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A generalization of mixed strategy equilibrium is proposed, where mixed strategies need 

only be finitely additive and payoff functions need not be integrable or bounded. It is based 

on an extension of the idea that an equilibrium strategy is supported in the set of best-

response actions of the player, but is applicable also when no best-response actions exist. 

This notion of best-response equilibrium yields simple, natural mixed equilibria in a number 

of well-known games where other kinds of mixed equilibrium are complicated or not 

compelling or they do not exist.   

1 Introduction 
The simplest interpretation of mixed strategy, which is also the original one (von Neumann 

and Morgenstern 1953), is that it reflects a player’s deliberate assignment of probabilities to 

his possible actions, or pure strategies. Randomization protects the player from his action 

being found out by an opponent, since the player does not know it himself. Finding out the 

probabilities would not help the other players if the profile of mixed strategies is an 

equilibrium, as the latter is defined by the condition that each mixed strategy is a best 

response in the sense that no unilateral deviation to an alternative mixed strategy can 

increase the deviating player’s expected payoff. Checking whether this condition holds 

requires examining only pure strategies, because a mixed strategy is best response if and 

only if it is supported in the set of best-response actions. This means that from the player’s 

point of view, the probabilities assigned to the actions in the support are unimportant, 

which suggests an alternative interpretation of mixed strategy as a commonly held external 

belief about the player’s choice of action rather than a deliberate choice of randomized 

strategy by the player. In addition, since the best-response condition can be stated in terms 

of actions, alternative mixed strategies play no essential role, which suggests that it may be 

unnecessary to even consider them.  

This paper presents a notion of mixed strategy equilibrium that makes no reference to 

alternative mixed strategies. For each player 𝑖, only one mixed strategy, the equilibrium 

strategy, is considered. This strategy 𝜎𝑖 is a finitely additive set function defined on some 

algebra 𝒜𝑖  of subsets of the player’s action set 𝑆𝑖. The algebra is not a priory given but is 

part of the strategy’s specification.1 Importantly, it is not required to be a sigma-algebra and 

 
 igal.milchtaich@biu.ac.il  http://faculty.biu.ac.il/~milchti/ 
1 This contrasts with the usual definition of mixed strategy, where the domain is some pre-specified 
measurable structure in 𝑆𝑖  such as the collection of all Borel sets. A conceptual problem with the 
latter approach is that, unless 𝑆𝑖  is finite, the choice of measurable structure is arguably arbitrary, as it 
is not indicated by the game itself. Yet choosing it is necessary for defining the mixed extension of the 
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𝜎𝑖 is not required to be sigma-additive. (For a short review of these and related terms, see 

Section 2.) This aligns with the interpretation of mixed strategy as a (possibly, incomplete) 

probabilistic description of the player’s choice of action rather than a recipe for actually 

choosing that action at random. The essential element in the definition of mixed-strategy 

equilibrium, which is that it excludes the choice of actions yielding low payoff, is retained. 

However, this idea requires a somewhat more elaborate formulation than with sigma-

additive strategies. The formulation constitutes the core of the formal definition of best-

response equilibrium in Section 3.   

As Theorem 1 in that section shows, every single-player game has a best-response 

equilibrium. The same is not true for “real” games, as Examples 1 (for 𝑛 = 3) and 2 (for 𝑛 =

2) show. Yet, as Section 4 demonstrates, the concept has a number of interesting 

applications also in multiplayer games. In particular, it may be used for describing an optimal 

choice of some figure (a price, say) that is very close to a specific value (zero, say), but not 

quite equal to it.  

Section 5 considers two-player zero-sum games. Such games may not have a value in the 

usual sense yet admit a best-response equilibrium. 

In Section 6, best-response equilibrium is compared with other solution concepts that also 

employ finitely additive probabilities, in particular, optimistic equilibrium (Vasquez 2017) 

and justifiable equilibrium (Flesch et al. 2018). These solution concepts are not compatible 

with the principles underlying best-response equilibrium, as described above, and may 

produce different equilibrium predictions. Specifically, Theorem 2 shows that, with bounded 

payoff functions, every best-response equilibrium is a justifiable equilibrium but not 

conversely. Thus, the former is essentially the stronger, more demanding solution concept. 

2 Preliminaries 
For a set 𝑆, an algebra, or field, 𝒜 is any collection of subsets of 𝑆 that includes the empty 

set and, for all 𝐴, 𝐵 ∈ 𝒜, also includes the complement 𝐴∁ and the union 𝐴 ∪ 𝐵. If moreover 

the union ⋃ 𝐴𝑘
∞
𝑘=1  is in 𝒜 for for every sequence 𝐴1, 𝐴2, … ∈ 𝒜, then 𝒜 is a sigma-algebra. 

A real-valued (set) function 𝜇 defined on an algebra 𝒜 is finitely additive if 𝜇(𝐴) + 𝜇(𝐵) =

𝜇(𝐴 ∪ 𝐵) for all disjoint 𝐴, 𝐵 ∈ 𝒜, and sigma-additive if ∑ 𝜇(𝐴𝑘)
∞
𝑘=1 = 𝜇(⋃ 𝐴𝑘

∞
𝑘=1 ) for all 

disjoint 𝐴1, 𝐴2, … ∈ 𝒜 with ⋃ 𝐴𝑘
∞
𝑘=1 ∈ 𝒜. If in addition 𝜇 only takes values in [0,1] and 

𝜇(𝑆) = 1, then it is called a finitely additive probability or a probability (measure), 

respectively. The elements of 𝒜 are referred to in this context as the measurable sets. A 

finitely additive probability 𝜇′ is an extension of another one 𝜇 if the corresponding algebras 

satisfy 𝒜 ⊆ 𝒜′ and 𝜇 = 𝜇′|𝒜, and it is a total extension if 𝒜′ = 𝒫(𝑆), the power set of 𝑆. 

The Carathéodory extension theorem states that every (sigma-additive) probability defined 

on an algebra 𝒜 has a unique extension to a probability defined on the smallest sigma-

algebra containing 𝒜.  

The outer measure of a finitely additive probability 𝜇 is the function 𝜇∗: 𝒫(𝑆) ⟶ [0,1] 

defined by 

𝜇∗(𝐶) = inf  {𝜇(𝐴) ∣ 𝐴 ⊇ 𝐶, 𝐴 ∈ 𝒜} . 

 
game, where players use mixed strategies rather than actions. In the model presented here, there is 
no mixed extension.   
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A set 𝐶 with 𝜇∗(𝐶) = 0 is said to be μ-null. A property of elements of 𝑆 is said to hold 

μ−almost surely if it holds outside some 𝜇-null set. If all 𝜇-null sets are measurable 

(therefore, 𝜇∗(𝐶) = 0 ⟺ 𝜇(𝐶) = 0), then 𝜇 is said to be complete.  

