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ON THE CONSISTENCY OF BOOTSTRAP TESTING
FOR A PARAMETER ON THE BOUNDARY OF THE

PARAMETER SPACE

Giuseppe Cavaliere∗, Heino Bohn Nielsen†, and Anders Rahbek‡

Abstract

It is well-known that with a parameter on the boundary of the parameter
space, such as in the classic cases of testing for a zero location parameter or
no ARCH effects, the classic nonparametric bootstrap — based on unrestricted
parameter estimates — leads to inconsistent testing. In contrast, we show here
that for the two aforementioned cases a nonparametric bootstrap test based on
parameter estimates obtained under the null —referred to as ‘restricted bootstrap’
—is indeed consistent. While the restricted bootstrap is simple to implement in
practice, novel theoretical arguments are required in order to establish consistency.
In particular, since the bootstrap is analyzed both under the null hypothesis and
under the alternative, non-standard asymptotic expansions are required to deal
with parameters on the boundary. Detailed proofs of the asymptotic validity of the
restricted bootstrap are given and, for the leading case of testing for no ARCH, a
Monte Carlo study demonstrates that the bootstrap quasi-likelihood ratio statistic
performs extremely well in terms of empirical size and power for even remarkably
small samples, outperforming the standard and bootstrap Lagrange multiplier
tests as well as the asymptotic quasi-likelihood ratio test.

Keywords: Bootstrap; Boundary; ARCH; Location model.
JEL Classification: C32.

1 Introduction

In economics and econometrics, it is a well perceived fact that the finite sample proper-
ties of hypothesis tests, when based on asymptotic inference, can be quite poor. In such
circumstances, it is also known that the bootstrap, when correctly implemented, can be
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an important device for improving upon the finite sample size properties of such tests.
In addition, the bootstrap can also be an effectively tool for retrieving the asymptotic
distributions of tests statistics when such distributions depend on unknown parameters
or do not have closed form expressions; see e.g. Davidson and MacKinnon (2006) and
references therein.
Many important econometric testing problems with considerable relevance in appli-

cations, however, involve parameters which are on a boundary of a parameter space (as
often defined by inequality, or mixed equality/inequality, constraints) under the null
hypothesis. Examples include tests for no ARCH effects (Andrews, 2001) and tests
for parameter constancy in random coeffi cient models (Andrews, 2001; Carrasco and
Gregoir, 2002). When a parameter is on a boundary —such that standard regularity
conditions fail to hold, leading in general to non-standard inference (Gouriéroux, Holly
and Monfort, 1982) —it is well understood that the bootstrap is invalid, not only for
obtaining asymptotic refinements but even for consistent estimation of the (first-order)
asymptotic distributions of interest. See e.g. Horowitz (2001, p.3169), or Heckman,
Smith and Clements (1997, p.530). A formal counterexample on the validity of the
bootstrap is given in Andrews (2000) who shows, for a simple location model with one
dimensional parameter space defined by an inequality constraint, invalidity of the clas-
sical nonparametric bootstrap —that is, the bootstrap based on unrestricted parameter
estimates.
In this paper we contribute to this literature by focusing on testing the hypothe-

sis that a parameter lies on the boundary of the parameter space. We establish that
an alternative and simple nonparametric, ‘restricted bootstrap’test, i.e. based on pa-
rameter estimates obtained with the null hypothesis imposed, can indeed be a useful
and effective method for consistent testing on the boundary of the parameter space.
We do so in terms of two well-known examples. The first is, as mentioned, the case
of testing for α = 0, where α is a location parameter with bounded parameter space
α ≥ 0 for a sample of i.i.d. random variables with known scale; see Andrews (2000).
The second deals with testing for a constant parameter in random coeffi cient models
or, equivalently in terms of the Gaussian ARCH model, testing for no ARCH effects.
This example is a special case of testing for no GARCH effects as discussed in Andrews
(2001). For both cases we establish validity of the restricted bootstrap test, both under
the null hypothesis and, importantly, also under the alternative. While this turns out
to be straightforward for the location model, it is more involved for the ARCH case
where validity of the our bootstrap test is achieved by verifying non-standard regularity
conditions for inference on parameters on the boundary of the parameter space (An-
drews, 1999, 2001), which are here modified for the application of our new bootstrap
theory arguments. In particular, in the bootstrap case the non-standard asymptotic
expansions required to deal with parameters on the boundary involve the introduction
of pseudo-true parameters for the bootstrap data generating process. This is because
in order to establish bootstrap validity, such non-standard asymptotic expansions have
to be analyzed both under the null and crucially, under the alternative. While this is
not strictly required for standard asymptotic inference, it is however a key step of the
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proof of validity of the bootstrap test. The use of the restricted bootstrap as a promis-
ing alternative approach to the classic bootstrap was studied for a different case of
non-standard inference in terms of nonstationarity and co-integration analysis in Cav-
aliere, Rahbek and Taylor (2012), Cavaliere, Nielsen and Rahbek (2015) and Boswijk,
Cavaliere, Rahbek and Taylor (2015). Notably, the theory therein does not allow for
inference with parameters on the boundary of the parameter space.
It is worth stressing that, with respect to Andrews (2000), our focus is not on

bootstrap approximations of the distribution of an estimator when a parameter may
or may not lie on the boundary of the parameter space. Instead, we are interested in
bootstrap-based (likelihood ratio) testing of the hypothesis that a parameter lies on
the boundary of the parameter space. While Andrews’(2000) results imply that the
standard, unrestricted bootstrap cannot be used for testing an hypothesis of this kind,
in contrast we show for the two cases previously mentioned that the restricted bootstrap
can indeed be successfully used in order to construct a consistent test.
The paper is organized as follows. Section 2 establishes consistency of bootstrap hy-

pothesis testing in the location model with restricted parameter space, while in Section 3
this is generalized to the case of no ARCH effects. In Section 4 Monte Carlo simulations
provide empirical rejection frequencies under the null as well as under the alternative
for the quasi-likelihood test of no ARCH effects. The study includes t-distributed as
well as Gaussian innovations, and compare the proposed restricted bootstrap with the
classical (standard and bootstrap) Lagrange multiplier test (see Engle, 1982) and the
asymptotic test based on Andrews (2001). Section 5 concludes. All proofs and hence the
new asymptotic bootstrap arguments needed for the results in Section 3 are collected
in the appendix.

