
. 1{(95;2) — 2V alp; —ps) > —(6; — 6)}fo (0P, a)do . (2.17)

For any subset J of {1,---,J}\ {j}, let M denote the map (2@, p,6) — (@, p,8) that is
uniquely defined by the following properties:

(f§-2) — :152(2),]53' —15@,(/53» — 51) —(I§-2) — x§2),pj — Ppiy0j — di), Yie T, (2.18)

We then define

éj(:vf),pj, §;) = — Z ¢;o M (z® p,6s) . (2.20)
NASSERENAANY);

Eq (2.20) combines the structural demand function for good j in different markets to define a
function which can be related to the random coefficient density in a simple way. This operation

can be easily understood when J = 2, where for example ¢, is given by

1 (2@ p, 8) = / {2 4 ap, < —6,}

x H{(zf” = 257)6® + a(p — pa) < — (01 — 02)}fo(b®, a)db . (2.21)
Then, @, is given by

‘i%(fgz)apl» 51) =—¢,0 MQ)(?U?) - fgz)7p1 — P2,01 — 52) — @10 M{z}(fE?) - wég),pl —p2,01 — 52)
- / 1+ apy < 0} (1{(@ = 2)0® + alpr — pa) < (61 — 62)}
+ 1@ = 2@V + alpy — p2) > ~ (01 — 82)}) fo(b?, a)a0

=— / {20 4 apy < =61} fo(b?, a)db (2.22)

This shows that aggregating the demand in the two markets with (Xt(z), P, D) = (@ p, )
and (X @

v

Py, Dy) = (%, p, 5) yields ®; which depends only on the utility from products 1
and 0, where the latter is normalized to 0. Eq. (2.20) generalizes this argument to more general
settings with J > 2.
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Under the condition we provide below, there is a product [ = 5 and a function ®,, which
can be written in general as @I(XJ(Z),PJ-,DJ») =/ 1{X§2)’(2) +aP; < —D;} (0@, a)d. Let
2 2 2
w= (25, p;)/ (@, py)ll and u = 6;/]| (), p;)||. Define

(2)

b (" Pj 0 b (2

CD[(U},U) = ] ’ : = cI)l( 7pJ75 ) (223>
<H( 22 o)l @ pa) I I 52)729])“) E

where the second equality holds because normalizing the scale of (x g ), p;,0;) does not change

the value of ®;. ®; then satisfies

Q) (w,u) = — / Hw' < —u} fo('?, a)db
_ / h / 50, a)du,,, (5, a)dr = — / R w, ) (2.24)

Hence, by taking a derivative with respect to u, we may relate ®; to fy through the Radon
transform: 90
lé—z),u) = R[fo](w, u). (2.25)
Note that since the structural demand ¢ is identified by Theorem 2.2, ®; is nonparametrically
identified as well. Hence, Eq. (2.25) gives an operator that maps the random coefficient density
to an object identified by the moment condition studied in the previous section. The following

condition then ensures identification of fy.

Assumption 2.5. (i) For any J C {1,---,J}\ {4} and any (z?,p,6) € supp(Xt(m,Pt,Dt),
we have Mj(CU(Q),p, 5) < Supp<Xt(2)7Pt)Dt)'

Assumption 2.5 is a condition needed to ensure that ®; is well defined. It requires that
for any(z®,p,§) € supp(Xt(Q),Pt,Dt) and J C {1,---,J} \ {j}, the operation M s gives
another point in the support. A full support assumption on (X j(t), P, Dj;) is sufficient for this
condition.*

Theorem 2.3. Suppose Assumptions 2.1-2.5 hold. Then, fq is identified in Example 1, where
0 = (5, 0).

Example 2 (Bundles, continued). Identification strategies depend on whether the two goods
are substitutes or complements. First, we make the following assumption and analyze the case

of substitutes.

40ur identification argument based on Assumption 2.5 constructs ®; without relying on any “thin” (lower-
dimensional) subset of the support of ( J(t),Pjt,Djt)- If Assumption 2.5 does not hold, however, one may
alternatively rely on an identification argument that uses a lower dimensional subset and retain the same

identification result. This alternative approach will be discussed in the next example.
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Assumption 2.6. A < 0 with probability 1.

Under this assumption, products 1 and 2 are substitutes (Gentzkow, 2007). We may then
use demand on bundles (0,0) and (1,1) to identify the random coefficient density. The demand
for bundle (0,0) then reduces to

¢(o,o) (f(Q)ap, ) = /1{9552)/5(2) +ap; < —51}1{9022)/5(2) + apy < =02}
x 1{(@? + 202)b® + a(py + p2) + A < =861 — 85} fo(bP,a, A)db

= / 1z 4 apy < =6 31{z2"b@ + apy < =05} f5(02, a, A)d ,  (2.26)

where the second equality follows from Assumption 2.6. Given product j € {1,2}, let —j denote
the other product. Let then N”_; denote the map (z?,p, §) — (@ p, (5) that is uniquely defined
by the following properties:
(2 . ¢ 2 (2) . f 2
(x(_])',p—j,(;—j) = _(x(—J)‘ap—jv(S—j) ) and ($§ )7pja 5]) = (ZE( ),pj75j> : (227>

J
We then define ®; as in (2.23) with { = (0,0), where

2
(13(0,0)@5' ) D, 8;) = — 000y (2P, p,8) = b0 o N_j(2®, p,0) . (2.28)

Similar to the map M s in the previous section, N_; combines markets with different charac-
teristics to produce a function that is related to the joint density fze , of (5(2), a) through a
Radon transform.” Arguing as in (2.22), it is straightforward to show that 0® )(w, u)/0u =
Rl fso o) (w,u) withw = (212, p;)/[|(z$, p))|| and uw = 6;/[|(2'?, p;)|. Hence, one may identify
fs , by nverting the Radon transform under the following assumption.