For a finitely additive probability 𝜇 defined on an algebra 𝒜 of subsets of a set 𝑆, a simple 

measurable function is any function 𝑓: 𝑆 ⟶ ℝ that takes only finitely many values and 

satisfies 𝑓−1({𝑥}) ∈ 𝒜 for all 𝑥 ∈ ℝ. The integral of 𝑓 is defined by  

∫𝑓(𝑠) ⅆ𝜇(𝑠)
𝑆

= ∑𝑥 𝜇(𝑓−1({𝑥}))

𝑥∈ℝ

. 

More generally, a function 𝑓 is μ-integrable if there is a sequence (𝑓𝑛)𝑛∈ℕ of simple 

measurable functions such that  

lim
𝑛→∞

𝜇∗({𝑠 ∈ 𝑆 ∣ |𝑓(𝑠) − 𝑓𝑛(𝑠)| > 𝜖}) = 0 

for every 𝜖 > 0 (meaning that 𝑓𝑛 → 𝑓 in 𝜇-probability) and  

lim
𝑚,𝑛→∞

∫|𝑓𝑚(𝑠) − 𝑓𝑛(𝑠)| ⅆ𝜇(𝑠)
𝑆

= 0. 

(If 𝑓 is bounded, the second condition is redundant, as it is implied by the first one.) The 

integral of 𝑓 is then (well) defined by 

∫𝑓(𝑠) ⅆ𝜇(𝑠)
𝑆

= lim
𝑛→∞

∫𝑓𝑛(𝑠) ⅆ𝜇(𝑠)
𝑆

, 

where the limit is necessarily finite (Dunford and Schwartz 1958). An alternative way of 

stating that a function is 𝜇-integrable is saying that its integral with respect to 𝜇 exists. It is 

easy to see that, in this case, the integral of 𝑓 with respect to any extension of 𝜇 also exists 

and the two integrals are equal.  

For a bounded function 𝑓, the upper integral with respect to 𝜇 is defined by  

∫
𝑆

𝑓(𝑠) ⅆ𝜇(𝑠)  ≔ inf{ ∫ 𝑔(𝑠) ⅆ𝜇(𝑠)𝑆 ∣∣ 𝑔 a simple measurable function, 𝑔 ≥ 𝑓 }  

and the lower integral by 

∫
𝑆

𝑓(𝑠) ⅆ𝜇(𝑠) ≔ sup{ ∫ 𝑔(𝑠) ⅆ𝜇(𝑠)𝑆 ∣∣ 𝑔 a simple measurable function, 𝑔 ≤ 𝑓 }  . 

The former is always greater than or equal to the latter, and equality holds if and only if 𝑓 is 

𝜇-integrable, in which case the common value is the integral of 𝑓.   

In the linear space of all bounded functions 𝑓: 𝑆 ⟶ ℝ, the subset of 𝜇-integrable functions is 

easily seen to be a subspace. The integral is a linear functional on this subspace and satisfies 

|∫ 𝑓(𝑠) ⅆ𝜇(𝑠)𝑆
| ≤ sup

𝑠∈𝑆
|𝑓(𝑠)|. By the Hahn–Banach theorem, there is a (generally, non-

unique) extension of this linear functional to a linear functional 𝜓 that is defined on the 

whole space and satisfies a similar inequality, |𝜓(𝑓)| ≤ sup|𝑓|. It may be viewed as an 

extension of integration with respect to 𝜇; for any bounded function 𝑓, 𝜓(𝑓) is the integral 

of 𝑓. In particular, the function 𝜇𝜓: 𝒫(𝑆) ⟶ [0,1] defined by 𝜇𝜓(𝐴) = 𝜓(1𝐴) is an 

extension of 𝜇 and, by the linearity of 𝜓 and the above inequality, is also a finitely additive 
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probability. Thus, 𝜇𝜓 is a total extension of 𝜇. This proves that every finitely additive 

probability has a total extension. Note that, with respect to a total finitely additive 

probability, every bounded function is integrable because it is the uniform limit of a 

sequence of simple measurable functions (as all sets are measurable.) The linear functional 

𝜓 considered above is actually integration with respect to 𝜇𝜓. 

For an integer 𝑛 ≥ 2 and a finitely additive probability 𝜇𝑖  on an algebra 𝒜𝑖  of subsets of a 

set 𝑆𝑖 for each 1 ≤ 𝑖 ≤ 𝑛, the product 𝜇 = ∏ 𝜇𝑖𝑖  is a finitely additive probability defined on 

the product algebra 𝒜 = ∏ 𝒜𝑖𝑖 , whose elements are all sets in the Cartesian product 𝑆 =

∏ 𝑆𝑖𝑖  that are finite unions of measurable rectangles, that is, sets 𝐴 ⊆ 𝑆 of the form 𝐴 =

∏ 𝐴𝑖𝑖  with 𝐴𝑖 ∈ 𝒜𝑖  for each 𝑖. For such a measurable rectangle, the product probability is 

given by 𝜇(𝐴) = ∏ 𝜇𝑖(𝐴𝑖)𝑖 . Note that the individual 𝜇𝑖’s and 𝒜𝑖’s can be recovered from the 

product 𝜇 and its domain 𝒜: the former coincide with the marginals of 𝜇 and the latter 

satisfy 𝒜𝑖 = {𝐴𝑖 ⊆ 𝑆𝑖 ∣∣ 𝑆1 ×⋯× 𝐴𝑖 ×⋯× 𝑆𝑛 ∈ 𝒜 }). 

Lemma 1  For a bounded function 𝑓: 𝑆 ⟶ ℝ, 

∫
𝑆

𝑓(𝑠) ⅆ𝜇(𝑠) ≥ ∫
𝑆𝑛

⋯∫
𝑆2

∫
𝑆1

𝑓(𝑠1, 𝑠2, … , 𝑠𝑛) ⅆ𝜇1(𝑠1) ⅆ𝜇2(𝑠2)⋯ⅆ𝜇𝑛(𝑠𝑛) 

≥ ∫
𝑆𝑛

⋯∫
𝑆2

∫
𝑆1

𝑓(𝑠1, 𝑠2, … , 𝑠𝑛) ⅆ𝜇1(𝑠1) ⅆ𝜇2(𝑠2)⋯ⅆ𝜇𝑛(𝑠𝑛) ≥ ∫
𝑆

𝑓(𝑠) ⅆ𝜇(𝑠). 

Proof. The middle inequality is based on iterated use of the inequality between the upper 

and lower integrals of bounded functions. The and first and last inequalities are analogous. 

