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Abstract

In a large variety of applications the data for a variable we wish
to explain is ordered and categorical. In this paper we present a new
similarity-based model for the scenario and investigate its properties.
We establish the rate of decay of the autocorrelation function (ACF)
in the general case and derive its explicit form in some special cases.
Stationarity and ergodicity of the process are proven, as well as consis-
tency and asymptotic normality of the maximum likelihood estimator
(MLE) of the model’s parameters. A simulation study supports our
findings. The results are applied to the Netflix data set, comprised of
a survey on users’ grading of movies.

Key words and phrases: Consistency; Ergodicity; Mixing; Ordered
Probit; Similarity; Stationarity.
JEL Classification: C22

*Department of Economics, Bar-Ilan University

"Department of Economics and Research Institute for Econometrics (RIE), Bar-Ilan
University. Support from Israel Science Foundation grant No. 396/10 and from the
Sapir Center in Tel Aviv University are gratefully acknowledged. Correspondence to:
Department of Economics, Bar-Ilan University, Ramat Gan 52900, Israel. E-mail: of-
fer.lieberman@biu.ac.il

tDepartment of Economics, Bar-Ilan University



1 Introduction

In a large number of applications the data for a variable we wish to explain is
ordered and categorical. Examples include the level of education or income
attained, the amount of insurance coverage purchased, voting for candidates
that are positioned from left to right, corporate bond ratings and question-
naire based survey response coding. For all these examples and more, the
econometric workhorse is undoubtedly the ordered probit model. In this
paper we introduce a novel similarity based modeling alternative for such
situations and investigate its properties.

Our model may be applied to circumstances where the decision of which
product to purchase depends on recommendations of others. These situa-
tions often arise in connection with the consumption of a new product or
of a product that is consumed only once and for which there is uncertainty
about its quality. An example for such a situation is the Netflix data set,
comprised of a survey on users’ grading of movies. In order to predict the
grade a user would assign to a particular movie at time ¢, one would analyze
the grades assigned to this movie by other users with similar tastes. The
prediction of a grade a user will assign to a movie at time ¢, is based on the
grades assigned to this movie prior to this date, by other users who share
similar tastes. Similarity of tastes of two users can be measured by their
ranking of other movies prior to time ¢.

Similarity based models were introduced to economics by Gilboa et. al.
(2006), applied in the context of real estate prices by Gayer et. al. (2007),
and suggested as an approach for prediction by Gilboa et. al. (2011). Fur-
thermore, Gilboa et. al. (2010) discussed the relevance of empirical similar-

ity to the definition of objective probabilities. For the model

Zi<t S (X’L7 Xt7 ’LU) E
Zi<t S (X'u Xi; w)

Y = + et =2,...,n, (1)
where s is a similarity function, X; is the ¢th observation on K explanatory
variables, w is a K x 1 parameter vector and &; is an iid random variable,

the asymptotic theory of estimation was established by Lieberman (2010)



and this work has been extended by Lieberman (2012) and Lieberman and

Phillips (2013) to the time-varying coefficient, non-stationary autoregression
}/;f =K + St (le Xta ’UJ) }/t—l + Etat = 25 ceey T,

where s; (+) is possibly time varying. The latter model has been applied
to Japanese dual stock data and to international Exchange Traded Funds
(ETFs). Finally, the concepts of similarity and contagion of views are central
in Kapetanios et. al. (2013), who constructed a nonlinear panel data model
of cross-sectional dependence.

For the ordered-probit model, applications are numerous and the topic is
covered in almost every microeconometrics text book, see, inter alia, Mad-
dala (1983), Cameron and Trivedi (2005) and Greene (2008).

Recently, De Jong and Woutersen (2011) investigated the binary time

series

p
Y, =1 ijY}_j—i-’y':cn—i-et >0
j=1

where € N (0,1). They proved near epoch dependence and strong mixing
of the process, as well as consistency and asymptotic normality of the MLE
of 8 = (pl, ...,pp,y’)/. The extension of De Jong and Woutersen’s (2011)
method of proof to our multi-category ordered setting, involving similarity
weighted averages in place of the p;’s, does not appear to be trivial and our
main proofs, especially on the rate of decay of the ACF, stationarity and
ergodicity, adopt a different technique.

The plan for this paper is as follows. In Section 2 we introduce the
probabilistic model in detail and in Section 3 we investigate cases in which
the ordered probit model may fail whereas our model is expected to deliver
desirable predictions. The interpretation of partial derivatives in the model
is discussed in Section 4. In Section 5 we establish the rate of decay of the
ACF in the general case and derive its explicit form in some special cases.
We show, in particular, that the ACF of the binary response model in which

the response depends only on one lag, behaves in a completely analogous way



to the behavior of the ACF of the dynamic AR(1) model. This result does
not appear to have been documented previously. Stationarity and ergodicity
of the process are proven. The model’s assumptions necessary for the proofs
of consistency and asymptotic normality of the MLE are specified in Section
6 and the theorems follow in Section 7. Simulations are presented in Section
8 and an application to the Netflix data set follows in Section 9. Section 10

concludes and proofs are provided in the Appendix.

2 The Ordered Similarity Model

To fix ideas, we start by presenting a special case of our M-category model,

when it is restricted to only two categories, 0 and 1, in which case,
Yi=1 {61 > 0}
and
Vi=1{Y? +e>pu},(t=2,..,n),
where ,
ve pZiii:i s (Xi, Xp;w) Y,
t—1 = ——
s s (X, X w)

1{-} is the indicator function, taking the value of unity if the condition in

)

the brackets is satisfied and zero otherwise, s (-) is a similarity function,
w = (wy, ...,wK)/, X; is the ith observation on a K-vector of explanatory
variables, e; N (0,1), p is a cut-off parameter, which may or may not be
known, A > 1 is the lag-length and p is a free parameter which is allowed to
be greater than-, equal to- or less than unity. For brevity, we have suppressed
the dependence of Y;? ; on p, A and w. The model is entirely analogous to
the probit model apart from the fact that X]3 in the latter is replaced by a
similarity weighted average, Y,® |, in the former. Conditions on s (-) will be

given in Section 5. For instance, we may specify an exponential similarity,



Viz.,

K
s (Xi, Xpyw) =exp [ = w; (X5 — Xy5)* |,
j=1

so that, ceteris paribus, the closer X; will be to X;, the larger will be the
weight that Y; will receive, relative to other the Y;’s, in the construction of
Yy

Let F;_1 be the o-field based on all the information included up to time
t — 1. Then

Pr(Y, =1|F_1, Xp;w) = Pr(e>p—Y7>)
= (Vi —p).

This means that, given a u, the larger the value of Y;* |, the higher the
probability that Y; will be equal to unity. The model thus connects in a
nonlinear way between the history of the Y)/s and the X;’s and the current
value of Y;, which is very different from the way in which the observations
are generated in the probit specification.