Notation: We use P ∗, E∗ and V ∗ respectively to denote probability, expectation
and variance, conditional on the original sample. With w→ (

w∗→p) and
p→ we denote weak

convergence (in probability), and convergence in probability, respectively, as the sample
size T diverges. Moreover, for a given sequence X∗T computed from the bootstrap data,

X∗T −X = o∗p(1), in probability, or X∗T
p∗→p X, mean that for any ε > 0, P ∗(||X∗T −X|| >

ε)
p→ 0, as T → ∞. Similarly, X∗T = O∗p (1) in probability means that, for every ε > 0,

there exists a constant M > 0 such that, for all large T , P (P ∗(||X∗T || > M) < ε) is

arbitrarily close to one. Also d
= denotes equality in distribution. Finally, I(·) denotes

the indicator function and x := y means that x is defined by y.

2 Location model

As the first motivating simple example consider the location model given by

Xt = α + εt,

for t = 1, 2, ..., T , and where {εt : t ≥ 1} denotes a sequence of independent and identi-
cally distributed (i.i.d.) N(0, 1) random variables. The parameter space for α is given
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by Θ := {α ∈ R | α ≥ 0}, and the hypothesis of interest is H0 : α = 0. The unrestricted
(Gaussian) maximum likelihood estimator (MLE) of α is given by α̂T = max

{
0, X̄T

}
,

where X̄T := T−1
∑T

t=1Xt, while the restricted MLE is α̃T = 0. The likelihood ratio
(LR) statistic QT for H0 satisfies, under H0 and as T →∞,

QT = T α̂2
T

w→ Q∞ := (max {0, Z})2, (1)

where Z is N (0, 1) distributed; see Andrews (2001). Note also that under the alterna-
tive, QT →∞ at the rate of T .
The unrestricted (or classic) bootstrap addressed in Andrews (2000) generates the

bootstrap process {X?
t : t ≤ T} as

X?
t = α̂T + ε?t , (2)

where ε?t is sampled independently (conditional on the data) and with replacement from
the (possibly centered) unrestricted residuals {ε̂t : t ≤ T}, ε̂t := Xt − α̂T , and is based
on the LR statistic of the simple null hypothesis that α = α̂T . The elegant arguments
in Andrews (2000) imply that the bootstrap LR statistic does not converge (weakly in
probability) to Q∞ under H0.
Consider now a restricted bootstrap test, based on estimation under H0. In this case

the bootstrap sample {X∗t : t ≤ T} is generated by

X∗t = α̃T + ε∗t = ε∗t , (3)

where α̃T = 0 is the restricted MLE of α and ε∗t is sampled with replacement from the
centered residuals imposing the null, {ε̃t − ε̃T : t ≤ T} with ε̃T := T−1

∑T
t=1 ε̃t and

ε̃t := Xt − α̃T = Xt. The bootstrap unrestricted MLE of α is α̂
∗
T = max{0, X̄∗T}, while

the restricted is α̃∗T = 0 such that the bootstrap LR statistic for H0 can be explicitly
expressed as

Q∗T = T α̂∗2T . (4)

By Theorem 1 below, Q∗T converges weakly in probability to Q∞ for any value of the
true parameter α0 ∈ Θ. That is, the restricted bootstrap is consistent in the sense that
the bootstrap mimics the correct (null) limit distribution Q∞ under the null α0 = 0,
while remaining bounded in probability under the alternative. Note that Theorem 1
does not require {Xt : t ≥ 1} to be Gaussian, and the restricted bootstrap LR test can
thus be seen as a valid quasi maximum likelihood (QML) test.

Theorem 1 Let {Xt : t ≥ 1} be an i.i.d. sequence with E (Xt) = α0 ∈ Θ and V (Xt) =

1. Then for the bootstrap LR statistic defined in (4), as T →∞, Q∗T
w∗→p Q∞ where Q∞

is given by (1).

The proof of Theorem 1 follows by applying standard results from bootstrap theory.
Specifically, the result holds as by definition Q∗T = T α̂∗2T = (max{0, T 1/2X̄∗T})2 with

T 1/2X̄∗T
w∗→p Z using e.g. Theorem 23.4 in van der Vaart (1998).
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Remark 2.1 Theorem 1 implies that the restricted bootstrap is consistent, since (i)
under H0, it replicates the correct null limiting distribution, and (ii) when H0 does not
hold, Q∗T = O∗p (1) (in probability) while QT diverges to infinity, thereby implying that
the bootstrap test rejects H0 with probability tending to one. The result in Theorem 1
is even stronger, since it states that the bootstrap replicates the correct null asymptotic
distribution even when the null is false.

Remark 2.2 Theorem 1 also holds if the bootstrap shocks ε∗t in (3) are obtained by
i.i.d. resampling of the (centred) unrestricted residuals, {ε̂t − ε̂T : t ≤ T} with ε̂T :=
T−1

∑T
t=1 ε̂t and ε̂t := Xt − α̂T , or if they are obtained parametrically (for instance, if

ε∗t , conditionally on the original data, is i.i.d. N (0, 1), see also Andrews, 2000, p.402).

Remark 2.3 It is worth noting that Andrews (2000) provides alternative methods for
estimating the asymptotic distribution of the unrestricted estimator α̂T . For instance,
he shows that the ‘m out of n’bootstrap (where the bootstrap sample is m, with m =
o (T )) consistently estimates the distribution of α̂T irrespectively of the true parameter
to be on the boundary or not. A further alternative solution is to apply the unrestricted
bootstrap to a standard, one-sided t test, which would be asymptotically valid for
nominal levels below 1/2. Unreported simulations show that when the emphasis is on
testing H0, the restricted bootstrap proposed here is the one performing better in terms
of finite sample size and power.