To prove the former, observe first that a similar inequality holds (indeed, as equality 

between integrals) with 𝑓 replaced by the indicator function of any measurable rectangle, 

hence also with it replaced by any simple measurable function 𝑔. For 𝑔 ≥ 𝑓, the last 

conclusion trivially implies that a similar inequality holds with 𝑔 replacing 𝑓 only on the left-

hand side. Taking the infimum over all 𝑔 ≥ 𝑓 completes the proof. ∎ 

An immediate corollary of Lemma 1 is that, if the iterated integral  

∫
𝑆𝑛

⋯∫
𝑆2

∫
𝑆1

𝑓(𝑠1, 𝑠2, … , 𝑠𝑛) ⅆ𝜇1(𝑠1) ⅆ𝜇2(𝑠2)⋯ⅆ𝜇𝑛(𝑠𝑛) 

(by implication, also each of the inner integrals) exists, then it lies between the upper and 

lower integrals of 𝑓, and is therefore equal to the (“multiple”) integral ∫ 𝑓(𝑠) ⅆ𝜇(𝑠)𝑆
 if the 

latter also exists. Note that the existence of the iterated integral of a bounded function may 

depend on the order of integration, and it neither implies nor is implied by the existence of 

the multiple integral. Thus, Fubini’s theorem does not hold here. However, if the iterated 

integral and the multiple integral both exist, then by Lemma 1 they must be equal, so that 

the value of the former cannot depend on the order of integration.  

3 Mixed strategies and best-response equilibrium 
In an 𝑛-player game (𝑛 ≥ 1), each player 𝑖 has a set 𝑆𝑖 of actions, or pure strategies, and a 

payoff function 𝑢𝑖: 𝑆 ⟶ ℝ, where 𝑆 = ∏ 𝑆𝑗𝑗  is the set of all action profiles. (It is sometimes 

convenient to view the function 𝑢𝑖 as defined on the product set 𝑆𝑖 × 𝑆−𝑖, where 𝑆−𝑖 =

∏ 𝑆𝑗𝑗≠𝑖 .) A (mixed) strategy for player 𝑖 is any finitely additive probability 𝜎𝑖 defined on an 

algebra 𝒜𝑖  of subsets of 𝑆𝑖. A special case is any pure strategy; an action 𝑠𝑖  is identifiable 



5 

with the (total) probability 𝛿𝑠𝑖, the Dirac measure at 𝑠𝑖. A (mixed-) strategy profile 

(𝜎1, 𝜎2, … , 𝜎𝑛), which specifies a strategy 𝜎𝑖 for each player 𝑖, may be identified with the 

product 𝜎 = ∏ 𝜎𝑖𝑖  (see the comment immediately preceding Lemma 1), and it may also be 

written as (𝜎𝑖, 𝜎−𝑖), where 𝑖 is any player and 𝜎−𝑖 = ∏ 𝜎𝑗𝑗≠𝑖 .  

Mixed strategies can be mixed. That is, for any 𝐿 ≥ 2 and nonnegative weights 𝜆1, 𝜆2, … , 𝜆𝐿 

that sum up to 1, if 𝜎𝑖
1, 𝜎𝑖

2, … , 𝜎𝑖
𝐿 are strategies for player 𝑖, defined on algebras 

𝒜𝑖
1,𝒜𝑖

2, … ,𝒜𝑖
𝐿, then the weighted average ∑ 𝜆𝑙𝜎𝑖

𝑙𝐿 
𝑙=1  is also a strategy, defined on the 

algebra ⋂ 𝒜𝑙𝑙 . 

Definition 1  A strategy profile 𝜎 is a best-response equilibrium if, for every player 𝑖, (i) the 

integral  

𝑣𝑖(𝑠𝑖) ≔ ∫ 𝑢𝑖(𝑠𝑖 , 𝑠−𝑖) ⅆ𝜎−𝑖(𝑠−𝑖)
𝑆−𝑖

(1) 

exists for every 𝑠𝑖 ∈ 𝑆𝑖, and (ii) the function 𝑣𝑖: 𝑆𝑖 ⟶ℝ thus defined satisfies 

𝜎𝑖
∗({ 𝑠𝑖 ∈ 𝑆𝑖 ∣∣ 𝑣𝑖(𝑠𝑖) < 𝑎 }) = 0 (2) 

for every 𝑎 < sup
𝑠𝑖∈𝑆𝑖

𝑣𝑖(𝑠𝑖).  

Requirement (i) in the definition concerns only the other players’ strategies. These need to 

be such that every action 𝑠𝑖  yields player 𝑖 a well-defined expected payoff 𝑣𝑖(𝑠𝑖). 

Requirement (ii) may be interpreted as the condition that strategy 𝜎𝑖 is a best response for 

player 𝑖 to the other players’ strategies. It says that every number smaller than sup 𝑣𝑖 is a 

𝜎𝑖-essential lower bound of the function 𝑣𝑖, put differently, that the supremum of 𝑣𝑖 (which 

may be finite or ∞) coincides with the σi-essential infimum. If sup𝑣𝑖 < ∞, the requirement 

can also be stated as the condition that 𝑣𝑖 − sup𝑣𝑖 is a σi-null function. If 𝜎𝑖 is a probability 

(thus, sigma-additive), this is equivalent to the condition that the equality 𝑣𝑖 = sup𝑣𝑖  holds 

𝜎𝑖-almost surely. However, if 𝜎𝑖 is only finitely additive, then the equivalence does not hold: 

the last condition is stronger. Thus, a profile of mixed strategies that are probabilities is a 

best-response equilibrium if and only if each player’s mixed strategy assigns probability 1 to 

some set of payoff-maximizing actions. But in general, this condition is not necessary but is 

only a sufficient condition for best-response equilibrium. As the next proposition shows, 

another familiar equilibrium condition is both necessary and sufficient.  

Proposition 1  In Definition 1, if sup𝑣𝑖 < ∞, then the best-response requirement (ii) holds if 

and only if 𝑣𝑖 is 𝜎𝑖-integrable and  

∫ 𝑣𝑖(𝑠𝑖) ⅆ𝜎𝑖(𝑠𝑖)
𝑆𝑖

= sup𝑣𝑖 .  

