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Abstract

Two approaches have dominated formulations designed to capture small departures from unit
root autoregressions. The first involves deterministic departures that include local-to-unity (LUR)
and mildly (or moderately) integrated (MI) specifications where departures shrink to zero as the
sample size n — oco. The second approach allows for stochastic departures from unity, leading to
stochastic unit root (STUR) specifications. This paper introduces a hybrid local stochastic unit root
(LSTUR) specification that has both LUR and STUR components and allows for endogeneity in
the time varying coefficient that introduces structural elements to the autoregression. This hybrid
model generates trajectories that, upon normalization, have non-linear diffusion limit processes that
link closely to models that have been studied in mathematical finance, particularly with respect to
option pricing. It is shown that some LSTUR parameterizations have a mean and variance which
are the same as a random walk process but with a kurtosis exceeding 3, a feature which is consistent
with much financial data. We develop limit theory and asymptotic expansions for the process and
document how inference in LUR and STUR autoregressions is affected asymptotically by ignoring
one or the other component in the more general hybrid generating mechanism. In particular, we
show how confidence belts constructed from the LUR model are affected by the presence of a STUR,
component in the generating mechanism. The import of these findings for empirical research are
explored in an application to the spreads on US investment grade corporate debt.

Key words and phrases: Autoregression; Nonlinear diffusion; Stochastic unit root; Time-varying
coefficient.

JEL Classification: C22

1 Introduction

For over four decades various devices have been employed to study and to model the progressive deteri-
oration of Gaussian asymptotics in the simple first order autoregression (AR(1)) as the autoregressive
coefficient () approaches unity from below. Edgeworth and saddlepoint approximations (Phillips,
1977, 1978) showed clearly with analytic formulae the extent of the error in the stationary asymptot-
ics as f# — 1 and numerical computations (Evans and Savin, 1981) revealed that the unit root (UR)
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limit distribution typically provides better approximations than stationary limit theory in the imme-
diate neighborhood of unity. The use of local-to-unit root (LUR) autoregressions provided a direct
approach to modeling processes with a root near unity. In independent work using different methods
and assumptions, Chan and Wei (1987) and Phillips (1987) explored LUR models of the form

Yi=B,Yi1 e, Bp=e~14 S t=1,m, (1)
n

where c¢ is constant and f[,, is nearly nonstationary in the sense that c¢/n is necessarily small as the
sample size n — oo.

Under quite general conditions on ¢; and the initial condition Yp, the asymptotic distribution of
the least squares estimator of j3,, takes the form of a ratio of quadratic functionals of a linear diffusion
process that depends on the localizing coefficient ¢ in (1) and nonparametric quantities that depend
on the one-sided and two-sided long run variances of ¢;. These results provided a natural path to the
analysis of power functions (Phillips, 1987) and power envelopes for UR tests (Elliott et. al., 1995;
Elliott and Stock, 1996), as well as the construction of confidence intervals (Stock, 1991) and prediction
intervals (Campbell and Yogo, 2006; Phillips, 2014) in models where persistence in the regressors is
relevant in practical work.

The array mechanism of (1) has also proved useful in developing methods of uniform inference.
Giraitis and Phillips (2006) established uniform asymptotic theory for the OLS estimator of §, in
models like (1) but where ,, is more distant from unity so that (1 — 3,,) n — oco. These models allow
values of stationary f,, that include neighborhoods of unity beyond the immediate O (n_l) vicinity of
unity, such as when 3, = 1 — L, /n, where L,, — oo is slowly varying at infinity. These cases were
explored in detail by Phillips and Magdalinos (2007a, 2007b) by using moderate deviations from unity
of the form

B, =1+ i, with ¢ constant and 1 + Fn — 0. (2)
kn, kn, n
Models with such roots are considered mildly integrated (MI) as 3,, lies outside the LUR region as
n — oo. Phillips and Magdalinos (2007a) and developed central limit theory for the near-stationary
case (¢ < 0) and, somewhat surprisingly, for the near-explosive case (¢ > 0), finding a Cauchy limit
theory in the latter case that matched the known Cauchy limit that applies in the pure explosive case
under Gaussian errors (White, 1958; Anderson, 1959). In a significant advance, Mikusheva (2007,
2012) demonstrated that careful approaches to confidence interval (CI) construction with appropriate
centering were capable of producing uniform inferences about the true in a wide interval that includes
stationary, MI, LUR, and UR specifications.
A different approach was considered by Lieberman and Phillips (2014, 2017a, 2017b), who consid-
ered localized stochastic departures from unity via the stochastic unit root (STUR) model

Yi = e,

Y, = u+exp<

a'uy

NG

where p can be zero or otherwise and in which departures from unity are driven by a possibly endogenous
K x 1 vector of explanatory variables u;. In their formulation, Lieberman and Phillips (2017b) allowed
{u¢, &1} to follow a general linear process satisfying mild summability and moment conditions. This
stochastic formulation of departures from unity has proved useful in empirical applications that include

> Yi1+te, t=2,..,n, (3)



dual stocks pricing (Lieberman, 2012), Exchange Traded Fund pricing (Lieberman and Phillips, 2014)
and call option pricing (Lieberman and Phillips, 2017a). This line of stochastic departure from a UR
follows in the tradition of earlier contributions by Leybourne, McCabe and Mills (1996), Leybourne,
McCabe and Tremayne (1996), Granger and Swanson (1997), McCabe and Smith, (1998), and Yoon
(2006).

The present paper investigates a hybrid model that combines both LUR and STUR, specifications
in a localized stochastic unit root (LSTUR) model of the following form

Yi = ey,
1/1‘, - 6nt)/;f—1 +€t7 t:27"'7n7 (4)

where

/
o= (£4272).
In this model the autoregressive coefficient is a stochastic time varying parameter that fluctuates in
the vicinity of unity according to the properties of u;, the value of the localizing constant ¢, and the
size of the sample n. The time series wy = (u}, ;)" is assumed to be generated according to a linear
process framework that allows for both contemporaneous and serial cross dependence, thereby allowing
the random coefficient f3,,; to be endogenous.

The paper establishes limit theory for the normalized form of the output process Y; in (4) and
for nonlinear least squares (NLLS) estimation of the components, a and ¢, of ,;. It turns out that
the limiting output process of (4) is a nonlinear diffusion process that satisfies a nonlinear stochastic
differential equation corresponding to a structural model of option pricing that has been considered in
the continuous time mathematical finance literature (F6llmer and Schweizer, 1993). So the model may
be considered a discrete time version of such a system. Working directly with this nonlinear continuous
time system, Tao et. al. (2017) developed an estimation procedure for the structural parameters of the
stochastic differential equation using a realized variance approach and established asymptotic properties
of these estimates under infill asymptotics. The model considered in the present paper therefore links
to the continuous time finance literature and to ongoing work on continuous time econometrics.

A primary goal of the current paper is to examine the properties of this hybrid model and, in doing
so, study the implied empirical features of the model in comparison with the discrete time random
walk (RW), LUR and STUR models. In particular, we show that certain LSTUR parametrizations are
consistent with a mean and variance which are equal to those of a RW process but with a kurtosis
coefficient which is greater than 3 - a feature which is arguably consistent with much financial data.
The analysis helps to document how inference in LUR and STUR, autoregressions is affected by the
presence of the other component in the time varying autoregressive coefficient (,; in the generating
mechanism. In particular, we show how asymptotic confidence belts constructed using the LUR model
(Stock, 1991) are affected by the omission of a random coefficient STUR component. The implications
for empirical work of such misspecification of random departures from unity by deterministic from
unity models are explored in an empirical application.

The plan for the rest of the paper is as follows. Notation, assumptions and limit theory for n=1/2Y;
are given in Section 2. Asymptotic theory for parameter estimation follows in Section 3. Some further
results including asymptotic expansions are given in Section 4. Robustness of the misspecified STUR-
based NLLS and IV estimators of a and the covariance parameters are established in Section 5. A
simulation study to the effects of an omitted STUR component on the confidence belts given by Stock



(1991) for c and (8 in the LUR model is provided in Section 6. An empirical application supporting the
analytical findings and simulations follows in Section 7. Section 8 concludes. All proofs are placed in
the appendix.

2 Preliminary Limit theory for the LSTUR Model

We start with the following assumption that will be used in the sequel detailing the generating mech-
anism for wy.
Assumption 1. The vector w; is a linear process satisfying

we=G(L)n, = ZGﬂ?t—j: Zj |Gl < 0o, G (1) has full rank K + 1, (5)
J=0 Jj=1

n, is id, zero mean with E (nyn;) = %, > 0 and max E |n,|’ < oo, for some p > 4.

Under Assumption 1, wy is zero mean, strictly stationary and ergodic, with partial sums satisfying
the invariance principle

[n-] Lr Lr

Y by

nT2Y w= B()=BM(27), 57 = ( S (otr)? ) | (6)
t=1 Ue €

where |-| is the floor function and B = (B,, B.)' is a vector Brownian motion. The matrix X =
G (1)2,G (1) > 0 is the long run covariance matrix of w¢, with K x K submatrix X > 0, scalar

(Uer)Q >0 and K x 1 vector ¥, In component form, we write (5) as

“ = EZH g E)B i) (1)~ (@) () ™
5=0 T L.j"t—j

> 520 Gajnyj

where 1y, is K X 1, 1y, is scalar, G ; is K x (K + 1) and G is 1 x (K + 1).

