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Abstract

In a large variety of applications the data for a variable we wish

to explain is ordered and categorical. In this paper we present a new

similarity-based model for the scenario and investigate its properties.

We establish the rate of decay of the autocorrelation function (ACF)

in the general case and derive its explicit form in some special cases.

Stationarity and ergodicity of the process are proven, as well as consis-

tency and asymptotic normality of the maximum likelihood estimator

(MLE) of the model�s parameters. A simulation study supports our

�ndings. The results are applied to the Net�ix data set, comprised of

a survey on users�grading of movies.
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1 Introduction

In a large number of applications the data for a variable we wish to explain is

ordered and categorical. Examples include the level of education or income

attained, the amount of insurance coverage purchased, voting for candidates

that are positioned from left to right, corporate bond ratings and question-

naire based survey response coding. For all these examples and more, the

econometric workhorse is undoubtedly the ordered probit model. In this

paper we introduce a novel similarity based modeling alternative for such

situations and investigate its properties.

Our model may be applied to circumstances where the decision of which

product to purchase depends on recommendations of others. These situa-

tions often arise in connection with the consumption of a new product or

of a product that is consumed only once and for which there is uncertainty

about its quality. An example for such a situation is the Net�ix data set,

comprised of a survey on users�grading of movies. In order to predict the

grade a user would assign to a particular movie at time t, one would analyze

the grades assigned to this movie by other users with similar tastes. The

prediction of a grade a user will assign to a movie at time t, is based on the

grades assigned to this movie prior to this date, by other users who share

similar tastes. Similarity of tastes of two users can be measured by their

ranking of other movies prior to time t.

Similarity based models were introduced to economics by Gilboa et. al.

(2006), applied in the context of real estate prices by Gayer et. al. (2007),

and suggested as an approach for prediction by Gilboa et. al. (2011). Fur-

thermore, Gilboa et. al. (2010) discussed the relevance of empirical similar-

ity to the de�nition of objective probabilities. For the model

Yt =

P
i<t s (Xi; Xt;w)YiP
i<t s (Xi; Xt;w)

+ "t; t = 2; :::; n; (1)

where s is a similarity function, Xi is the ith observation on K explanatory

variables, w is a K � 1 parameter vector and "t is an iid random variable,

the asymptotic theory of estimation was established by Lieberman (2010)
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and this work has been extended by Lieberman (2012) and Lieberman and

Phillips (2013) to the time-varying coe¢ cient, non-stationary autoregression

Yt = �+ st (Xi; Xt;w)Yt�1 + "t; t = 2; :::; n;

where st (�) is possibly time varying. The latter model has been applied
to Japanese dual stock data and to international Exchange Traded Funds

(ETFs). Finally, the concepts of similarity and contagion of views are central

in Kapetanios et. al. (2013), who constructed a nonlinear panel data model

of cross-sectional dependence.

For the ordered-probit model, applications are numerous and the topic is

covered in almost every microeconometrics text book, see, inter alia, Mad-

dala (1983), Cameron and Trivedi (2005) and Greene (2008).

Recently, De Jong and Woutersen (2011) investigated the binary time

series

Yt = 1

8<:
pX
j=1

�jYt�j + 

0xn + "t > 0

9=;
where "t

iid� N (0; 1). They proved near epoch dependence and strong mixing

of the process, as well as consistency and asymptotic normality of the MLE

of � =
�
�1; :::; �p; 


0�0. The extension of De Jong and Woutersen�s (2011)
method of proof to our multi-category ordered setting, involving similarity

weighted averages in place of the �j�s, does not appear to be trivial and our

main proofs, especially on the rate of decay of the ACF, stationarity and

ergodicity, adopt a di¤erent technique.

The plan for this paper is as follows. In Section 2 we introduce the

probabilistic model in detail and in Section 3 we investigate cases in which

the ordered probit model may fail whereas our model is expected to deliver

desirable predictions. The interpretation of partial derivatives in the model

is discussed in Section 4. In Section 5 we establish the rate of decay of the

ACF in the general case and derive its explicit form in some special cases.

We show, in particular, that the ACF of the binary response model in which

the response depends only on one lag, behaves in a completely analogous way
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to the behavior of the ACF of the dynamic AR(1) model. This result does

not appear to have been documented previously. Stationarity and ergodicity

of the process are proven. The model�s assumptions necessary for the proofs

of consistency and asymptotic normality of the MLE are speci�ed in Section

6 and the theorems follow in Section 7. Simulations are presented in Section

8 and an application to the Net�ix data set follows in Section 9. Section 10

concludes and proofs are provided in the Appendix.

2 The Ordered Similarity Model

To �x ideas, we start by presenting a special case of our M -category model,

when it is restricted to only two categories, 0 and 1, in which case,

Y1 = 1 f"1 > 0g

and

Yt = 1
�
�Y st�1 + "t > �

	
; (t = 2; :::; n) ;

where

�Y st�1 = �

Pi=t�1
i=t�� s (Xi; Xt;w)YiPi=t�1
i=t�� s (Xi; Xt;w)

;

1 f�g is the indicator function, taking the value of unity if the condition in
the brackets is satis�ed and zero otherwise, s (�) is a similarity function,
w = (w1; :::; wK)

0, Xi is the ith observation on a K-vector of explanatory

variables, "t
iid� N (0; 1), � is a cut-o¤ parameter, which may or may not be

known, � � 1 is the lag-length and � is a free parameter which is allowed to
be greater than-, equal to- or less than unity. For brevity, we have suppressed

the dependence of �Y st�1 on �, � and w. The model is entirely analogous to

the probit model apart from the fact that X 0
t� in the latter is replaced by a

similarity weighted average, �Y st�1, in the former. Conditions on s (�) will be
given in Section 5. For instance, we may specify an exponential similarity,
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viz.,

s (Xi; Xt;w) = exp

0@� KX
j=1

wj (Xij �Xtj)2
1A ;

so that, ceteris paribus, the closer Xi will be to Xt, the larger will be the

weight that Yi will receive, relative to other the Yj�s, in the construction of
�Y st�1.

Let Ft�1 be the �-�eld based on all the information included up to time
t� 1. Then

Pr (Yt = 1jFt�1; Xt;w) = Pr
�
"t > �� �Y st�1

�
= �

�
�Y st�1 � �

�
:

This means that, given a �, the larger the value of �Y st�1, the higher the

probability that Yt will be equal to unity. The model thus connects in a

nonlinear way between the history of the Y 0t s and the Xt�s and the current

value of Yt, which is very di¤erent from the way in which the observations

are generated in the probit speci�cation.

Extending this idea to M ordered categories, j = 1; :::;M , our model is

Y1 = j1

�
"1 2 (��1

�
j � 1
M

�
;��1

�
j

M

�
]

�
and for t = 2; :::; n,

Yt = j1
�
�Y st�1 + "t 2 (�j�1; �j ]

	
; (j = 1; :::;M) ; "t

iid� N (0; 1) ;�
�1 = �0 < �1 < � � � < �M�1 < �M =1

�
: (2)
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Let � = (�0; w0; �)0, with � =
�
�1; :::; �M�1

�0. We have
Pr (Yt = jjFt�1; Xt; �) = Pr

�
�Y st�1 + "t 2 (�j�1; �j ]

	
= �

�
�j � �Y st�1

�
� �

�
�j�1 � �Y st�1

�
= �t;j (X1; :::; Xt; Y1; :::; Yt�1; �)

��t;j�1 (X1; :::; Xt; Y1; :::; Yt�1; �)

= �t;j (xt; yt�1; �) ; (3)

say, where xt = (X1; :::; Xt) and yt�1 = (Y1; :::; Yt�1). For brevity, we will

simply write �t;j (�). The likelihood function is given by

Ln (�) =
nQ
t=1

MQ
j=1

(Pr (Yt = jjFt�1; �))1fYt=jg

and therefore, the log-likelihood is

ln (�) =

nX
t=1

MX
j=1

1 fYt = jg ln�t;j (�) :

3 Special Cases

In this section we shall draw a connection between the similarity model and

the probit model through a simple example and then proceed to demonstrate

certain circumstances in which the former performs better than the latter.