3 ARCH

Next, we discuss the problem of testing for no ARCH effects. Although the analysis of
validity of the bootstrap for the ARCH case requires new non-standard arguments and
results (in particular in order to show validity of the bootstrap under the alternative),
bootstrap consistency is established under mild assumptions.
Consider the ARCH model of order one for {Xt : t ≥ 1} as given by

Xt = σt (θ) zt, σ2
t (θ) = ω + αX2

t−1, θ = (α, ω)′ (5)

with X0 fixed in the statistical analysis and where {zt : t ≥ 1} is an i.i.d. sequence with
E(zt) = 0 and V (zt) = 1. The hypothesis of interest is H0 : α = 0, which corresponds
to the case of no ARCH effects.
Using the same framework as in Andrews (2001) for GARCH and random coeffi cient

models, which nest our model as a special case, we let LT (θ) denote (up to a constant)
the Gaussian log-likelihood function based on T observations,

LT (θ) :=
T∑
t=1

`t (θ) , `t (θ) = −1
2

(
log σ2

t (θ) +
X2
t

σ2t (θ)

)
. (6)

The parameter space is defined as Θ := {(α, ω)′ ∈ R2 | 0 ≤ α ≤ αU , 0 < ωL ≤ ω ≤ ωU}
(cf. Andrews, 2001, eq. (2.2)), which restricts the ARCH parameter α to be nonnegative
and bounds the conditional variance intercept parameter, ω, away from zero. Note that
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this is a special case of the GARCH example in Andrews (2001), and as there the true
parameter θ0 := (α0, ω0)′ is assumed to be in Θ such that the restrictions defining Θ
are only binding possibly at α0 = 0 (this excludes, without loss of generality, cases
where ω0 = ωL or ω0 = ωU). Denote by θ̂T = (α̂T , ω̂T )′ the unrestricted quasi MLE
(QMLE) maximizing LT (θ) over Θ, and accordingly, by θ̃T = (α̃T , ω̃T )′ = (0, ω̃T )′

the restricted QMLE maximizing over ΘH ⊂ Θ, where ΘH := {(α, ω)′ ∈ R2 | α = 0,
0 < ωL ≤ ω ≤ ωU}.
It follows from Andrews (2001, p.711) that under standard regularity conditions, see

Assumption A below, when H0 holds the quasi LR (QLR) statistic QT := 2(LT (θ̂T ) −
LT (θ̃T )) satisfies, as T →∞,

QT
w→ Q∞ = c(max{0, Z})2, (7)

with Z denoting a N (0, 1) random variable and c := (κ− 1)/2, with κ := E(z4
t ).

As for the previous i.i.d. location model case we consider the restricted bootstrap as
opposed to the inconsistent unrestricted bootstrap in Andrews (2000). For the restricted
bootstrap, define the bootstrap process {X∗t : t ≤ T}, in terms of the restricted QMLE
θ̃T ,

X∗t := σ∗t (θ̃T )z∗t , σ∗2t (θ̃T ) = ω̃T , (8)

with z∗t sampled with replacement from the standardized residuals from restricted es-
timation. That is, with z̃t := Xt/σt(θ̃T ) and z̃st := (z̃t − z̃T )/(T−1

∑T
t=1(z̃t − z̃T )2)1/2,

z̃T := T−1
∑T

t=1 z̃t, the bootstrap shocks {z∗t : t ≤ T} are drawn (with replacement) from
F̃T (x) := T−1

∑T
t=1 I(z̃st ≤ x) such that, conditionally on the original data, E∗ (z∗t ) = 0

and V ∗ (z∗t ) = 1. The bootstrap QLR statistic Q∗T is

Q∗T := 2(L∗T (θ̂
∗
T )− L∗T (θ̃

∗
T )), (9)

with L∗T (θ) the log-likelihood in (6) with X∗t inserted. Moreover, θ̃
∗
T = (α̃∗T , ω̃

∗
T )′ and

θ̂
∗
T = (α̂∗T , ω̂

∗
T )′ maximize L∗T (θ) over ΘH and Θ respectively.

In order to state the main result on consistency of the restricted bootstrap, we make
the following assumptions.

Assumption A:
A.1. {Xt : t ≥ 1} is stationary and ergodic, and {zt : t ≥ 1} is i.i.d. with E(zt) = 0

and V (zt) = 1.

A.2. {zt : t ≥ 1} has finite fourth order moments; that is, κ := E(z4
t ) <∞.

Under the null hypothesis, Xt = ω1/2zt and Assumption A implies that also {Xt :
t ≥ 1} has finite fourth order moments. In order to investigate the properties of the
bootstrap under the alternative as well, we require that finiteness of the fourth order
moments holds under the alternative as well. This is done in Assumption B below.

Assumption B:
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{Xt : t ≥ 1} has finite fourth order moments such that κ† := E(X4
t )/(E(X2

t ))2 <∞.

Assumption A is needed for asymptotic inference when a parameter is on the bound-
ary of the parameter space (see Andrews, 2001), and provides suffi cient conditions for
establishing the asymptotic properties of the QMLEs θ̂T , θ̃T and the QLR statistic QT

when H0 holds. Assumption B differs from classic ARCH QMLE theory which excludes
parameters on the boundary, see for example Jensen and Rahbek (2004) and Kristensen
and Rahbek (2005). This is for two reasons: (i) we consider hypothesis testing with a
parameter on the boundary, and (ii) we establish validity of the bootstrap both under
the null and the alternative. Specifically, Assumption B imposes finite fourth order
moments in order to establish the asymptotic properties of the bootstrap estimators θ̂

∗
T

and θ̃
∗
T , and of the bootstrap test-statistic Q

∗
T when H0 does not hold, see also Remarks

3.2 and 3.3.
Theorem 2 states that Q∗T converges weakly (in probability) to Q∞ when the true

parameter θ0 satisfies the null H0, while it preserves the key property of being of order
O∗p (1), in probability, under the alternative hypothesis. That is, also the restricted
bootstrap for the ARCH case is consistent.

Theorem 2 Consider the bootstrap QLR statistic Q∗T defined in (9). Under Assump-

tion A, with the true parameter θ0 ∈ ΘH, Q∗T
w∗→p Q∞, where Q∞ is given by (7).

Under Assumptions A and B, with the true parameter θ0 ∈ Θ \ΘH, Q∗T
w∗→p %Q∞ where

% := (κ† − 1)/(κ− 1) <∞, such that Q∗T = O∗p (1), in probability.

The proof of Theorem 2 in Appendix A is based on modifying the proof in Andrews
(2001, Appendix D and Section 5.2) for the bootstrap. Thus we first verify consistency of
the bootstrap (un-)restricted QML estimators, and next derive the limiting behavior of
the first and second order derivatives of the bootstrap log-likelihood function, in addition
to verifying details of the parameter space allowing the non-standard expansion of first
derivative of the log-likelihood function at the boundary. A key difference from the non-
bootstrap case is that in order to derive the bootstrap validity, we analyze the behavior
of the restricted and unrestricted bootstrap QML estimators both under the hypothesis
and the alternative. Also, as the bootstrap sample is generated with the restricted
estimator θ̃T as bootstrap true parameter value, the log-likelihood function is expanded
around the restricted estimator, while (weakly in probability) limit distributions are
characterized in terms of a pseudo-true parameter θ†0, defined in Appendix A, eq. (A.1).
We illustrate the results of Theorem 2 by simulations detailed in Section 4 which

show that indeed the proposed bootstrap test has correct empirical size for even small
samples, while the asymptotic test is undersized, or conservative. Moreover, in terms of
power, there is no discernible difference between the bootstrap and the (size-corrected)
asymptotic tests.