Assumption 2.7. (i) For any (z?,p,§) € supp(Xt(2), P, Dy), we have N_;(z®,p,8) €
supp(X;”, P, Dy).

If the researcher is only interested in the distribution of (8, ) but not in the bundle
effect, the demand for (0,0) is enough for recovering their density. However, A is often of
primary interest. The demand on (1,1) can be used to recover its distribution by the following
argument.

Under Assumption 2.6, an argument similar to (2.26) yields

¢(1,1) ($(2)»P7 5)
= / 1z +apy + A > =6} 1{z"b® + apy + A > =65} fo(0?, a, A)db.  (2.29)

5Since the bundle effect A does not appear in (2.26), one may only identify the joint density of the subvector
(B?, &) from the demand for bundle (0,0).
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Note that A can be viewed as a random coefficient on the constant whose sign is fixed. Hence,
the set of covariates includes a constant. In this setting, the map N; cannot be used to yield a
function that depends only on (z § ), p;,0;). This is because Assumption 2.7 cannot be satisfied
due to the presence of the constant term, i.e. N ;j(z? p,4,1) ¢ supp(Xt( ), P, D;,1). Hence,
we consider alternative approaches.

One approach would be to assume that at least one of Djs, say D_j;, has a large support
so that X b +aP_;; + A > —D_;; with probability 1 provided that D_;; being sufficiently
large. Another alternative approach would be to condition on the set of covariates such that
the observable characteristics of the two products except X (t) are equal to each other. That

is,
3 and P1=pP2 = p ) (23())

for some (Z(®, p). This then reduces (2.29) to

S (@®,p,8) = / P 4 apy + A > max{—dy, 8} } (0, a, A)db .

Conditioning on the markets with d; < J and normalizing the arguments by the norm of
(@, p) yield a function ®(; ;) that is related to f, as in (2.16). Either of the two approaches
uses a lower dimensional subset of the support of the covariates. Hence, care must be taken in
practice to decide which approach would retain more information in the data.

For simplicity, suppose that we take the first approach and assume that D_j;; has a large

enough support.

Theorem 2.4. Suppose Assumption 2.1-2.4, and 2.6 hold. (a) If Assumption 2.7 holds, then
fs o 18 nonparametrically identified in Ezample 2 where the two goods are substitutes; (b) If
D_j;; has a large enough support, then fy is nonparametrically identified in Ezample 2 where

the two goods are substitutes, and 6 = (5(2), a, A).

We also consider identification of fy when the products are complements.

Assumption 2.8. A > 0 with probability 1.

Under this assumption, products 1 and 2 are complements. Let L. = {(1,0),(0,1)}. The

6In practice, one should look for markets where the two products are similar in terms of (X J(t), Pjy).
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demand for bundles (1,0) and (0,1) then reduce to

b0 (2, p,6) = / Wi + apy > =813 {6 +apy + A < =82} fo(0? 0, M)
(2.31)

b (#,p,6) = / s + aps > =02} {0 +apy + A < =81} fo(0? 0, A)d0
(2.32)
Hence, if Assumption 2.7 holds, by arguing as in the case of substitutes, we may use ¢ o) or

®(0,1y to recover fy. For example, suppose Assumption 2.7 holds with j = 1 and —j = 2. Then,

one may construct

&)(0,1)(9552),]?1,51) = —¢(0,1)(1‘(2),p, d) — ¢01 ONz( 7p7 0). (2.33)

Define ®; as in (2.23) with [ = (0,1) and arguing as before, it is then straightforward to show
that 0o, (w, u) /0w = R{fo(w, u) withw = (21", pr, /|1, pr, Dl and w = =,/ 17, p1, 1).

We summarize the identification result below.

Theorem 2.5. Suppose Assumptions 2.1-2.4, 2.7, and 2.8 hold, then fy is nonparametrically
wdentified in Example 2, where the two goods are complements and 6 = (6(2), a, A).

Example 3 (Multiple units, continued). The nonparametric IV step identifies ¢, for | €
{(0,0),(0,1),(2,0),(2,1)}. Using them, we may first recover the joint density of some of the
random coefficients: 6 = (6(2),a,A(171),A 2,0), A2,1)). We begin with the demand for (0, 1),
(2,0), and (2,1) given by

¢(071)($(2),p, ) = / 1{$g2)/b(2) +apy > —0s}

x (@ = 27)b® + a(p — p2) < —01 + 02}

x H{aP'b® +api + Aqyy > —61} fo0? 0, A ry, Ay, A1)l
¢(2,0)( ( ),p, 5) /1{[L’1 ,b +apy + A(ZQ) > —51}

X 1{(5”9) - xg))/b(?) +a(pr — p2) + A0) — Ay > =61 + 02}

X 1{x§2)'b(2) +ap2 + A1) — Apo) < _52}f9(b(2)7 a, Aa 1y, Aoy, A1) df
P21 (z?,p,6) = / 1{3752)/5(2) +apr+ Ay — Ay > —01}