Extending this idea to M ordered categories, j = 1, ..., M, our model is

renfe () (3)

and for t =2,...,n,
. > . iid
i = ]1{}/158—1 tet € (:ujflnuj]}a(] = 17'--7M)a5t ~ N(07 1),

(—o0 =g <y < < gy < ppy =09) - (2)



Let 0 = (i, w', p)’, with = (py, ...,,uM_l)/. We have

Pr(Y; = j|Fi-1,X0) = Pr{Yl,+e € (i1, ]}
= ¢ (Hj - Y;:s—l) -0 (Mj—l - 2&8—1)
= O (Xq,..., X, Y1,.., Y13 0)
By (X1, X0, Vi o, Vi3 0)
= Ayj (@, y1-150), (3)

say, where z; = (Xy,...,X3) and y—1 = (Y1,...,Yi—1). For brevity, we will
simply write A¢ ; (#). The likelihood function is given by

n M '
L, (0) = tnl H1 (Pr (Y, = j|Fi_1;0)) =7
S

and therefore, the log-likelihood is

n M
W (0) =) 1{Y;=j}InA;(6).

t=1 j=1
3 Special Cases

In this section we shall draw a connection between the similarity model and
the probit model through a simple example and then proceed to demonstrate
certain circumstances in which the former performs better than the latter.

To do so, consider the case in which there two ordered categories: the
value of the lower category being 0 and of the upper category being 1. Fur-
thermore, assume that there is only one X (that is equal to 1 for example)
making the similarity function constant. Finally, when p = 1/2, the simi-

larity model reduces to

Pr (Y, =1|F-1,X,) = Pr(Yu-1+e,>1/2)
= O (Y1 —-1/2).

Thus, if Y,,_1 > 1/2, we set the predicted value for Yy, ffns, to be Y,f =1



and zero otherwise.
On the other hand, the ordered probit model predicts

Pr(Y, =1/X,) = Pr(8+e,>1/2)
= B(B-1/2).

The solution to the score equation in the probit model for this setting is

easily seen to satisfy
Y, = (/’3 1 /2)
or

B=0"1(Y,) +1/2.

The ordered probit prediction is thus given by

Y, = 1@q><[3—1/2)>1/2
s Y, >1/2.

Both models predict Y, = 1if the sample mean is greater than 1/2, but
the predicted probabilities are different. In a sample of n — 1 data points

the similarity model’s predicted probability is
Pr (Y, =1|Fnp_1,Xn) =@ (Y1 — 1/2),

whereas the ordered probit model’s predicted probability amounts to

Pr(Y,=1X,=1)=Y, .

The next example demonstrates certain circumstances in which the pro-
bit model fails but the similarity model succeeds.

Suppose that X; =0, —1, or 1 and Y; = X?, ¢t = 1,...,n. Consequently,

it 1{Xi = Xi} Vi

Y, =
Zi<t 1 {Xi = Xt}

+en,t=n+1,..,2n.

Here, the similarity process starts after an initial ‘learning set’ which is based



on n observations.. Assume for simplicity that ¢; = 0, V¢t and that the first
n sample points gave exactly n/4 times X; = —1, n/2 times X; = 0 and n/4
times X; = 1. Then it is clear that ¥; = 1{X; = £1}, Vt.

Now, for some i € R the probit model postulates

Pr (Vi =1]X;) = ®(Xif — p) .

The solution to the score function in this case is

(o(-n)e(s-r) (-e(3-n)o( ) |

oG n) (o () (5 n)(e(5 )

yielding B = 0. Thus, the probit predicted probabilities are

Pr (Y2n+1 = 1|Xz) = (—,u) ,VXZ'
and with g = 1/2, the rule here would be to set
Yoni1 = 1{®(-1/2) > 1/2},

implying that the prediction is always f/gnﬂ = 0, which is correct for 50%

of the observations. On the other hand, the similarity model predicts

Pr (Yont1 = 1|Fopn, Xony1) =

Yicont1 11Xi = Xony1} 2

- @ (;) | {Xonss = £1} + @ <—;> 1{Xans1 = 0},

Pr d <Zi<2n+1 HX; = Xoni1}1Yi 1>

and setting the rule
N —~ 1
Yont1 =14 Pr (Yopp1 = 1|F2,) > 3

gives a prediction which is always correct.
This example is indicative of the possible failure of the ordered probit

model when the latent process is nonlinear in X and the similarity model is



expected to outperform it in these scenarios.

4 Partial Derivatives

We have

8PI’Y:_¢'7’9 s _
ai (txk,jxtfwﬁ ) - (@ (mj_1 = Y1) — & (b — Y 0)) (4)

% Yk - Y;gs_l
Yoices (X, Xpyw)

where ¢ (+) is the standard normal pdf. Note that

(o1 = i) 2 0 oy = ¥ita) gy = V] < [y = V]
so that,

OPr (Y, = j|Fi—1;0)
Os (Xk‘7 Xt7 w)

> 0iff ;g — V2| < |py = V24| and Vi > V2.
Consider, for instance, the two-category case. In the notation of eq’'n (2),

o = 0 and py = 00, so that (4) becomes

OPr (Y, = 1|F-1;6)
Os (Xk, Xt; w)

Yk - Yts_l
Zi<t s (Xi, X3 w)

=~ (1 —Yy) >0, iff Vi <V,
In words, if Y} is smaller than the (historical) similarity weighted average,
increasing the similarity between Y} and Y; will increase the probability that
Y; is equal to the lower category, 1, as expected. Similarly, for the higher
category, 2, (4) becomes

OPr(Y: =2|F_1;0)
0s (X, X¢;w)

Yy — )7ts_1

>0,iff Vi, > Y7,
Zi<tS(Xi7Xt;w) F =1

=¢ (M1 - Y;‘il)

as expected.
For M categories the idea is similar. Increasing the similarity between

the k-th and t-th observations will increase the probability of categories with



values above the sample’s similarity weighted average if and only if the value
of Y}, itself is above this average and decrease the probability of categories

with values below the sample’s similarity weighted average.

5 The ACF and Ergodic Stationarity

In this section we establish the rate of decay of the ACF in the general case
and derive its explicit form in the A = 1 case. We show, in particular, that
the ACF of the model in the A = 1 and M = 2 case behaves in a completely
analogous way to the behavior of the ACF of the dynamic AR(1) model.
This result does not appear to have been documented previously. We further

establish stationarity and ergodicity.

5.1 Population Moments

Evidently, the conditional distribution (3) depends on ¢ and therefore the
process is not stationary for finite n. For the binary case, De Jong and
Woutersen (2011) proved that the process is near epoch dependent and
strong mixing. For the more general M-category ordered process, we have

Ny = Pr(Yi=g) =3 Pr(vi=jlYia =k)A0

wo

P
+Pr (Y = jlYio1 = ) N
= +bw0)‘t INE

say, which converges to )\g’é’j because 0 < §; < b° < 1 — 02 < 1 for some
01, 02 > 0 and Vt. It follows that for any 1 < h < o0,

Eu, | Y, Z] Pr(Y; =j) »n— Z]h)\wo (5)
CORDIER

In words, all moments of the distribution of Y; are asymptotically inde-
pendent of n, a result which is in line with the findings of De Jong and
Woutersen (2011).