Remark 3.1 The computation of the bootstrap p-value, say p∗T , associated with (9), re-
quires generating B (conditionally) independent bootstrap statistics, Q∗T :b, b = 1, ..., B;
p∗T is then approximated by p̃

∗
T,B := B−1

∑B
b=1 I(Q∗T :b > QT ), and is such that p̃∗T,B → p∗T
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(almost surely) as B → ∞; cf. Hansen (1996), Andrews and Buchinsky (2000) and
Davidson and MacKinnon (2000).

Remark 3.2 As to Assumption B, note that asymptotic theory for the restricted QML
estimator θ̃T under the alternative requires second order moments for consistency to
the pseudo-true value θ†0, see Lemma A.1 in the appendix, while finite fourth order
moments as in Assumption B are needed to establish asymptotic normality.

Remark 3.3 One may relax Assumption B to finite second order moments, if the
bootstrap algorithm is modified by combining the restricted parameter estimates with
unrestricted residuals. More specifically, suppose that the bootstrap process as before is
defined in terms of the restricted QMLE θ̃T as in (8), but with the bootstrap innovations
z∗t sampled from standardized residuals, say ẑst , obtained from unrestricted estimation:
that is, ẑst are defined as z̃

s
t but with z̃t replaced by ẑt, where ẑt := Xt/σt(θ̂T ). In

this case, it follows that under Assumption A and the assumption of finite second or-
der moments of the ARCH process, consistency as in Theorem 2 holds with % = 1.
This follows by identical arguments used to establish Theorem 2 by replacing Lemma
B.1 with Lemma B.2 in the appendix. Importantly, note that compared to the simu-
lations reported in Appendix 4 for restricted residuals, (unreported) simulations with
unrestricted residuals imply a marginally larger empirical size.

4 Monte Carlo simulations

In this section small-sample properties of the proposed bootstrap test are investigated
by Monte Carlo simulations for the ARCH process in (5) with different parameter values
under the null and under the alternative. Overall, the simulations show excellent size
and power properties of the suggested bootstrap test based on restricted estimates and
residuals, even for very small samples. Also, the bootstrap test is superior to (i) the
asymptotic test based on Andrews (2001), and (ii) to the familiar Lagrange multiplier
(LM) test for homoskedasticity (Engle, 1982), even when a bootstrap version of the LM
test is considered. Note that based on simulations not included, the use of unrestricted
residuals for the bootstrap algorithm, see Remark 3.3, imply that size is marginally
increased when compared to the proposed use of restricted residuals. Apart from this,
the conclusions remain identical whether or not restricted or unrestricted residuals are
used.
The Monte Carlo experiment is based on parameter values θ0 = (α0, ω0)′ both

under the null and under the alternative hypotheses. The ARCH process is initiated
at X0 = 0 and its innovations are either Gaussian or t-distributed (with ν = 5 degrees
of freedom). Samples of size T ∈ {50, 100, 500, 1000} and nominal significance levels of
2.5%, 5%, and 10% are considered. The number of Monte Carlo replications is 10, 000,
while B = 399 bootstrap repetitions are used for approximating the distribution of
Q∗T in (9), see Remark 3.1.

1 When comparing the bootstrap test with the asymptotic

1All computations have been performed using Ox 7.10, see Doornik (2007). Code is available upon
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test it is important to account for the fact that, under H0, QT converges weakly to
Q∞ = c(max{0, Z})2, with Z d

= N (0, 1), c = (κ−1)/2 and κ := Ez4
t ; see (7). Therefore,

following Andrews (2001) the asymptotic test is based on the rescaled statistic

Q̃T := c̃−1
T QT

w→ (max{0, Z})2,

where c̃T := 1
2
(T−1

∑T
t=1 z̃

s4
t −1) is a consistent estimator of c under the null hypothesis

(Andrews, 2001, eq. (5.16)). The Monte Carlo results do not qualitatively differ if c̃T
is fixed at (the empirically infeasible value) c̃T = c.
We also compare the bootstrap and asymptotic version of the QLR test with the

LM test of Engle (1982), based on the auxiliary regression,

(Xt − X̄T )2 = δ0 + δ1(Xt−1 − X̄T )2 + ηt, t = 1, ..., T, (10)

with X̄T := (T + 1)−1
∑T

t=0 Xt. The test statistic for homoskedasticity is TR2, where
R2 is the coeffi cient of determination from (10), which is asymptotically distributed as
a χ2(1) under the null, see Engle (1982). In addition to the asymptotic χ2 (1) test, we
also consider a bootstrap version of the LM test, see Gel and Chen (2012).

Empirical rejection frequencies under the null. Empirical rejection fre-
quencies (ERFs) under the null hypothesis are reported in panel (a) of Tables I and
II for Gaussian and t-distributed innovations respectively and ARCH parameter values
θ0 = (α0, ω0)′ = (0, 1)′.
For the Gaussian case in Table I, the bootstrap test has excellent size properties,

with ERFs very close the nominal levels. This is the case even for sample sizes as
small as T = 50. On the contrary, the asymptotic QLR test and asymptotic LM tests
are conservative in small samples, with ERFs much below the corresponding nominal
levels. The bootstrap version of the LM test has fine size properties, although it is
slightly conservative.
For t-distributed innovations, Table II, the performance of the bootstrap is again

excellent, with only a minor size deterioration in very small samples with respect to the
Gaussian case.