X 1{3352)/(7(2) +ap; + A(g’l) — A(Q,O) > —(52}

x (@ + 22)0 + a(py +p2) + Ay < =01 — 62} fo(0® a, A1y, Aoy, Ary)do
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Hence, if Dy has a large support, by taking d sufficiently small, we may define

(i((),l)(x?)apl;(sl) = ¢l ( ). p, d)

/ 1z + apy + Ay > =61} fo (0P, a, Ay, Aoy, A )b (2.34)
Do) (@, p1,01) = —d(a0)(x@,p, )
= — / 1{1’52)/() (2) + api + A(Zo) > —(51}f9(b(2), a, A(l,l); A(270)7 A(Q,l))de s (235)

@(2 1)(x§ )71717 1) = — (@ ( \.p, J)
/ 1{1‘(2)/ +ap; + A(g,l) — A(l,l) > —51}f9(b(2), a, A(l,l), A(Q’O), A(Q,l))dé . (236)

Then, defining ®;,1 € {(0,1),(2,0),(2,1)} as in (2.23) and arguing as in Example 2, ®; is

related to the random coefficient densities by

0P (w, u
% :R[fle,U,), le {(Ovl)a(270)7(271)}7
where w = —(x§2’,p1, 1)/|\(x§2),p1,1)|\ and u = 51/H(1:§2),p1, 1)||. Here, fis are proper joint

densities of subcomponents of 8, which are given by’

f(O,l) = f(lg(2)7a,A(l’1))7 f(2,0) = f(ﬁ(Q),a7A(270))7 f(Qvl) = f(5(2>:a’A(2,1)*A(1,1))‘ (237)
The joint density of 6 is identified by making the following assumption.

Assumption 2.9. (i) (A1), Aoy, D)) are independent of each other conditional on (5(2), a);

(ii) The characteristic function of Au 1y conditional on (3@, a) is nonzero a.e.

Assumption 2.9 (i) means that, relative to the benchmark utility given as an index function
of (X , Pi, D), the additional utilities from the bundles are independent of each other. As-
sumption 2.9 (ii) is a regularity condition for recovering the distribution of A, 1y from those of
A1) — A1y and Ay p) through deconvolution.

Identification of the joint density fy allows one to recover the demand for the middle alter-

native: (1,0), which remained unidentified in our analysis in Section 2.2. To see this, we note

7Alternative assumptions can be made to identify the joint density of different components of the random
coefficient vector. For example, a large support assumption on D; would allow one to recover the joint density
of (5(2), o, A1) — A(2,0)) from the demand for bundle (2,0).
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that the demand for this bundle is given by

P(1.0) (x(2)7]97 6) = /1{0 < $§2)/b(2) +ap1 + 01 < —Apo}

x 1{z'b® + apy + 6, < —Agn }{(z = 22Y0? + a(py — pa) < — (61 — 62)}

X 1{(%‘52) -+ l‘g))/b(z) -+ a(p1 +p2) + A(QJ) < —(51 -+ 52)}f9(b(2), a, A(1,1)7 A(2’0)7 A(Zl))de.
(2.38)

Since the previously unknown density fy is identified, this demand function is identified. This
and ¢ ) =1— ZZE]L\ (1)} ¢; further imply that all components of ¢ are now identified. We

summarize these results below as a theorem.

Theorem 2.6. Suppose Uy, y,), s concave in (y1,y2). Suppose Condition 2.1 and Assumptions
2.1, 2.3-2.4 hold. Suppose further that Assumption 2.9 holds. Then, fq is identified in Example
3, where 6 = (5(2), a, Ay, Do), D)) Further, all components of the structural demand ¢
are identified.

3 Extensions

3.1 Alternative specific coefficients

So far, we have maintained Assumption 2.1 (ii), which requires (8;,a;) = (8, a),a.s. for all
j. This excludes alternative specific random coefficients. However, this is not essential in our
analysis. One may allow some or all components of (§;, ;) to be different random variables
across j and identify their joint distribution under an extended support condition on the product
characteristics. A leading example is that the utility contains an alternative specific additive

unobserved heterogeneity term e;:
Up, = X380 + X7'8P + aPy + ¢ + Ep,
. . - 1) pER) o 1) (2 qyr
In this setting, one has 3, = (8,87, ¢;) and X;; = (X;,’, X;;"', 1), and therefore, only
the last component of 3, differs across alternatives. Following Berry and Pakes (2007), we call
{€j,7 =1,---,J} unobserved tastes for products.® Theorem 2.2 indeed still holds if Assumption

2.1 (ii) is dropped. Hence, the identification of the structural demand does not require any

major modification. Another point to note is that the argument does not change even if the

2

unobserved heterogeneity also varies across markets in an itd manner. That is, ([ 2)

it Qujt) varies

8Berry and Pakes (2007) provide detailed discussions on how a model with unobserved tastes for products
differs from the pure characteristic model in terms of allowed substitution patterns and welfare implications.
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across individuals and markets independently and follows an identical distribution f( B9 )"
For example, it is commonly assumed that the additive unobserved error ¢, = (€14, - , €5)
varies across individuals and markets independently following some joint distribution f. (e.g.
independent Type-I extreme value distributions, typically denoted €;;, in the literature), but this
does not change the conclusion of Theorem 2.2. This is because the identification argument in
Theorem 2.2 is based on the properties of the aggregate demand ¢. These properties, including
the invertibility of ¢, depend on the distribution of the random coefficients but not on particular
realizations.