Proof. A nonpositive function is 𝜎𝑖-null if and only if it is 𝜎𝑖-integrable and the integral is zero 

(Dunford and Schwartz 1958, Theorem II.2.20). Apply this to the function 𝑣𝑖 − sup𝑣𝑖.   ∎ 

The equilibrium condition identified in Proposition 1 is that the mixed strategy of each 

player 𝑖 yields maximal expected payoff. However, that payoff, sup𝑣𝑖, cannot generally be 

interpreted as player 𝑖’s equilibrium payoff in the best-response equilibrium 𝜎. The latter is 

given by ∫ 𝑢𝑖(𝑠) ⅆ𝜎(𝑠)𝑆
 – if the integral exists. If in addition the payoff function 𝑢𝑖 is 

bounded, then it follows from Proposition 1 and Lemma 1 that the equilibrium payoff is 

equal to sup 𝑣𝑖. However, if 𝑢𝑖 is not 𝜎-integrable, then the equilibrium payoff is not well 
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defined – it does not exist. The interpretation is that, in this case, the information provided 

by the strategy profile is not sufficient even for a probabilistic determination of the player’s 

payoff (although it would become so, according to requirement (i) in the definition, if the 

player’s own action were known with certainly).  

Even in a finite game, a best-response equilibrium 𝜎 does not necessarily assign a probability 

to every single action. An atom 𝐴 of 𝒜𝑖  may include several of player 𝑖’s actions, in 

particular, equivalent actions. It is, however, always possible to assign probabilities to these 

actions by arbitrarily dividing the probability 𝜎𝑖(𝐴) among them. Doing so for one or more 

players 𝑖 yields an equilibrium that extends 𝜎 in the sense that its components are 

extensions of the latter’s components. The next proposition generalizes this observation.  

Proposition 2  For every best-response equilibrium 𝜎, every strategy profile 𝜎̃ that extends 𝜎 

is also a best-response equilibrium, and there is at least one such 𝜎̃ that is total (in the sense 

that all its components are so). 

Proof. As already remarked, if 𝜎̃ extends 𝜎, then every function that is 𝜎-integrable is also 𝜎̃-

integrable and the two integrals are equal. In addition, for every player 𝑖, 𝜎̃𝑖
∗(𝐶) ≤ 𝜎𝑖

∗(𝐶) for 

every 𝐶 ⊆ 𝑆𝑖. It follows that 𝜎̃ is a best-response equilibrium if 𝜎 is so. As proved in Section 

2, every strategy, hence every strategy profile, has a total extension. ∎ 

A strategy that is total is in particular complete. Therefore, a corollary of Proposition 2 is that 

there would be essentially no loss of generality in replacing the outer measure 𝜎𝑖
∗ in the 

definition of best-response equilibrium with 𝜎𝑖 itself and requiring the set in Eq. (2) to be 

measurable.  

With respect to a total strategy, every bounded function is integrable (see Section 2). 

However, this fact does not take the bite out of requirement (i) in Definition 1, because with 

𝑛 ≥ 3, the requirement refers to integrability with respect to the product of strategies. This 

makes it a substantial, rather than technical, requirement, as the following example 

demonstrates.  

Example 1  Three-player game without best-response equilibrium. For three players, the 

action set is the open interval (0,1). The payoff functions are 𝑢1(𝑠) = −𝑠1, 𝑢2(𝑠) = −𝑠2 

and 𝑢3(𝑠) = min(𝑠2/𝑠1, 1) (where 𝑠 = (𝑠1, 𝑠2, 𝑠3)). For 𝑖 = 1,2, requirement (2) in the 

definition reads ∫(−𝑠𝑖) ⅆ𝜎𝑖(𝑠𝑖) = 0. For player 3, requirement (i) and Lemma 1 imply that, if 

the iterated integrals ∫∫𝑢3 ⅆ𝜎2 ⅆ𝜎1 and ∫∫ 𝑢3 ⅆ𝜎1 ⅆ𝜎2 exist, they must be equal. However, 

this condition does not hold. For every 𝑠1, 0 ≤ min(𝑠2/𝑠1, 1) ≤ 𝑠2/𝑠1 for all 𝑠2, which, since 

∫0ⅆ𝜎2(𝑠2) = 0 and ∫ 𝑠2/𝑠1 ⅆ𝜎2(𝑠2) = (−1/𝑠1) ∫(−𝑠2) ⅆ𝜎2(𝑠2) = 0, implies that the 

“sandwiched” integral ∫min(𝑠2/𝑠1, 1) ⅆ𝜎2(𝑠2) exists and is also 0 (because the upper and 

lower integrals both have this value). For every 𝑠2, 1 ≥ min(𝑠2/𝑠1, 1) ≥ 1 − 𝑠1/𝑠2 for all 𝑠1, 

which similarly implies that ∫min(𝑠2/𝑠1, 1) ⅆ𝜎1(𝑠1) exists and is equal to 1. It follows that 

the two iterated integrals above are 0 and 1, respectively, and so they are not equal. This 

proves that no strategy profile is an equilibrium.  

With 𝑛 = 2, requirement (i) in the definition is not an issue. However, (ii) may well be so.  

Example 2  Two-player game without best-response equilibrium. For two players, the action 

set is the set ℕ of natural numbers. The payoff functions are 𝑢1(𝑠) = 𝑠11𝑠1≤𝑠2 and 𝑢2(𝑠) =

𝑠21𝑠1≤𝑠2 or 𝑠2=1, so that the (infinite) payoff matrix is  
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 1    2   3  ⋯    𝑛  ⋯
1
2
3
⋮
𝑛
⋮ (

 
 
 

1,1 1,2 1,3 ⋯ 1, 𝑛 ⋯
0,1 2,2 2,3 ⋯ 2, 𝑛 ⋯
0,1 0,0 3,3 ⋯ 3, 𝑛 ⋯
⋮ ⋮ ⋱ ⋮
0,1 0,0 0,0 ⋯ 𝑛, 𝑛
⋮ ⋮ ⋮ ⋱)

 
 
 
. 

In a total best-response equilibrium 𝜎, if strategy 𝜎1 is “diffuse” in sense that 𝜎1({𝑛}) = 0 

for all 𝑛, then 𝑣2(1) = 1 and 𝑣2(𝑛) = 0 for all 𝑛 ≥ 2, which implies that 𝜎2 must be 

concentrated at 1, that is, 𝜎2({1}) = 1. The conclusion and the best-response requirement 

imply that 𝜎1 must also be concentrated at 1, and so it is actually not diffuse. On the other 

hand, if 𝜎1 is not diffuse, then ∑ 𝜎1({𝑛})𝑛≥1 > 0 and therefore the sequence 𝑣2(2), 𝑣2(3),…  

increases to infinity, which implies that 𝜎2 must be diffuse. The conclusion means that 

𝑣1(𝑛) = 𝑛 for all 𝑛, which implies that 𝜎1 must also be diffuse. These contradictions prove 

that a total best-response equilibrium does not exist. In view of Proposition 2, the same is 

true with ‘total’ omitted.  

Existence of best-response equilibrium is guaranteed in the special case 𝑛 = 1. 

Theorem 1  Every one-player game has a best-response equilibrium. 