Empirical rejection frequencies under the alternative. ERFs under the
alternative are reported in Tables I and II, for Gaussian and t-distributed errors, respec-
tively. We consider a sequence of points θ0 under the alternative by choosing α0 from
the set {0.1, ..., 0.7} with ω0 = 1. For each parameter point θ0 = (α0, ω0)′ we report
pointwise size adjusted ERFs in panel (c) and non-adjusted ERFs in panel (b). Also, in
order to challenge the robustness of our statistical analysis and conclusions, parameter
configurations with α0 large, α0 ≥ 1/

√
Ez4

t , imply that Assumption B is violated.
The pointwise size adjustments2 imply that the ERFs under the alternative for

the different tests are directly comparable as they have identical empirical size, see also

request.
2The size adjustments are constructed by choosing a nominal level that for given sample length T

would have given the desired, say 10% rejection frequency under the null hypothesis. This adjusted
nominal level is then used for parameters under the alternative. The size-adjustment is by construction
infeasible in practice, but as noted it allows direct comparisons of the power properties.
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Davidson andMacKinnon (2006). As reflected in Tables I and II the asymptotic versions
of the QLR test and the LM test are quite conservative for finite samples, and hence
the size adjusted rejection frequencies reported in panel (c) differ from the unadjusted
ERFs under the alternative. Similarly, size adjusted and unadjusted bootstrap tests
ERFs are almost identical due to the excellent size properties implying minor, if any,
size adjustments.
In terms of power, or ERFs under the alternative, we note that there is no discernible

difference between the bootstrap test and the corresponding (size-adjusted) asymptotic
test, and moreover, the QLR tests have markedly higher power than the (bootstrap)
LM test. Also the imposed violation of Assumption B seems not to be cruical.

Remark 4.1 Unreported simulations show that, in line with the unrestricted bootstrap
for the location model, see (2), that a bootstrap test based on the unrestricted ARCH
parameters as expected performs poorly, in particular also when compared with the
restricted bootstrap reported here.

5 Conclusion

In this paper we have established — for the leading examples discussed in Andrews
(2000) —the result that consistency of bootstrap hypothesis testing when a parameter
may lie on the boundary of a parameter space can be obtained by simply defining the
bootstrap data generating process in terms of parameter estimators restricted by the null
hypothesis. The corresponding ‘restricted bootstrap’, which as mentioned has recently
been applied to solve inference problems in non-standard settings such as hypothesis
testing in nonstationary co-integrated models (Cavaliere, Rahbek and Taylor, 2012;
Cavaliere, Nielsen and Rahbek, 2015; Boswijk, Cavaliere, Rahbek and Taylor, 2016),
is therefore argued to be an important tool for approximating limiting distributions
of parameter estimators and test statistics in the case of inference in models involving
parameters on the boundary of the parameter set.
Consistency of the restricted bootstrap may be extended to more involved and em-

pirically relevant testing problems in which the true parameter is on the boundary of the
parameter space. However, in general when considering likelihood-based inference and
the bootstrap, we emphasize, in line with Andrews (2000), that the restricted bootstrap
is indeed not a universal tool in non-standard settings, but should be studied carefully
for each case by verifying consistency of the bootstrap.
We conclude by stressing that the focus of the present paper is on bootstrap hypoth-

esis testing based on parameter estimates restricted by the null hypothesis. A natural
continuation of our work could be to investigate whether the restricted bootstrap may
be a helpful device for constructing (uniformly valid) confidence sets for a parameter
which is not necessarily in the interior of the parameter space. In this framework, one
could in principle consider confidence sets based on (restricted bootstrap) test inver-
sion, as done e.g. in Hansen (1999), where a variant of the restricted bootstrap, the
so-called grid bootstrap, was successfully used to deliver confidence sets for the largest
autoregressive root in AR processes with a possible unit root. This is left out for future
research.
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TABLE I
Empirical rejection frequencies for the bootstrap and the
asymptotic tests of no ARCH effects: Gaussian distribution

(a) Size

QLR: Bootstrap QLR: Asymptotic LM: Bootstrap LM: Asymptotic
T \ δ 2.5 5.0 10.0 2.5 5.0 10.0 2.5 5.0 10.0 2.5 5.0 10.0
50 2.4 5.3 10.6 1.4 3.0 7.1 2.2 4.4 9.4 1.3 2.9 6.7
100 2.7 5.4 10.6 1.7 3.6 7.7 2.3 4.8 9.7 1.7 3.6 7.8
500 2.7 5.1 10.1 2.1 4.3 8.7 2.6 5.0 9.8 2.4 4.7 9.1
1000 2.5 5.1 10.3 2.2 4.5 9.1 2.7 5.2 10.1 2.4 5.0 9.6

(b) Power

QLR: Bootstrap QLR: Asymptotic LM: Bootstrap LM: Asymptotic
α0 \ T 100 500 1000 100 500 1000 100 500 1000 100 500 1000
0.1 34.7 74.1 92.1 29.2 71.8 91.3 24.5 62.5 85.2 22.2 61.6 85.1
0.2 60.0 97.9 100.0 54.3 97.5 100.0 44.9 94.7 99.8 42.0 94.3 99.8
0.3 78.1 100.0 100.0 73.6 99.9 100.0 63.0 99.6 100.0 59.5 99.6 100.0
0.4 88.4 100.0 100.0 85.8 100.0 100.0 76.2 100.0 100.0 73.0 100.0 100.0
0.5 94.0 100.0 100.0 92.5 100.0 100.0 84.4 100.0 100.0 81.6 100.0 100.0
0.6 97.0 100.0 100.0 96.1 100.0 100.0 89.6 100.0 100.0 87.1 100.0 100.0
0.7 98.5 100.0 100.0 98.0 100.0 100.0 93.4 100.0 100.0 90.7 100.0 100.0

(c) Size-corrected power

QLR: Bootstrap QLR: Asymptotic LM: Bootstrap LM: Asymptotic
α0 \ T 100 500 1000 100 500 1000 100 500 1000 100 500 1000
0.1 33.7 74.1 92.1 33.5 74.0 92.0 24.7 62.9 85.2 24.9 62.8 85.4
0.2 59.0 97.9 100.0 59.0 97.8 100.0 45.2 94.7 99.8 45.2 94.6 99.8
0.3 77.5 100.0 100.0 77.3 100.0 100.0 63.4 99.6 100.0 63.2 99.6 100.0
0.4 88.0 100.0 100.0 87.9 100.0 100.0 76.4 100.0 100.0 75.5 100.0 100.0
0.5 93.8 100.0 100.0 93.9 100.0 100.0 84.7 100.0 100.0 83.7 100.0 100.0
0.6 96.7 100.0 100.0 96.9 100.0 100.0 89.8 100.0 100.0 88.7 100.0 100.0
0.7 98.4 100.0 100.0 98.3 100.0 100.0 93.5 100.0 100.0 92.3 100.0 100.0