To do so, consider the case in which there two ordered categories: the

value of the lower category being 0 and of the upper category being 1. Fur-

thermore, assume that there is only one X (that is equal to 1 for example)

making the similarity function constant. Finally, when � = 1=2, the simi-

larity model reduces to

Pr (Yn = 1jFn�1; Xn) = Pr
�
�Yn�1 + "n > 1=2

�
= �

�
�Yn�1 � 1=2

�
:

Thus, if �Yn�1 > 1=2, we set the predicted value for Yn, Ŷ sn , to be Ŷ
s
n = 1
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and zero otherwise.

On the other hand, the ordered probit model predicts

Pr (Yn = 1jXn) = Pr (� + "n > 1=2)

= � (� � 1=2) :

The solution to the score equation in the probit model for this setting is

easily seen to satisfy
�Yn = �

�
�̂ � 1=2

�
or

�̂ = ��1
�
�Yn
�
+ 1=2:

The ordered probit prediction is thus given by

Ŷn = 1, �
�
�̂ � 1=2

�
> 1=2

, �Yn > 1=2:

Both models predict Ŷn = 1 if the sample mean is greater than 1=2, but

the predicted probabilities are di¤erent. In a sample of n � 1 data points
the similarity model�s predicted probability is

cPr (Yn = 1jFn�1; Xn) = � � �Yn�1 � 1=2� ;
whereas the ordered probit model�s predicted probability amounts to

cPr (Yn = 1jXn = 1) = �Yn�1.

The next example demonstrates certain circumstances in which the pro-

bit model fails but the similarity model succeeds.

Suppose that Xt = 0, �1, or 1 and Yt = X2
t , t = 1; :::; n. Consequently,

Yt =

P
i<t 1 fXi = XtgYiP
i<t 1 fXi = Xtg

+ "t; t = n+ 1; :::; 2n:

Here, the similarity process starts after an initial �learning set�which is based
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on n observations.. Assume for simplicity that "t = 0, 8t and that the �rst
n sample points gave exactly n=4 times Xi = �1, n=2 times Xi = 0 and n=4
times Xi = 1. Then it is clear that Yt = 1 fXt = �1g, 8t.

Now, for some � 2 R the probit model postulates

Pr (Yi = 1jXi) = � (Xi� � �) :

The solution to the score function in this case is�
1� �

�
�̂ � �

��
�
�
�̂ � �

�
�
�
�̂ � �

��
1� �

�
�̂ � �

�� �
�
1� �

�
��̂ � �

��
�
�
��̂ � �

�
�
�
��̂ � �

��
1� �

�
��̂ � �

�� = 0
yielding �̂ = 0. Thus, the probit predicted probabilities are

P̂ r (Y2n+1 = 1jXi) = � (��) ;8Xi

and with � = 1=2, the rule here would be to set

Ŷ2n+1 = 1 f� (�1=2) > 1=2g ;

implying that the prediction is always Ŷ2n+1 = 0, which is correct for 50%

of the observations. On the other hand, the similarity model predicts

cPr (Y2n+1 = 1jF2n; X2n+1) = �

�P
i<2n+1 1 fXi = X2n+1gYiP
i<2n+1 1 fXi = X2n+1g

� 1
2

�
= �

�
1

2

�
1 fX2n+1 = �1g+�

�
�1
2

�
1 fX2n+1 = 0g ;

and setting the rule

Ŷ2n+1 = 1

�cPr (Y2n+1 = 1jF2n) > 1

2

�
gives a prediction which is always correct.

This example is indicative of the possible failure of the ordered probit

model when the latent process is nonlinear in X and the similarity model is

8



expected to outperform it in these scenarios.

4 Partial Derivatives

We have

@ Pr (Yt = jjFt�1; �)
@s (Xk; Xt;w)

=
�
�
�
�j�1 � �Y st�1

�
� �

�
�j � �Y st�1

��
(4)

�
Yk � �Y st�1P

i<t s (Xi; Xt;w)
;

where � (�) is the standard normal pdf. Note that

�
�
�j�1 � �Y st�1

�
� �

�
�j � �Y st�1

�
i¤
���j�1 � �Y st�1

�� � ���j � �Y st�1
�� ;

so that,

@ Pr (Yt = jjFt�1; �)
@s (Xk; Xt;w)

> 0 i¤
���j�1 � �Y st�1

�� � ���j � �Y st�1
�� and Yk > �Y st�1:

Consider, for instance, the two-category case. In the notation of eq�n (2),

�0 = 0 and �2 =1, so that (4) becomes

@ Pr (Yt = 1jFt�1; �)
@s (Xk; Xt;w)

= ��
�
�1 � �Y st�1

� Yk � �Y st�1P
i<t s (Xi; Xt;w)

> 0; i¤ Yk < �Y st�1:

In words, if Yk is smaller than the (historical) similarity weighted average,

increasing the similarity between Yk and Yt will increase the probability that

Yt is equal to the lower category, 1, as expected. Similarly, for the higher

category, 2, (4) becomes

@ Pr (Yt = 2jFt�1; �)
@s (Xk; Xt;w)

= �
�
�1 � �Y st�1

� Yk � �Y st�1P
i<t s (Xi; Xt;w)

> 0; i¤ Yk > �Y st�1;

as expected.

For M categories the idea is similar. Increasing the similarity between

the k-th and t-th observations will increase the probability of categories with
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values above the sample�s similarity weighted average if and only if the value

of Yk itself is above this average and decrease the probability of categories

with values below the sample�s similarity weighted average.

5 The ACF and Ergodic Stationarity

In this section we establish the rate of decay of the ACF in the general case

and derive its explicit form in the � = 1 case. We show, in particular, that

the ACF of the model in the � = 1 and M = 2 case behaves in a completely

analogous way to the behavior of the ACF of the dynamic AR(1) model.

This result does not appear to have been documented previously. We further

establish stationarity and ergodicity.

5.1 Population Moments

Evidently, the conditional distribution (3) depends on t and therefore the

process is not stationary for �nite n. For the binary case, De Jong and

Woutersen (2011) proved that the process is near epoch dependent and

strong mixing. For the more general M -category ordered process, we have

�w0t;j � Pr
w0
(Yt = j) =

X
k 6=j

Pr
w0
(Yt = jjYt�1 = k)�w0t�1;k

+Pr
w0
(Yt = jjYt�1 = j)�w0t�1;j

= aw0t + bw0t �
w0
t�1;j ;

say, which converges to �w01;j because 0 < �1 < bw0t < 1 � �2 < 1 for some

�1, �2 > 0 and 8t. It follows that for any 1 � h <1,

Ew0

�
Y ht

�
=

MX
j=1

jh Pr
w0
(Yt = j)!n!1

MX
j=1

jh�w01;j : (5)

In words, all moments of the distribution of Yt are asymptotically inde-

pendent of n, a result which is in line with the �ndings of De Jong and

Woutersen (2011).
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5.2 The Autocovariance Function

In Theorem 1 a bound is placed on the rate of decay of the autocovariance

function (ACV) and is proven in the Appendix.