Proof. In the player’s action set 𝑆, let (𝑠𝑛)𝑛∈ℕ be some sequence such that lim
𝑛→∞

𝑢(𝑠𝑛) =

sup𝑢, the supremum of the payoff function (finite or otherwise). Define a strategy 𝜎 by 

𝜎(𝐴) = 0 or = 1 if 𝐴 or its complement, respectively, includes only finitely many points in 

(𝑠𝑛)𝑛∈ℕ. If neither condition holds, 𝐴 is not measurable.2 By definition of limit, 𝜎(𝐴) = 0 

holds for the set 𝐴 = { 𝑠 ∈ 𝑆 ∣ 𝑢(𝑠) < 𝑎 } for every 𝑎 < sup𝑢. Thus, 𝜎 is a best-response 

equilibrium.  ∎ 

The construction in the proof of Theorem 1 does not use, or assume, any structure on 𝑆. 

However, action sets often do have one or more natural structures – a measurable 

structure, a topology or an order relation – in which case other, possibly more natural, 

equilibrium strategies may exit.  

Example 3  In a one-player game, the payoff is any real number 𝑠 the player chooses. While 

𝑠 = ∞ is not a legitimate choice, the following strategy 𝛿∞ may be viewed as coming close: 

𝛿∞(𝐴) = 0 or = 1 if 𝐴 or 𝐴∁, respectively, is bounded from above. This strategy is a best-

response equilibrium. In an 𝑛-player version of the game, player 𝑖’s request of 𝑠𝑖  is granted 

only if it is higher than all the other players’ requests. For a strategy profile 𝜎 to be a best-

response equilibrium, it suffices that the strategy of some player 𝑖 is 𝛿∞. The other strategies 

do not matter, except that they have to satisfy the technical condition that the ray (−∞, 𝑥) 

is measureable for all 𝑥. This is because, for every player 𝑗 ≠ 𝑖 and action 𝑠𝑗, the payoff 

𝑢𝑗(𝑠𝑗, 𝑠−𝑗) is nonzero only if 𝑠𝑗 > 𝑠𝑖. This implies that 𝑣𝑗 = 0 identically, so that any strategy 

is a best response for 𝑗. For player 𝑖, since the payoff function 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) is obviously 

nondecreasing in 𝑠𝑖, the function 𝑣𝑖 is nondecreasing and therefore the set in Eq. (2) is 

bounded from above for every 𝑎 < sup𝑣𝑖, which by definition of 𝛿∞ means that (2) holds.  

 
2 However, by Proposition 2, there are extensions of 𝜎 that render all sets measurable. Such an 
extension is the function 𝐴 ↦ lim

𝑛→∞
𝛿𝑠𝑛(𝐴), where lim refers to some fixed Banach limit (so that it 

exists for every bounded sequence).  
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The intuitive meaning of the strategy 𝛿∞ is that it describes the choice of a very large 

number, indeed, one exceeding any specified 𝑥. (This is clearly an impossibility for usual 

mixed strategies, which are probabilities, as taking 𝑥 = 1,2, … and using sigma-additivity 

leads to a contradiction.) Similar constructs are 𝛿𝑥+ , which for 𝑥 ∈ ℝ is defined by 𝛿𝑥+(𝐴) =

1 or = 0 if 𝐴 or 𝐴∁, respectively, includes a right neighborhood of 𝑥, and 𝛿𝑥−, which is 

defined similarly using left neighborhoods. These strategies, strategy 𝛿∞, the similarly 

defined 𝛿−∞ and the Dirac measures 𝛿𝑥 , 𝑥 ∈ ℝ, can all be restricted to a common 

subalgebra, namely, the algebra ℐ that consists of all finite unions of intervals in the real line 

(where ‘intervals’ refers to all convex sets, including ℝ, ∅, singletons and rays).3 They are 

moreover the only finitely additive probabilities defined on ℐ that take only the values 0 

and 1.  

4 Applications  
Best-response equilibria have a number of notable applications, where they seem quite 

natural.  

Example 4  Bilateral trade. A buyer has to offer a price 𝑝 to the owner of an item whose 

worth is 1 to the buyer and 0 to the seller. The seller has to decide what prices are 

acceptable, with the natural proviso that if a price 𝑝 is acceptable, then so is any higher 

price. The seller’s sensible strategy of accepting any price greater than zero is weakly 

dominant, yet it is not an equilibrium strategy because no action of the buyer is a best 

response to it. Offering any 𝑝 > 0 is less profitable than offering, say, half that price. There is 

moreover no “normal” mixed strategy that is a best response. However, the intuitive idea 

that the buyer should offer as little as possible, or “an 𝜖”, is captured by the strategy 𝛿0+, 

which together with the seller’s (pure) strategy of accepting any positive price constitutes a 

best-response equilibrium.4 The traders’ payoff functions are integrable with respect to this 

equilibrium. The integrals, which give the expected profits, are 0 for the seller and 1 for the 

buyer. 

Example 5  Price competition. Price competition among identical firms may be expected to 

drive profits to zero. However, as indicated by Vasquez (2017), considerably higher profits 

are supported by equilibria involving finitely additive probabilities. This makes these 

equilibria qualitatively different also from (regular) 𝜖-equilibria.  

Consider a good that is produced by 𝑛 identical firms. Each firm 𝑖 sets a price 𝑝𝑖 ≥ 0. The 

demand is given by 𝐷(𝑝), where 𝐷 is the demand function and 𝑝 = min
𝑖
𝑝𝑖, and it is equally 

divided among the 𝑘 firms tied for the lowest price. The profit for firm 𝑖 is therefore 

𝑢𝑖(𝑝1, 𝑝2, … , 𝑝𝑛) = {
𝑝𝑖
𝐷(𝑝𝑖)

𝑘
− 𝐶 (

𝐷(𝑝𝑖)

𝑘
) , 𝑝𝑖 = min

𝑗
𝑝𝑗

0, otherwise

 , 

where 𝐶 is the firms’ identical cost function. If the monopoly profit function 𝜋𝑀(𝑝) =

𝑝𝐷(𝑝) − 𝐶(𝐷(𝑝)) is continuous, unimodal and positive at its maximum point 𝑝𝑀, then 𝛿𝑝𝑀−  

 
3 More generally, for any 𝑆 ⊆ ℝ, the collection {𝐴 ∩ 𝑆 ∣ 𝐴 ∈ ℐ} is an algebra in 𝑆, which may also be 
denoted by ℐ if the meaning is clear from the context.    
4 For an alternative solution to the problem of nonexistence of equilibrium, which employs a set-
valued solution concept, see Milchtaich (2019). 
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is the equilibrium strategy in a symmetric best-response equilibrium in which the expected 

price is the monopoly price 𝑝𝑀. This is because, if a single firm 𝑖 sets a price 𝑝𝑖 < 𝑝𝑀, it 

would be the sole seller, while 𝑝𝑖 ≥ 𝑝𝑀 would mean no sells, and so the expected profit 

𝑣𝑖(𝑝𝑖) is given by 

𝑣𝑖(𝑝𝑖) = {
𝜋𝑀(𝑝𝑖), 0 ≤ 𝑝𝑖 < 𝑝𝑀
0, 𝑝𝑖 ≥ 𝑝𝑀

 . 