We denote the contemporaneous covariance matrix of w; by ¥ > 0, with corresponding components
Yue = FE (wu}) > 0, Lye = E (wey) and 02 = E (5?) > 0. The one-sided long run covariance matrices
are similarly denoted by A = >"7°, E (wow}) and A = > 7° E (wowy,) = A + X, with corresponding
component submatrices Ay = Y 37 E(uoep), Aee = > poq E(€0en), Due = > poo B (uoen), Aee =
Z;L”;O E (606 h)-

We use H and L to denote the zero-one duplication and elimination matrices for which

vec (A) = Hvech (A) and vech (A) = Lvec (4), (8)

where A is a symmetric matrix of order K + 1. Under Assumption 1, centred partial sums of 7,1} satisfy
the invariance principle

—

nr|

\/1% t vech (nm; — ) = £ (r), (9)
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where £ (7) is vector Brownian motion with covariance matrix

Ypen = E (L ((ny ®ny) — E(ny @ny)) ((772 ® 772) - K (77:5 X 77;)) L/) :

Furthermore, for any [ # 0 we denote by ¢ (r) the vector Brownian motion with covariance matrix

E ((771577; ® ntfln;—l)) =F (nmé) QFE (77t7177;—l) =X, ® 3.

Finally, the matrix of third order moments of 7, is denoted

Mz = E ((n, @ n;)n}) - (10)

The limit process of the scaled time series Y; is given in the following Lemma.

Lemma 1 For the model (4), under Assumption 1,

Y— nr / T / " /
t=|nr| - Ga,c (7") .— grcta By (r) </ e pc—a Bu(P)dBE (p) — a’Aus e bc—a Bu(p)dp> . (11)
vn 0 0

Lemma 1 extends the limit theory for the special case where there is no LUR component (¢ = 0)
and the case where there is no STUR component (a = 0). The latter case leads to the familiar limit

Y T " r—S8)c T
\/—% = ot /0 eU3qW () =: 0" J, (r) = Go. (1) =: Ge (1), say

where W (r) is standard BM and J. (r) is a linear diffusion (Phillips, 1987).

3 Parameter Estimation
Let a, and ¢, denote the NLLS of a and c. Explicit formulae for these estimates are not available but
first order conditions are given in (65) of the Appendix. This section presents the limit theory for these

estimates in various cases. We use the following sample covariance limit theory.

Lemma 2 For the model (4), under Assumption 1
1 1 1
- Zsth,l = / G, (r)dB: (1) + A;Ea/ Gac (r)dr+ Aee. (12)
t=2 0 0

The limit in (12) reduces to the standard result fol Go,c (1) dB: (r) + Aee when a = 0.

We start with the case where a is known, which enables us to relate results to earlier literature on
the LUR model in a convenient way. This simplification is relaxed below.

Theorem 3 For the model (4), under Assumption 1 and when a is known,

bn—c= ( /0 62 m dr) B < /0 ' Goe () dB. (1) + A a /O Gan () dr + >\€€> )



When a = 0 the result in (13) reduces to the standard limit theory for the least squares estimate ¢, of
the localizing coefficient ¢ in a LUR model, viz.,

—c:></ G2 (r ) </G dB()+)\EE>. (14)

The presence of the stochastic UR component alters the usual limit theory (14) by (i) modifying the
limiting output process to G (r) in which the effects of the random autoregressive coefficient figure,

and (ii) introducing the additional bias term, Al _a fol G, (r) dr to the limit distribution.
Next consider the case in which a is unknown.

Theorem 4 For the model (4) under Assumption 1 with e # 0

= lGac(r)dr B lGa,c(r)dT DI D (15)
(f o) ([ Guetor)

and
1 -1 1 1
(6n—c) = < G2, (r) dr> ( / Guo(r)dB. (1) + A.a / G (1) dr—i—)\6€>
0
1
GCZLC(T)dBU( CLf dr+Au€f ac d""
-5 nt 0o ( " 0 0 / G (r)dr.
(Jy G2 (r)d )
When ¥, =0,
»l >
vn(a, —a) = ———4—— ZGQ,J@JGU H/ Ga,c(r)dE(r)
f() d?" 7=0
00 !
+Z G2]®Glj (ZG11> / Gac dT+<ZG2Z>
7=1
—1—2 Gak ® G) / Ga,c(r)dC (r )—i-E(etututan / G (r)dr
i#k
1
and ( (fo dr) (fol Gac(r)dBe (r) + Al a fo r)dr + AEE) .

The distribution of a, depends on the localizing coefficient ¢ through G, (r). The estimator is
consistent when ¥, = 0. When ¥, # 0, the parameter ¢ may be estimated consistently using in-
strumental variables (Lieberman and Phillips, 2017b) or by infill asymptotics via a two-stage process
involving realized variance when high frequency data is available (Tao et al., 2017)). Unlike a,, ¢, is
inconsistent irrespective of whether ¥,. = 0 and this accords with known results for simpler models
without STUR effects (Phillips, 1987). However, the localizing coefficient ¢ may be estimated consis-
tently under certain conditions when the data support joint large span and infill asymptotics, as shown
in Tao et al. (2017).



The next result concerns the OLS estimator of the autoregressive coefficient 3,,,. Its asymptotic
distribution and that of the t-statistic for testing the hypothesis of a unit root are used later in the
paper to construct confidence intervals for the autoregressive parameter.

Theorem 5 The ols estimator of 3, in the model (4) and under Assumption 1 satisfies

a'’Y,a

n (Bnt — 1) =c+
(Jo G2o () aBu () +2 (Nyya fy G20 () dr + 3 fy Gae (r)dr) ) + fy G (r) dB- (1) + Aee
Iy Gae(r)dr |

When w; is a martingale difference, the one-sided long run covariances are zero and the limit result
reduces to

al
_l’_

arSua a [} G2 (r)dBy (r) + [ Ga (1) dB. (r)

2 [y Gae (r)?dr (16)

n(ﬁm—l):c—l-

4 Empirical Implications and Further Results

This section explores the relationships among the RW, LUR and LSTUR models in more detail in the
univariate case (K = 1) with 3, = 0 and for iid (u},e;). This special case highlights the distinguishing
features of these models and some key elements in their relationships that are important for empirical
work. The output limit process (11) in this case has the simpler form

G (r) = ereraluln) / TP Bu)gB, (p), (17)
0

which satisfies the generating differential equation

1Gae (r) = aGup () dBy (r) + dB. (r) + (c + g) G (r) dr, (18)

where b = (aau)2. The covariance kernel and moments of the output process Gy (1) are given in the
following result.

Lemma 6 For the model (4), under the assumptions that K =1, ¥, =0, and uy and ¢; are iid,

E (Ggc(r)) =0,

)

2(ctb)rAs _ q

Cov (G (1) Gae (5) = o2V Em il iy (). (19)
and 4, 4(c+2b 2(c+3b 4(c+2b
E(Gge(r) = Bof iZ - <1 ;(ec +(3+b) - ;(ec +(2+b) ﬁ) (20)
An immediate consequence of Lemma 6 is that
Q2etb)r _q
Var (Goc(r) = F (Gg,c (7")) = 027 (21)

2(c+0b)



The function (e*” — 1) /z is monotonically increasing and equals 7 at z = 0. It follows from (21) that
an LSTUR process with ¢ = —b has a limit process with variance Ggr, which is the variance of a
Brownian motion. However, the process G, . (r) is non-Gaussian in this case and has covariance kernel
VGgooy (1:8) = agefg(wsfw\s)r A's # r A s. Thus, the particular case where ¢ + b = 0 provides an
interesting example of a non-Gaussian LSTUR limit process whose first two moments match those of
Brownian motion. For ¢+ b < 0 the variance of the LSTUR limit is less than that of Brownian motion
and for ¢ 4+ b > 0 the variance is larger and increasing with the value of ¢ + b. In particular, given c,
the variance of the process increases with b (equivalently, with either |a| or o,,). Alternatively, given b,

the variance of the process increases with c. A small b expansion of (21) yields

Var (Ga.(r)) = O'g

e2er —1 (1+62“(26r—1)) 9
(St i o).

showing that the lead term of the variance is the variance of the linear diffusion LUR process, as
expected, coupled with a second linear term in b.

Even though the special case ¢ + b = 0 matches the first two moments of the LSTUR limit process
with a Brownian motion, the kurtosis of the processes differ. In particular, using Lemma 6, we have

4 (,—4cr _
lim E (Gic(r)) _ 302 (e +der — 1)

4 (.2 : 2 2
pim 7 52 =30: (r*+0(c)), andbhm E (Ga,c (r) =oir, (22)

+c—0

so that in this case the kurtosis of the process, {302 (r? + O (c))} / (Ugr)2 = 3+ O (c), matches that
of Brownian motion when ¢ — 0 because the variances are the same when ¢+ b = 0. However, kurtosis
exceeds 3 in the case ¢ +b = 0 and ¢ < 0 and kurtosis increases as ¢ becomes more negative when
¢+b=0. The case ¢+ b =0 and ¢ > 0 is excluded because b = (ac,)* > 0.

An instantaneous kurtosis measure for the process increments dGy () at r may be defined as

B (B [(dGa. (r)'17])
[B(2[@C.)?17])}

which has the following explicit form for the diffusion process (18)

Rp,c (T) =

s, PlECL) -EEoy] )
e @) e G

as shown in Lemma 12 of the Appendix. The second term on the right side of (23) shows the excess
kurtosis in the process increments arising from the non-Gaussianity of G,.(r). As b — 0 we have
Kb, (1) — 3, as expected since in that case Go. (r) — G (1) = for e~ (r=pedB, (p) = oeJe (r), which is
a linear Gaussian diffusion. But when ¢ — 0, G (1) — G (r) = e*Bu(7) I e~ @Bu(P)dB, (p) which is
still non-Gaussian and k0 () > 3. A large b expansion of (23) shows that k. (r) ~ 3e*", with kurtosis
increasing exponentially with b = a?c2, measuring the impact of non-Gaussianity in the process G ()
as either a? or o2 rise, which originates in the nonlinear dependence of G,.(r) on aB, (r).
These results are summarized in the following remark.