Given that the aggregate demand is identified as before, the marginal densities f( PEP can
be identified for all js that satisfy Assumption 2.4 (ii) using the same identification strategy in
the previous section. For this, we note that the maps M or N_; cannot be used as the use
of these maps are justified by Assumption 2.1 (ii). However, the large support assumption on
D;,i # j can be used to construct ®;.

Identification of the joint density fy requires an extension of our identification strategy. To
see this, we take Example 2 as an illustration below. Consider identifying the joint density of
0 = (552), ﬂg), aq, ag, A) under Assumption 2.8. In this setting, we may use the demand for

(1,0), which can be written as

(b(l,o) (l’(2)7p7 5) - /1{1}%2)/19?) + aipy > —51}

x 1z + agps + A < =63} fo (02 b2 ay, ag, A)d6. (3.1)

To recover the joint density, one has to directly work with this demand function without
simplifying it further. A key feature of (3.1) is that it involves multiple indicator functions
and that distinct subsets of # show up in each of these indicator functions. For example, the
first indicator function in (3.1) involves (5@, o), while the second indicator function involves
(59’,@2, A). Integral transforms of this form are studied in Dunker, Hoderlein, and Kaido
(2013) in their analysis of random coefficients discrete game models. They use tensor products
of integral transforms to study nonparametric identification of random coefficient densities.

Using their framework, one may show that

82425(1,0) (w1, wa, 01, 02)
00100

= (R ®R)|[fo](wy,ws, 1, —02), (3.2)

where w; = —( 52),p1)/\|(x§2),p1)H, wy = (x§2),p2)/H(:c§2),p2)H, and R®R is the tensor product
of Radon transforms, which can be inverted to identify fy. The main principle of our identifi-
cation strategy is therefore the same as before. Inverting the transform in (3.2) to identify fy

requires Assumption 2.4 (ii) to be strengthened as follows.

Assumption 3.1. (XS), Plt,Dlt,Xéf),PQt,DQt) has a full support.
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This is a stronger support condition than Assumption 2.4 (ii) as it not only requires a full
support condition for the characteristics of one good but also for the characteristics of both
goods. This condition is violated, for example, when there is a common covariate that enters
the characteristics of both goods. This is in line with the previous findings in the literature
that identifying the joint distribution of potentially correlated unobservable tastes for products
(e.g. €1 and €;) requires variables that are excluded from one or more goods (see e.g. Keane,
1992 and Gentzkow, 2007). Identification of fp is then established by the following theorem.’

Theorem 3.1. In Ezample 2, let 6 = (5, By, a1, a0, A). Suppose that Assumptions 2.1 (i),
2.2-2.8 hold. Then, v is identified. Suppose further that Assumptions 2.4 (i), (iii), 2.8 and 3.1
hold. Then, fy is identified.

3.2 Nonparametric identification of ) with full independence

In Section 2.2, we discussed the the nonparametric identification of the functions ¢, in the
equation Zj = wj(Xt(Q),Pt,gt) — XJ(»tl). Following BH (2013), we proposed to identify the

structural functions by the conditional moment equations

Ely, (X, P,5,)

Zy =z, Xy = (xgl),x§2)> ] = xﬁ), jg=1---,J

with instrumental variables Z;. The identification relies on the assumption that the unobserv-
able Z;; is mean independent of the instruments. However, in many applications researchers
choose instruments by arguing that they are independent of the unobservable. Using only
mean independence means using only parts of the available information. Thereby, the iden-
tifying power is weakened. Adding the stronger independence assumption when it is justified
will improve identification as well as estimation. Therefore, we propose an approach similar to

Dunker et. al. (2014) by formally assuming
Ei L (Z;,X;) and E[Z] =0 for all j,¢.
This leads to the nonlinear equation

J Jt J

Bl (XP S, P) — X))

It

0= ( Pl (X7, 80, ) = X5 < €] = Pluy(X[?, 80, Pr) = X)) < €120 = 21, X, = 4] )

for all &, z;, z;. Nonparametric estimation of problems involving this type of nonlinear restric-
tions are studied in Chen and Pouzo (2012) and Dunker et. al. (2014). To give sufficient

9We omit the proof of this result for brevity.
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conditions for identification, we define the operator

F (o) (& 2, 21) i=
Elp(X{, 8, P) = X}
The function 1; is a root of the operator F. It is, therefore, globally identified under the

following assumption.
Assumption 3.2. The operator F' has a unique root.

On first sight this may appear as a strong assumption due to the complexity of the operator.
It is, however, weaker than the usual completeness assumption for the mean independence
assumption. This is because, if =;; I (Z;, X;) and the usual completeness assumption hold,
then F' has only one root. On the other hand, completeness is not necessary for F' to have
a unique root. Hence, when Z;, 1 (Z;, X;), Assumption 3.2 is weaker than Assumption 2.3.
Another important advantage of this method is that because the D; do not vanish, we have a
close analog to nonparametric IV with full independence, see, e.g., Dunker et al (2014), where

D; now plays the role of the dependent variable.

3.3 Covariates with bounded support

Our basic identification strategy is to invert the Radon transform in (2.15). This inversion
requires rich variation in w. In practice, however, one may not be able to vary w flexibly when
(X ;2), P;) has a limited support. Even in such a setting, identification of fy is still possible under
an additional assumption on the moments of the random coefficients. To cover all examples

considered, we let 6; denote the j-th component of 6.