Theorem 1 For the model (2), 8m 2 N, 9x 2 (0; 1) such that

jCov (Ys+m; Ys)j � xm:

The implication of the result is that the ACF is absolutely summable

and the process is covariance stationary. In the case � = 1, we are able to

provide the precise form of the ACF.

Theorem 2 For the model (2) with � = 1,

Cov (Ys+m; Ys) =
MX
l=1

lPr (Ys = l) (1� Pr (Ys = l)) (6)

�
MX
j=1

j�s+k;s+k�1;j;l

m�1Y
k=1

�s+k;s+k�1;l;l;

where

�t;s;j;l = fPr (Yt = jjYs = l)� Pr (Yt = jjYs 6= l)g : (7)

If, in addition, M = 2 and s is large,

Cor (Ys+m; Ys) = Cor
m (Ys+1; Ys) = f� (�� �)� � (��)gm ;m 2 N: (8)

The result (8) is therefore completely analogous to the result for the

ACF of a linear AR(1) process.

5.3 Ergodic Stationarity

The ACF of the Yt�s is absolutely summable, as has been established and

therefore the process is ergodic for the mean. See, for instance, Hamilton

(1994, pp. 46�47). For Gaussian processes, the absolute summability of

the ACF is su¢ cient for complete ergodicity (of all moments). As Yt is not
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Gaussian, for ergodicity for all the moments we need to prove that for any

bounded functions f : Rk+1 ! R and g : Rl+1 ! R,

lim
n!1

(jE [f (Ys; :::; Ys+k) g (Ys+n; :::; Ys+n+l)]j (9)

� jE [f (Ys; :::; Ys+k)]j jE [g (Ys+n; :::; Ys+n+l)]j)

= 0:

Theorem 3 : The process (2) is ergodic stationary.

It is clear from the proof of Theorem 3, speci�cally, the bound placed

on (13), that the same method of proof can be used to establish that the

process is mixing. In turn, stationarity and mixing imply ergodicity, see, for

instance, White (2001, Theorem 3.44). Ergodic stationarity will be used in

the proofs of consistency and asymptotic normality of the MLE in Section

7.

6 Assumptions

In this section we set the assumptions which will be used in the proofs of

consistency and asymptotic normality of the MLE. The parameter space is

given by � = �1 � �2 � �3, where �1, �2 are the spaces in which �, w
and � are assumed to lie, respectively. The true value of � is denoted by �0.

By K we denote a generic bounding constant, independent of n, which may

vary from step to step. For the proof of consistency of the MLE, we shall

require the following Assumptions.

Assumption A0: f"tgnt=1 is a sequence of NID (0; 1). For each t =
1; :::; n, the K � 1 vector Xt is nonstochastic, real and �nite and Yt 2
f1; :::;Mg. If w 6= w0, Prw

�
�Y st�1 (w) 6= �Y st�1 (w

0)
�
= 1, 8t.

Assumption A1: The �-vector satis�es

�
�1 = �0 < �1 < � � � < �M�1 < �M =1

�
and there exist wL, wH , �L and �H such that for each i = 1; :::;K, wi;0 2
[wL; wH ], with �1 < wL < wH < 1 and � 2 [�L; �H ], with �1 < �L <

12



�H <1.
For the derivation of the asymptotic distribution of the score and Hessian,

we require the following additional assumptions:

Assumption (A2): For all i; t; k,

sup
i;t;k;�

j _swk (Xi; Xt;w)j < Ks (Xi; Xt;w) <1:

Assumption (A3): The function sw (�) is twice continuously di¤eren-
tiable in w for all X and Y .

Assumption (A4): The derivatives @ �Y st�1=@�k, k =M; :::;M +K, are

linearly independent.

The last part of Assumption A0 is an identi�cation condition. Assump-

tion A1 is a compactness assumption and Assumption A2 is satis�ed for the

exponential and inverse similarity functions. For the exponential similarity,

for instance,

_swk (Xi; Xt;w) = � (Xik �Xtk)
2 s (Xi; Xt;w) ;

and the inequality holds because Xt is bounded 8t under Assumption A0.
Similarly, for the inverse similarity function

s (Xi; Xt;w) =
1

1 +
PK
j=1wj (Xij �Xtj)

2
;

_swk (Xi; Xt;w) = � (Xik �Xtk)
2 s2 (Xi; Xt;w)

and the inequality holds in this case as well. Finally, Assumptions A3 and

A4 are analogous to Assumptions (2) and (5) of Proposition 7.9 of Hayashi

(2000), respectively, the latter to ensure that the expected value of the nor-

malized Hessian is nonsingular. Both assumptions hold for the exponential

and inverse similarity functions.
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7 Consistency and Asymptotic Normality of the

MLE

In this section we establish consistency and asymptotic normality of the

MLE. Our �rst result is consistency.

Theorem 4 Under Assumptions A0-A1, �̂n !p �0.

We denote the normalized score and Hessian components by

zn;�k (�) =
1p
n

@ln (�)

@�k
; (k = 1; :::;M � 1) ;

zn;wk (�) =
1p
n

@ln (�)

@wk
; (k = 1; :::;K) ;

zn;� (�) =
1p
n

@ln (�)

@�
;

zn (�) =
�
zn;w1 (�) ; :::; zn;wK (�) ; zn;�1 (�) ; zn;�M�1 (�) ; zn;� (�)

�0 and
Hn;�j ;�k (�) =

1

n

@2ln (�)

@�j@�k
;

respectively. Let V (�0) be the asymptotic Fisher�s information matrix, with

an n�1 normalization.

Asymptotic normality of the MLE is stated in the following theorem.

Theorem 5 Under Assumptions A0-A4,
p
n
�
�̂n � �0

�
d! N

�
0; V �1 (�0)

�
.

8 Simulations

The correlograms of the process are depicted in Figures 1-6. In each case

10000 Yt�s were generated from i.i.d. standard normal "t�s. We set � =

1; 2; 5, M = 2; 3 and for simplicity, �Y st�1 = �
�1Pt�1

i=t�� Yi. It is obvious that

the correlograms decay rapidly, supporting Theorem 1. Moreover, as stated

in Theorem 2, the correlogram in the � = 1 case (Figures 1-2) fade in a
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very similar fashion to the decay of the theoretical ACF of the linear AR(1)

model.

In Tables 1-4 and in Figures 7-14 we summarize the simulation results

for the performance of the MLE�s of w and �. Each setting consists of

1500 replications of the Y data series, generated from N (0; 1) "t�s and with

X � [�1; 1], which was generated once and consequently was held �xed
in each iteration, with n = 250, 500, 1000, 2000, w0 = 1, 3, 5, �0 =

0:3, 0:5, and � = 2, 5. In each case we report in the Tables the sample

means, their standard deviations, the trimmed means with symmetric 5%

trimming together with their standard deviations, the medians, �rst- and

third quartiles.

Uniformly in all cases, as n increases the sample means over the 1500

replications converge to the true parameter values and their standard de-

viations decline, as expected. This holds also for the trimmed means and

for both the estimates of w and of �. The medians appear to be very close

to the parameter values and the interquartile range becomes tighter in all

settings as n increases.

The density estimates displayed in Figures 7�14 were constructed in

MATLAB using a Gaussian kernel and Silverman�s optimal bandwidth.

Figures 7�10 correspond to the kernel density estimates for ŵ in the case

�0 = 0:3, w0 = 1 and � = 2. Clearly, as n increases from 250 to 2000, the

density becomes more symmetric around 1 and with much fewer outliers.