10



5.2 The Autocovariance Function

In Theorem 1 a bound is placed on the rate of decay of the autocovariance

function (ACV) and is proven in the Appendix.
Theorem 1 For the model (2), Ym € N, 3z € (0,1) such that
(Cov (Yegm, Ya)| < 2™

The implication of the result is that the ACF is absolutely summable
and the process is covariance stationary. In the case A = 1, we are able to

provide the precise form of the ACF.

Theorem 2 For the model (2) with A =1,

M
Cov (Yoym,Ys) = Y IPr(Yy=1)(1—Pr(Y; =1)) (6)
=1
M m—1
X ZjAs+k,s+k—1,j,l H At s+k—1,105
j=1 k=1
where
Avsji=1{Pr(Yi=jlYs=1)—-Pr(Y; =j|Ys #1)}. (7)

If, in addition, M = 2 and s is large,
Cor (Yasm, Ys) = Cor™ (Voy1,Ys) = {® (p— i) — & (—p)}™ ,m €N, (8)

The result (8) is therefore completely analogous to the result for the
ACF of a linear AR(1) process.

5.3 Ergodic Stationarity

The ACF of the Y;’s is absolutely summable, as has been established and
therefore the process is ergodic for the mean. See, for instance, Hamilton
(1994, pp. 46-47). For Gaussian processes, the absolute summability of
the ACF is sufficient for complete ergodicity (of all moments). As Y; is not

11



Gaussian, for ergodicity for all the moments we need to prove that for any
bounded functions f : R*¥*! — R and ¢ : R+ — R,

i (|E[f (Ys, o, Yorn) 9 Vtns oo Yopnta)]] (9)

n—oo

- |E [f (Kﬁ 7K9+k)]| ‘E [g (}/s—i-n’ ~-',}/;+n+l)]|)
= 0.

Theorem 3 : The process (2) is ergodic stationary.

It is clear from the proof of Theorem 3, specifically, the bound placed
on (13), that the same method of proof can be used to establish that the
process is mixing. In turn, stationarity and mixing imply ergodicity, see, for
instance, White (2001, Theorem 3.44). Ergodic stationarity will be used in
the proofs of consistency and asymptotic normality of the MLE in Section
7.

6 Assumptions

In this section we set the assumptions which will be used in the proofs of
consistency and asymptotic normality of the MLE. The parameter space is
given by © = ©; x Oy X O3, where O1, Oy are the spaces in which u, w
and p are assumed to lie, respectively. The true value of 8 is denoted by 6.
By K we denote a generic bounding constant, independent of n, which may
vary from step to step. For the proof of consistency of the MLE, we shall
require the following Assumptions.

Assumption AO0: {e};  is a sequence of NID (0,1). For each t =
1,...,n, the K x 1 vector X; is nonstochastic, real and finite and Y; €
{1, .M} If w#w', Pry, (V2 (w) #Y¢, (W) =1, Vt.

Assumption Al: The u-vector satisfies

(o0 =po < py <+ < ppgoy < pyy = )

and there exist wr,, wy, pr, and pgy such that for each ¢ = 1,..., K, w;o €
[wr, wg], with —o0 < wp, < wy < 00 and p € [pr, pyl, with —oco < pp <

12



pp < 00.

For the derivation of the asymptotic distribution of the score and Hessian,
we require the following additional assumptions:

Assumption (A2): For all i,t,k,

SUp |8y, (Xi, Xpsw)| < Ks (X, X w) < oo.
it,k,©
Assumption (A3): The function s, () is twice continuously differen-
tiable in w for all X and Y.
Assumption (A4): The derivatives 9Y;* | /00y, k = M, ..., M + K, are
linearly independent.
The last part of Assumption A0 is an identification condition. Assump-
tion Al is a compactness assumption and Assumption A2 is satisfied for the
exponential and inverse similarity functions. For the exponential similarity,

for instance,
Sup (Xiy Xy w) = — (X — Xup)* s (Xi, Xy w)
and the inequality holds because X; is bounded V¢ under Assumption AO.

Similarly, for the inverse similarity function

1

s (X, Xpyw) = ,
L+ 30wy (X — Xyy)?

Sw, (Xiy Xy w) = — (X — Xop)? 82 (X3, Xis w)

and the inequality holds in this case as well. Finally, Assumptions A3 and
A4 are analogous to Assumptions (2) and (5) of Proposition 7.9 of Hayashi
(2000), respectively, the latter to ensure that the expected value of the nor-
malized Hessian is nonsingular. Both assumptions hold for the exponential

and inverse similarity functions.

13



7 Consistency and Asymptotic Normality of the
MLE

In this section we establish consistency and asymptotic normality of the

MLE. Our first result is consistency.
Theorem 4 Under Assumptions A0-A1, 0, —p Oo.

We denote the normalized score and Hessian components by

1 L, (0)

Z’I’L7/,Lk (0) == % aluk y (k - 1, ,M — ].) 5
1 0l (0

I (0) = —= 8w(k)’(k =1,..,K),
1 oL, (0

1 021, (0)

respectively. Let V (6g) be the asymptotic Fisher’s information matrix, with

1

an n~ - normalization.

Asymptotic normality of the MLE is stated in the following theorem.
Theorem 5 Under Assumptions A0-A4, \/n (én - 90) 4N (O, vt (90)).

8 Simulations

The correlograms of the process are depicted in Figures 1-6. In each case
10000 Y’s were generated from i.i.d. standard normal g;’s. We set A =
1,2,5, M = 2,3 and for simplicity, Yt‘il =\t Zﬁ;g_/\ Y;. It is obvious that
the correlograms decay rapidly, supporting Theorem 1. Moreover, as stated

in Theorem 2, the correlogram in the A = 1 case (Figures 1-2) fade in a

14



very similar fashion to the decay of the theoretical ACF of the linear AR(1)
model.

In Tables 1-4 and in Figures 7-14 we summarize the simulation results
for the performance of the MLE’s of w and p. Fach setting consists of
1500 replications of the Y data series, generated from N (0, 1) &;’s and with
X ~ [-1,1], which was generated once and consequently was held fixed
in each iteration, with n = 250, 500, 1000, 2000, wo = 1, 3, 5, Ky =
0.3, 0.5, and A = 2, 5. In each case we report in the Tables the sample
means, their standard deviations, the trimmed means with symmetric 5%
trimming together with their standard deviations, the medians, first- and
third quartiles.

Uniformly in all cases, as n increases the sample means over the 1500
replications converge to the true parameter values and their standard de-
viations decline, as expected. This holds also for the trimmed means and
for both the estimates of w and of . The medians appear to be very close
to the parameter values and the interquartile range becomes tighter in all
settings as n increases.

The density estimates displayed in Figures 7-14 were constructed in
MATLAB using a Gaussian kernel and Silverman’s optimal bandwidth.
Figures 7-10 correspond to the kernel density estimates for w in the case
i = 0.3, wop = 1 and A = 2. Clearly, as n increases from 250 to 2000, the
density becomes more symmetric around 1 and with much fewer outliers.
The same conclusions hold qualitatively in Figures 11-14, corresponding to
the case py = 0.5, wg = 3 and A = 5. Overall, the simulations very much

support the analytical results concerning the properties of the MLE.