Assumption 3.3. All the absolute moments of 0;,5 = 1,--- ,dy are finite, and for any fized
2 € Ry, limy oo 5 (B[|04]'] + -+ + E[|04,]')]) = 0.

Under Assumption 3.3, the characteristic function w — @,(tw) of 6 (a key element of the
Radon inversion) is uniquely determined by its restriction to a non-empty full dimensional sub-
set of S% .10 Hence, fy can still be identified if one may vary w on a non-empty full dimensional
subset. For example, if (X ;2), P;)’s support contains an open ball in R¥2*1 this is sufficient for
the identification of fjy.

10This follows from analytic continuation. See Hoderlein, Holzman, and Meister (2014) and Masten (2014)
for details.
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4 Suggested estimation methods

4.1 Nonparametric estimator

The structure of the nonparametric identification suggests a nonparametric estimation strategy
in a natural way. It consists of three steps. The first step is the estimation of the structural
function ¢;. The second step is to derive the function ®; from the estimated @j. This requires
only straightforward algebraic manipulation which were presented in Section 2.3. We will not
further comment on these computations. The last step of the estimation is the inversion of a
Radon transform.

The mathematical structure of the first step is similar to nonparametric IV. The conditional

expectation operator on the left hand side of the equation
Ef. (22, P S)Z = 2, X = 2] = 2V for all
[¢j($t s Lty t)| t 2ty A\t xt] x]t or all Iy, 2

has to be inverted. Let us denote this linear operator by 7" and rewrite the problem as
(T;) (26, 04) = xﬁ) Here xﬁ) should be interpreted as a function in x; and z; which is constant
in xgz), 2, and xitl) for i # j. The operator depends on the joint density of (Xy, P, S;, Z;)
which has to be estimated nonparametrically, e.g. by kernel density estimation. This gives an
estimator 7. As in nonparametric IV the operator equation is usually ill-posed. Regularized

inversion schemes must be applied. We propose Tikhonov regularization for this purpose:
~ P )
0y = min | T — 257 o x, 2 + 0RW). (4.1)

As usual o > 0 is a regularization parameter and R a regularization functional. The usual
choice would be R(¢)) = ||¢||2.. If more smoothness is expected, this could be a squared
Sobolev norm or some other norm as well. In the case of bundles and multiple goods we
know that 1 must be monotonically increasing or decreasing in S;. One may incorporate
this a priori knowledge by setting JR(¢)) = oo for all functions i) not having this property.
Monotonicity is a convex constraint. Hence, even with this choice of R, equation (4.1) is a
convex minimization problem. Solving the problem is computationally feasible. We refer to
Eggermont (1993), Burger and Osher (2004), and Resmerita (2005) for regularization with
general convex regularization functional. Furthermore, we refer to Newey and Powell (2003)
for the related nonparametric IV problem.

The third step of our nonparametric estimation strategy is the inversion of a Radon trans-

form. A popular and efficient method for the problem is the filtered back projection

00, pin%)\

-~

fg(ﬁ) = R* (Qr X5
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Here ¥ = (b,a) or (b,a,A) depending on the application, (R*g)(z) := f\IwH=1 g(w,w'z)dw is
the adjoint of the Radon transform, and *; denotes the convolution with respect to the last

variable ¢;, and €2, is the function

0 1 (cos(rs) —1)/s? for s # 0,
) dr? r?/2 for s = 0.

For more details on this algorithm in a deterministic setting we refer to Natterer (2001). A

similar estimator for random coefficients is proposed and analyzed in HKM.

4.2 Parametric estimators for bundle choice models

Our nonparametric identification analysis shows that the choice of bundles and multiple units
of consumption can be studied very much in the same way as the standard BLP model (or the
pure characteristic model). This suggests that one may construct parametric estimators for
these models by extending standard estimation methods, given appropriate data. Below, we
take Example 2 and illustrate this idea.

Let 6 = (5(2), a, A) be random coefficients and let fy(-;7) be a parametric density function,
where v belongs to a finite dimensional parameter space I' C R%. The estimation procedure

consists of the following steps:

Step 1 : Compute the aggregate share of bundles as a function of parameter v conditional on

the set of covariates.

Step 2 : Use numerical methods to solve demand systems for (D;, Dy), where D; = =; +
Xj(l),j = 1,2 and obtain the inversion in eq. (2.14).

Step 3 : Form a GMM criterion function using instruments and minimize it with respect to

~ over the parameter space.

The first step is to compute the aggregate share. In the pure characteristic model, one may
approximate the aggregate share of each bundle such as the one in (2.7) by simulating 6 from
fa(+;7y) for each . Specifically, when the conditional CDF of « given (/3(2), A) has an analytic
form, the two-step method in BLP and Berry and Pakes (2007) can be employed. We take the
demand for bundle (1,0) in eq. (2.7) as an example. Conditional on the product characteristics
y = (2, p,d) and the rest of the random coefficients (3®, A), bundle (1,0) is chosen when

Ay 8%, A) <a <Ay, 59, 4), (4.2)
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where

Aly. 9, A) = |
P2
_ 22 _ @ @@ B
A(y,ﬁ@), A) = min{ L2 62, (@3 xy ) + (6 — 1) s
pl pl j— p2

Let F,(-|8¥, A) denote the conditional CDF of a.. Then, (4.2) implies that the aggregate share
of bundle (1,0) is given by

¢ww%mwaﬂmmm@MWA> Fa(A(y, b2, A)H), A))
X 1{Z<y7 ﬁ@)v A) > A(y7 6(2)7 A)}fﬁ(Q),A(ba A; V)dg (43>

This can be approximated by the simulated moment:

ns

&ww%mwzéZ(Gmw,nWA> Fo(A(y, b7, A0, A))

i=1
< Ay, b7, A) > Ay b7, A} (44)
where the simulated sample {(bgz),Ai),i = 1,--- ,ng} is generated from f5<2>,A(';7)-11 Com-
putation of the aggregate demand for other bundles is similar. This step therefore gives the
model predicted aggregate demand gAbl for all bundles under a chosen parameter value ~.