The same conclusions hold qualitatively in Figures 11-14, corresponding to

the case �0 = 0:5, w0 = 3 and � = 5. Overall, the simulations very much

support the analytical results concerning the properties of the MLE.

9 An Empirical Application

The data on Net�ix compiled by the authors consists of a survey of viewers�

ranking of movies from 1998 to 2005. Movies belong to a class of items whose

various components do not necessarily translate into success, therefore it is

hard to �nd a general formula for tastes or rating of movies. However, it is

reasonable to assume that people who shared similar tastes in the past will
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continue to do so, making the rating of movies a suitable application for a

similarity-based model.

This evaluation process may be applied to the rating of other cultural

items, such as works of art, music, literature, etc. Indeed this appears to be

the rationale for Amazon�s provision of information to potential customers

on purchases made by other customers. For example, a customer considering

the purchase of a particular book is given a list of other books that were also

purchased by the purchasers of this book. Thus a customer is able to see

whether his tastes are similar to those of the other purchasers of this book.

9.1 Data

In 2006 the online DVD rental service Net�ix ran a competition for the best

algorithm to predict customer ratings of �lms. The data set consists of four

variables: user ID, movie title, the date on which the movie was rated, and

the movie�s rating - an integer between 1 and 5, with 1 corresponding to the

lowest rating and 5 corresponding to the highest.

We started out with a subset of the Net�ix data set, containing ratings

made by 13,000 viewers of 99 movies,1 of which only 14 were rated by all

users. For the purpose of this exercise we estimated the model with only

�ve explanatory variables as it considerably simpli�es the computations.

Six movies out of the 14 were chosen arbitrarily, where one movie (Sweet

Home Alabama) acted as the Y variable and the remaining 5 movies acted

as the X variables (Independence Day, Pretty Woman, Forrest Gump, The

Green Mile, and Con Air). The observations were ordered by the date Y

was ranked. Moreover, at time t; the viewer must have watched all movies

corresponding to the X variables in order to be able to make similarity

comparisons. We further restricted the viewer of time t to have watched the

movies corresponding to the X variables before the viewer of time t0 > t.

Those observations that did not satisfy these condition were excluded from

the database. Sweet Home Alabama was chosen to be the dependent variable

1The original database contains approximately 100 million ratings of 18,000 movies
made by 500,000 viewers.

16



as it was released much later than the other movies making it more likely

to be viewed last. The model was estimated on the �rst 1,000 observations.

9.2 Model Estimation

The similarity-based model, being a weighted average of past observations,

uses the last � observations for prediction. Therefore, we estimated the

model on a data set of size t in order to predict the t+1 observation. We refer

to the �rst t observation as the train data and the t+1 observation as the test

data. This was repeated for t = 900; :::; 999, so that the model was estimated

100 times making a one-step ahead prediction each time. The similarity

model was estimated with � set to 5, 10, and 20. The average estimates of

the parameters of the models appear in Table 6. Interestingly, the estimated

coe¢ cients of Pretty Woman, ŵ2 was the largest of all coe¢ cient estimates,

so that this movie was found to be the most suitable for predicting Sweet

Home Alabama. Indeed, out of the six movies, these two are the closest in

terms of category classi�cation.

The study uses two methods to generate the one-step ahead predictions:

1) Ŷt+1 = j1
�
�Y st (ŵ; �̂) 2 (�̂j�1; �̂j ]

	
, (j = 1; :::;M)

2) ~Yt+1 = arg max
j=1;:::;M

Pr
�
�Y st (ŵ; �̂) + "t+1 2 (�̂j�1; �̂j ]

�
These were compared to predicting the outcome according the sample�s

mode. The hit percent, de�ned as the ratio of correct predictions to the

total number of observations, was computed for the predictions based on Ŷ ;
~Y and the mode. As can be seen from table 5, the hit percent of the simi-

larity based-model was considerably larger than that of the mode prediction

both in the train- and in the test data, representing an improvement of 3%

to 24% across the di¤erent settings. These results hold for all lag-lengths,

with the similarity model gaining more advantage as � increases.

10 Conclusions

In the context of decision making the data are frequently ordered and cate-

gorical, as in the choice of education level and consumer satisfaction surveys.
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In this paper we presented a similarity-based model that can be applied to

this type of ordered data. Its key aspect is that the dependent variable Y

is assumed to be determined by outcomes of similar past observations, as

opposed to the ordered probit model which typically assumes that Y only

depends on the independent variables. It seems reasonable that if the eval-

uating agent has a well-de�ned method for rating, the ordered probit model

would better explain the data. However, if the objects that the evaluating

agent is rating are abstract (making the ranking process more complicated),

then the agent may very well rely on other people�s evaluations. Gilboa

et. al. (2006), Gayer et. al. (2007), and Gilboa et. al. (2013) refer to

a similarity-based model as case-based reasoning and to the ordered pro-

bit model as rule-based reasoning and discuss the circumstances of when

one mode of reasoning will dominate the other. The results of this paper

suggest that the similarity-based model provides a potentially very useful

framework for analyzing and forming accurate predictions for data formed

by case-based reasoning.
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Appendix A: Stationarity and Ergodicity

Proof of Theorem 1: For t > s, we have

Cov (Yt; Ys) =
MX
j;l=1

jl (Pr (Yt = j; Ys = l)� Pr (Yt = j) Pr (Ys = l))

=
MX
j;l=1

jlPr (Ys = l) (Pr (Yt = jjYs = l)� Pr (Yt = j))

=

MX
j;l=1

jlPr (Ys = l) fPr (Yt = jjYs = l)

�Pr (Yt = jjYs = l) Pr (Ys = l)

�Pr (Yt = jjYs 6= l) Pr (Ys 6= l)g

=
MX
j;l=1

jlPr (Ys = l) (1� Pr (Ys = l)) �t;s;j;l; (10)

where �t;s;j;l is de�ned in (7). For t > s+ �, let

At =
n
Y lt�1 = Y

lc

t�1; Y
l
t�2 = Y

lc

t�2; :::; Y
l
t�� = Y

lc

t��

o
;

where Y lt , Y
lc
t are the Yt�s which were generated given Ys = l and Ys 6= l,

respectively. Notice that

At =)
��
�Y st�1jYs = l

�
=
�
�Y st�1jYs 6= l

�	
=)

n
Y lt = Y

lc

t

o
and therefore,

At =) At+1; t > s+ �: (11)

In other words, if 9T > s+� such that the two series,
�
Y lT�1; Y

l
T�2; :::; Y

l
T��

�
and

�
Y l

c

T�1; Y
lc

T�2; :::; Y
lc

T��
�
, coincide, it will follow that Y lt = Y l

c

t 8t � T .