For the model (4) with K =1, ¥, = 0, and iid (u, ), the instantaneous kurtosis measure of the
increment process dGy c(r) is

32V ar (G’?L’C (1“))
02 (E (G2, (r))* + ot + 2002E (G2, (1))

Kb (1) = +0,(1),

and the kurtosis of the process G, (1) itself satisfies

. ) (Gic (r)) 3 (6*4” + der — 1)
=0 (B(G2, () 8(er)

)

which rises as ¢ — —oo and has minimum of 3 at ¢ = 0.

Financial data are well known to resemble trajectories generated by a RW but with the important
exception that the kurtosis coefficient of asset returns exceeds 3, typically by a large margin. This
stylized feature of financial times series matches the corresponding characteristic of the LSTUR limit
process Gg. (r), which has random wandering behavior similar to a Gaussian RW but with kurtosis
of its increments in excess of Gaussian increments. These features give the LSTUR process a desirable
property for empirical work.

In spite of their common features, the limit processes corresponding to RW, LUR, and LSTUR
time series are very different, including the special parameter configuration ¢ + b = 0 in LSTUR. In
particular, when K =1, ¥,. = 0, and (u, &) are iid, the limit process G (r) satisfies the stochastic
differential equation (18). Non-Gaussianity in the process G (r) is then governed by the magnitude
of the coefficient b = a?02. The following result sheds light on the composition of the process Ga,c(r)
when the parameter b is small.

Lemma 7 For the model (4) when K =1, ¥, =0, and us and ¢ are iid,
Gac(r) =Ge(r)+ Vea(r)+0p(b), (24)

where G, (r) = [y erP)¢dB. (p) is a Gaussian process, Veq (1) = afy e(r=P)¢ (B, (1) — By (p)) dB- (p)
is a mized Gaussian process, and G (r) and V4 (r) are uncorrelated. To first order in b

2er _ 1 b(e* (2er—1)+1
VaT(Ga’C(T)):ﬁ(e 1 b(7 (2er —1) +1)

+0(b). 25
> o ) ) (25)

According to (24) and (25) the STUR component effect is small when b = a?02 is small, in which
case the limit process G, (r) is approximately mixed Gaussian, with variance that exceeds the variance
of the LUR process component, viz.,

2cr 2cr 2r

e —1 bfe 2ecr —1)+1 ecr — 1

o? + (e ( 5 )+1) > o2 :
2c (2¢) 2c

In the special configuration ¢ + b = 0 when b is small, ¢ is also small and then the LSTUR process is

approximately Brownian motion with variance Ugr.




5 Robustness to Misspecification

This section explores the robustness of STUR-based NLLS and IV parameter estimation to misspeci-
fication that arises from an LSTUR generating mechanism. Let (&n, &g’n) be the STUR-based NLLS
estimates of (a, ag), so that

! 2 1 ~! 2
Gp = argmain; (Y;t _ el Ut/\/ﬁn—l) ’ 6§7n _ - zt: (n _ eanut/\/ﬁy;_l) .

When ¥, =0, (u, &) is iid, and the generating mechanism is LSTUR, a,, and 6?771 are still consistent
for a and o2, as shown below.

Lemma 8 For the model (4) when Y. =0 and (ug, &) is z'z'd
(i) Vi (an—a) = ot S B )} o fy Goe () dr + [y Gae (1) dBu: ()}
Jo Gae(r)dr

(i) &g,n —p Uga
~ =~/ P 2
(iii) If YP = <1 + % + M) Yi 1 and Y ( + a%t + = (C—i— (@nue)” ut) )) Y;_1 are in-sample
predictors based on STUR and LSTUR specifications, then

\}ﬁ;(m—fftp):BE(1)+c/OlGa,c(7“)d7“a =3 (- 97) = B,

t

3

. N2
and ), (Ytp — Ytp) = 2 fol GZ’C (r)dr.

Parts (i) and (ii) of Lemma 8 are obtained in the same way as Theorems 2 and 3 of Lieberman and
Phillips (2017a). The only difference in the limit distribution in (i) compared to the case where STUR
is the correct specification the limit process is now Gy () rather than G, (r). An implication of this
result is that the n~!-normalized sum of squared errors of (the misspecified) STUR and LSTUR will
be identical asymptotically and therefore, for large enough n, AIC and BIC should always favor STUR
over LSTUR, even when LSTUR is the true DGP. This finding corresponds with the known result that
information criteria such as BIC are typically blind to local departures of the LUR variety (Phillips
and Ploberger, 2003; Leeb and Pétscher, 2005).

In part (iii) of the Lemma, f/f and f/;p are the STUR- and LSTUR-based predictors of Y;. The latter
is infeasible as ¢ is unknown but may be replaced by an inconsistent estimate or by imposing a special
restriction such as ¢ = —b, which is discussed in Section 4. In this case, the n~/2-normalized error
sums differ by the term ¢ fol Gl,c (r) dr and the sum of squared discrepancies between the two predictors

converges to ¢ fol Gac (r)* dr so that the value of the localizing coefficient ¢ affects these differentials
directly as well as through the correct limit process G, (1) corresponding to LSTUR rather than G|, (r)

In the case ¥, # 0, even the correctly specified LSTUR-based NLLS estimator is inconsistent. For-
tunately, for the LSTUR model the misspecified STUR-based IV estimators (Lieberman and Phillips,
2017b) of a and the covariance parameters are still consistent. Let alV, 71 n( ) and ’yu =n (j) be the
STUR-based IV estimators of a, v, (j) = Cov (g4,&4—;) and v, . (j) = Cov (ut,et ;) for (] =0,1,2,...).
That is, a!V solves the K-moment conditions

n

D (Ve =B (@) Yier) Z = 0, (26)

t=2

10



where Z; is a vector of instruments which satisfy Assumption 3 of Lieberman and Phillips (2017b),

- ~ L1l
70 ( Z eV ety Tuen (1) =~ Y wel’,
oz 42 t=j+2
and .
—Y, — ¢fn ur/\fyt L, t=2,. (27)

In the misspecified model case, the STUR-IV estimators are still consistent. In particular, for the model
(4) and under Assumptions 2-3 of Lieberman and Phillips (2017b), we have al’ —a = O, (n_1/2),
’?é‘g (7)) =7 () =0y (n*1/2) and 'yua n () = Yue (G) = 0p (nfl/z) for all fixed and finite j. The proof
follows the arguments given in T heorems 3 and 4 of Lieberman and Phillips (2017b) and is omitted.
These results are employed in the empirical section below.

6 The Effects of Misspecification on CI Construction

Stock (1991) constructed confidence belts for the localizing coefficient ¢ in the LUR model from which
confidence intervals (CIs) valid within a vicinity of unity for the autoregressive coefficient 5 could
be deduced from unit root tests. Application of this methodology to the Nelson Plosser (1982) data
produced very wide confidence bands. Hansen (1999) showed how the accuracy of these simulation-
based Cls deteriorated as the stationary regrion was approached. He suggested a grid bootstrap
procedure for the construction of the Cls which helped to improve coverage accuracy of the bands.
Phillips (2014) provided an asymptotic analysis that explained the deterioration of the Cls as the
generating process moves deeper into the LUR region and ultimately the stationary region, reinforcing
the work of Hansen (1999) and Mikusheva (2007) on the role of correctly centred statistics in the
development of uniformly valid confidence bands.

This work was all conducted using LUR. formulations of departures from unity. The present section
addresses the issue of how confidence band accuracy is affected by an underspecification of an LSTUR
process as an LUR process. To this end, we consider the limit distribution given in (16). The ¢-ratio
for the UR hypothesis is given by

n(B,—1 1 1/2 ' 1YG2 (1) dB e dB
tg = (%) - </ Gae (1)’ dT> oq WBue | @ Jo Gac(r)dBu (1) + Jy Cae ()
O¢ 0 , ( ) dr

R 1/2 1 2
(62/n-2y, Y2,)Y ’ o Gelr (28)
28
where 62

Z is a consistent estimator of o2, such as the IV estimator ’yg‘fl (0), discussed in Section 5.
When a = 0, the result (28) reduces to equation (2) of Phillips (2014), or equation (5) of Stock (1991)?.
To get an idea of how the confidence belts of Stock (1991) would be affected by the omission of a
stochastic component, we simulated the right side of (28) with parameter settings o2 = 1, ¥, = 0,
a=(0,1,2,3,4), 02 = (0.1,1) and ¢ = (1,0, -1, -5, —10,..., —35). As b= (aau)Q, the setting includes
parameter combinations under which —35 < c¢+b < 17. Table 1 was constructed with 5000 replications
and 400 integral points and includes the 5th, 10th, 50th, 90th and 95th percentiles of the simulated
asymptotic distribution, as well as the width of the 80%- and 90%-CIs in each case.

The most striking feature of the results is that the CIs become wider as the value of ¢+ b increases.

'To be precise, Stock (1991, equation (5)) used a demeaned ADF t-statistic in constructing the confidence belts.
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In other words, given a c-value, the effect of misspecification becomes more pronounced as the value of
a and/or o2 increases. This is expected, as a very negative value of (c + b), for instance, is consistent
with a dominant LUR - relative to STUR - component. Each value of ¢ gives a point on each confidence
line in Stock’ (1991) confidence belts, from which the permissible values of the test statistic can be
implied, given a confidence level, and vice versa. Therefore, wider Cls for the test statistic for larger a
and/or o2 values translate to wider Cls for ¢ and for 3, implying that Stock’s (1991) conclusion that
the CIs for 8 are typically wide applies with greater force in the presence of a STUR component in
the process. In effect, the Cls grow wider as the STUR signal becomes more dominant. For instance,
suppose that the observed value ¢ 5= —2.0. Reading from Table 1, the value ¢ = 0 is not in the 90%

Clif a = 0,1,2 and 02 = 0.1, but it is inside the 90% CI if @ = 3,4 and 02 = 0.1. Put differently,
when b = [0,0.4], ¢ = 0 is not in the 90% CI, given a tz-value of —2.0, but for larger b-values, the value
of ¢ = 0 is within the 90% CI.