The next step is then to invert subsystems of demand and obtain ¢ numerically. Given
gAbl,l € L from Step 1 this step can be carried out by numerically calculating inverse mappings.
For example, take L = {(1,0),(1,1)}. Then, (d1,d5) > ((}5(170)(1:(2),]9,5;7),(}(171)(:6(2),]), 5;7))
defines a mapping from R? to [0, 1]2. Standard numerical methods such as the Newton-Raphson
method or the homotopy method (see Berry and Pakes, 2007) can then be employed to calculate
the inverse of this mapping'2, which then yields 1 (-;7) = (¢, (+;7), ¥5(+;7)) such that

Ere = 00X, P Sy Sans ) — X5, Say = 0o(XP, Py Saoys Sanya ) — X5 (4.5)

where (S(1,0)¢,Sa,1)+) are observed shares of bundles. One may further repeat this step with
L = {(0,0), (0,1)}, which yields

S = 72)3(Xt(2)7 Py, 80,0045 S0,),657) — X1(tl), ot = &4(Xt(2)7 Py, S0,0)6> S0,1),457) — XQ(? (4.6)

This helps generate additional moment restrictions in the next step.

10One may also use an importance sampling method.
12\Whether the demand subsystems admit an analog of BLP’s contraction mapping method is an interesting
open question, which we leave for future research.
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The third step is to use (4.5)-(4.6) to generate moment conditions and estimate v by GMM.
There are four equations in total, while because the shares sum up to 1 one equation is re-
dundant. Hence, by multiplying instruments to the residuals from the first three equations, we
define the sample moment:

n 72}1(Xt(2)7 Fiy 51,008 S(10).5 v) — Xl(i)
X PG 7o) = T x @ . (1) Zi
gn( ty Lty Pt ta’Y) — E Z w2<Xt 737 S(I,O),t7 S(l,l),tuV) - X2t ® X '
_ ~ t
= ¢3(Xt(2)> P, S0,0)6) S0,0),657) — XS)

Letting W, () be a (possibly data dependent) positive definite matrix, define the GMM criterion

function by

Qn(’}/) = gn(Xt7 Pta St7 Zta ’7>/Wn(7)gn(Xt> Pt, St7 Zta 7)

The GMM estimator 4 of 4 can then be computed by minimizing ),, over the parameter space.
A key feature of this method is that it uses the familiar BLP methodology (simulation, inversion
& GMM) but yet allows one to estimate models that do not fall in the class of multinomial
choice models. Employing our procedure may, for example, allow one to estimate bundle choices

(e.g. print newspaper, online newspaper, or both) or platform choices using market level data.

5 Outlook

This paper is concerned with the nonparametric identification of models of market demand.
It provides a general framework that nests several important models, including the workhorse
BLP model, and provides conditions under which these models are point identified. Important
conclusions include that the assumption necessary to recover various objects differ; in partic-
ular, it is easier to identify demand elasticities and more difficult to identify the individual
specific random coefficient densities. Moreover, the data requirements are also shown to vary
with the model considered. The identification analysis is constructive, extends the classical
nonparametric BLP identification as analyzed in BH to other models, and opens up the way for
future research on sample counterpart estimation. A particularly intriguing part hereby is the
estimation of the demand elasticities, as the moment condition is different from the one used
in nonparametric IV. Understanding the properties of these estimators, and evaluating their

usefulness in an application, is an open research question that we hope this paper stimulates.
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APPENDIX A: Notation and Definitions

The following is a list of notations and definitions used throughout the appendix.

S%=1:  The unit sphere S%~1 = {v € R% : ||v| = 1}.
H_ : The hemisphere H_ = {v = (v1,v2, -+ ,vq,) € S®~1 : vy, <O0}.
P, : The hyperplane: P, , ={v € R : v'w = r}.
Mo o Lebesgue measure on Py, ;.
R : Radon transform: R[fJ(w,u) = [, f(v)dpy,,(v).
My The map (2, p,8) — (£2,p,6) defined for any J C{1,---,J}\ {5} by
(i‘f) /52)715] ]3176’_6') ( (2) E )ap] p176] _61), VZEJ ’

( 52)7172751)*( 52)7])17 ) VZ%]
N_;: The map (), p,8) — (3, p, §) defined by

2 ¢ 2 2 ¢ 2
(@2 5oy, 6.5 = (P p_j6-5) , (#9,9;.6)) = @'P p;,9) .