Hence,

AT =) �t;s;j;l = 0;8t � T: (12)
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Furthermore, as �Y st�1 2 [�; �M ] and "t 2 R and in view of the restriction on
the �j�s implied by (2), for �xed � 2 (0;1), 9xU such that

Pr (Act) < xU < 1;8t > s+ �:

Using (11),

Pr
�
Act+1

�
= Pr

�
Act+1jAct

�
Pr (Act) + Pr

�
Act+1; At

�
= Pr

�
Act+1jAct

�
Pr (Act) + Pr

�
Act+1; At; At+1

�
= Pr

�
Act+1jAct

�
Pr (Act) :

Consider the case � = 1, M = 2. We have Y ls+1 = 1 + 1f�Y ls + "s+1 > �1g
and Y l

c

s+1 = 1 + 1f�Y lcs + "s+1 > �1g, so both As+2 =
�
Y ls+1 = Y

lc
s+1

	
and

Acs+2 =
�
Y ls+1 6= Y l

c

s+1

	
have positive probability. For the latter case, we can

have As+3 =
�
Y ls+2 = Y

lc
s+2

	
or Acs+3 =

�
Y ls+2 6= Y l

c

s+2

	
, both with positive

probability. More generally, 9zU 2 (0; 1) such that for each t > s + �,

Pr
�
Act+1jAct

�
< zU < 1 and therefore Pr

�
Act+1

�
� zUxU . This implies, in

particular, that

Pr (As+�+2) = 1� Pr
�
Acs+�+2

�
� 1� x2; x = max fzU ; xUg

and more generally,

Pr (As+�+m) � 1� xm;m 2 N; x 2 (0; 1) :

In view of (12),

Pr
�
\1t=s+�+m f�t;s;j;l = 0g

�
� Pr (As+�+m) � 1� xm;m 2 N; x 2 (0; 1) ;

implying that

Pr
�
[1t=s+�+m f�t;s;j;l 6= 0g

�
= 1�Pr

�
\1t=s+�+m f�t;s;j;l = 0g

�
� xm; (m = 1; 2; :::) :

�
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Proof of Theorem 2: For the � = 1 case,

�s+2;s;j;l = Pr (Ys+2 = jjYs = l)� Pr (Ys+2 = jjYs 6= l)

= Pr (Ys+2 = jjYs+1 = l; Ys = l) Pr (Ys+1 = ljYs = l)

+Pr (Ys+2 = jjYs+1 6= l; Ys = l) Pr (Ys+1 6= ljYs = l)

�Pr (Ys+2 = jjYs+1 = l; Ys 6= l) Pr (Ys+1 = ljYs 6= l)

�Pr (Ys+2 = jjYs+1 6= l; Ys 6= l) Pr (Ys+1 6= ljYs 6= l)

= Pr (Ys+2 = jjYs+1 = l) Pr (Ys+1 = ljYs = l)

+Pr (Ys+2 = jjYs+1 6= l) Pr (Ys+1 6= ljYs = l)

�Pr (Ys+2 = jjYs+1 = l) Pr (Ys+1 = ljYs 6= l)

�Pr (Ys+2 = jjYs+1 6= l) Pr (Ys+1 6= ljYs 6= l)

= fPr (Ys+2 = jjYs+1 = l)� Pr (Ys+2 = jjYs+1 6= l)g

�fPr (Ys+1 = ljYs = l)� Pr (Ys+1 = ljYs 6= l)g

= �s+2;s+1;j;l�s+1;s;l;l

and so (6) follows on using (10).

In the special case where � = 1 and M = 2, recoding the categories to

be 0 (lower) and 1 (higher) and setting �1 = �, we obtain

Pr (Ys+1 = 1jYs=1 = 1)� Pr (Ys+1 = 1jYs=1 = 0) = � (�� �)� � (��) :

The autocovariance in this case reduces to

Cov (Ys+m; Ys) = Pr (Ys = 1) (1� Pr (Ys = 1)) f� (�� �)� � (��)gm ;m 2 N:

Together with eq�n (5), for large enough s, this implies (8). �
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Proof of Theorem 3: In order to verify (9), we write:

jE [f (Ys; :::; Ys+k) g (Ys+n; :::; Ys+n+l)]j

� jE [f (Ys; :::; Ys+k)]j jE [g (Ys+n; :::; Ys+n+l)]j

� jE [f (Ys; :::; Ys+k) g (Ys+n; :::; Ys+n+l)]

�E [f (Ys; :::; Ys+k)]E [g (Ys+n; :::; Ys+n+l)] j

= j
X

j1;:::;jk+1
m1;:::;ml+1

f
�
Bsj1;:::;jk+1

�
g
�
Cs+nm1;:::;ml+1

�

�[Pr
�
Bsj1;:::;jk+1 ; C

s+n
m1;:::;ml+1

�
� Pr

�
Bsj1;:::;jk+1

�
Pr
�
Cs+nm1;:::;ml+1

�
]j

= j
X

j1;:::;jk+1
m1;:::;ml+1

f
�
Bsj1;:::;jk+1

�
g
�
Cs+nm1;:::;ml+1

�

�Pr
�
Bsj1;:::;jk+1

��
1� Pr

�
Bsj1;:::;jk+1

��
[Pr
�
Cs+nm1;:::;ml+1

jBsj1;:::;jk+1
�

�Pr
�
Cs+nm1;:::;ml+1

j
�
Bsj1;:::;jk+1

�c�
]j; (13)

where

Bsj1;:::;jk+1 = fYs = j1; :::; Ys+k = jk+1g

and

Cs+nm1;:::;ml+1
= fYs+n = m1; :::; Ys+n+l = ml+1g :

For t > s+ k + � we construct the event

At =
�
Y Bt�1 = Y

Bc

t�1; :::; Y
B
t�� = Y

Bc

t��
	
:

where, for brevity, the superscript B stands for Bsj1;:::;jk+1 and B
c is its

complement. It follows that

At =)
��
�Y st�1jB

�
=
�
�Y st�1jBc

�	
=)

�
Y Bt = Y B

c

t

	
:

Hence,

At =) At+1; t > s+ k + �:
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The rest of the proof is very similar to the proof of Theorem 1 and is

omitted.�

Appendix B: Consistency and Asymptotic Normality

Proof of Theorem 4: The proof can be made by either checking the

conditions of Proposition 7.5 of Hayashi (2000), Theorem 2.7 of Newey and

McFadden (1994), or by directly verifying Wu�s (1981) criterion. For any

�1 > 0, denote by B�1 (�0) the ball f� 2 � : jj� � �0jj � �1g and by Bc�1 (�0)
the complement of B�1 (�0) in �. For any � 2 �, let

Dn (�0; �1) =
1

n
(ln (�0)� ln (�1)) :

To establish consistency, we must prove that 8�1 > 0,

lim inf
n!1

inf
Bc�1

(�0)
Dn (�0; �1) (14)

is strictly positive in probability. See, for instance, Wu (1981).

Let

ln;j (�) �
1

n

nX
t=1

1 fyt = jg ln�t;j (�) :

The series fln;j (�)g is nonpositive and uniformly bounded from below and

by ergodicity of the process, it is convergent w:p:1. We shall denote this

limit by lj (�). This implies that 8� 2 �, ln (�) !a:s:
PM
j=1 lj (�) � l (�).

Using Jensen�s inequality and the fact that
PM
j=1�t;j (�0) = 1,

E�0 (Dn (�1; �0)) =
1

n
E�0

nX
t=1

MX
j=1

E�0

�
1 fyt = jg ln

�t;j (�1)

�t;j (�0)
jFt�1

�

=
1

n
E�0

nX
t=1

MX
j=1

�t;j (�0) ln
�t;j (�1)

�t;j (�0)

� 1

n
E�0

nX
t=1

ln (1) (15)

= 0:
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If �0 6= �1, �t (�0; w; �) 6= �t (�1; w; �), 8t and if w0 6= w1, �Y st�1 6= �Y st�1 w:p:

1 8t under Assumption A0, which also implies �t (�;w0) 6= �t (�;w1) w:p:
1 8t. Furthermore, if �0 6= �1, �t (�;w; �0) 6= �t (�;w; �1), 8t. Hence, as
n ! 1, equality in (15) holds i¤ �0 = � and the proof of the Theorem is

completed. �
In order to prove Theorem 5, we shall require the following lemmas.