Notes: Panel (a): Size properties for nominal levels 2.5%, 5%, 10% and sample length T ∈ {50, 100,
500, 1000}. Panel (b)-(c): Power properties for nominal level 10%, sample length T ∈ {100, 500, 1000}
and ARCH parameter α ∈ {0.1, ..., 0.7}. The asymptotic test is based on the rescaled statistic.
Empirical rejection frequencies are presented in panel (b), while pointwise size-corrected results are
presented in panel (c). Based on B = 399 bootstrap repetitions and 10, 000 Monte Carlo replications.
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TABLE II
Empirical rejection frequencies for the bootstrap and the

asymptotic tests of no ARCH effects: t−distribution

(a) Size

QLR: Bootstrap QLR: Asymptotic LM: Bootstrap LM: Asymptotic
T \ δ 2.5 5.0 10.0 2.5 5.0 10.0 2.5 5.0 10.0 2.5 5.0 10.0
50 3.1 6.3 12.0 1.4 3.4 7.7 2.3 4.4 8.2 1.5 2.8 5.3
100 2.9 5.7 11.2 1.5 3.6 7.6 2.3 4.4 8.4 2.0 3.2 5.5
500 2.5 5.6 10.7 2.1 4.2 7.8 2.5 4.6 8.8 2.4 3.7 6.2
1000 2.7 5.4 10.3 2.4 4.5 8.0 2.4 4.5 8.6 2.4 3.7 6.2

(b) Power

QLR: Bootstrap QLR: Asymptotic LM: Bootstrap LM: Asymptotic
α0 \ T 100 500 1000 100 500 1000 100 500 1000 100 500 1000
0.1 30.6 61.7 81.2 23.7 55.0 76.2 22.4 52.2 72.7 17.5 46.1 66.8
0.2 49.5 90.2 98.8 41.9 87.0 98.0 38.0 83.3 96.5 31.9 78.5 94.5
0.3 64.4 98.0 99.8 57.8 97.0 99.7 51.3 94.8 99.3 45.0 91.8 98.6
0.4 75.1 99.5 100.0 70.0 99.2 99.9 62.1 98.2 99.7 55.6 96.6 99.3
0.5 83.8 99.9 100.0 79.2 99.8 100.0 70.4 99.1 99.8 63.9 98.1 99.5
0.6 89.1 100.0 100.0 85.9 100.0 100.0 77.0 99.5 99.9 70.4 98.8 99.6
0.7 92.7 100.0 100.0 90.3 100.0 100.0 81.9 99.7 100.0 75.5 99.0 99.7

(c) Size-corrected power

QLR: Bootstrap QLR: Asymptotic LM: Bootstrap LM: Asymptotic
α0 \ T 100 500 1000 100 500 1000 100 500 1000 100 500 1000
0.1 28.8 60.5 80.6 28.7 60.3 80.5 24.7 54.1 74.5 23.1 52.9 73.5
0.2 47.7 89.7 98.7 47.3 89.6 98.6 40.5 84.5 97.0 38.6 83.3 96.1
0.3 62.4 97.9 99.8 62.7 97.7 99.8 53.8 95.2 99.4 51.8 94.1 99.0
0.4 73.7 99.5 100.0 73.9 99.4 100.0 64.4 98.4 99.7 62.2 97.7 99.5
0.5 82.6 99.9 100.0 82.7 99.9 100.0 72.5 99.3 99.8 70.1 98.7 99.7
0.6 88.3 100.0 100.0 88.2 100.0 100.0 79.0 99.6 99.9 76.5 99.1 99.7
0.7 92.1 100.0 100.0 92.0 100.0 100.0 83.7 99.8 100.0 80.9 99.3 99.8

Notes: The t-distribution for the innovations has ν = 5 degrees of freedom. Se also notes to Table I.
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Appendix

A Proof of Theorem 2

The proof of Theorem 2 is given by verifying and modifying the arguments used to
establish Andrews (2001, eq. (5.15)) for the bootstrap case. Specifically, we estab-
lish: (i) that the structure of the parameter space allows the non-standard Taylor-type
expansion at the boundary; (ii) consistency of the bootstrap QML estimators; (iii) con-
vergence of the score and information (uniformly). More precisely, (i)-(iii) are verified
as follows:

(i): On the parameter spaces Θ and ΘH:
Recall that the parameter spaces are defined as Θ := {(α, ω)′|0 ≤ α ≤ αU , 0 <

ωL ≤ ω ≤ ωU} and ΘH := {(α, ω)′|α = 0, 0 < ωL ≤ ω ≤ ωU}. Also, recall that the
true parameter θ0 := (α0, ω0)′ is assumed to be in Θ such that the restrictions defining
Θ are only binding possibly at α0 = 0 (see Section 3). Moreover, as it will be clarified
in the following, in order to analyze the asymptotic properties of the restricted QMLE
under the alternative, it is assumed that also the pseudo-true value θ†0 defined by

θ†0 := (0, ω†0)′, (A.1)

with ω†0 := ω0/(1 − α0), is in Θ and such that ω†0 < ωU , which is without loss of
generality as ωU can be chosen arbitrarily large.
Finally, with respect to the regularity conditions on the parameter spaces in Andrews

(2001), the shifted parameter spaces Θ− θ0 and ΘH− θ0 are nested in the cones Λ and
ΛH respectively, where these are defined by Λ := [0,∞) × R and ΛH := {0} × R, see
also Andrews (2001, p.701 and p.711). Observe that the same holds for the sets shifted
by the bootstrap pseudo-true value; that is, Θ − θ†0 and ΘH − θ†0 are nested in Λ and
ΛH respectively. Hence, as θ̃T − θ†0 = op (1), which is discussed below, then for T
large enough, this holds for θ̃T as well such that the likelihood expansion in Andrews
(2001) can be applied around the bootstrap true-value θ̃T instead of the (sample) true
parameter θ0.

(ii): On consistency of the bootstrap QML estimators:
A key assumption in Andrews (2001, Appendix D, verification of Assumption 1∗) is

consistency of the (non-bootstrap, or standard) QML estimator to θ0. For the bootstrap
analysis we as mentioned expand the bootstrap likelihood function around θ̃T , the
bootstrap true value. Hence in Appendix A.1 it is established that the bootstrap QML
estimators are consistent, that is, θ̃

∗
T − θ̃T = o∗p (1) and θ̂

∗
T − θ̃T = o∗p (1), in probability.