9 An Empirical Application

The data on Netflix compiled by the authors consists of a survey of viewers’
ranking of movies from 1998 to 2005. Movies belong to a class of items whose
various components do not necessarily translate into success, therefore it is
hard to find a general formula for tastes or rating of movies. However, it is

reasonable to assume that people who shared similar tastes in the past will

15



continue to do so, making the rating of movies a suitable application for a
similarity-based model.

This evaluation process may be applied to the rating of other cultural
items, such as works of art, music, literature, etc. Indeed this appears to be
the rationale for Amazon’s provision of information to potential customers
on purchases made by other customers. For example, a customer considering
the purchase of a particular book is given a list of other books that were also
purchased by the purchasers of this book. Thus a customer is able to see

whether his tastes are similar to those of the other purchasers of this book.

9.1 Data

In 2006 the online DVD rental service Netflix ran a competition for the best
algorithm to predict customer ratings of films. The data set consists of four
variables: user ID, movie title, the date on which the movie was rated, and
the movie’s rating - an integer between 1 and 5, with 1 corresponding to the
lowest rating and 5 corresponding to the highest.

We started out with a subset of the Netflix data set, containing ratings
made by 13,000 viewers of 99 movies,! of which only 14 were rated by all
users. For the purpose of this exercise we estimated the model with only
five explanatory variables as it considerably simplifies the computations.
Six movies out of the 14 were chosen arbitrarily, where one movie (Sweet
Home Alabama) acted as the Y variable and the remaining 5 movies acted
as the X variables (Independence Day, Pretty Woman, Forrest Gump, The
Green Mile, and Con Air). The observations were ordered by the date Y
was ranked. Moreover, at time t, the viewer must have watched all movies
corresponding to the X variables in order to be able to make similarity
comparisons. We further restricted the viewer of time ¢ to have watched the
movies corresponding to the X variables before the viewer of time t' > ¢.
Those observations that did not satisfy these condition were excluded from

the database. Sweet Home Alabama was chosen to be the dependent variable

!The original database contains approximately 100 million ratings of 18,000 movies
made by 500,000 viewers.

16



as it was released much later than the other movies making it more likely

to be viewed last. The model was estimated on the first 1,000 observations.

9.2 Model Estimation

The similarity-based model, being a weighted average of past observations,
uses the last A\ observations for prediction. Therefore, we estimated the
model on a data set of size ¢ in order to predict the t+1 observation. We refer
to the first ¢ observation as the train data and the t+1 observation as the test
data. This was repeated for ¢ = 900, ..., 999, so that the model was estimated
100 times making a one-step ahead prediction each time. The similarity
model was estimated with A set to 5, 10, and 20. The average estimates of
the parameters of the models appear in Table 6. Interestingly, the estimated
coefficients of Pretty Woman, w9 was the largest of all coefficient estimates,
so that this movie was found to be the most suitable for predicting Sweet
Home Alabama. Indeed, out of the six movies, these two are the closest in
terms of category classification.

The study uses two methods to generate the one-step ahead predictions:

1) Vi = j1 {Yy (w,p) € (ftj—1, 15}, (5 =1,..., M)

2) Y1 = argj:?f}?fM Pr (Y (w,p) +ery1 € (b1, 1))
These were compared to predicting the outcome according the sample’s
mode. The hit percent, defined as the ratio of correct predictions to the
total number of observations, was computed for the predictions based on Y,
Y and the mode. As can be seen from table 5, the hit percent of the simi-
larity based-model was considerably larger than that of the mode prediction
both in the train- and in the test data, representing an improvement of 3%
to 24% across the different settings. These results hold for all lag-lengths,

with the similarity model gaining more advantage as A increases.

10 Conclusions

In the context of decision making the data are frequently ordered and cate-

gorical, as in the choice of education level and consumer satisfaction surveys.

17



In this paper we presented a similarity-based model that can be applied to
this type of ordered data. Its key aspect is that the dependent variable Y
is assumed to be determined by outcomes of similar past observations, as
opposed to the ordered probit model which typically assumes that Y only
depends on the independent variables. It seems reasonable that if the eval-
uating agent has a well-defined method for rating, the ordered probit model
would better explain the data. However, if the objects that the evaluating
agent is rating are abstract (making the ranking process more complicated),
then the agent may very well rely on other people’s evaluations. Gilboa
et. al. (2006), Gayer et. al. (2007), and Gilboa et. al. (2013) refer to
a similarity-based model as case-based reasoning and to the ordered pro-
bit model as rule-based reasoning and discuss the circumstances of when
one mode of reasoning will dominate the other. The results of this paper
suggest that the similarity-based model provides a potentially very useful
framework for analyzing and forming accurate predictions for data formed

by case-based reasoning.
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Appendix A: Stationarity and Ergodicity

Proof of Theorem 1: For ¢t > s, we have

M
Cov(Yi,Ys) = Y jl(Pr(Yi=5Ys=1)—Pr(Yi=j)Pr (¥, =1)
=1

ST

= ) IPr (Y, =1)(Pr(Y; = j|Ys =1) — Pr(¥; = j))
4,l=1

ST

= Y JIPr(Ye=0){Pr(Y; =j|Y.=1)

=1
—Pr(Y; =jlYs =1)Pr(Ys=1)

—Pr (Y, =jlYs #0) Pr(Ys # 1)}
M

= > APr(Ya=0)(1—-Pr(Ye=1))Arsji, (10)
=1

where Ay j; is defined in (7). For t > s 4 A, let
Ay = {Ytl—l =YY, =Y, Y = Y;eli/\} ’

where Y}, Y} are the Y;’s which were generated given Y, = [ and Y, # I,
respectively. Notice that

A= {(Tal¥e = 1) = (¥, £ 0)} = {¥/ =¥}
and therefore,
At:>At+1,t>8+)\. (11)

In other words, if 37" > s+ A such that the two series, (YTl,_l, Y%_Q, - Yr_ﬁ_)\)
and (Yr}il,Yiﬁiz, ...,Yf_)\), coincide, it will follow that Y} = Y} vt > T.
Hence,

Ar = N5 1 =0,Vt > T. (12)
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Furthermore, as Y;* ; € [p, pM] and &; € R and in view of the restriction on
the p1;’s implied by (2), for fixed A € (0, 00), Jzy such that

Pr (A7) <zy <1Vt >s+ A\
Using (11),

Pr(Af,,) = Pr(A47]A7) Pr(A7) + Pr(Af, A)
= Pr (Asz\Af) r (A7) + Pr (At+17 Ag, At+1)
P (A5 |A5) Pr (A7)

Con81der the case A = 1, M = 2. We have YJrl =14+ pY! +esi1 > 1y}
and VY| =14 1{pY) +e541 > p1}, so both Agp = {V!,, =Y/} and

Ao = { i1 7 Y, +1} have positive probablhty For the latter case, we can
have Agp3 = {YL,=Y!,} or AS 5 = {Y] , #Y.,}, both with positive
probability. More generally, 3z € (0,1) such that for each ¢t > s+ A,
Pr (Af,1]|Af) < zy < 1 and therefore Pr (A¢,;) < zpzy. This implies, in

particular, that
Pr(Asingo) =1 —Pr (A% ,40) > 1— 2% 2 = max {2y, 2y}
and more generally,
Pr(Asiyim) > 1—2m meNz e (0,1).