Lemma 6 Under Assumptions A0-A2, zn (�0)
d! N (0; V (�0)).

Proof of Lemma 6: Let

ft;k (�) = �
�
�k � �Y st�1

�
;

where � is the standard normal PDF. As

_�
�k
t;j (�) �

@�t;j (�)

@�k
= ft;k (�) (1 fj = kg � 1 fj = k + 1g) ;

we have

zn;�k (�) =
1p
n

nX
t=1

W
�k
t (�) ; (16)

where

W
�k
t (�) = ft;k (�)

�
1 fYt = kg
�t;k

� 1 fYt = k + 1g
�t;k+1

�
:

We notice that

E�0
�
W
�k
t (�) jFt�1

�
= 0

so that W�k
t is an m.d.s.. Furthermore,

_�wkt;j (�) �
@�t;j (�)

@wk
= ��t;j (�) _hwkt (�)

where

�t;j (�) = ft;j (�)� ft;j�1 (�)

and
_hwkt (�) =

@

@wk
�Y st�1:
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Thus,

zn;wk (�) =
1p
n

nX
t=1

Wwk
t (�) ; (17)

where

Wwk
t (�) = � _hwkt (�)

MX
j=1

1 fYt = jg
�t;j (�)

�t;j (�)
: (18)

We have,

E�0 (W
wk
t (�) jFt�1) = � _hwt;k (�)

MX
j=1

�t;j (�)

= � _hwt;k (�) (ft;M (�)� ft;0 (�))

= 0;

so that Wwk
t (�) is also an m.d.s.. Finally,

zn;� (�) =
1p
n

nX
t=1

W �
t (�) ;

where

W �
t (�) = ���1 �Y st�1

MX
j=1

1 fYt = jg
�t;j (�)

�t;j (�)
;

which is also an m.d.s.. For asymptotic normality of the score function,

it will thus be su¢ cient to verify conditions (2.3) of McLeish (1974). Let

�ikn (�)
2 =

Pn
t=1

�
W ik
t (�)

�2
, i = � with k = 1; :::;M � 1, i = w with

k = 1; :::K, or i = � with the k-index suppressed. We need to show that for

each � 2 �,
�ikn (�)

2

n

p! V ik (�) <1 (19)

and that 8" > 0, i and k,

1

�ikn (�)
2

nX
t=1

�
W ik
t (�)

�2
1
n���W ik

t (�)
��� > "�ikn (�)o p! 0: (20)
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As ft;k (�) <1, uniformly in n; k and �,

1

n

nX
t=1

�
W
�k
t (�)

�2
=
1

n

nX
t=1

ft;k (�)
2

�
1 fYt = kg
�t;k

� 1 fYt = k + 1g
�t;k+1

�2
< K

(21)

and convergence is assured by ergodicity, the limit of which is denoted by

V �k (�). Also, becauseW�k
t (�) is uniformly bounded and ��kn (�) behaves as

p
n in probability, condition (20) trivially holds and we are done for zn;�k (�).

For Wwk
t (�), observe that

_hwkt (�) = �

 P
i<t _swk (Xi; Xt;w)YiP
i<t s (Xi; Xt;w)

�
P
i<t s (Xi; Xt;w)Yi

P
i<t _swk (Xi; Xt;w)�P

i<t s (Xi; Xt;w)
�2

!
;

(22)

where _swk (Xi; Xt;w) = @s (Xi; Xt;w) =@wk. It follows from (22) that under

Assumptions A1-A2,

sup
t;k;�

��� _hwkt (�)
��� < 2KM:

In view of (18) and the last inequality

sup
t;k;n;�

jWwk
t (�)j < K;

so that, together with ergodicity,

1

n

nX
t=1

(Wwk
t (�))2

p! V wk (�) <1:

Condition (20) also holds becauseWwk
t (�) is uniformly bounded and �wkn (�)

behaves as
p
n in probability. Similar reasoning follows for W �

t (�) and the

proof of the Lemma 6 is therefore completed.�

Lemma 7 Under Assumptions A0-A4, 8� 2 �,

lim
n!1

E�

��
Hn;�j ;�k (�)

�
1�j;k�K+M

�
is �nite and nonsingular.
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Proof of Lemma 7: We have

@2ln (�)

@�j@�k
= [

nX
t=1

_ft;j (�)

�
1 fYt = kg
�t;k

� 1 fYt = k + 1g
�t;k+1

�

�
nX
t=1

f2t;k (�)

 
1 fYt = k + 1g
�2t;k+1 (�)

+
1 fYt = kg
�2t;k (�)

!
]1 fj = kg

+
nX
t=1

ft;j (�) ft;j+1 (�)
1 fYt = j + 1g

�2t;j+1
1 fj = k � 1g ;

with _ft;j (�) = @ft;j (x; �) =@x. Hence,

E�

�
@2ln (�)

@�j@�k
jFt�1

�
=

 
�

nX
t=1

f2t;k (�)

�
1

�t;k+1 (�)
+

1

�t;k (�)

�!
1 fj = kg

+

nX
t=1

ft;j (�) ft;j+1 (�)

�t;j+1
1 fj = k � 1g :

In view of (18) and under Assumption A3,

@2ln (�)

@wl@wk
= �

nX
t=1

�hwk;wlt (�)
MX
j=1

1 fYt = jg
�t;j (�)

�t;j (�)

�
nX
t=1

_hwkt (�)
MX
j=1

1 fYt = jg
 
_�t;j;l (�)

�t;j (�)
+
�2t;j (�)

_hwlt (�)

�2t;j (�)

!
;

where

_�t;j;l (�) =
@�t;j (�)

@wl
= �

�
_ft;j (�)� _ft;j�1 (�)

�
_hwlt (�) = ��t;j (�) _h

wl
t (�) ;

say. We have,

E�0

�
@2ln (�)

@wk@wl
jFt�1

�
= �

nX
t=1

_hwkt (�) _hwlt (�)

MX
j=1

 
��t;j (�) +

�2t;j (�)

�t;j (�)

!
:
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For the normal distribution, _� (x) = �x� (x) so that
PM
j=1 �t;j (�) = 0 and

we are left with

E�

�
@2ln (�)

@wk@wl
jFt�1

�
= �

nX
t=1

_hwkt (�) _hwlt (�)
MX
j=1

�2t;j (�)

�t;j (�)
:

Similarly, with _�t;j;� (x; �) = @�t;j (�) =@� = ��t;j (�) ��1 �Y st�1,

@2ln (�)

@�2
= �

nX
t=1

��1 �Y st�1

MX
j=1

1 fYt = jg
 
_�t;j (�)

�t;j (�)
+
�2t;j (�) �

�1 �Y st�1
�2t;j (�)

!