The above discussion pertains to a given c-value. In practice, as shown in the next section, a
fitted LSTUR model may lead to a substantially narrower CI for ¢, compared with the CI for ¢ that
would be obtained from an LUR model. The results shown in this simulation are simply illustrative
of the implications of having a generating mechanism that involves random as well as deterministic
departures from unity. Comprehensive tabulation is a multidimensional task, involving a constellation
of conceivable parameter values, and the limit theory is non-pivotal so that practical work would require
consistent estimates of many unknown parameters and an approach that led to uniformly valid (over
LUR and STUR departures from unity as well as stationary departures) confidence intervals. Such a
program is beyond the scope of the present paper.

7 An Empirical Application

Lieberman and Phillips (2017b) estimated a STUR model in which the dependent variable is the log
spread between an index of U.S. dollar denominated investment grade rated corporate debt publicly
issued in the U.S. domestic market and the spot Treasury curve. The variable u; was taken to be the
demeaned 1001log(SPys+/SPyst—1), where SPyg; is the opening rate of the SPDR S&P 500 ETF
Trust. The sample correlation between u; and AY was —0.52, supporting Kwan’s (1996) report of a
negative correlation between stock returns and bond spread changes. In this case the NLLS estimator
is inconsistent. The IV estimator, which is consistent, was estimated with 1454 daily observations over
the period January 5, 2010, through to December 30, 2015, giving a value dﬁv = —0.245. In addition,
the misspecified STUR-based IV estimators of the covariance parameters are consistent as discussed in
Section 5. Using these results we calculated the t-statistic (28) with error variance estimated by :yg‘g (0)
obtaining a value of t@ = —0.659. The 5th, 10th, 50th, 90th and 95th percentiles of the asymptotic

distribution were simulated?® using (28), with parameters replaced by their IV-consistent estimates.
The 90% CI for ¢ is given by the intersection of the horizontal line ¢, = —0.659 and the 5th and 95th
percentiles lines, in the (c, t@) plane, as shown in Figure 1, yielding the CI lower and upper limits

¢} = —0.64 and cf; = 0.53. The intersection points of ¢ 5= —0.659 with the percentiles are summarized
in Table 2, from which we deduce that the median unbiased estimate of ¢ in the LSTUR model is
Cmed = —0.21. The procedure was repeated for the LUR model, where the asymptotic distribution is

A MATHEMATICA program was written to evaluate the percentiles using 400 integration points, 5000 replications
and a grid of 0.1 over the c-values.
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given by (28), with a = 0, 02 = 0, X, = 0. The results are shown in in Figure 2 and Table 2. For this
model we obtain the 90% CI limits ¢, = —4.05 and ¢y = 3.27, and a mean unbiased estimator for ¢
equal to —0.35.

Figures 1-2 as well as Table 2 reveal that the 90% CI for ¢, which is LSTUR-based, is much narrower
and is in fact fully within the 90% LUR-based CI. Thus, at least in this case, LSTUR attenuates the
estimated impact of ¢ on the time varying autoregressive coefficient f3,,,. The induced 90% CI for f3,,
which is LUR-based is approximately [1 — 4.05/n,1 + 3.27/n], whereas the variation of u; needs to be
accounted for in the construction of an LSTUR-based 90% CI for 5,,. Conditional on u; and on the

values of the nuisance parameters, the LSTUR-based 90% CI for 3, is [6*0'64/ ntaur/\n o0.53/n+aur/ \/ﬁ] ,

so that the width of the interval is approximately 1.17/n, compared with a width of 7.31/n for the LUR-
based CI. The means of the CI bounds, taken with respect to u; and assuming that w; is multivariate
normal, are Eecttou/vin — (et +8/2)/n qnd Eecttaum/vi — o(ct+b/2)/n, Plugging in the IV estimates,
alV = —0.245 and 62 = n~' 3" u? = 0.983? into these formulae, the estimated means of the bounds are
1 —0.61/n and 1 + 0.56/n, which are much smaller in absolute values than the respective LUR-based
bounds. Furthermore, Given the model parameters, and assuming that w; is multivariate normal,

c aug < cavhb
Pr(en+ﬁ <L>:a L =ent Vi,

where ¢, is the a’th percentile of the standard normal distribution. Thus, given the model parameters
and the distribution of wy, the induced 90% CI for 3, is

_0.64_04 053,04
|:€ n \/ﬁ’e n \/71] .

So, the width of the CI is approximately 0.8/y/n + 1.17/n. Compared with the LUR-based induced
CI for j,,;, the LSTUR-based induced CI has a term which is O (nfl/ 2), to account for the additional
variability in f3,,; which is due to u;. On the other hand, the O (n‘l) term in the CI which is due to
c and b in LSTUR and due to ¢ only in LUR, is much smaller in absolute value in the LSTUR-based
bounds than in LUR. These findings are illustrated in Figure 3.

We remark that an ‘exact’ analytical CI which accounts for the variability in the estimates of a
and the covariance parameters is analytically intractable, because these estimates influence both the
percentiles of ¢ 3 (and, hence, the values ¢{ and c{;) as well as the summand atVu;/v/n. Nevertheless,
qualitatively, the message from the empirical application is that the reported CI for ¢ can be substan-
tially wrong and, in reality, much wider when an LSTUR, process is misspecified as a LUR model. On
the other hand, unconditionally, the induced CI for f3,, is wider when a STUR component is present
as is expected from the additional random variability that is embodied in the LSTUR representation
of the time variation in the autoregressive coefficient.

8 Discussion

It is widely acknowledged that with much economic and financial data the unit root hypothesis may
only hold approximately or in some sense on average over a given sample. A more general modeling
perspective that offers greater flexibility is that the generating mechanism may involve temporary de-

3The variable u; is demeaned and its standard variance estimator is consistent as it does not depend on a.
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partures from unity at any sample point that can move the process in stationary or explosive directions.
Recognition of this type of functional coefficient flexibility and its relevance for applied work has led to
the literature on LUR, functional LUR (Bykovskaya and Phillips, 2017a, 2017b), and STUR models,
which seek to capture certain non-random and random departures from an autoregressive unit root
process. The hybrid model introduced in this paper incorporates two streams of this literature as
special cases and the limit theory generalizes results already known for the LUR and STUR models.
As expected, ignoring one or other of these component departures introduces inferential bias. Both
simulations and empirics reveal how the construction of uniform confidence intervals for autoregressive
coefficients using a LUR model formulation are affected by misspecification in which the random de-
partures of the LSTUR mechanism are neglected. Of particular relevance in applications is the fact
that an LSTUR process, may have the same mean and variance as a Gaussian random walk but with
kurtosis that is well in excess of 3, a feature that is consonant with the heavy tails of much observed
financial return data.
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Table 1. Percentiles and Confidence Intervals for ¢ L 02 =0.1

5 10 50 90 95 80% CI  90% CI
—-1.724 —-1.361 0.3 2.466 3.144 3.827 4.868
-1.73 —1.355 0.273 2.588 3.423 3.943 5.152
—-1.716 —1.367 0.151 2.935 4.199 4.302 5.915
—-1.807 —-1.4917v -0.1127 3.988 6.432 5.479 8.239
—-1.974 —-1.641 —0.467 4.921 9.538 6.562 11.512

— R = 0
B~ wNn — o Q

—-1.913 —-1.62 —0.508 0.9445 1.311 2.564 3.224
-1919 -1.607 —0.534  0.907 1.374 2.514 3.293
—-1.976 —-1.641 —0.562 1.068 1.753 2.71 3.729
-2.03 -—-1.712 —-0.736 1.25 2.264 2.962 4.294
—2.064 —1.817 —0.94 1.882 3.437 3.698 5.492

o O O OO
= w N = O

-1 0 -—-2.145 —-1.852 —0.877  0.125 0.432 1.977 2.576
-1 1 -2136 —-1.812 —-0.887 0.101 0.472 1.914 2.608
-1 2 -2.195 -1.889 —0.955 0.171 0.592 2.059 2.786
-1 3 -2195 —-1.905 —1.021 0.21 0.862 2.115 3.057
-1 4 -—-2.255 —-198  —1.187 0.32 1.277 2.306 3.532
-5 0 —2.746 —2472 -1.642 —-0.996 —0.81 1.476 1.936
-5 1 =27 —=2501 —-1.656 —0.996 —-0.802 1.505 1.953
-5 2 =2.757 =249 —-1.664 —-1.01 —-0.819 1.486 1.938
-5 3 —2.78  —-2.52 —-1.7 —-1.023 —-0.804 1.497 1.983
-5 4 =2875 —=2556 —1.755 —1.102 —-0.838 1.454 2.037
-10 —3.283 —-3.047 —2.257 —1.628 —1.468 1.419 1.815

0
-10 1 -3.274 -3.026 —-2.269 —-1.63 —-1.463 1.396 1.811
-10 2 —3.297 —-3.063 —2.285 —1.642 —1.475 1.411 1.821
-10 3 -3.308 —3.064 —2.272 —-1.624 —1.462 1.44 1.846
-10 4 -335 —-3.116 —2.299 —-1.685 —1.496 1.431 1.854

Note: The entries in the table are the percentiles- and confidence interval width (last two columns) of
the limit distribution of the statistic ¢ B based on 5000 replications and 400 integral points, with