In view of (12),

Pr (N2 agm {Atsji =0}) > Pr(Agiagm) >1—2™ meN,z e (0,1),
implying that
Pr (U2 apm {Atsji #0}) = 1=Pr (N2 s pm {Arsjy =0}) <a2™, (m=1,2,..).
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Proof of Theorem 2: For the A = 1 case,

Astasji = Pr(Yei2=j|Ys=1) = Pr(Ysi2 =j|Ys #1)

= Pr(Ysp2=jYss1 =0Ys =) Pr(Ysp1 =1Ys =1)
+Pr (Yoo =j[Yop1 #1LYs =) Pr (Y1 £1Ys = 1)
—Pr (Yoo =jlYoq1 =LY, D) Pr (Yo = 1Y #1)
—Pr(Yoy2 =j|Yer1 #1LYs # 1) Pr (Y1 #1Ys #1)

= Pr(Yoy2 =jlYoq1 =) Pr Yoy =1[Ys =1)
+Pr (Yoo = j|Ysy1 # 1) Pr (Y1 #U|Ys = 1)
—Pr(Yopo = j[Ysr1 = ) Pr(Yoqu = I|Ys #1)
—Pr (Yoo = j|Ysr1 # 1) Pr (Ys1 #1|Ys # 1)

= {Pr(Ysp2 =jlYer1 =10 —Pr(Yep2 = j[Ysr1 # 1)}
XAPr (Yo = 1|Ys = 1) = Pr (Yoq1 = I|[Ys #1)}

- As+2,s+1,j,lAs+1,s,l,l

and so (6) follows on using (10).
In the special case where A = 1 and M = 2, recoding the categories to

be 0 (lower) and 1 (higher) and setting p; = p, we obtain

Pr(Yo1=1Yem1 =1) = Pr (Y1 =1|Ysm1 = 0) =P (p— ) — P (—p1) .
The autocovariance in this case reduces to
Cov (Yyim: V) = Pr (Y = 1) (1= Pr (Y, = D) {® (p— ) — @ ()} ,m € N.

Together with eq’'n (5), for large enough s, this implies (8). W
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Proof of Theorem 3: In order to verify (9), we write:

[E[f (Yssooos Yorr) 9 (Ystn, ooy Yornti)]|
- ’E[ ( s+k:)]| ‘E[ ( s+n ---,YternH)”
< |E[f (Ym~--;Ys+k:)g(Ys+m---aY:s+n+l)]
—Ef (Yss s Yol E[g Ystny oo, Yopnti)] |
_ +
- | Z f( J1ye- ,Jk+1) (Cfm? ,mz+1>
J1yeoJk+1
M1y, M4+1
X [Pr <BS'1 jk+1’C7§1t7 ,mz+1> —Pr (Bjsiw--»ijrl) Pr (Crsntfl ,mz+1>”
_ +
= | Z f( ]k+1) (0511? ,mz+1>
J1seeosJk+1
M1, M41
x Pr (BJS'17--~J1€+1> <1 —Pr (B;17~~~:jk+1)) [Pr (Cfnt?-,mlﬂ ’BJS'L--~J1€+1>
C
~Pr (O (Bien) )11 (13)
where
B e = Y =01, Yoik = Jia}
and

s+n _ —
le, M4 {}/:9+TL =mi,..., Y9+n+l - ml+1} .

For t > s + k + X\ we construct the event
Ay = {Y;tBil = Y;Ech ---7Y£>\ = Yfi} :

where, for brevity, the superscript B stands for ley-~~7jk+1 and B¢ is its

complement. It follows that
Ay = {(Y4|B) = (Y2.4|B9)} = {Y}" =v""}.

Hence,
At:>At+1,t>S+k+>\.
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The rest of the proof is very similar to the proof of Theorem 1 and is
omitted.Hl

Appendix B: Consistency and Asymptotic Normality

Proof of Theorem 4: The proof can be made by either checking the
conditions of Proposition 7.5 of Hayashi (2000), Theorem 2.7 of Newey and
McFadden (1994), or by directly verifying Wu’s (1981) criterion. For any
d1 > 0, denote by Bs, (fp) the ball {0 € © : || — 0|| < 01} and by B (6o)
the complement of Bs, (6p) in ©. For any 6 € ©, let

Da (00,01) = - (1 () ~ 10 (01)).

To establish consistency, we must prove that Vd; > 0,

lim inf inf D, (60,0 14
1mn13003§11n(00) n (0o, 01) (14)
is strictly positive in probability. See, for instance, Wu (1981).
Let

R )
ln,j (0) = - Z T{yr = j}In Ay ; (0).
=1

The series {l,,; (#)} is nonpositive and uniformly bounded from below and
by ergodicity of the process, it is convergent w.p.1. We shall denote this
limit by Z; (). This implies that V6 € ©, I, (0) —a.s. > 12y 1; (0) = 1(6).
Using Jensen’s inequality and the fact that Zj\il Ay j(0o) =1,

Egy (Dy (61,00)) = —EQOZZEQO (1{yt—y}1n Bag(00) 1)

tljl ()

Ay (01
R

t=1 j=1
1 n
< —Eg, Y (1) (15)
n t=1
= 0.
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If pg # pq, At (g, w, p) # At (pq,w, p), Vt and if wy # wy, Y2 1 # Y2 w.p.
1 Vt under Assumption AO, which also implies Ay (p, wg) # Ay (g, w1) w.p.
1 Vt. Furthermore, if py # p1, A (1, w, pg) # A¢ (1, w, py), Vt. Hence, as
n — 00, equality in (15) holds iff §p = @ and the proof of the Theorem is
completed.

In order to prove Theorem 5, we shall require the following lemmas.
Lemma 6 Under Assumptions A0-A2, z, (6p) 4N (0,V (0o)).
Proof of Lemma 6: Let
ft,k (9) =9 (,Ulc - 258_1) )

where ¢ is the standard normal PDF. As

a0 =20 @ =r 1=k,
we have .
1
2o, (0) = ﬁ;Wﬁk (), (16)
where

W (0) = fu (0) (”Yt:’“} _ 1{“:’”1}).