The supremum of 𝑣𝑖 is the monopoly profit 𝜋𝑀(𝑝𝑀). For every 𝜖 > 0, the probability that 

the strategy 𝛿𝑝𝑀
−  assigns to the set of prices { 𝑝𝑖 ∣∣ 𝑣𝑖(𝑝𝑖) < 𝜋𝑀(𝑝𝑀) − 𝜖 } is zero, which 

shows that it is indeed a best response. Note that the expected equilibrium profit of an 

individual firm is not well defined, as 𝑢𝑖 is not integrable with respect to the equilibrium (but 

only becomes so after fixing 𝑝𝑖). However, 𝑝 = min
𝑖
𝑝𝑖 is integrable, and its integral, which is 

𝑝𝑀, gives the expected equilibrium price. 

There are additional, lower equilibrium prices, and the continuity and unimodality 

assumptions above are made for illustrative purposes only. In general, a sufficient condition 

for a price 𝑝 to be the expected price in a symmetric best-response equilibrium in which the 

equilibrium strategy is 𝛿𝑝− is that 𝜋𝑀 is nondecreasing in the interval (0, 𝑝) and its 

supremum there is nonnegative. A rather similar result holds for non-identical firms, which 

differ in their cost functions.   

Price competition may have no mixed-strategy equilibrium in the usual sense, that is, with 

mixed strategies that are (sigma-additive) probabilities (Hoernig 2007, Dastidar 2011). This is 

so, for example, for 𝑛 = 2, 𝐷(𝑝) = 1 − 𝑝 and quasi-fixed cost, 𝐶(𝑞) = 𝐹 for 𝑞 > 0 and = 0 

for 𝑞 = 0, with 0 < 𝐹 < 1/4. For finitely additive probabilities, by contrast, this case poses 

no difficulty. By the result in the previous paragraph, (𝛿𝑝− , 𝛿𝑝−) is a best-response 

equilibrium for every 1/2 − √1/4 − 𝐶 ≤ 𝑝 ≤ 1/2. The upper and lower bounds on the 

equilibrium price 𝑝 correspond to the monopoly profit and zero profit, respectively.    

Example 6  Spatial competition with three firms. With consumers uniformly distributed on 

the unit interval [0,1], it is well known that this model has no equilibrium in pure strategies 

(Eaton and Lipsey 1975). It does have a symmetric equilibrium in mixed strategies, where all 

three firms (independently) choose a location in [1/4,3/4] according to the uniform 

distribution on this subinterval (Shaked 1982). There is also a unique (up to permutations of 

firms) equilibrium with a mixture of pure and mixed strategies, in which one firm chooses 

1/2 and the other two use an identical mixed strategy that specifies a particular continuous 

distribution on the interval [5/24,19/24] that is symmetric with respect to 1/2 and puts 

most of the weight around 1/4 and 3/4 (Osborne and Pitchik 1986). This mixed strategy 

cannot be replaced by the strategy that simply randomizes fifty-fifty between 1/4 and 3/4, 

as the replacement would make a deviation to 1/2 profitable for the two randomizing firms. 

However, it can be replaced with 1/2 𝛿1/4− + 1/2 𝛿3/4+ , and more generally by 1/2 𝛿𝑥− +

1/2 𝛿(1−𝑥)+ for any 1/4 ≤ 𝑥 ≤ 1/3. This is because, if player 2 uses the last strategy and 

player 3 chooses 1/2, then the expected profit for player 1 from choosing location 0 ≤ 𝑠1 ≤

1 is given by 𝑣1(𝑠1) = 𝑓(min{𝑠1, 1 − 𝑠1}), where  

𝑓(𝑡) = {
𝑡/2 + 𝑥/4 + 1/8, 0 ≤ 𝑡 < 𝑥
𝑡/4 − 𝑥/4 + 1/4, 𝑥 ≤ 𝑡 ≤ 1/2

 . 

If 𝑥 ≥ 1/4, then sup 𝑣1 = 3/4 𝑥 + 1/8, and therefore 𝛿𝑥− is a best response because 
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𝛿𝑥−({ 𝑠1 ∣∣ 𝑣𝑖(𝑠𝑖) < 3/4 𝑥 + 1/8 − 𝜖 }) ≤ 𝛿𝑥−([𝑥 − 2𝜖, 𝑥)
∁) = 0 for every 𝜖 > 0. Similarly, 

𝛿(1−𝑥)+ is a best response, hence also the average of the two is so. The additional 

requirement 𝑥 ≤ 1/3 comes from consideration of player 3’s alternatives. Thus, with both 

inequalities holding, the symmetric strategy profile is a best-response equilibrium. With 

respect to this equilibrium, only player 3’s payoff is well defined. That payoff lies in 

(1/3,1/2). 

5 Zero-sum games 
In a finite two-player zero-sum game, an equilibrium in mixed strategies can be found by 

solving two uncoupled optimization problems, one for each player. The problem is to find for 

the player an optimal, that is, a maxmin or equivalently minmax, strategy. Thus, a strategy 

profile 𝜎 = (𝜎1, 𝜎2) is an equilibrium if and only if, for each player 𝑖, the value of sup𝑣𝑖  

(where 𝑣𝑖 is defined by (1)) would not decrease if the strategy 𝜎𝑗 of the other player 𝑗 were 

replaced by any other mixed strategy. In this case, sup𝑣1 is equal to −sup𝑣2, and it is the 

value of the game. For best-response equilibrium, characterization in terms of maxmin or 

minmax is not applicable, because there is no notion of alternative mixed strategies. 

A characterization that is applicable is the following one.   

Proposition 3  In a two-player zero-sum game with a bounded payoff function 𝑢1, consider a 

strategy profile 𝜎 for which the integral of 𝑢1 with respect to 𝜎 and the two corresponding 

iterated integrals exist. The strategy profile is a best-response equilibrium if and only if 

sup𝑣1 + sup𝑣2 = 0, and in this case, the players’ equilibrium payoffs are given by the 

respective suprema.  

