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We provide a proof for the invertibility of the finite lag polynomial operator in
the context of stochastic difference equations, for the case where the polynomial roots
lie inside/outside the complex unit circle. We establish invertibility and provide a
characterisation for the inverse, using an elementary result from functional analysis.

1 Motivation and Results

Time series models like ARMA processes are widely used in econometrics and statis-
tics. These type of models are defined through Finite Lag Polynomial (FLP) opera-
tors. For instance, an AR(p) process {X;}, ;. is:

S(L){X:} = {e}, e ~wn.(0,0°), 0
O(L) =1 =L —dyl2 —...— ¢, L7,

where w.n.(0, 02) denotes white noise sequence with mean zero and variance o2, while
I and L are the identity and the lag operators respectively. The fact that the FLP
operator ¢(L) is invertible, when the polynomial roots lie inside/outside the unit
root circle, is often stated in time series courses and in time series textbooks. If the
polynomial ¢(z), satisfies

P(z) #0, |z| =1,
then - .
ML) = Yt LF Y [l < oo,
k=—o00 k=—0o0
and .
X = Z ¢k€t—k- (2)
k=—o00

This is an important result for two reasons. First it provides a sufficient condition
for stationarity, as it implies that the AR(p) process, X}, is a linear process and
therefore covariance stationary!. Secondly, it establishes that X, is amenable to the
well developed asymptotic theory for linear processes e.g. Phillips and Solo (1992),
Peligrad and Utev (1997).



Our motivation is a pedagogical one. Although some version of the aforemen-
tioned result is stated in almost any econometric textbook, a rigorous proof is rarely
provided. Deistler (1975) provides a proof by establishing an isomorphism between
rings. The key idea in Deistler (1975) is to transform an operator problem into an
equivalent algebraic problem. Although the Deistler’s approach is straightforward,
rings are not used often in econometrics. We avoid the use of rings and prove the
result directly using operator theory. Operator theory has been employed in several
recent econometric papers see for example Darolles, Florens, and Renault (2002),
Linton and Mammen (2005), Carrasco, Florens, and Renault (2006) and Vanhems
(2006) intrer alia.

In his recent book, Bosq (2000, Theorems 3.1 and 5.1) provides a proof, for the case
where the polynomial roots lie outside the unit circle. Bosq relies on operator theory
as well. In particular, he is utilising results for the spectral radius. Our approach is
based on more elementary concepts, that can be found in any introductory functional
analysis book e.g. Rynne and Youngson (2000). The technical level of our proof is
about the same as that of the classical work of Brockwell and Davis (1991). Therefore,
our results should be accessible to the reader of the aforementioned book.

To prove the invertibilty of the FLP operator, we employ a well known theorem
in operator theory. The theorem states that if an operator is sufficiently close to the
identity operator, with respect the operator norm, then is invertible. The operator
norm, provides a notion of distance between two operators. The norm of a linear
operator T, on some normed space, V say, is defined as [|T|| = sup|,<; [|Tz[|, with
x in V. Moreover the operator is bounded, if ||T’|| < oco. A formal statement of the
aforementioned theorem is given below:

Theorem 1. Let B be a Banach space. If T : B — B is a bounded linear operator
and ||[I —T|| < 1, then T is invertible with inverse:

o0

T =) (I-17)"

k=0

Note that Theorem 1 does not only provide a sufficient condition for the invertibility of
the operator, but also provides a characterisation for the inverse, when the condition
is satisfied. In particular Theorem 1 postulates that the inverse can be approximated
by Neumann series.

In order to exploit Theorem 1, we need to define our time series process on some
appropriate Banach space. We will consider the space X, of sequences X = {X;},.,
on some probability space (§2, F, P), that satisfy sup, E|X;| < oo. Hence X is a
normed space, equipped with the norm ||.X || = sup, E|X;|. Any covariance station-
ary sequence belongs to the space X. The following lemma ensures, that the particular
space is a Banach space?.

Lemma 1. The normed space X is complete and therefore is a Banach space.



Next, we shall determine the lag operator norm. In view of the fact that sup, E | X;| =
sup, E | X;_;| we have

I = s X = sw (B lXe) =1
| XI<1 {X:}eX:sup, E|X¢|<1 t
Using the same arguments as above it can be easily seen that |[L7!]] = 1 as well,

where L~! is the inverse of L. Now it is straight forward to apply Theorem 1 to first
order lag polynomials. Consider ¢(L) = I — ¢, L with |¢,| # 1. For |¢,| < 1 we have

1 = oLl =l Ll = | [IL]] = [on] < 1

Therefore, by virtue of Theorem 1

oLt =) oLt (3)
k=0
For |¢,| > 1 notice that

W(L) =~y L1 - %1” — Lo (L).

In addition,

1 1
I— ¢ (L —'—‘ L —‘— < 1.
Ir-or @il =| == |2
Hence, by Theorem 1
- R k-
OL) =LY oL ==y et (4)
1 k=0 k=1
Next, consider the higher order lag polynomial ¢(L) = [ — ¢, L — ¢y L — ... — ¢, L7,

Write
$(L) = ([ - /%L) ([ - p%L) ([ - p%L) :

where {p;,i =1,...,p} are the roots of the polynomial ¢(z), z € C. The follow-
ing result enables us to apply the partial results of (3) and (4) to higher order lag
polynomials.

Lemma 2. Let V be a normed space and suppose that the operators T; : V — 'V,
with i = {1,2,...,p}, commute. Define T as T' = T1T5...T,. Then T is invertible, if
and only if each T; is invertible.