APPENDIX B: Proofs

Lemma 1. Suppose the Assumptions 2.1 and Condition 2.1 hold and that ¢; is given as in Example
2 or Ezample 3 with | € L = {(0,1),(0,0)}. Then for all (z?,p) = (:1:(1 ),xg ),pl p2> e R?** with
(93%2),]91) # (m§2),p2) the function ¢ : R* x R? — [0,1]? defined as

oz, 25 p1,pay di,do) = [¢(0,0) <$§2)7$§2)7P1,P27d1,d2> ®(0,1) (5151 Y )7p17]32,d1,d2)}

is invertible in (dy,ds) on any bounded subset of R?. This holds for other appropriate choices of L as

well.

Proof of Lemma 1. We start with the observation that ?(0,0) ($(2), p, d) is monotonically decreasing in
d; and also in ds while <Z>(0,1)(x(2), p,d) is monotonically decreasing in d; and monotonically increasing
in dy by definition. It is straight forward to check in the definition of ¢; that the intersection of
the sets characterized by the index functions in the integrals are non empty. Furthermore, the set
depending only on d; and the set only depending on dy never completely contain one another unless
the assumption (x?), p1) # (a;gQ), pe) is violated. Therefore, the full support of (5, «) implies that

?(0,0) and ¢(q 1) are strictly increasing or decreasing in d; and dy

aQb(o,o) (m(Q)apa d) <0 3¢(0,0)($(2)apa d) <0 8<25(0 1) ( ,p, d) <0 a¢(0,1)($(2)»1), d) S0
Ody ’ 0ds ’ 0dy ' 0ds ’
Hence, the determinant of the Jacobian of d — qzb( ), p, d) as well as their principle minors are strictly
negative for all d € supp (D)
0 2@ p.d)o ,p,d) O 2@ p.d)o 2@ p,d
det(Jy)(w, d) = ¢>(0,0)( p,d) ¢01)( p ) B ¢>(0,1)( p,d) ¢(0,0)( p,d) < 0.

8d1 Bdg 6d1 8d2
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Thus, on every rectangular domain in R? the assumptions of the Gale-Nikaido theorem are fulfilled.
Since any bounded subset in R? is contained in some rectangular domain, ¢ is invertible on any
bounded subset of R2. g

Proof of Theorem 2.2. The proof of the theorem is immediate from Theorem 1 in BH (2013). We
therefore give a brief sketch. By Assumptions 2.1 and 2.2, we note that there exists a function
P : R7F2 x RY x RY — RY such that for some subvector S, of Sy,

Ejt :¢](Xt(2)7pt7gt)_X(1) y ] — 1’ ’J’

jt
and by Assumption 2.3, the following moment condition holds:
El;(X{?, P, 8) — X312, X1 = 0 .

Identification of v then follows from applying the completeness argument in the proof of Theorem 1
in BH (2013). &

Proof of Theorem 2.3. First, under the linear random coefficient specification, the connected substi-
tutes assumption in Berry, Gandhi, and Haile (2013) is satisfied. By Theorem 1 in Berry, Gandhi,
and Haile (2013), Assumption 2.2 is satisfied. Then, by Assumptions 2.1-2.3 and Theorem 2.2, 9 is
identified. Further, the aggregate demand ¢ is identified by (2.13) and the identity ¢, = 1 — 23‘1:1 b,
By Assumptions 2.4-2.5, for each (2, p,8) and J C {1,--- ,J}\ {4}, M7 (z?),p, ) is in the support

of (X, P, D;). Hence, one may construct
&P po) = > @owumwmﬁﬁi/ué%ﬂm+wy<—@NMW%@M,(5U
JC{L - TG}

where the second equality follows because of the following. First, M 7 replaces the indicators in ¢; of
the form 1{(z\” — 21 Y0® + a(p; —p;) < —(8;—8:)} with 1{(z) — )b +a(p; —pi) > — (6, 0:)}

for i € J. The random coefficients are assumed to be continuously distributed. We therefore have

{2 = 2PV + a(p; — pi) < —(8; — )} + H(@(? —2)0® + alp; —pi) > —(8; — 6:)} = 1, a.s.

Therefore, ZJQ{L---,J} ¢; o Mg (z?,p,6) = 1. Since éj is constructed by summing ¢; o Mz
over subsets of {1,---,J} except {j}, we are left with the integral of the single indicator function
1{x§-2)’b(2) + apj < —0;} with respect to fp. This ensures (5.1). Now for [ = j, define ®; as in (2.23).
Then, it follows that

Q) (w,u) = — / Hw'0 < —u} fo(b?, a)db

:_/ﬂ Fo0®), a)dp,, (b, a)dr = — ﬂnmmwwp (5.2)

—o0 J Py r —00

Taking a derivative with respect to u then yields (2.25). Note that by Assumption 2.4 (i)-(ii),
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(X]( ) , P;, D;) is supported on R*2 x R x R. This implies that 0®;(w,u)/0u is well-defined for all
(w,u) € S%~1 x R. The conclusion of the theorem then follows from Assumption 2.4 (iii), injectivity
of the Radon transform on S(R%) (Theorem 2.4 in Helgason, 1999) and ®; being identified. &

Proof of Theorem 2.4. First, let L = {(1,0),(1,1)}. By Assumptions 2.1-2.3 and Theorem 2.2, 1)
is identified. Further, the aggregate demand {¢;,! = (1,0),(1,1)} is identified by (2.14). Second,
take L = {(0,0), (0,1)}. Then by the same argument, the aggregate demand {¢;,1 = (0,0), (0,1)} is
identified as well. Hence, the entire aggregate demand vector ¢ is identified.