Proof. It follows from Lemma 1 that both iterated integrals must be equal to the integral, 

∫ 𝑢1(𝑠) ⅆ𝜎(𝑠)𝑆
. Since 𝑢2 = −𝑢1, this means that 

∫ 𝑣1(𝑠1) ⅆ𝜎1(𝑠1)
𝑆1

+∫ 𝑣2(𝑠2) ⅆ𝜎2(𝑠2)
𝑆2

= 0. 

The first and second integral in this equation are clearly less than or equal to sup 𝑣1 and 

sup𝑣2, respectively, and by Proposition 1, both inequalities hold as equalities if and only if 𝜎 

is a best-response equilibrium. As remarked, in this case, the (well-defined) equilibrium 

payoff of each player 𝑖 is sup𝑣𝑖. ∎ 

Example 7  Game without a value. In a two-player zero-sum game, both players’ action set is 

[0,1] and the payoff function is 𝑢1(𝑠1, 𝑠2) = 𝑔(𝑠1 − 𝑠2) + 1, where 𝑔(𝑡) = sign(𝑡) −

sign(𝑡 + 1/2). With usual mixed strategies, that is, (sigma-additive) probabilities on the 

Borel sets, this game does not have an equilibrium or even an 𝜖-equilibrium for sufficiently 

small 𝜖, as the maxmin and minmax values are different, 1/3 and 3/7 respectively (Sion and 

Wolfe 1957; see also Dasgupta and Maskin 1986). However, player 2 has a finitely additive 

mixed strategy that lowers player 1’s maximum payoff to 1/3, namely, 𝜎2 = 1/3 𝛿1/2− +

2/3 𝛿1 (Vasquez 2017). It follows from Proposition 3 that together with 𝜎1 = 1/3 𝛿0 +

2/3 𝛿1, for example, against which player 2’s maximum payoff is −1/3, this strategy 

constitutes a best-response equilibrium, with equilibrium payoffs 1/3 and −1/3.  

The assumption in Proposition 3 that the payoff function is 𝜎-integrable cannot be dropped. 

Without it, the equality sup𝑣1 + sup𝑣2 = 0 is neither sufficient nor necessary for best-

response equilibrium, as the following examples show.  
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In the game in Example 7, the above equality holds for 𝜎1 = (3√2 − 4)𝛿0 +

(3 − 2√2)𝛿1/2− + (2 − √2)𝛿1 and 𝜎2 = (3√2 − 4)𝛿1/2 + (3 − 2√2)𝛿1/2− + (2 − √2)𝛿1. 

Specifically, player 1’s strategy makes player 2’s maximum payoff equal to 1 − √2, thus 

guaranteeing player 1 a minimum of √2 − 1, and player 2’s strategy makes this figure player 

1’s maximum payoff (Yanovskaya 1970). However, (𝜎1, 𝜎2) is not a best-response 

equilibrium because, for both players, actions just below 1/2 (which are picked up by 𝛿1/2−) 

yield a significantly lower payoff than the maximum.  

In a similar game with 𝑢1(𝑠1, 𝑠2) = sign(𝑠1 − 𝑠2) (−1)
1𝑠1=1(−1)1𝑠2=1  (Ville 1938), the 

strategy profile (𝛿1− , 𝛿1−) is a best-response equilibrium because 𝑣1 = 𝑣2 = −1 identically: 

all actions yield a player a payoff of −1 if the opponent’s strategy is 𝛿1−  (Yanovskaya 1970). 

But sup 𝑣1 and sup𝑣2 sum up to −2 rather than zero, which reflects the fact that they are 

not equilibrium payoffs; the payoff function is not integrable. With usual mixed strategies, 

an equilibrium does not exist. For every (sigma-additive) strategy of the opponent, there are 

for each player actions yielding payoffs arbitrarily close to 1, which means that the infsup 

and supinf values of 𝑢1 are different: 1 and −1 respectively.   

6 Similar solution concepts 
The idea of relaxing the sigma-additivity requirement in the definition of mixed strategy to 

finite additivity is not new (Yanovskaya 1970 credits Karlin 1950 for it). Neither is the 

realization that integrability with respect to a product algebra, rather than product sigma-

algebra, is a strong condition, which is not satisfied by a number of games of interest with 

non-continuous payoff functions. Non-integrability of a payoff function means that the 

expected payoff is not well defined, which creates a difficulty for defining, let alone 

identifying, best response. One solution to this problem is to apply the mixed equilibrium 

concept only when the payoff functions are integrable (Marinacci 1997). However, such a 

restriction means that some simple and natural equilibria, or even all equilibria in a game, 

may be excluded, as demonstrated above. A different approach to dealing with the 

ambiguity inherent in non-integrality of the payoff functions is to assume that the players’ 

perception of their current payoffs is different from their perception of the payoffs they 

would receive by deviating to alternative strategies. In particular, a player may be optimistic 

about the former and pessimistic about the latter. This approach underlies the solution 

concept of optimistic equilibrium proposed by Vasquez (2017). The best-response 

equilibrium described in Example 5 is viewed by Vasquez as reflecting optimism. All firms are 

aiming at a price just below the monopoly price 𝑝𝑀, and each of them effectively believes its 

price will be the lowest. Note, however, that while this equilibrium is similar in spirit to that 

of the 𝑛-person game in Example 3, the latter would have to be interpreted as expressing 

pessimism. The other players effectively believe they will be “outbid” by player 𝑖, even if 

their strategy is also 𝛿∞. Rather than reflecting optimism or pessimism, the idea underlying 

the best-response equilibrium concept is that players evaluate each of their possible actions 

against the other players’ uncertain actions, with the uncertainty specified by the respective 

mixed strategies. Theirs is therefore a different perspective than that of an outside observer, 

who is uncertain about everyone’s actions. The integral with respect to the product 

probability represents the latter point of view, and is therefore different from that of any of 

the players.  
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Motivated by the work of Vasquez (2017), Flesch et al. (2018) proposed replacing the 

integral with the upper integral for the current payoff and with the lower integral for the 

alternatives. For a game with bounded payoff functions, and for a specified algebra 𝒜𝑖  in 

the action set 𝑆𝑖 of each player 𝑖, a strategy profile 𝜎 is a justifiable equilibrium if for every 

player 𝑖 and strategy 𝜏𝑖 (that is also defined on 𝒜𝑖)  

∫
𝑆

𝑢𝑖(𝑠) ⅆ𝜎(𝑠) ≥ ∫
𝑆

𝑢𝑖(𝑠) ⅆ(𝜏𝑖 , 𝜎−𝑖)(𝑠). (3) 

Flesch et al. (2018) prove that a justifiable equilibrium exists for any choice of the players’ 

algebras. 5 They illustrate this concept with an example (Wald’s game) that is similar to the 

following one. 