02=1,%,=0.
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Table 1 (continued). Percentiles and Confidence Intervals for ¢5, 02 =0.1

c a ) 10 50 90 95 80% CI 90% CI
-15 0 —-3.744 —-3.514 —-2.738 —2.093 —-1.917 1421 1.827
-15 1 —=3.756 —3.51 —2.756 —2.099 -—-1.941 1411 1.815
-1 2 -3.714 3522 2775 —2.082 —1.931 1.44 1.81
-15 3 —-3.754 -—-3.488 -—2.763 —-2.103 —-1.918 1.385 1.835
-1 4 —=3.792 —-3.547 -—-2.762 —2.122 —-1.958 1.424 1.834
-20 0 —4.11 -—-3.885 -—-3.104 -—-2.462 —-2.3 1.424 1.81
-20 1 —-4.108 —-3.909 -—-3.146 —2.488 —2.332 1.421 1.776
-20 2 —4.15 -3.923 -—-3.136 —-2.485 —2.315 1.438 1.835
-20 3 —4.144 -3896 —-3.143 -—-2.474 231 1.422 1.834
-20 4 —-4.192 -3.938 —3.159 -—2.492 -—-2.331 1.446 1.861
-25 0 —4.469 —-4.236 —3.48 —2.785 —2.627 1.451 1.842
-25 1 —4.46 —4.24 3452 279 —2.645 1.449 1.815
=25 2 —4.473 —4.225 3456 —2.784 —-2.602 1.441 1.872
-25 3 —4.491 —-4.218 -—-3.469 -—-2.793 —-2.628 1.425 1.863
-25 4 —4.507 —4.247 —-3.469 —2.818 —2.641 1.428 1.866
30 0 —4.74  —4512 =375 —=3.073 —2.895 1.44 1.845
-30 1 —4.756 —4.54  —-3.757 —-3.087 —2.935 1.453 1.821
30 2 —4.744 —4.52  =3.768 -—3.097 —-2.926 1.423 1.818
-30 3 —4.759 —4.524 -3.768 —-3.102 —2.926 1.421 1.833
-30 4 —4.78 —4.554 =3.777 —=3.093 —2.909 1.46 1.871
-3 0 —5.038 —4.794 —-4.012 -3.325 —3.131  1.469 1.906
-35 1 —5.013 —4.802 —4.034 -3.357 —-3.171 1.446 1.842
-36 2 —=b5.077 —4.812 —-4.037 -3.357 —3.193 1.455 1.884
-35 3 —5.044 —4811 —-4.036 —-3.357 —3.177 1.454 1.868
-36 4 —5.021 —-4.804 —-4.039 -—-3.337 -—-3.1656  1.466 1.857

Note: The entries in the table are the percentiles- and confidence interval width (last two columns) of
the limit distribution of the statistic ¢ B based on 5000 replications and 400 integral points, with

02 =1, Sy =0.
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Table 1 (continued). Percentiles and Confidence Intervals for ¢5, o2 =1

o oo oo o — = = = =0
= wWw N~ O INGJURE N e = w N~ O Q9

1
ot
= W N = O

-10
-10
-10
-10
-10 4

W N = O

5
—1.685
—1.789
—8.473

—110.893
—1398.42

—2.0288
—2.01
—6.253
—68.45
—736.13

—2.114

—2.159

—4.517
—42.348
—397.271

—2.731
—2.767
—3.067
—9.954
—63.291

—3.316
-3.317
—3.45
—4.579
—16.424

10
—1.329
—1.469
—4.854
—46.739
—423.387

—1.652

—1.701

—3.799
—29.095
—233.141

—1.823
—1.866
—3.164
—19.889
—142.957

—2.473
—2.494
—2.808
—6.511
—28.508

—3.068
-3.071
—3.191
-3.973
—10.077

50
0.316
—0.1421
—1.68
—4.215
—13.242

—0.5106
—0.746
—1.816
—3.747

—11.1434

—0.865
—1.014
—1.887
—3.537
—8.921

—1.646
—1.716
—2.103
-3.1
—5.263

—2.279
—2.305
—2.437
—3.018
—4.282

90
2.427
4.009
7.822
9.609

13.956

0.9
1.333
2.35
3.687
3.057

0.102
0.217
0.458
0.222
—0.499

—1.019
—1.04
—1.345
—1.879
—2.579

—1.622
—1.65
—1.794
—2.189
—2.789

95
3.058
6.849

22.755
54.083

142.768

1.286

2.599

7.526
25.273
63.583

0.414
0.891
3.22
7.327
20.427

—0.832
—0.828
—0.964
—-0.91
—0.089

—1.47
—1.463
—1.601
—1.898

—2.23

80% CI
3.756
5.478
12.676
96.348

437.343

2.552
3.034
6.148
32.782
236.199

1.925
2.083
3.62
20.111
142.459

1.454
1.454
1.462
4.632
25.928

1.446
1.422
1.398
1.784
7.287

90% CI
4.743
8.638
31.228

164.976

1541.18

3.315
4.609
13.779
93.723
799.713

2.528
3.05
7.737
49.676
417.698

1.899
1.939
2.1
9.043
63.202

1.846
1.853
1.849
2.681
14.194

Note: The entries in the table are the percentiles- and confidence interval width (last two columns) of
the limit distribution of the statistic ¢ B based on 5000 replications and 400 integral points, with

02=1,%,=0.
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Table 1 (continued). Percentiles and Confidence Intervals for ¢5, o2 =1

c a ) 10 50 90 95 80% CI  90% CI
-15 0 —3.7256 —3.476 —2.728 —2.085 —1.93 1.391 1.791
-15 1 =3.721 -3.501 -—-2.743 —-2.093 —-1.923 1.408 1.798
-1 2 —-3.879 —-3.593 —-2.828 —2.181 —2.01 1.412 1.869
-15 3 —4.229 -3.968 —-3.177 —2.418 —2.143 1.55 2.086
-15 4 —7.522 —5.798 —3.999 —2.866 —2.476 2.932 5.047
-20 0 —4.127 -3.879 -3.112 —-248 —-2.313 14 1.815
-20 1 —4.148 —-3.908 —3.129 —2.4891 —-2.323 1.419 1.825
-20 2 —4.213 -3975 —-3.185 —2.528 —2.359  1.447 1.853
-20 3 —4.471 422 -3433 —-2.69 —2.468 1.53 2.003
-20 4 —=5.761 —5.154 —3.958 —3.002 —2.699 2.152 3.063
-25 0 —4.451 —4.235 -—3477 -2.796 —2.629 1.439 1.821
-25 1 —4.504 —4.26 —3.473 —2.808 —2.622 1.452 1.883
-25 2 —4.526 —4.292 -3.502 —2.827 —2.647 1.465 1.879
-26 3 —4.675 —4.449 -3.686 —2.911 —-2.714 1.539 1.961
-25 4 =543 5084 —-4.104 =319 -—-2901 1.894 2.53
30 0 —4.796 —4.538 —-3.768 —3.069 —2.91 1.468 1.886
-30 1 —4.828 —4.555 —-3.773 —-3.085 —2.914 1.471 1.914
30 2 —4.815 —4.552 -3.791 —-3.109 —-2.916 1.443 1.899
=30 3 —4.977 —4.732 -3.948 —-3.194 2973 1.538 2.003
-30 4 —5.419 —5.148 —4.212 —-3.343 —-3.073 1.804 2.346
-35 —5.043 —4.819 —-4.037 —-3.354 —3.184 1.465 1.859

0
-35 1 —5.064 —4809 —-4.029 -3.336 —3.16 1.473 1.903
-35 2 —5.1 —4.879 —4.083 —-3.359 —3.165 1.52 1.935
-35 3 —5.249 —-5.014 —4.177 —3.418 —3.218 1.596 2.031
-35 4 —=5.605 —5.305 —4.406 —3.562 —3.317 1.743 2.288

Note: The entries in the table are the percentiles- and confidence interval width (last two columns) of
the limit distribution of the statistic ¢ B based on 5000 replications and 400 integral points, with

02=1,%,=0.
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Table 2. Intersections of ¢ 3 with confidence lines.

Percentiles
Model 5th 10th  50th 90th 95th
LUR 3.268 2.367 -0.347 -3.260 -4.047
LSTUR 0.532 0.442 -0.213 -0.546 -0.640

Note: The figures in the Table are the intersections of the line ¢ 5 = —0.659 with the confidence lines
for the LUR and LSTUR models.

9 Proofs

9.1 Proofs of Lemmas and Supplementary Results

Proof of Lemma 2. From (7), %Z?:Q Y1 = %Z?ﬁ Z;io Ga,n;—;Yi—1. As Y;_1 is uncorrelated
with 7,

1 “ !
EG2,Ozntn1 = Gayp / Gae(r)dB, (r). (29)
t=2 0

Next decompose the contemporaneous sample covariance as

1 c  adu_q

1
EGM Zt:ntlyt—l = ;Gz,l thml (eXP <n + N > Yio+ 5t—1>
1 a'ui—1 _
= EGZJ Zt:ml { (1 + 7 + op (” 1/2)> Yio+ €t—1} ) (30)

where 13", 1Yo = fol Gac (r)dB, (r) from (29) and

!/
1 , 1 & o0
n3/2 Z Ne—10 Ut—1Y1—2 = 32 Z"?t—1 Z Gl,jnt—l—j aYi_o
¢ t=2 j=0

1] & 1 & 0o ¢ aty_o
= 7 D M1M-1G100Ye—2 + =75 > m1 ) moq1-;GYja(exp | — + : Yi3+et—2
n3/2 n3/2 n \/ﬁ

=2 =2 =1
1 1 & 0o
= Z77G/1,0a/0 Gac (r)dr + Y5 tz;ntl z;ng—l—lel,jagt—2 +op(1). (31)
= J:
Further,