We prove this in two steps in Appendix A.1. First we consider the standard QML
estimators θ̂T and θ̃T , both under the null and the alternative, and second the bootstrap
QML estimators. Note that when considering asymptotics under the alternative we
introduce the set ΘA := Θ \ΘH, and use the result that, with θ0 ∈ ΘA, θ̃T − θ†0 = op (1).

(iii): On the bootstrap score and information:
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In Appendix A.2, Lemma A.3, the results for the bootstrap score and bootstrap
information replace their sample equivalents (Andrews, 2001, Appendix D, verification
of Assumptions 2∗ and 3∗). Specifically, in Andrews (2001) the score (information)
is evaluated at (in a neighborhood of) θ0, while here the bootstrap equivalents are
evaluated at (in a neighborhood of) the bootstrap true value θ̃T .

Summarizing, (i)-(iii) above establish the regularity conditions for the bootstrap
such that the asymptotic expansion applied in Andrews (2001, eq. (5.15)) in terms of
the score and information hold for the restricted bootstrap. Specifically as in Andrews
(2001, eq. (5.15)) for θ0 ∈ Θ the results on the score and information in Lemma A.3
imply that for the bootstrapped LR statistic Q∗T = 2(L∗T (θ̂

∗
T )− L∗T (θ̃

∗
T )) in (9),

Q∗T
w→p c

† (max (0, Z))2,

under Assumptions A and B with c† =
(
κ† − 1

)
/2. Next, use that by definition c† = c%

with % =
(
κ† − 1

)
/ (κ− 1) and hence Q∗T

w→p %Q∞ as claimed. Finally, observe that
when θ0 ∈ ΘH, Assumption A implies Assumptions B and B’hold (and κ† = κ, cf.
Remark A.1) and % = 1.

A.1 Consistency of (Standard and) Bootstrap QML
estimators

When establishing consistency we can relax Assumption B as follows (see also Remark
3.3):

Assumption B′:
{Xt : t ≥ 1} has finite second order moments.

Consider first consistency of the QML estimators θ̂T and θ̃T :

Lemma A.1 The following results hold as T →∞:
(i) If θ0 ∈ Θ, and under Assumption A.1, then θ̂T − θ0 = op (1);

(ii) If θ0 ∈ ΘH, and under Assumption A.1, then θ̃T − θ0 = op (1);

(iii) If θ0 ∈ ΘA and under Assumptions A.1 and B′, θ̃T − θ†0 = op (1), where θ†0 :=

(0, ω†0)′ ∈ ΘH, ω
†
0 := ω0/ (1− α0).

Observe that a bootstrap sample generated with bootstrap true value θ†0 will be
(conditionally on the original data) i.i.d. with mean zero, constant variance ω†0 and will
satisfy the null hypothesis.
The next lemma extends Lemma A.1 to the case of the bootstrap QML estimators θ̂

∗
T

and θ̃
∗
T . In particular, it demonstrates that they converge, as T →∞, to the (limiting

bootstrap) pseudo true value, θ†0.
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Lemma A.2 Under Assumptions A.1 and B′, the following results hold as T →∞:
(i) If θ0 ∈ ΘH, θ̂

∗
T − θ0 = o∗p (1) and θ̃

∗
T − θ0 = o∗p (1), in probability.

(ii) If θ0 ∈ ΘA, θ̂
∗
T − θ

†
0 = o∗p (1) and θ̃

∗
T − θ

†
0 = o∗p (1), in probability.

A.1.1 Proof of Lemma A.1

For the unrestricted estimator θ̂T the result holds for θ0 ∈ Θ by Kristensen and Rahbek
(2005, Theorem 1). For the restricted estimator, note that θ̃T = (0, ω̃T )′ with (for T
large enough) ω̃T = T−1

∑T
t=1 X

2
t , such that by standard application of the law of large

numbers, ω̃T
p→ EX2

t < ∞ for any θ0 ∈ Θ by Assumption B′. In particular, with
θ0 ∈ ΘH , EX

2
t = ω0, while if θ0 ∈ ΘA, EX2

t = ω0/(1− α0) = ω†0.

A.1.2 Proof of Lemma A.2

Note initially that, for T large enough, θ̃
∗
T = (0, ω̃∗T )′ with ω̃∗T := T−1

∑T
t=1X

∗2
t =

ω̃T + ω̃T (T−1
∑T

t=1(z∗2t − 1)). Conditionally on the original data, z∗2t − 1 is i.i.d. with
mean zero, such that by standard bootstrap arguments ω̃∗T = ω̃T +o∗p (1), in probability,
see also Lemma B.3 below. The fact that under Assumption B′, ω̃T = ω†0 +op (1) finally
implies ω̃∗T = ω†0 + o∗p (1) , and hence the claimed result for θ̃

∗
T holds.

For the unrestricted bootstrap estimator θ̂
∗
T , we establish in probability,

sup
θ∈Θ
| 1
T
L∗T (θ)− Eθ†0`t (θ) | = o∗p (1), (A.2)

where Eθ†0 denotes the expectation under the probability measure indexed by θ
†
0, that

is, −2Eθ†0
`t (θ) = E(log(ω + αω†0z

2
t ) +

ω†0
ω+αω†0z

2
t

). As −2Eθ†0
`t (θ) has minimum in θ†0, it

holds that θ̂
∗
T − θ

†
0 = o∗p (1), in probability.

To establish (A.2) use initially the triangle inequality to see that,

sup
θ∈Θ

∣∣ 1
T
L∗T (θ)− Eθ†`t (θ)

∣∣ ≤ sup
θ∈Θ

∣∣ 1
T
L∗T (θ)− E∗`∗t (θ)

∣∣ (A.3)

+ sup
θ∈Θ

∣∣∣E∗`∗t (θ)− Eθ†0`t (θ)
∣∣∣ =: sup

θ∈Θ
|G∗T (θ)|+ sup

θ∈Θ
|GT (θ)| .

We apply the uniform law of large numbers (ULLN) in Lange, Rahbek and Jensen
(2011, Lemma 3) to show uniform convergence of GT (·) , and the bootstrap ULLN in
Lemma B.4 for G∗T (·). Thus for each term we first establish pointwise convergence,

GT (θ)
p→ 0 and G∗T (θ)

p∗→p 0 respectively, as T → ∞. Next, we establish stochastic
equicontinuity as detailed below for each of the two terms.