= �
nX
t=1

�
��1 �Y st�1

�2 MX
j=1

1 fYt = jg
 
�
�t;j (�)

�t;j (�)
+
�2t;j (�)

�2t;j (�)

!
;

giving

E�

�
@2ln (�)

@�2
jFt�1

�
= �

nX
t=1

�
��1 �Y st�1

�2 MX
j=1

�2t;j (�)

�t;j (�)
:

Because
@ln (�)

@wk
= �

nX
t=1

_hwkt (�)

MX
j=1

1 fYt = jg
�t;j (�)

�t;j (�)
;

@2ln (�)

@wk@�l
= �

nX
t=1

_hwkt (�)

MX
j=1

1 fYt = jg
1 fj = lg � 1 fj = l + 1g

�t;j (�)

�
�
_ft;l (�)�

�t;j (�) ft;l (�)

�t;j (�)

�
:

Thus,

E�

�
@2ln (�)

@wk@�l
jFt�1

�
=

nX
t=1

_hwkt ft;l (�)

�
�t;l (�)

�t;l (�)
� �t;l+1 (�)

�t;l+1 (�)

�
:
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Also,

@2ln (�)

@wl@�
= �

nX
t=1

�hwk;�t (�)

MX
j=1

1 fYt = jg
�t;j (�)

�t;j (�)

�
nX
t=1

_hwkt (�)
MX
j=1

1 fYt = jg
 
_�t;j;� (�)

�t;j (�)
+
�2t;j (�) �

�1 �Y st�1
�2t;j (�)

!
;

and

E�

�
@2ln (�)

@wk@�
jFt�1

�
= ���1

nX
t=1

_hwkt (�) �Y st�1

MX
j=1

�2t;j (�)

�t;j (�)
:

Finally,

@2ln (�)

@�@�l
= ���1

nX
t=1

�Y st�1

MX
j=1

1 fYt = jg
1 fj = lg � 1 fj = l + 1g

�t;j (�)

�
�
_ft;l (�)�

�t;j (�) ft;l (�)

�t;j (�)

�
and

E�

�
@2ln (�)

@�@�l
jFt�1

�
= ��1

nX
t=1

�Y st�1ft;l (�)

�
�t;l (�)

�t;l (�)
� �t;l+1 (�)

�t;l+1 (�)

�
:

It is obvious that for any �k, �l, all the second-order derivatives may be

written as

Hn;�j ;�k (�) =
1

n

nX
t=1

zt (�) ;

where, under Assumptions A1-A2, zt (�) are uniformly bounded. By the er-

godicity,Hn;�j ;�k (�) converges w:p:1 to a nonstochastic function, sayH�j ;�k (�).

Moreover, the Cauchy Schwartz inequality implies that the determinant of

E�
�
Hn;�j ;�k (�)

�
is non-negative for all n; �j ; �k, with equality holding i¤ the

terms in
�
_hwkt

�
1�k�K

are linearly dependent. This possibility is precluded

by Assumption A4 and thus, the proof of Lemma 7 is complete.�

31



Proof of Theorem 5: It is straightforward to verify that the second-
order Bartlett identity holds for all the second-order partial derivatives. As

Hn;�j ;�k (�) converges w:p:1 to H�j ;�k (�), it also converges in probability.

Because �̂n !p �0 and because H�j ;�k (�) is continuous, it follows from The-

orem 4.1.5 of Amemiya (1985) that plim
�
Hn;�j ;�k

�
�̂n

��
= H�j ;�k (�0). This,

together with Lemma 6 and the mean value Theorem, as in eq�n (7.3.7) of

Hayashi (2000), completes the proof. �
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Table 1. Simulated MLE point estimates for �0 = 0:5 and � = 2.

n 250 500 1000 2000

ŵ �̂ ŵ �̂ ŵ �̂ ŵ �̂

Mean 4:341 0:499 1:468 0:499 1:115 0:500 1:050 0:500

Std 24:613 0:083 3:896 0:058 0:598 0:041 0:359 0:029

Trim 1:584 0:499 1:193 0:499 1:085 0:500 1:038 0:500

w0 = 1 Std Trim 1:942 0:072 0:763 0:051 0:476 0:035 0:301 0:025

Median 1:053 0:499 1:004 0:499 1:009 0:499 1:010 0:501

Q1 0:498 0:443 0:629 0:459 0:723 0:473 0:796 0:480

Q3 1:976 0:559 1:626 0:540 1:394 0:525 1:243 0:519

Mean 12:815 0:500 6:542 0:500 3:806 0:500 3:300 0:500

Std 43:107 0:084 22:169 0:059 4:147 0:041 1:581 0:029

Trim 6:495 0:501 3:908 0:500 3:420 0:500 3:198 0:500

w0 = 3 Std Trim 13:165 0:073 3:261 0:051 1:642 0:036 0:973 0:025

Median 2:850 0:502 2:999 0:502 3:073 0:500 3:054 0:500

Q1 1:440 0:444 1:929 0:460 2:226 0:473 2:440 0:481

Q3 5:716 0:560 4:660 0:540 4:177 0:526 3:770 0:519

Mean 18:778 0:499 12:923 0:501 8:262 0:500 5:962 0:500

Std 49:275 0:083 35:147 0:058 19:249 0:040 5:747 0:029

Trim 12:716 0:499 8:031 0:501 6:170 0:500 5:449 0:500

w0 = 5 Std Trim 29:233 0:072 10:037 0:050 3:924 0:034 2:075 0:025

Median 4:457 0:498 5:022 0:502 5:084 0:501 4:929 0:500

Q1 2:281 0:442 3:083 0:464 3:611 0:474 3:918 0:480

Q3 10:487 0:555 8:818 0:538 7:366 0:527 6:518 0:519

Note: � is the lag-length; Std is the standard deviation of the mean; Trim

is the trimmed mean with 5% symmetric trimming; Std Trim is the

standard deviation of the trimmed mean; Q1 and Q3 are the �rst and third

quartiles, respectively.
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Table 2. Simulated MLE point estimates for �0 = 0:5 and � = 5.

n 250 500 1000 2000

ŵ �̂ ŵ �̂ ŵ �̂ ŵ �̂

Mean 1:705 0:501 1:164 0:500 1:070 0:501 1:030 0:500

Std 6:347 0:081 0:973 0:057 0:591 0:040 0:384 0:029

Trim 1:261 0:501 1:104 0:500 1:045 0:501 1:022 0:500

w0 = 1 Std Trim 1:261 0:070 0:717 0:050 0:476 0:035 0:328 0:025

Median 0:969 0:501 0:994 0:498 0:987 0:501 0:995 0:500

Q1 0:413 0:448 0:578 0:462 0:682 0:474 0:777 0:481

Q3 1:763 0:556 1:514 0:537 1:356 0:528 1:248 0:518

Mean 4:579 0:500 3:673 0:500 3:288 0:499 3:129 0:500

Std 8:305 0:080 3:118 0:057 1:439 0:040 0:827 0:028

Trim 3:726 0:800 3:398 0:500 3:211 0:499 3:108 0:500

w0 = 3 Std Trim 2:885 0:070 1:738 0:050 1:065 0:035 0:703 0:024

Median 2:965 0:500 3:012 0:501 3:053 0:501 3:036 0:500

Q1 1:770 0:444 2:120 0:461 2:389 0:472 2:553 0:482

Q3 4:874 0:555 4:262 0:539 3:934 0:526 3:634 0:518

Mean 9:791 0:500 6:836 0:500 5:465 0:500 5:142 0:500

Std 33:429 0:082 18:622 0:059 2:709 0:040 1:452 0:029

Trim 6:505 0:500 5:620 0:500 5:289 0:500 5:088 0:500

w0 = 5 Std Trim 5:838 0:072 2:905 0:051 1:851 0:034 1:208 0:025

Median 4:858 0:503 4:973 0:499 4:923 0:500 4:912 0:500

Q1 3:002 0:443 3:496 0:461 3:845 0:473 4:147 0:481

Q3 7:996 0:555 7:042 0:540 6:385 0:527 5:975 0:520

Note: � is the lag-length; Std is the standard deviation of the mean; Trim

is the trimmed mean with 5% symmetric trimming; Std Trim is the

standard deviation of the trimmed mean; Q1 and Q3 are the �rst and third

quartiles, respectively.
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Table 3. Simulated MLE point estimates for �0 = 0:3 and � = 2.