1 o] o0 1 oo oo oo
/ / - / /
32 Z -1 Z Ni-1-;G1jagi—2 = 32 Z Mt—1 Z Ni-1-;G1 50 Z Goeni—2k
t=2 j=1 t=2 j=1 k=0

1 oo [e.e] o
T 32 Z ! Z Z Gapll—o—kTli—1-;G1 50 = Op (1),
t=2 =1 k=0
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so that .
1
3 Z Ny_10'ug_ 1Yy o = EnGll,oa/ G, (r)dr. (32)
t 0

The last non-vanishing term in (30) involves

*Zm 1€-1 = — Zm 1ZG2k77t 1-k —'p 2G207 (33)
"=
and so
1 1 1
EGQJ Z Ni—1Yi—1 = G2 </ Gayc (r)dBy (1) + EnGll,oa/ Ga,c(r)dr+ EnG/m) . (34)
7 0 0
Continuing,
c  duiq
Yi 1= — Y;
t—1 GXP<n+ \/ﬁ> t—2 + €t—1
c  dui_q c  dui_9
= — — Yi_ _ _
eXP<n+ \/ﬁ>(€Xp<n+ NG t—3 T €t—2 | + &1
2¢ a (up—1 + up—2) ¢ duq
= — Yi_ — _ _1. 35
eXP<n+ Jn t—3 + exp n+ NG €t—2 + &1 (35)

We therefore have

1 1 2¢  d (ug—1 +u—9) c  dui_q
EGZQ ; Ne_oYi1= EGQ’Q ; M—2 (eXp <n + Yi_3 + exp - + €2+ €11

v v

(36)
= %G2,2 ; M—2 (1 + « (ut_\l/%_ Ut_2>) Yi-3 (37)
+ %G2,2 ; Mo €XP (:L + a'\ngl) €2 (38)
+ %Gm zt: Ni—2€t—1+ 0p (1). (39)

To deal with (37), we write

u +u
Znt2<1+ t\l/ﬁ t2>>Y;t 3—/Gac dB( 3/227715 2a utl“‘ut 2)th 3+OP()
(40)

and using (32) gives
1 1
3 Zntdalut,g}/},g = EnGll,Oa/ G, (r)dr, (41)
t 0
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so that

1 1 St 1
n3/2 Z”tﬁalut*ly’f* = 232 Zntfz Z G1jM-1-j | a¥e3 = 32 qu%qGﬁ,oaYps
7=0 t

3/2 Zﬁt oM—2G1 1aYi-3 + 3/2 Zﬁt 22% ;G j1aYi3.
7j=3

(42)

Two types of terms occur in (42): one with equal lags of , and the other with non-equal lags. Since

Y;_3 = exp ( + a\utf3) Y, 4 + &3, the first term is
1 / / 1 / /
372 Z Ni—2Mt-1G1,00Ye-3 = 3/2 Z Ny—oMt—1G1 0act—3 + 0p (1)
t t
1
= 32 Z 77t—277:‘,71G/1,0a (GQ,om_g + - ) +0,(1) =0,(1).
¢
The second term in (42) gives
1 / ! ! !
n3/2 Znt—277t—2G1,1(1Y2—3 = EnGl’la ; Ga,c (7") d?",
t

and the third term in (42) is

n3/2 Zm 22% ]Glj 10Y;-3 = 3/2 Zm QZTH ]Gl_] 1a6t-3 +0p (1) = 0p (1).

Jj=3 7=3

It follows from (42)-(45) that
1 /! ! !
3 Znt_2a u—1Yy—3 = 3,GY a i G, (r)dr.
t

Then, from (40), (41) and (46) we deduce that

an( “ ““ﬁ“t 2)>1@3:>/Gac r)dB, (r) + %, ZG /Gac

Using (33), we have

a Ut—1
- Zﬂt 2 €Xp < \} > er—2 = 5,Gh,
and

1 1 -
n Z Mt—2ft-1 = Z Mi—2 Z 77;—1—jG,2,j5t—1 = EnGIQ,r
t t j=0
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Combining results from (35), (47), (48), and (49) gives

—GnZnt 2Yii1 = Gap /Gac r)dB, (r) +EWZG /Gac dr+EnZG2] (50)

In view of (29), (34) and (50), we have

*thm 1= — ZZGQJTH jY;f 1= ZGZm/ Gac dB )

t 2 j=0
e m—1 1 m—1
+ Z Gom | 2 Z G'Lma/O Gae(r)dr+3, Z Gy
m=1 j=0 Jj=0

Now, >, Gam = G2 (1) and By, has variance matrix ¥,, so that G (1) B, (r) = B. (r) has variance
matrix Gz (1) 2,G2 (1) and

(ZG2m>/Gac )dB, /Gac YdB. (r).

Further, recalling that Ay. = Y 72 E (uoep) , we obtain

A;ea:E{(Gl,ont_{'Gl,lntfl‘}'"')[(GQ,Ont+1+G2,1nt+"')+(G2,077t+2+G2,177t+1+"')]},a
={G1,05, (G21+Gag+ ) + G115, (G22+G2,3+---)'+-~}1a

Z{GU)E G/21 + (G1o+ G1,) EG22 }a

= {G215,G o+ G225y (Gro+G11) -+ }a

/
= Z G27j277 (Z G/Lk) a. (51)
7j=1 k=0

Similarly, Aee = E > 72 €&ppp 18

E { (Ga,om; + Gaamy_y + - ) [(G2,077t+1 + Gy + - ) + (G2,077t+2 + G + - ) + - }/}

= Goo¥y(Ga1+Goo+ ) +Go1%,) (Gaa+ Gog+ ) + -
= G20%,G21" + (Goo+ G21) XyGop + -

e
= G21%,Gy0+ G225y (G20 + Go)' +- Z Ga ;2 (Z Glzk> . (52)

This implies the result given in (12) and the Lemma is established. B
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Lemma 9 For the model (4), under Assumption 1,

1 1
—~ > wulY? | =%, /0 G2 (r)dr
t

Proof of Lemma 9. The result follows immediately from

bt n () L (452 () < [t

Lemma 10 For the model (4), under Assumption 1,

1 1
Tﬁ/gzut¥21=>/0 G (r) dBy ( /G dT+Aua/ G ( )d>.
t

Proof of Lemma 10. We have

1
W;utyfl 3/2 ZZGLJW Y

t=2 j=0
For j =0,
R ) L
n3/2 ZGLOUth_l = Gl,O/O Gac(r)dBy (r).
=2
For j =1,
1 < 1 & c  du 2
— G YR = G 1 le — 1)V Y, e
”3/2tz:; LTe—1%¢-1 n3/2§ 1,1Mt-1 < Xp (n+ n t—2 + €1

a'up_q

1 1 — 2 _ 2 —
_ 2 2
= (?171/0 G . (r)dBy (1) + =7 tgzz G11M-1 Jn Yo+ 37 tgzz G11M;-1Yi—26t-1 + 0, (1)

1 1 1
= G11 / G, (r)dB, (r) +2G115,G) ga / G2, (r)dr 4+ 2G115,Ga0 / G (r)dr.
0 0 0

For j =2,
1 n
n3/2 Z G17277t72yt2—1
t=2

1 " G 2¢ a (up—1 + up—2) Y c  duiq 2
= i tz_; 1,2M¢—2 | €XP " + \/ﬁ t—3 + exp - + \/ﬁ €t—9 + €1_1
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! 1 & 2a’ (ug—1 + up—2)
— 2 t—1 t—2)+ -2
= Gi /0 G (r) dBy (r) + 7 ;GLQW_Q NG Y2,

9
+W Z G17277t—2Y;5—3 (Et_g + Et—l) + 0y (1)
t=2

1 1 1
= Gio / G2, (r)dBy (r) +2G125, (G1o + G11) a / G2, (r)dr +2G125, (Ga + G21)' / G (r)dr.
0 0 0

Continuing this scheme and using summability, we deduce that

1 00 1 0o 7j—1 1 j—1 1
Y= Y6y [ GRmas, 2y 6T, (Zag,ka | ctemar+ e [ Gueyar).
t J=0 Jj=1 k=0 k=0

and the proof of the Lemma is completed by using (51) and (52). B

Lemma 11 For the model (4), under Assumption 1,

n 1 o0 1
Z wErYy 1 = n3/22u5 / Ga,c (T) dr +n {Z (G27j ® GLj) H/ Ga,c (T) df (T)
0 0

t=2 j=0

o -1 / L i1 /
+ Z (Ga,j @ G1,5) M3 ((Z Gl,i) a/ Ga,c(r)dr+ (Z GQ,i) )
j i=0 0 i=0

Jj=1

1
43 (6208 Gry) [ Guc)AC() b 40, ().
. 0
J#k
Proof of Lemma 11. The proof is similar to that of Lemma 8 of Lieberman and Phillips (2017b)
and is omitted.

Lemma 12 For the model (18) where K = 1, ¥, = 0, u; and &, are iid, and with the filtration
Fr=0{(By(s),B:(5)),0 < s <r} the instantaneous kurtosis measure is

E (E |(dGa. ()" 7)) 362 | B (GL. () — (B (G2, ()]
Kb (1) = 5 =3+ 5 + o0, (1)
{E (E [(dGa,c (r))? m] )} b2 (E (G2, (1)) + ot + 2002E (G2 . (1))

Proof of Lemma 12. The process increments dG, () at r satisfy (18)

dGac(r) = aGyc (1) dBy (1) + dB. (1) + <c - 2) G, (r)dr, (53)
where b = a%02. Then
B [(0Gac (1) 1] = B [aGuc ()48 0+ 48 0) + (e D) Guc )|
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= B[ () a8 (1) + B () 7] 44 (4 § ) B [0 (4B 1) + B (1) Gu (1))

£6 (4 2) B [(0C0. )48 (1) + 4B () Guc 07 7] 0

+4 <c + g)g E [(aaw (r) dBy () + dB. (r)) Ga. (1) ]]-}] (dr)® + <c + ;’)4 E [G () |fr} (dr)?