Example 3 (continued)  In the two-player case, for 𝑖 = 1 inequality (3) reads 

∫
ℝ2
1𝑠1>𝑠2 ⅆ𝜎(𝑠1, 𝑠2) ≥ ∫

ℝ2
1𝑠1>𝑠2 ⅆ(𝜏1, 𝜎2)(𝑠1, 𝑠2). (4) 

A sufficient condition for this inequality to hold for all 𝜏1 is that (i) 𝜎1(𝐴1) = 0 for every set 

𝐴1 ∈ 𝒜1 that is bounded from above or (ii) a similar condition holds for 𝜎2. To see this, 

consider any simple measurable function 𝑔:ℝ2⟶ℝ, which can be written as 

∑ 𝜆𝑙𝑚1𝐴1𝑙 ×𝐴2𝑚
 
𝑙,𝑚 , where {𝐴1

𝑙 }𝑙 ⊆ 𝒜1 is a finite partition of ℝ and similarly for player 2. If 𝑔 ≥

1𝑠1>𝑠2, then 𝐴1
𝑙  must be bounded from above for all 𝑙 and 𝑚 with 𝜆𝑙𝑚 < 1, so there is some 

𝐴1∈𝒜1 that is bounded from above such that 𝑔 ≥ 1𝐴1
∁×ℝ. If (i) holds, then the last inequality 

implies ∫ 𝑔 ⅆ𝜎
ℝ2

≥ 1, which proves that the left-hand side of inequality (4) is 1, so it 

necessarily holds. Similarly, if 𝑔 ≤ 1𝑠1>𝑠2, then 𝐴2
𝑚 must be bounded from above for all 𝑙 and 

𝑚 with 𝜆𝑙𝑚 > 0, so there is some 𝐴2 ∈ 𝒜2 that is bounded from above such that  𝑔 ≤

1ℝ×𝐴2. If (ii) holds, then the last inequality implies ∫ 𝑔 ⅆ(𝜏1, 𝜎2)ℝ2
≤ 0 for any 𝜏1, which 

proves that the right-hand side of inequality (4) is 0, so it necessarily holds. It follows, by 

symmetry, that either condition implies that 𝜎 is a justifiable equilibrium.  

As shown, a sufficient condition for (𝜎1, 𝜎2) to be a best-response equilibrium in the game in 

Example 3 is that at least one of the two strategies is 𝛿∞. This is essentially the same 

sufficient condition established for justifiable equilibrium. However, the two solution 

concepts are in general different both substantially and conceptually. The differences are 

illustrated by the following example. 

Example 8  In a one-player game, the action set is [0,1] and the payoff is 1 for a choice of a 

rational number and 0 for an irrational number. Consider the algebra ℐ of all finite unions of 

subintervals of [0,1]. A simple measurable function 0 ≤ 𝑔 ≤ 1 satisfies 𝑔 ≤ 1ℚ if and only if 

it is 0 outside some finite set of rational points, and satisfies 𝑔 ≥ 1ℚ if and only if it is 1 

outside some finite set of irrational points. The first fact gives that ∫1ℚ ⅆ𝜏 = 1 for 𝜏 = 𝛿0, 

which together with the second fact proves that a strategy 𝜎: ℐ ⟶ [0,1] is a justifiable 

equilibrium if an only if 𝜎({𝑠}) = 0 for all 𝑠 ∉ ℚ. In particular, the restriction of Lebesgue 

measure to ℐ is a justifiable equilibrium, even though it amounts to choosing a number at 

 
5 It is easy to see that a justifiable equilibrium 𝜎 remains so if one (or more) of the algebras 𝒜𝑖  is 
replaced by a subalgebra, to which the strategy 𝜎𝑖  is restricted. Note that this is the opposite of the 
situation for best-response equilibria, which are preserved by extensions rather than restrictions.  
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random and all but a countable number of choices are actually suboptimal in that they give 

0 rather than 1. The necessary and sufficient condition for 𝜎 to be a best-response 

equilibrium is more in tune with the payoff function. This condition is 𝜎∗([0,1] ∖ ℚ) = 0, 

which is equivalent to ∑ 𝜎({𝑠})𝑠∈ℚ∩[0,1] = 1. It holds if and only if 𝜎 is the restriction to ℐ of 

some (sigma-additive) probability on the Borel sets in [0,1] that is supported in ℚ.  

The necessary and sufficient condition for justifiable equilibrium in Example 8 would 

coincide with that for best-response equilibrium if the definition of the former were 

strengthened by replacing the upper integral on the left-hand side of (3) with a lower 

integral. (Proposition 1 implies that this coincidence in fact holds for every one-player game 

with a bounded payoff function.) This fact illustrates the following result.  

Theorem 2  In a game with bounded payoff functions, every best-response equilibrium 𝜎 is a 

justifiable equilibrium but not conversely. 

Proof. The first assertion holds because, for every player 𝑖 and strategy 𝜏𝑖,  

∫
𝑆

𝑢𝑖(𝑠) ⅆ𝜎(𝑠) ≥ ∫
𝑆𝑖

𝑣𝑖(𝑠𝑖) ⅆ𝜎𝑖(𝑠𝑖) = sup𝑣𝑖 ≥ ∫
𝑆𝑖

𝑣𝑖(𝑠) ⅆ𝜏𝑖(𝑠𝑖) ≥ ∫
𝑆

𝑢𝑖(𝑠) ⅆ(𝜏𝑖 , 𝜎−𝑖)(𝑠), 

where the equality follows from Proposition 1, the middle inequality is obvious and the 

other two follow from Lemma 1. The second assertion is proved by Example 8. ∎ 

The difference between justifiable equilibrium and best-response equilibrium goes beyond 

the former’s use of the upper integral. It also reflects a radically different interpretation of 

mixed strategy. Justifiable equilibrium’s perspective is an extension of the view that mixed 

strategies are strategies in the mixed extension of the game. This means that the mixed 

strategy each player plays is chosen from among, and is evaluated against, all mixed 

strategies. The different treatment of the chosen strategy and of the alternatives in (3) is 

only a concession to the potential non-integrability of the payoff function. Best-response 

equilibrium, by contrast, does not view players as playing mixed strategies. Indeed, these do 

not even have to be playable in any sense. A mixed strategy is an external, probabilistic and 

possibly incomplete description of a player’s choice of action. The equilibrium condition is 

that it excludes actions that yield low expected payoff, where the expectation is with respect 

to the other players’ mixed strategies (which reflects an assumption that the player’s view of 

the others is also “external”; he has no special knowledge about their intentions). Best-

response equilibrium thus describes rational choices of actions, or pure strategies, by the 

players. It is not interpreted as specifying choices of particular mixed, or randomized, 

strategies, and, correspondingly, no mixed extension of the original game is considered.     
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