n 250 500 1000 2000

ŵ �̂ ŵ �̂ ŵ �̂ ŵ �̂

Mean 3:787 0:299 2:073 0:299 1:152 0:301 1:063 0:300

Std 21:847 0:086 12:133 0:060 0:769 0:042 0:409 0:030

Trim 1:606 0:300 1:238 0:298 1:097 0:301 1:046 0:300

w0 = 1 Std Trim 2:229 0:074 0:899 0:052 0:491 0:037 0:317 0:026

Median 0:988 0:301 1:022 0:299 1:008 0:301 1:014 0:300

Q1 0:483 0:240 0:622 0:258 0:724 0:272 0:803 0:280

Q3 1:874 0:357 1:571 0:338 1:394 0:329 1:267 0:320

Mean 11:79 0:297 6:198 0:298 4:204 0:301 3:325 0:301

Std 38:258 0:083 18:497 0:059 9:583 0:043 1:780 0:030

Trim 6:393 0:297 4:197 0:298 3:466 0:301 3:192 0:301

w0 = 3 Std Trim 11:471 0:072 3:877 0:051 1:880 0:37 1:065 0:026

Median 3:011 0:298 2:959 0:299 2:964 0:301 2:993 0:301

Q1 1:605 0:242 1:938 0:258 2:188 0:273 2:362 0:280

Q3 6:192 0:351 4:863 0:339 4:263 0:330 3:818 0:322

Mean 19:307 0:301 12:174 0:302 7:902 0:301 5:904 0:301

Std 51:551 0:082 30:598 0:058 17:282 0:042 5:552 0:023

Trim 12:944 0:301 8:084 0:302 6:006 0:301 5:466 0:301

w0 = 5 Std Trim 30:462 0:072 10:360 0:050 3:691 0:036 2:024 0:025

Median 4:646 0:303 4:817 0:303 4:945 0:300 5:075 0:301

Q1 2:3207 0:247 3:066 0:263 3:598 0:273 3:973 0:281

Q3 10:323 0:354 8:557 0:340 7:182 0:328 6:502 0:320

Note: � is the lag-length; Std is the standard deviation of the mean; Trim

is the trimmed mean with 5% symmetric trimming; Std Trim is the

standard deviation of the trimmed mean; Q1 and Q3 are the �rst and third

quartiles, respectively.
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Table 4. Simulated MLE point estimates for �0 = 0:3 and � = 5.

n 250 500 1000 2000

ŵ �̂ ŵ �̂ ŵ �̂ ŵ �̂

Mean 1:417 0:296 1:196 0:300 1:084 0:300 1:037 0:300

Std 2:636 0:085 1:632 0:059 0:622 0:041 0:377 0:029

Trim 1:212 0:297 1:094 0:300 1:053 0:300 1:030 0:300

w0 = 1 Std Trim 1:194 0:074 0:731 0:052 0:466 0:036 0:325 0:026

Median 0:940 0:298 0:961 0:299 1:001 0:300 1:011 0:300

Q1 0:934 0:240 0:555 0:260 0:693 0:273 0:765 0:281

Q3 1:740 0:355 1:488 0:342 1:380 0:328 1:270 0:320

Mean 6:369 0:298 4:091 0:300 3:281 0:299 3:126 0:299

Std 26:611 0:083 11:170 0:058 1:461 0:041 0:919 0:029

Trim 3:904 0:298 3:452 0:300 3:208 0:299 3:092 0:299

w0 = 3 Std Trim 3:353 0:072 1:894 0:050 1:138 0:036 0:751 0:025

Median 3:023 0:300 3:025 0:300 3:015 0:298 2:979 0:300

Q1 1:682 0:246 2:050 0:259 2:322 0:272 2:500 0:279

Q3 4:986 0:354 4:510 0:338 3:994 0:325 3:644 0:319

Mean 9:592 0:297 6:992 0:299 5:459 0:299 5:243 0:300

Std 30:564 0:083 17:844 0:059 2:489 0:041 1:482 0:029

Trim 6:423 0:297 5:701 0:299 5:307 0:299 5:190 0:300

w0 = 5 Std Trim 5:329 0:073 3:039 0:052 1:805 0:036 1:243 0:025

Median 5:019 0:298 4:985 0:300 5:000 0:299 5:049 0:300

Q1 2:942 0:238 3:414 0:259 3:957 0:272 4:214 0:281

Q3 8:076 0:351 7:366 0:337 6:372 0:326 6:089 0:320

Note: � is the lag-length; Std is the standard deviation of the mean; Trim

is the trimmed mean with 5% symmetric trimming; Std Trim is the

standard deviation of the trimmed mean; Q1 and Q3 are the �rst and third

quartiles, respectively.
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Table 5. Hit for the similarity based model and mode predictions.
Database Prediction � = 5 � = 10 � = 20 Mode

Method

Train Ŷ 0.35 0.35 0.36 0.34

Train ~Y 0.36 0.38 0.38 0.34

Test Ŷ 0.37 0.37 0.38 0.33

Test ~Y 0.39 0.4 0.42 0.34

Note: � is the lag-length; Ŷ , ~Y , and Mode are given in Section 9.2

Table 6. Estimated coe¢ cients for the similarity-based model on the entire

Net�ix database
Similarity

� = 5 � = 10 � = 20

ŵ1 0.0000 0.0000 0.0000

ŵ2 18.4440 2.7903 1.8517

ŵ3 0.5268 0.0246 0.0000

ŵ4 4.8465 0.3260 0.3547

ŵ5 3.6719 0.0536 0.1812

�̂1 -1.0382 -0.3238 0.5063

�̂2 -0.1945 0.5405 1.3805

�̂3 0.7573 1.5042 2.3573

�̂4 1.6733 2.4264 3.2973

�̂ 0.2765 0.4732 0.7022
Note: � is the lag-length, the ŵ; �̂ and �̂ are the estimated coe¢ cients of

the similarity-based model
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Figure 1. Correlogram of the process in the case

� = 1, M = 2, n = 10000.
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Figure 2. Correlogram of the process in the case

� = 1, M = 3, n = 10000.
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Figure 3. Correlogram of the process in the case

� = 2, M = 2, n = 10000.
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Figure 4. Correlogram of the process in the case

� = 2, M = 3, n = 10000.

39



5 10 15 20

0.2

0.4

0.6

0.8

1.0

Figure 5. Correlogram of the process in the case

� = 5, M = 2, n = 10000.
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Figure 6. Correlogram of the process in the case

� = 5, M = 3, n = 10000.
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Figure 7. Kernel density estimate for ŵ,
w0 = 1, �0 = 0:3, � = 2, n = 250.
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Figure 8. Kernel density estimate for ŵ,
w0 = 1, �0 = 0:3, � = 2, n = 500.
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Figure 9. Kernel density estimate for ŵ,
w0 = 1, �0 = 0:3, � = 2, n = 1000.
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Figure 10. Kernel density estimate for ŵ,
w0 = 1, �0 = 0:3, � = 2, n = 2000.
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Figure 11. Kernel density estimate for ŵ,
w0 = 3, �0 = 0:5, � = 5, n = 250.
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Figure 12. Kernel density estimate for ŵ,
w0 = 3, �0 = 0:5, � = 5, n = 500.
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Figure 13. Kernel density estimate for ŵ,
w0 = 3, �0 = 0:5, � = 5, n = 1000.
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Figure 14. Kernel density estimate for ŵ,
w0 = 3, �0 = 0:5, � = 5, n = 2000.
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