- [3172(;@70 (r)* + 6b02Ge (1) + 303] (dr)? + 6 (c + g) i [baw (1)* + Gae (r)? ag] (dr)® + 0, ((dr)4)
(54)

since E [(aaw (r) dBy (r) + dB. (r))? Ga. (r) |fr} dr =0,

E {E [(aGa,C (r) dBy (r) + dB. (r))* m] } — 3a'0iE (GL, (1) +6a°020%E (G2 (r)) + 30
= 30°E (Gi,(r)) +6bo2E (G2 . (r)) + 302, (55)

. E [(aG(w (r) dBy (r) + dBe (r))? Ga.e (r)° \}'T} - [aQJiGiC (1) + 602Gl (rﬂ dr.
Similarly
E :(dGa,c (T‘))2 |.7-}} =F [aGa,c (r)dB, (r) + dB: (r) + <c + ;) G (1) dr\}}] i

b 2
= FE|(aGqe(r)dB, (1) + dB. (r))? |fr} + <c+> E[G (r)? |fr} (dr)?

2

= FE :(ngiGa,c (7")2 + J?) |.7-"T} dr + (C + 12))2 E [Ga,c (7")2 |.7:T} (dr)2

= [0Gue () + 0] dr+ < + Z) G (r)? (dr)?. (56)

Using (54) - (56) gives
E (B [(aGae () dBy (r) + dB2 (1)1 5] ) + 0, (@)

[ (B [(0Gue (r) dB. (r) + dB. (1)* 7] ) + o, ((dr)?) }2

| WPE(Gh () + 60tE (G 0) 30t
- (bE (G2 (1) +02)° p

KRp,c (T) =
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_ 3VPE (G, (r)) +6b02E (G . (r)) + 302 o) (1)
2 (B(G2. (1))’ + ot + 2002E (G2, (r) )

— 34 3b? [E(Gﬁ, (r) — (B (G )))2} + 0, (1)
- ®(E (G2, (1)) +U4+2602E (G2etr)

)

as stated. For large b, note that

E(Go.(r) =

3odet(et2b)r 1 1 302eHeH20m 2 (¢ 4 2b) — (¢ 4 3b)
c+b <2(c+36)_4(c+2b)): 4(c+b)  (c+3b)(c+2b)
30.2164(04—21))7’ c+b 30.364(c+2b)r
A(c+b) (c+3b)(ct+2b) 4(c+3b)(c+2b)

2(c+b)r _ 2(c+b)r
and E (G2 . (r)) = 02¢ L~ o2e . Hence, as b — oo

€ 2(c+b) € 2(c+b)
30.484(c+2b)r
) 3V2E (Gi . (1)) 4+ 6b02E (G2, (r)) + 30;1 3V2E (G . ( ) (e 36)(cF20)
Rpc\T) = 2 2 2
2 2 2 2 e2(ctb)r
OB+t PE(@0) ()

€4br (C + b)2 - 9 Al

(c+3b)(ct2b) 6

and kurtosis of the process increments dG, . () grows exponentially with b irrespective of the fixed
value of c.

9.2 Proofs of the Main Results

Proof of Lemma 1. By repeated substitution, we obtain

t . ! t
t— a ) i—iiq U
Y; = g exp <( nj)C + Z\/%—H ) gj, t > 2. (57)

J=1

Therefore, setting t = |nr],

Y;:Lnrj _ echra’Bu(r)Jrop(l) %exp _j£ - a’ g 1) &5
Vi nT v )V

Jj=1

Lnr] , —1
_ erc—}—a’Bu(r) ex o (] — 1) c a’ Zgzl Wi a’ Uy & 0
N e ) | SN et

j=1

Lnr] U= l)c o’ Zz 1“Z 5]

_ rc+a By (r) € nl)c a'B1 i 1)0’“]8] 1 58
S ze sl )
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_(J'*l)c_a, Zz;ll ) ( I)C
Lete n v = f< L Zl h uj) . Then,

<> < )

and by Ibragimov and Phillips (2008; equation (4.9)) we obtain the following sample covariance limit

[nr] . / _] 1 r r
(.7 B 1) C a =1 Us E] / —pc—a' B / —me—n!
_ _ a A pe—a’Bu(p) pe=a'Bu(p) 1B .
E exp( - \/ﬁ ﬁ:} w | e dp + ; e dB: (p). (59)

n n

L, j—1De j—1 d'uje; , T pe—dBu(p)

Zexp -~ —dB, - =a'Yy | eP “WPldp+o0,(1). (60)
0

It follows from (58), (59) and (60) that

E = erC-&-a'Bu(T) {_Q,Aus /T e—pc—a'Bu(p)dp + /T e—PC—a/Bu(P)dBE (p) — a’Zus /T e_pc_aB“(p)dp}

vn 0 0 0

e—Pc—aBu(p) dp} 7

e'rc+a/Bu(r) {/T efpcfa/Bu(p)ng (p) i a/Aug "
0 0
which is the stated result. B
Proof of Theorem 3. The NLLS ¢, of ¢, given known a, is defined as the solution to the equation

D (Vi = Byt (6ny ) Yio1) By (én,0) Vi1 = 0, (61)

t

where £3,, (¢,a) = %ﬁca) 18, (c,a). The solution to (61) is equivalent to the solution of

Y YiBi (énya) Yier =Y By (énya) Y2y
t t

or

Z (Bt (c;a)Yio1 +et) By (Enya) Yoy = Z Bt (26n,2a) Y2 |.
t

t

Rearranging the last equation, we seek a solution to

Z€2a’ut/\/ﬁ [eQé/n . e(chén)/n] Ytzfl _ Zea’m/\/ﬁeén/ngtyt_l' (62)
t

t
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Expanding the left side of (62) we get

o ~ y ~ y 00 R . " R .
Z e2a'ut/v/n Z (26n)’ _j(f +én)’ Y2, — Z NG (2¢n) — (QC;L :L [c —¢&,]) V2,
t nlj: " nij!

J=1

, (26, — S (1) (2¢,)F [c — e "
= Y eulva Z( ) fmo (1) (260)" [ ] y2,
t

nij! -

nJij!

/ o N1 () (28, )F [ — & 10K
— Z e2a ut//m Z Zk:—O (k) ( ) [ ] }Qal
t

D) @) le—e, )

. Y2 .

_ ZBQa'ut/\/ﬁ (én N C) i E?c;%) (
¢ =1

At the true value of ¢, the objective function Q% (¢) = n~ (Y; — 8,; (¢, a) Y;_1)? converges in probability
to 02 and therefore, the only term in the square brackets which contributes asymptotically is the first
order term, (¢, — c) /n. The leading term on the left side of (62) is therefore

2d'u;  2a'3,a  2d (wul —Xy)a 1 Cn —C 9 9
Z(1+ \/ﬁ+ n + n +Oop n n —|—Op(n ) Yo

t

Upon scaling by 1/n, we have the following asymptotic form

oo (A () I () e () (2

. L (Yer ) 1 . '
— _ - 0, = ~ — G dr. 63
(6 >{nz(ﬁ) + (n)} o0 [ G (63)
Scaling by 1/n, the dominant term on the right side of (62) is
1 1 ! Yi1
- Z etYi-1+ - Z a Utétﬁa

and
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Using Lemma 2, we obtain

1 1 1 1 1
E Z Y1+ W Z a,utftY;t—l = </ Ga,c (T) dB. (7") + a/Aua / Ga,c (T) dr + /\66) + a,zus / Ga,c (7") dr
; ; 0 0 0

1 1
- / Gue (r) dBe (1) + d' A / G (r) dr + Aec. (64)
0 0
The result of the theorem then follows from (63) and (64). B
Proof of Theorem 4. Write the autoregressive coefficient as 3,;, = ent I = e, with z} =

(%, f;—%) and 7' = (¢,a’). The NLLS 4,, of 7 is defined as the solution to the equation

> (Vi = Bt () Yie1) Bt (1) Yie1 = 0. (65)

t

Since the derivative vector Bnt () = z¢5,,+, we need to solve the system
Y YiwiBny () Yeor = ) wiBhy (1) Y1 (66)
t t
Using the fact that £,,; (9,,) Bnt (V) = Bt (3 +77) , (66) is equivalent to
Z By (V) Bt (1) Y1 + &) Va1 = Z xtﬁit () Yt%h
t t

or

> (B (29) = Bt B + MY =D eeeBs (3) Vo1 (67)

t

Expanding (67) we obtain
2, 2w 1 [ (¢ du\)’
14 2 n (o™ n 10) < 73/2>
+n+\/ﬁ+2((n+\/ﬁ>)+pn
2
(tntc) (an+a)u 1 [(én+c  (an+a)u _3/9
|1 h 0 ( /)
( + n + NLD +2 n + Vn BN

R at . iy 2
Cn  Gupur 1 (¢p  aj,ug ( _3/2)
— 14+ 2 - = 0 Yio
thet<+n+\/ﬁ+2<n+\/ﬁ>+pn -1,

which becomes

;xt{(é"n_c) | (o \—/g)/ut +% (2<

2
Yty




The leading term of the upper element of the left side of (69)
1 (an + a) ugtd) (an +a)\ <9
YiZy

1 Z ((én —c) N (4 — a) uy N 2&;utu2&% 1
n < n Vn n 2 n
T N (CEY WO R AT ED AT AR
n < n 4D n n =1
1 (an + a) (ugp, — 3y,) (4 + a) N (4 4 a)' 2y (4 + @) v
2n - n n =1
! 2
o1 wuy — Xy \ (Y1) 7.
w3 () CR)

- <én—c>i;<}:},§)2+<dn‘“>';5% <1:/ﬁ)+;ﬁ t
() -

Bl g ()L s [y () )]

2n ;

+20 Sy — - Z

t

Now,
SEDMNCT

and by Lemma 10,
Y, 1
Y () o [ @2 an,
0

By Lemma 2, the asymptotic form of the leading term of the top element of the right side of (69)

1
12@1@_1%(/ G (r)dB: (1) + A, /G dr—i-/\gE).
t 0

( /G dr+Au5/ Gae )d>}.