Ay A¢ jt1
We notice that
Eg, (W[ (0)|F—1) =0

so that W/ is an m.d.s.. Furthermore,

Al (6) = “ow, 0w 0) hy* (6)
where
61,5 (0) = frj (0) — frj-1(0)
and 5
hy' (0) = 87%37;'_1,
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Thus,

S (0) = jﬁgww (0)., (17)
where o
Wi 0) = < 03017 =5) ] (18)
We have, j
u
B OV O)1F0) = 0 Y505 0)

= —h% (0) (frar (0) — fro (0))
= 0,

so that W,”* (0) is also an m.d.s.. Finally,

o (0) = LS
np (0) ﬁ;m 0),

where

I L0 (0)
WE0) = —p 'Y ) 1{Yi = j} A:j ©)’

j=1
which is also an m.d.s.. For asymptotic normality of the score function,
it will thus be sufficient to verify conditions (2.3) of McLeish (1974). Let

. . 2
ok ()% = T, (W;k (0)) Ji=powithk =1,.,M — 1, i = w with

n

k=1,..K, or i = p with the k-index suppressed. We need to show that for
each 0 € O,
ik 0 2 i
7t O 2, i (g) < oo (19)

n
and that Ve > 0, ¢ and k,

1
ok (0)?

Zn: (W;k (9))2 1 {‘Wf’“ (0)\ > egi (9)} 20, (20)
t=1
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As fi (8) < oo, uniformly in n, k and ©,

L (e (o2 LN o (1{Vi=Fk} 1{¥i=k+1})?
n;(wt ) —n;ft,kw) < Ak Ao ) <K
(21)

and convergence is assured by ergodicity, the limit of which is denoted by

V# (9). Also, because W/ (6) is uniformly bounded and o4,* (f) behaves as

/1 in probability, condition (20) trivially holds and we are done for 2, ,, ().
For W% (0), observe that

Zi<t ka (Xia Xt; w) Y Ei<t S (Xia Xi; w) Y; Ei<t 'éwk (Xia Xi; w)

h™ (0) = p -
! Zi<t8(Xi7Xt;w) (Zi<t3(Xi7Xt;w))2
(22)
where $,, (X;, Xy;w) = 0s (X, Xy w) /Owy. It follows from (22) that under
Assumptions A1-A2,

sup | R (9)‘ < 2K M.
k.0

In view of (18) and the last inequality

sup |[W™ (0)| < K,
t,k,n,©

so that, together with ergodicity,
1 . w 2 p w
=3O L v (0) < o
t=1

Condition (20) also holds because W,"* (6) is uniformly bounded and o%* ()
behaves as \/n in probability. Similar reasoning follows for W/ (6) and the

proof of the Lemma 6 is therefore completed.l

Lemma 7 Under Assumptions A0-A4, V0 € ©,

lim FEy <(Hn,9]‘,9k (0))1§j,k§K+M>

n—oo

s finite and nonsingular.
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Proof of Lemma 7: We have

0%l,, Zf (1{Yt:k}_1{Yt=k+1}>
Buja,uk i ( A¢ Ay gt

1{Yy=k+1} 1{V; =k} -

t,k+1

2
Athrl

+ Z fr, (0) frj1 (0
with f; ; (0) = df:; (x;0) /0x. Hence,

0?1, (9) 1 1 .
Fo (@@'@%‘ft 1) ( thk <At k+1(0) - Ay (9)>> Hi=ky

th] ftJ'H()l{j:k—l}-

At J+1

In view of (18) and under Assumption A3,

82ln (9) - - Wi, wl 5t 2J (0)
dww, — 2 Z =0

: (B (0) | 675(0) Ry (9)
_;ht (9);1{1€—J}<A2j(9)+ jAf,j(Q) )

where
. 06+ (0 . . .
it @ = 20O = (7500~ iy ) W 0) =~ OB 0),
say. We have,
921, (0) . 6%, (6)
iy (g ==L O 0 (—pt,j O+ 3 )
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For the normal distribution, ¢ (x) = —x¢ () so that ij\/il pr; (0) =0 and

we are left with

821, (0) L 0k () o (0)
Ee(awkawﬂft‘l)__zht o) b ZA”(G)

t=1

Similarly, with &, ; , (z;60) = 8d;; (9) /Op = —pe; (0) p~ Y7,

021, (0 _ 6t 0 52'(9) R

—1vrs \2 . pt’(g) 5?’(9)
B _;(p i) ;1% =9 <_At,Jj 0N A (9)) ,

t.J
giving
0L, (0) )__ s y2en 675 (0)
E6< apz “7:,5,1 - ;(ﬂ Kﬁ—l) jzlAt’j (9)
Because u
O (0) _ N~ _jy 0ui (0)
b SR SRS i i
0%, () _Zh )il{y_,}l{j:l}—l{j:l—kl}
8wk8ul B — ted Ay (0)
Y (ft,l () - 2
Thus,

01y, (0) N 610 (0)  driga (6)
Eo <8wk8,ul [Fe 1> B th fur () <At,l @) Apigr (9)> '

t=1
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Also,

821, (6) G M o6 (0)
~ = =) K*PO)) 1{Y, = =
awlap tz:; t ( )le { t ]} At,j (0)

ST L ((Begp(8) 57, (0)pYE
—;ht (9);1{3§:J}<AZ75(0)+ JA%J(O) ik

d
" E <02ln (9) |]-" > _ -1 i hwk (9) s % 5?,3' (6)
0 dwrdp t—1 ) = —p £ t t—lj:1 At,j (9).
Finally,
Phl®) gt Sy ti=0 o=
(9p8ul — = = Atﬂ‘ (0)
: 61,5 (0) fuu (9))
9 _ 5J )
X (ft,l ( ) At,j (0)
and

9?1, (0) N 610 (0)  Sta11(0)
Ey < 3;03Mz |ft1> =p ;Kf—lftl (9) (At,l (0) - At,lJrl (9)) )

It is obvious that for any 6y, 6;, all the second-order derivatives may be

written as

1 n
Hnﬁj,ek (0) — E Z Zt (0) 9
t=1

where, under Assumptions A1-A2, z; (#) are uniformly bounded. By the er-
godicity, Hy g, 9, () converges w.p.1 to a nonstochastic function, say Hy, g, (6).
Moreover, the Cauchy Schwartz inequality implies that the determinant of
Ey (ngﬁgk (9)) is non-negative for all n, §;, 0, with equality holding iff the
terms in (hf’“) are linearly dependent. This possibility is precluded

1<k<K
by Assumption A4 and thus, the proof of Lemma 7 is complete.l
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Proof of Theorem 5: It is straightforward to verify that the second-
order Bartlett identity holds for all the second-order partial derivatives. As
Hyp,0, (0) converges w.p.1 to Hy, g, (0), it also converges in probability.
Because 0,, —;, 6y and because Hy, o, (0) is continuous, it follows from The-
orem 4.1.5 of Amemiya (1985) that plim <Hn79j,9k (@n>> = Hy, g, (0o). This,
together with Lemma 6 and the mean value Theorem, as in eq’'n (7.3.7) of
Hayashi (2000), completes the proof. B
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Table 1. Simulated MLE point estimates for 5 = 0.5 and A = 2.

is the trimmed mean with 5% symmetric trimming; Std Trim is the

quartiles, respectively.