By Assumption 2.6 A < 0 almost surely. Then, the demand for bundle (0,0) satisfies (2.26). By
Assumption 2.7, it then follows that

@(0,0)(x§2),pj,5j) = —¢(0,0)($(2)7P7 d) — ¢(00 o N ( ,P7 d)
- / U +apy < =6} (1H{aD® + apy < =65} + 1{a P + apy > —65}) fo(0@), a, A)db

_ / o@D 1 apy < —81} o (0, 0)d6, (5.3)

where i)(op) is identified because it is constructed from ¢ ). The rest of the proof is then the same
as the proof of Theorem 2.3. This establishes the first claim of the theorem.
Under Assumption 2.6, the demand for bundle (1,1) can be written as (2.29). It then follows that

for 6_; sufficiently large, one may define
‘i’(1,1)($§2),Pja5j) = ¢(1,1)($(2)7pa §) = / 1{555*2)/5(2) +apj +A> _5j}f0(b(2)7aaA)d9 .

Let I = (1,1), w = —( z; ,p], )/H( T; 7p], 1)|| and w = §; /||( z; ,pj, 1)||. Define ®; as in (2.23).
Arguing as in (5.2) and taking a derivative with respect to u, we have 0®;(w,u)/0u = R[fo](w, ).
However since w is a vector of normalized covariates including a constant, it takes values in H_,
where H_ is the hemisphere in R% defined by H_ = {w = (wy, wa, - , Wa,) € Sde—1 . wq, < 0}.
Therefore, 0®;(w,u)/du is well-defined for all (w,u) € H_ x R. Note that the Radon transform
satisfies the symmetry R[fp](w,u) = R[fo](—w,—u). Hence, for any w € S%~1\ H_, we have
0Py (W', u') /O | (wr wry=(ww) = Rlfol(w,u) = R[fpl(—w, —u) = 0@i(w', u) /00| (wr wr)=(~w,~u)- Since
(—w, —u) € H_ x R, this means that 0®;(w, u)/du is also well-defined on S%~! x R. The conclusion
of the theorem then follows from the injectivity of the Radon transform and ®; being identified. I

Proof of Theorem 2.5. Arguing as in the Proof of Theorem 2.4, Assumptions 2.1-2.3 and Theorem 2.2
ensure identification of ¢. The aggregate demand on (0,1) is then given by

P(0,1) (95(2)7]97 §) = /1{%2)/5(2) + apy > —02}

x 1{(z8 = 2OV + a(py — p1) > — (02 — 611 {z DB+ apy + A < =61} £o(b@, 0, A)d6
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By Assumption 2.8, A > 0, a.s.. This implies that
S0 (?,p,8) = / 1z + apy > =5, 31{z @ + apy + A < =61} f5(b@, a, A)d

Without loss of generality, suppose Assumption 2.7 holds with j = 1 and —j = 2. Then, <i><071)
n (2.33) is well-defined. Define ®; as in (2.23) with [ = (0,1), w = (ng),pl,1)/”(.7}52),])1,1)” and
u = —(51/||(£L’§2),p1, 1). The rest of the proof is then the same as the proof of Theorem 2.4 (ii). B

Proof of Theorem 2.6. First, let L = {(2,0), (2,1)}. By Condition 2.1 and Lemma 1, Assumption 2.2

is satisfied. By Assumptions 2.1-2.3 and Theorem 2.2, v is identified. This implies that the aggregate

demand {¢;,1 = (2,0),(2,1)} is identified by (2.14). Second, take . = {(0,0), (0,1)}. Then by the same

argument, the aggregate demand {¢;,/ = (0,0),(0,1)} is identified as well. Again by Condition 2.1,

we may let do sufficiently large so that ®;,1 € {(0,1),(2,0),(2,1)} in (2. 34) (2.36) are Well defined.

For each [ € {(0,1),(2,0),(2,1)}, define ®; as in (2.23) with w = (xl , D1, )/H(JU1 ,p1,1)]| and
= 51/||(x52),p1, 1)||. Then, it follows that

W = R[fi](w,u), 1€{(0,1),(2,0),(2,1)},

where f(O,l) = f(B(Q)M,A(l,l))’f(ZO) = f(6(2),a,A(270))7 and f(2,1) = f(B(Q)aCV:A(Q,l)—A(lJ))' By inverting the
Radon transform, the random coefficient densities f;,1 € {(0,1),(2,0),(2,1)} are identified. It remains
to construct the joint density from these marginal densities. In what follows, the arguments are made

conditional on (f @) ,

a) unless otherwise noted. From the previous step, the marginal densities of
A1) — A1) and A 1y are identified. Further, we note that A, 1) — Ay 1) is a convolution of Ay )
and —A(; ;). By Assumption 2.9 (ii), Proposition 8 of Carrasco and Florens (2010) applies. Hence,
the marginal density of Ay 1) is identified. By Assumption 2.9 (i), A¢1,1) L Ag9) L Afg,1) conditional
on (6(2),01), and each of the marginal densities was identified in the previous step. Therefore, the
joint density f(A<1,1)7A<2 0Ae1)|(B@.a) is identified as the product of the marginal densities. Finally,
since the density of (5, a) can also be identified from any of f;,1 € {(0,1),(2,0),(2,1)}, we may
identify the joint density fy as fy = f(A<1,1>A(z,o)A(z,n)l(ﬁ@)ya)f(,@’(z),Oé)' This establishes the claim of
the theorem.
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