It is obvious from Lemma 2 that ¢(L)™! is determined by a product of terms
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Theorem 2. Consider the lag operator ¢(L) =1 — ¢ L — ¢yL* — ... — ¢, L7 on
X,. Suppose that the roots, {p;;i =1,...,7,...,p}, of the polynomial ¢(z) =1— ¢,z —
o= ¢,2P, z € C satisfy |p;| <1 for i <r and |p;| > 1 for i > r. Then the inverse
of ¢(L) exists and is of the form:

= ) Lk,

k=—o00

with

ISR Ol S D Sl I £ I

l=max(r,—k) kp—1=0 kr41=0kr_1=r—1 ki=1

1 —(I—=kr—1) 1 ki1 1 ktl—kp_1
) (pr> (pr—H) (pp)

and S5, ] < 0.

Remark: Suppose that the processes X; and Y; satisfy the difference equation:

o(L)X, = Y,, with Y; in X.

(a) If sup, E|Y;| < oo and > 7 |¢,] < oo then, D2 1), Y,y is well defined
a.s. (see for example Brockwell and Davis (1991)). If sup, E \Yt\ < 0o and Y; satisfies
the difference equation shown above, then Zf:foo V. Yk is well defined in L; sense
by virtue of Theorem 2, as > ;- 1, Y, belongs to X.

(b) Under the stronger requirement sup, E |Y;|* < 0o, 3300 4, Y; 4 is well de-
fined in Ly sense (cf. Fuller (1976), Brockwell and Davis (1991)). If sup, E |[V;]* <
oo and Y; satisfies the difference equation shown above, then > ° 1), Y;_; is well
defined in Ly sense by virtue of Theorem 22.

(c) If the polynomial roots lie outside the unit circle, then Y; is causal for X; i.e.

Xp =Y Y
k=0

2 Proofs
Proof of Theorem 1. Theorem 4.40 in Rynne and Youngson (2000). W

Proof of Lemma 1. Denote by ||.||,, the L;-norm and consider a Cauchy
sequence {X"} _ in X. By the definition of X, X™ is a double indexed sequence,
ie. for each n, X" = {X['},.,. By the completeness of L; measurable spaces (e.g.

n—oo

Brockwell and Davis, 1991), || X}* — Xi|ly, "— 0, for some X; in L, (©2, F, P). Also



note that due to the Cauchy property, for any ¢ > 0 and some N, € N, we have
| X" = XM <€ forall n, m > N,. Define X = {X;},.,. Thus, for n > N, we
have,

17 — Xilly, = Tim X7~ X7, < lim sup X" — X7, <

n—oo

which implies || X" — X||_, "— 0. Moreover X is in X because, || X|| < [|X" — X+
| X", < oo and the result follows. W

Proof of Lemma 2. The proof is trivial and therefore omitted. l

Proof of Theorem 2. Consider the operator ¢,(L) = I — F%_L on X. By Theorem
1, (3) and (4) the inverse of ¢,(L) exists and is given by

—k
— > ey (p—i) L*for1<i<r,
k

o (i> L* for r <i < p.

Pi

¢i(L)71 =

Now, because ¢,(L)'s commute, Lemma 2 implies that ¢(L) is invertible with inverse

S(L)™" = y(L) 0, (L)

Next, we obtain an expression for the inverse in terms of the polynomial roots. Con-
sider

WL+ =¢(L) 0, (L) and
O(L)" 0 =g (L) g, (L)

It can be easily checked that

with
k—1 kr—1—1 ko—1 —k1 —(kr—1—kr_2) —(k—kr—1)
. 1 1 .
Be = S (_) (_) (_> 5
k’lfl:T*l kr72:7‘72 k}lzl 101 pZ p,r
and
o 1% k-1 kr—1—1 ko—1 1 —k1 1 —(kr—1—kr—2) 1 —(k—kyr_1)
Sl =3 X 2 -X6) -G) ()
k=r k=r k171=r71 k7.72:7’72 klzl 1 7 '
; P1 ; Pr




Moreover,

k=0
with
~ k kp—l kr+2 1 kr+l 1 kpfl—kpfz 1 k'_kp—l
T Sl S Z( ) ( ) (_) .
kp_1=0kp_2=0  ky41=0 Pri1 Pp—1 Py
and

Mg

i ‘lz)k‘ =
k=0

k=0 |kp_1=0 kp_2=0  kj11=0
o) k o0 k
1 1
< E .. —| < oo.
h=o | Pr+1 k=0 | ’p

Therefore,

¢(L)™" = (L) Z Z Yt L.

k=—o00 |=max(r,—k)

In view of (5) and (7) we have,

S(L)" = D Lk, with

k=—o0

Yy = Z ¢k+z¢l

l=max(r,—k)

S S 5D 3D ot 31 €3 s

l=max(r,—k) kp—1=0  krp1=0kr_1=r—1 k1=1

GGG
B Pr IOT+1 IOp

Finally, we show that the sequence v, is summable. Notice that

Z Z )¢k+l¢k = i io: ‘i’mz@bl + il io: ‘@LkH{Dz

k=—o00 l=max(r,—k) k=—r l=r k=—o0 l=—k
ook [eS) [e%9)
= E ‘%&Ug E E ‘@Z’kl/)l
k=0 I=r k=0 l=k+r+1
oo
S 2 E l < o0,
k=0

(=}

kp 1 'r+2 k7.+1 1 k‘pflfkpfg 1 k*kpfl
Z 2 - Z(pm) "'(ppl) <pp)

(8)



by (6) and (8). B
NOTES

1. Brockwell and Davis (1991), Proposition 3.1.2.
2. Actually the results we provide hold, when X is equipped with the norm
| X1l = (sup, B X", v > 1.
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