standard deviation of the trimmed mean; (1 and ()3 are the first and third

n 250 500 1000 2000
w i w i w it w it
Mean 4.341 | 0.499 | 1.468 | 0.499 | 1.115 | 0.500 | 1.050 | 0.500
Std 24.613 | 0.083 | 3.896 | 0.058 | 0.598 | 0.041 | 0.359 | 0.029
Trim 1.584 | 0.499 | 1.193 | 0.499 | 1.085 | 0.500 | 1.038 | 0.500
wo =1 | Std Trim | 1.942 | 0.072 | 0.763 | 0.051 | 0.476 | 0.035 | 0.301 | 0.025
Median | 1.053 | 0.499 | 1.004 | 0.499 | 1.009 | 0.499 | 1.010 | 0.501
Q1 0.498 | 0.443 | 0.629 | 0.459 | 0.723 | 0.473 | 0.796 | 0.480
Qs 1.976 | 0.559 | 1.626 | 0.540 | 1.394 | 0.525 | 1.243 | 0.519
Mean 12.815 | 0.500 | 6.542 | 0.500 | 3.806 | 0.500 | 3.300 | 0.500
Std 43.107 | 0.084 | 22.169 | 0.059 | 4.147 | 0.041 | 1.581 | 0.029
Trim 6.495 | 0.501 | 3.908 | 0.500 | 3.420 | 0.500 | 3.198 | 0.500
wo =3 | Std Trim | 13.165 | 0.073 | 3.261 | 0.051 | 1.642 | 0.036 | 0.973 | 0.025
Median | 2.850 | 0.502 | 2.999 | 0.502 | 3.073 | 0.500 | 3.054 | 0.500
Q1 1.440 | 0.444 | 1.929 | 0.460 | 2.226 | 0.473 | 2.440 | 0.481
Q3 5.716 | 0.560 | 4.660 | 0.540 | 4.177 | 0.526 | 3.770 | 0.519
Mean 18.778 | 0.499 | 12.923 | 0.501 | 8.262 | 0.500 | 5.962 | 0.500
Std 49.275 | 0.083 | 35.147 | 0.058 | 19.249 | 0.040 | 5.747 | 0.029
Trim 12.716 | 0.499 | 8.031 | 0.501 | 6.170 | 0.500 | 5.449 | 0.500
wo =5 | Std Trim | 29.233 | 0.072 | 10.037 | 0.050 | 3.924 | 0.034 | 2.075 | 0.025
Median | 4.457 | 0.498 | 5.022 | 0.502 | 5.084 | 0.501 | 4.929 | 0.500
Q1 2.281 | 0.442 | 3.083 | 0.464 | 3.611 | 0.474 | 3.918 | 0.480
Qs 10.487 | 0.555 | 8.818 | 0.538 | 7.366 | 0.527 | 6.518 | 0.519
Note: A is the lag-length; Std is the standard deviation of the mean; Trim




Table 2. Simulated MLE point estimates for ;5 = 0.5 and A = 5.

is the trimmed mean with 5% symmetric trimming; Std Trim is the

quartiles, respectively.

standard deviation of the trimmed mean; ()1 and ()3 are the first and third

n 250 500 1000 2000
w iL w i w it w it
Mean 1.705 | 0.501 | 1.164 | 0.500 | 1.070 | 0.501 | 1.030 | 0.500
Std 6.347 | 0.081 | 0.973 | 0.057 | 0.591 | 0.040 | 0.384 | 0.029
Trim 1.261 | 0.501 | 1.104 | 0.500 | 1.045 | 0.501 | 1.022 | 0.500
wo =1 | Std Trim | 1.261 | 0.070 | 0.717 | 0.050 | 0.476 | 0.035 | 0.328 | 0.025
Median | 0.969 | 0.501 | 0.994 | 0.498 | 0.987 | 0.501 | 0.995 | 0.500
Q1 0.413 | 0.448 | 0.578 | 0.462 | 0.682 | 0.474 | 0.777 | 0.481
Qs 1.763 | 0.556 | 1.514 | 0.537 | 1.356 | 0.528 | 1.248 | 0.518
Mean 4.579 1 0.500 | 3.673 | 0.500 | 3.288 | 0.499 | 3.129 | 0.500
Std 8.305 | 0.080 | 3.118 | 0.057 | 1.439 | 0.040 | 0.827 | 0.028
Trim 3.726 | 0.800 | 3.398 | 0.500 | 3.211 | 0.499 | 3.108 | 0.500
wo =3 | Std Trim | 2.885 | 0.070 | 1.738 | 0.050 | 1.065 | 0.035 | 0.703 | 0.024
Median | 2.965 | 0.500 | 3.012 | 0.501 | 3.053 | 0.501 | 3.036 | 0.500
@1 1.770 | 0.444 | 2.120 | 0.461 | 2.389 | 0.472 | 2.553 | 0.482
Qs 4.874 | 0.555 | 4.262 | 0.539 | 3.934 | 0.526 | 3.634 | 0.518
Mean 9.791 | 0.500 | 6.836 | 0.500 | 5.465 | 0.500 | 5.142 | 0.500
Std 33.429 | 0.082 | 18.622 | 0.059 | 2.709 | 0.040 | 1.452 | 0.029
Trim 6.505 | 0.500 | 5.620 | 0.500 | 5.289 | 0.500 | 5.088 | 0.500
wo =5 | Std Trim | 5.838 | 0.072 | 2.905 | 0.051 | 1.851 | 0.034 | 1.208 | 0.025
Median | 4.858 | 0.503 | 4.973 | 0.499 | 4.923 | 0.500 | 4.912 | 0.500
@1 3.002 | 0.443 | 3.496 | 0.461 | 3.845 | 0.473 | 4.147 | 0.481
Qs 7.996 | 0.555 | 7.042 | 0.540 | 6.385 | 0.527 | 5.975 | 0.520
Note: A is the lag-length; Std is the standard deviation of the mean; Trim




Table 3. Simulated MLE point estimates for 5 = 0.3 and A = 2.

n 250 500 1000 2000
w i w i w it w it
Mean 3.787 10.299 | 2.073 | 0.299 | 1.152 | 0.301 | 1.063 | 0.300
Std 21.847 | 0.086 | 12.133 | 0.060 | 0.769 | 0.042 | 0.409 | 0.030
Trim 1.606 | 0.300 | 1.238 | 0.298 | 1.097 | 0.301 | 1.046 | 0.300
wo =1 | Std Trim | 2.229 | 0.074 | 0.899 | 0.052 | 0.491 | 0.037 | 0.317 | 0.026
Median | 0.988 | 0.301 | 1.022 | 0.299 | 1.008 | 0.301 | 1.014 | 0.300
Q1 0.483 | 0.240 | 0.622 | 0.258 | 0.724 | 0.272 | 0.803 | 0.280
Qs 1.874 | 0.357 | 1.571 | 0.338 | 1.394 | 0.329 | 1.267 | 0.320
Mean 11.79 | 0.297 | 6.198 | 0.298 | 4.204 | 0.301 | 3.325 | 0.301
Std 38.258 | 0.083 | 18.497 | 0.059 | 9.583 | 0.043 | 1.780 | 0.030
Trim 6.393 | 0.297 | 4.197 | 0.298 | 3.466 | 0.301 | 3.192 | 0.301
wo =3 | Std Trim | 11.471 | 0.072 | 3.877 | 0.051 | 1.880 | 0.37 | 1.065 | 0.026
Median | 3.011 | 0.298 | 2.959 | 0.299 | 2.964 | 0.301 | 2.993 | 0.301
Q1 1.605 | 0.242 | 1.938 | 0.258 | 2.188 | 0.273 | 2.362 | 0.280
Q3 6.192 | 0.351 | 4.863 | 0.339 | 4.263 | 0.330 | 3.818 | 0.322
Mean 19.307 | 0.301 | 12.174 | 0.302 | 7.902 | 0.301 | 5.904 | 0.301
Std 51.551 | 0.082 | 30.598 | 0.058 | 17.282 | 0.042 | 5.552 | 0.023
Trim 12.944 | 0.301 | 8.084 | 0.302 | 6.006 | 0.301 | 5.466 | 0.301
wo =5 | Std Trim | 30.462 | 0.072 | 10.360 | 0.050 | 3.691 | 0.036 | 2.024 | 0.025
Median | 4.646 | 0.303 | 4.817 | 0.303 | 4.945 | 0.300 | 5.075 | 0.301
Q1 2.3207 | 0.247 | 3.066 | 0.263 | 3.598 | 0.273 | 3.973 | 0.281
Qs 10.323 | 0.354 | 8.557 | 0.340 | 7.182 | 0.328 | 6.502 | 0.320
Note: A is the lag-length; Std is the standard deviation of the mean; Trim