(72)
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Using (70), (71) and (72), the solution to the first equation has the asymptotic form

) [ Gae (r)dB: (r) + Al ca fo ) dr + Aee
fo
—a) {3 G2, () dB, ( ( N fo r)dr + Ay Jy Gae (r)dr) |
b6 |

Next continue with the lower element of the system (69). The leading term of the left side of the
lower element of (69) is

(en—c) ~

zt:;%(én Zutut Gy, — )Yt2—1
z“f(y> DI (Yﬁ> (74)

and by Lemma 9,

. Yio1)®
!/
Zutut(an—a)< > = —a/ G r)dr+ op (n(an, —a)). (75)
; v
Taking the lower element of the right side of (69) and scaling by 1/n we have
M 1 (G B o, (02 )
\/ﬁ 2\n ' Vn P =

) e () L () (7)o
i () HECE)R)- R
gt () S )y

Thus, the leading term of the lower elements of the right side of (69) is

2t 3 (52) v [ Guc e (77

t

and the remaining terms in (76) are all no larger than O, (n_l/ ?) . Rescaling (74) by 1/n we have

Z (Yt 1> Zutut (f}nl) ~a Su (én — a) /OlGa,c (r)*dr.  (78)
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Combining (78) with (77) we obtain the following asymptotics for a,, in the case where 3. # 0

1
Gac(r)d
G — @ ~g zglzuefg’—(zr, (79)
fo Gac(r) dr
Using (79) in (73) we find that
(6 — 0 fol Gac(r)dB: (r) + A a fo r)dr + Aee
fo
-1 1 2
) /1 Gy et { fy dB. (r) Gayc( +2 (M fy G2o (1) dr + Aye [} Ga (r)dr) | o)
(Jo G2 ) dr)
which, together with (79), gives the first part of the theorem.
When ¥, = 0, we have
1
Garc Al r)d A
(60 ) g 0. Cec NP+ “fo I )

fo

in place of (80). Also, in place of (76) after scaling by \/n, we have

- E(50) () ot T (52) ¢ o et Epmeit (1)
A (R) o ()
- (58 (52) e £ () ()
Correspondingly rescaling (78) by v/ we have
oY (T 1) s D [V~ ) (%) s o) [ Goctar

It now follows from (83) and (82) that

5 (42) () a5 (1) 40, () St 0 [ Gue 2 o0

t t

.

Using Lemma 15 we deduce from (84) that when ¥, =0
1 -1
. _ wer \ [ Yio1 1 Yiq
Vn (ay, —a) ~q (/ G (r)? d7’> ¥l <) <) + E (squpuy) Gn— ( )
0 AN )iy 2
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[e.o]

[e'¢) j—1 1 j—1
~ E'l:l Z (GQ \J X Gl J H/ Ga C df + Z GQ,] & Gl ] (Z Gll’ia/o Ga,C ('I”) dr + Z Gl?,l)
7j=1 =0 =0

J=0

00 00 -1 1 j—1
NaEgl Z(G2]®G1] H/ Ga,c(r)dE(r +Z (Gaj ® G15) M. (ZG/L@'G/ Ga7c(7“)d7”+ZGl2,i>
=0 j=1 i=0 0 =0
1
+Z Gok ® G) / Gac( )d(()+E(5tututa / Ga,c(r)dr /</ Gmc(r)zdr). (85)
0

J#k

which establishes the final part of the theorem, in conjunction with (81). H

Proof of Theorem 5: The ols estimator of f3,,, in (4) satisfies

D DS O VISR P BrtYi YoroetYin

S IS PR S IR TRy e 7
The first term above yields
S B Y, D2 (1 + L\/%t +i+3 (L\/Tg)2 +op (”_1)> Y,
S Y Y Y
>t (aut +ats (L\/%)Q +op (n1)> Y2,
- S Y2 |

Thus,

2
—1 ! 1 (d 1 2
(B 1) ’ Z?ZQ (% i % T (%) o (n )> o + n”! Z?:z etYi—1
"\t a n=2y 0, Y2, n=2y ", Y2,

By Lemmas 9 and 10, the first term satisfies

R DA <% +E+3 (%)2 +op (”1)> Y2,
n-? Z? 2 Y2
o (Jo G20 (r) B, (r) +2 (N0 fo r)dr + Ay fy Ga(r)dr))
I1X¢
(c + %) Jo G2 (r)dr
b G2

)
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and by Lemma 2, the second term yields

n_l Z?:Q 5tY;t—1 N fol Ga,c (7") + AI ca fO d’r + )\Es
n=2y L V2 fo
Hence,
~ CL,EUCL a (\[O1 GZ,,C (’I”) dBu ( ( MY fo dT + Aue fO ) d’l”))
n <5nt - 1) =c+ 9 +
o @
) Gae (r)dB +A’ak dw+&6

9

fo

which simplifies to the stated result. W

Proof of Lemma 6. As B, (p) is independent of dB. (p), the expected value of G, (r) is zero.
The covariance of the process is given by

Cov (Gae(r),Gac(9))
' / s —p=0)e+al B4 Bu(9)-Bul))-Bul0) 43 (p) dB. (q)>
0

TAS
/ 6(7"—|—s—2p)cE1 (ea(Bu(er)—Bu(r/\s)+2(Bu(r/\s)—Bu(p)))) dp
0

TAS 2.2
_ a“oy (rVs—rAs) 2 2 _
_ O'g/ e(er—i—r/\s 213)(:672 +2a%0 (rAs p)dp

T (rvs—rAs+2(rAs—p))c M—&-Qb(w\s— )
e P2 Pldp

2(ctb)rns _q
2(c+0b)
as stated. The fourth order moment is given by

T T 4
_/ / S e <62?:13u(r)*3u(pi)>EHdB€ (p:)
0 0

=1

— 60! / ' / ! 20r-p-gep (4B =Bu@) 200500520 g
0 0

= 60t /r /q 2(r—p—a)ct8a?0 (r—0)+2a%0%(4-P) gy dq
o Jo

1 — edlct+20)r B 62(c+b)r 1 — 2(c+3b)r
1(c+ 2b) 2 (c + 3b)

4
3o0;

c+b

which gives the stated result. B

Proof of Lemma 7: Expansion of the limit process in this case yields
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Ga,c (7,) — erc+a/Bu(T)/ e*pcfa/Bu(iD)dB‘E (p) — / e(rfp)c {1 +a (Bu (T) o Bu (p)) + Op (a2)} ng <p)
0 0

= /01“ e(r=Pegp, (p) + a/or e(r—p)c (By (1) — By (p)) dBe (p) + Op (a2) =: G (r) + Veu (1) + Op (a2) .
(86)

Here G, (r) is the limit process of the LUR process and has finite dimensional distribution A" (0, 02 (e — 1) /2¢)
(Phillips, 1987)). The process V., () has mean E (V. , (1)) = 0, variance

b
5 (1+ e*" (2er — 1)), (87)

Var (Veg (1) = a?020? / 2 (r — p) dp = ==
0

and fourth moment

T ST :
4 r — a4 . e ;‘1:1 T—=pi)c w (7)) — w i e i
VA () /O /O E]] (.0~ B ) B] a5 ()

i=1

1+ 2 (2er — 1))
o 4 4/ / (4r— 2p+q)c )(r—q)dpdq—3a4a4a4( € 125;7' ))

It follows that E (VZ, (r)) = 3(Var (Vea (r)))? and Ve,o has kurtosis 3. We deduce that V., (r) is a
mixed normal (MN) process with finite dimensional distribution

2
Vea (T )NdMN< 42[)(11L e (2cr — 1)))
Finally,
E(Go (1) Via (1)) = a0 / 2P (B, (r) — By (g)) dp = 0,
0
and so

e?cr -1 2b
2c 4c?

Var (Gae(r)) = Var (Ge(r))+Var (Veq (r)+0 (b2) =o? (1 + e (2er — 1))+0 (b2) ,

(88)
giving (25). The moment expansion (88) is valid based on the stochastic expansion (86) because all
moments of the component Gaussian processes (B, (), B: (1)) are finite and bounded. B
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Figure 1: Asymptotic confidence belts for ts - the LSTUR case. Y-axis - {5
values, X-axis - ¢ values, solid blue - 5th percentile belt, dashed green - 10th
percentile belt, dotted black - median belt, dashed magenta, 90th - percentile
belt, solid brown - 95th - percentile belt, horizontal red line - the sample’s ¢4,
a = —0.245, p = —0.150, 02 = 0.983, 02 = 7 x 107°, i3 = —0.659. Calculated
with a grid step of 0.1, 400 integral points and 5000 replications.
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Figure 2: Asymptotic confidence belts for ¢; - the LUR case. Y-axis - t; values,
X-axis - ¢ values, solid blue - 5th percentile belt, dashed green - 10th percentile
belt, dotted black - median belt, dashed magenta, 90th - percentile belt, solid
brown - 95th - percentile belt, horizontal red line - the sample’s tz, a =0,

02 =7x1075, f,g = —0.659. Calculated with a grid step of 0.1, 400 integral
points and 5000 replications.
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Figure 3: Solid blue - the width of the LSTUR-based 90% CI, dashed black -
the width of the LUR - based 90% CI. Based on the data of Section 7.
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