is the trimmed mean with 5% symmetric trimming; Std Trim is the

standard deviation of the trimmed mean; (1 and ()3 are the first and third

quartiles, respectively.




Table 4. Simulated MLE point estimates for ;4 = 0.3 and A = 5.

is the trimmed mean with 5% symmetric trimming; Std Trim is the

quartiles, respectively.

standard deviation of the trimmed mean; ()1 and ()3 are the first and third

n 250 500 1000 2000
w iL w i w it w it
Mean 1.417 | 0.296 | 1.196 | 0.300 | 1.084 | 0.300 | 1.037 | 0.300
Std 2.636 | 0.085 | 1.632 | 0.059 | 0.622 | 0.041 | 0.377 | 0.029
Trim 1.212 | 0.297 | 1.094 | 0.300 | 1.053 | 0.300 | 1.030 | 0.300
wo =1 | Std Trim | 1.194 | 0.074 | 0.731 | 0.052 | 0.466 | 0.036 | 0.325 | 0.026
Median | 0.940 | 0.298 | 0.961 | 0.299 | 1.001 | 0.300 | 1.011 | 0.300
Q1 0.934 | 0.240 | 0.555 | 0.260 | 0.693 | 0.273 | 0.765 | 0.281
Qs 1.740 | 0.355 | 1.488 | 0.342 | 1.380 | 0.328 | 1.270 | 0.320
Mean 6.369 | 0.298 | 4.091 | 0.300 | 3.281 | 0.299 | 3.126 | 0.299
Std 26.611 | 0.083 | 11.170 | 0.058 | 1.461 | 0.041 | 0.919 | 0.029
Trim 3.904 | 0.298 | 3.452 | 0.300 | 3.208 | 0.299 | 3.092 | 0.299
wo =3 | Std Trim | 3.353 | 0.072 | 1.894 | 0.050 | 1.138 | 0.036 | 0.751 | 0.025
Median | 3.023 | 0.300 | 3.025 | 0.300 | 3.015 | 0.298 | 2.979 | 0.300
Q1 1.682 | 0.246 | 2.050 | 0.259 | 2.322 | 0.272 | 2.500 | 0.279
Qs 4.986 | 0.354 | 4.510 | 0.338 | 3.994 | 0.325 | 3.644 | 0.319
Mean 9.592 | 0.297 | 6.992 | 0.299 | 5.459 | 0.299 | 5.243 | 0.300
Std 30.564 | 0.083 | 17.844 | 0.059 | 2.489 | 0.041 | 1.482 | 0.029
Trim 6.423 | 0.297 | 5.701 | 0.299 | 5.307 | 0.299 | 5.190 | 0.300
wo =5 | Std Trim | 5.329 | 0.073 | 3.039 | 0.052 | 1.805 | 0.036 | 1.243 | 0.025
Median | 5.019 | 0.298 | 4.985 | 0.300 | 5.000 | 0.299 | 5.049 | 0.300
Q1 2.942 | 0.238 | 3.414 | 0.259 | 3.957 | 0.272 | 4.214 | 0.281
Qs 8.076 | 0.351 | 7.366 | 0.337 | 6.372 | 0.326 | 6.089 | 0.320
Note: A is the lag-length; Std is the standard deviation of the mean; Trim




Table 5. Hit for the similarity based model and mode predictions.

Database | Prediction | A=5| A=10| A =20 | Mode
Method
Train Y 0.35 | 0.35 0.36 0.34
Train Y 0.36 | 0.38 0.38 0.34
Test Y 0.37 | 0.37 0.38 0.33
Test Y 039 |04 0.42 0.34

Note: A is the lag-length; Y, Y, and Mode are given in Section 9.2

Table 6. Estimated coefficients for the similarity-based model on the entire
Netflix database

Similarity

A=5 A=10 | A=20
wi | 0.0000 0.0000 | 0.0000
wy | 18.4440 2.7903 | 1.8517
ws | 0.5268 0.0246 | 0.0000
wy | 4.8465 0.3260 | 0.3547
ws | 3.6719 0.0536 | 0.1812
iy | -1.0382 -0.3238 | 0.5063
fiy | -0.1945 0.5405 | 1.3805
ft3 | 0.7573 1.5042 | 2.3573
fty | 1.6733 2.4264 | 3.2973

p | 0.2765 0.4732 | 0.7022
Note: A is the lag-length, the w, i and p are the estimated coefficients of

the similarity-based model
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Figure 1. Correlogram of the process in the case
A=1, M =2, n=10000.
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Figure 2. Correlogram of the process in the case
A=1, M =3, n=10000.
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Figure 3. Correlogram of the process in the case
A=2, M =2,n=10000.
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Figure 4. Correlogram of the process in the case
A=2, M =3, n=10000.
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Figure 5. Correlogram of the process in the case
A =5, M =2, n=10000.

5 10 15 20

Figure 6. Correlogram of the process in the case
A=05, M =3, n=10000.
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Figure 7. Kernel density estimate for w, Figure 8. Kernel density estimate for w,
wo =1, pg = 0.3, A =2, n = 250. wo =1, pg = 0.3, A =2, n = 500.
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Figure 9. Kernel density estimate for w, Figure 10. Kernel density estimate for w,
wo =1, pg = 0.3, A =2, n = 1000. wo =1, pg = 0.3, A =2, n = 2000.
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Figure 11. Kernel density estimate for w,
wo =3, g = 0.5, A =5, n = 250.
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Figure 13. Kernel density estimate for w,
wo = 3, pg = 0.5, A =5, n = 1000.
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Figure 12. Kernel density estimate for w,
wo =3, pg = 0.5, A =5, n = 500.
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Figure 14. Kernel density estimate for w,
wo = 3, pg = 0.5, A =5, n = 2000.
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