Pointwise convergence of GT (θ) and G∗T (θ)

Consider first GT (θ):
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We establish that E |GT (θ)| = o (1) which implies pointwise convergence. By defi-
nition,

−2(E∗`∗t (θ)− Eθ†0`t (θ)) = 1
T

T∑
t=1

(
log
(
ω + αω̃T z̃

s2
t

)
− E log

(
ω + αω†0z

2
t

))
+ 1
T

T∑
t=1

(
ω̃T

ω+αω̃T z̃
s2
t
− E

(
ω†0

ω+αω†0z
2
t

))
. (A.4)

A first order expansion of the log (·) term in (A.4) around ω†0 and z
2
t gives∣∣∣∣ 1

T

T∑
t=1

log(ω + αω̃T z̃
s2
t )− E log(ω + αω†0z

2
t )

∣∣∣∣
≤
∣∣∣∣ 1
T

T∑
t=1

log(ω + αω†0z
2
t )− E log(ω + αω†0z

2
t )

∣∣∣∣+
αUω

†
0

ωL

∣∣∣∣ 1
T

T∑
t=1

(z2
t − 1)

∣∣∣∣+ 1
ωL

∣∣∣ω̃T − ω†0∣∣∣MT ,

where, with λt ∈ [0, 1],

MT :=

∣∣∣∣ 1

T

T∑
t=1

(λtz̃
s2
t + (1− λt)z2

t )

∣∣∣∣ ≤ 1

T

T∑
t=1

z̃s2t +
1

T

T∑
t=1

z2
t = 1 +

1

T

T∑
t=1

z2
t = Op (1)

where we have used the fact that T−1
∑T

t=1 z̃
s2
t = 1. Observe that with vt (θ) := log(ω+

αω†0z
2
t )− E log(ω + αω†0z

2
t ), then by the weak law of large numbers, T

−1
∑T

t=1 vt (θ) =

op(1), as zt is i.i.d.. Likewise, ω̃T − ω†0 = op (1) under Assumption B′. Moreover,
T−1

∑T
t=1 (z2

t − 1) = op (1), which establishes the desired for the log (·) term.
For the remaining ratio term in (A.4), observe that

1
T

T∑
t=1

(
ω̃T

ω+αω̃T z̃
s2
t
− E

(
ω†0

ω+αω†0z
2
t

))
= 1

T

T∑
t=1

(ω̃T−ω†0)
ω+αω̃T z̃

s2
t

+ 1
T

T∑
t=1

(
ω†0

ω+αω̃T z̃
s2
t
− E

(
ω†0

ω+αω†0z
2
t

))
,

where the first term is bounded by
∣∣∣ω̃T − ω†0∣∣∣ /ωL and hence op (1). As above, a first

order expansion around ω†0 and z
2
t gives∣∣∣∣ 1

T

T∑
t=1

(
ω†0

ω+αω̃T z̃
s2
t
− E

(
ω†0

ω+αω†0z
2
t

))∣∣∣∣ ≤ ∣∣∣∣ 1
T

T∑
t=1

βt (θ)

∣∣∣∣+
αUω

†
0

ω2L

∣∣∣∣ 1
T

T∑
t=1

(z2
t − 1)

∣∣∣∣+ 1
ω2L

∣∣∣ω̃T − ω†0∣∣∣,
with βt (θ) := 1

ω+αω†0z
2
t

− E
(

1

ω+αω†0z
2
t

)
, and which, as before, implies the desired for the

remaining term in (A.4) and hence for the second term in (A.3).

Consider next G∗T (θ):

We now establish G∗T (θ) := T−1L∗T (θ)− E∗`∗T (θ)
p∗→p 0. By definition,

−2( 1
T
L∗T (θ)− E∗`∗t (θ)) = 1

T

T∑
t=1

(
log
(
ω + αω̃T z

∗2
t−1

)
− log

(
ω + αω̃T z̃

s2
t

))
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+ 1
T

T∑
t=1

(
ω̃T z

∗2
t

ω+αω̃T z
∗2
t−1
− ω̃T

ω+αω̃T z̃
s2
t

)
=: K∗1,T + ω̃TK

∗
2,T .

We show that K∗i,T = o∗p (1), in probability, i = 1, 2, such that, coupled with the fact
that ω̃T = Op (1), the desired result follows.
ConsiderK∗1,T first, and observe that it can be written asK

∗
1,T (θ) := T−1

∑T
t=1(κ∗1,t (θ)−

E∗(κ∗1,t (θ)), where κ∗1,t (θ) := log
(
ω + αω̃T z

∗2
t−1

)
with E∗(κ∗1,t (θ)) = T−1

∑T
t=1 log(ω +

αω̃T z̃
s2
t ). Conditionally on the sample, κ∗1,t (θ)−E∗(κ∗1,t (θ) is an i.i.d. sequence, so the

conditional WLLN in Lemma B.3 applies as E∗|κ∗1,t (θ) | ≤ K < ∞ for some constant
K. To see this, observe

E∗|κ∗1,t (θ) | = 1
T

T∑
t=1

| log
(
ω + αω̃T z̃

s2
t

)
| ≤ |logωL|+ (1 + αU)ωU =: K <∞.

Consider now K∗2,T (θ) := T−1
∑T

t=1(κ∗2,t (θ) − E∗(κ∗2,t (θ)), with κ∗2,t (θ) :=
z∗2t

ω+αω̃T z
∗2
t−1

such that E∗(κ∗2,t (θ)) = T−1
∑T

t=1
1

ω+αω̃T z̃
s2
t
. Since (conditionally on the data) κ∗2,t (θ) is

independent of κ∗2,t′ (θ), |t′ − t| > 1, we split K∗2,T (θ) as K∗(o)2,T (θ) +K
∗(e)
2,T (θ), where

K
∗(o)
2,T (θ) := T−1

T∑
t=1

(κ∗2,t (θ)− E∗(κ∗2,t (θ))I (t ∈ {1, 3, ...})

K
∗(e)
2,T (θ) := T−1

T∑
t=1

(κ∗2,t (θ)− E∗(κ∗2,t (θ))I (t ∈ {2, 4, ...}),

such that each of the two terms K∗(o)2,T (θ) and K
∗(e)
2,T (θ) averages approximately T/2

(conditionally) zero mean i.i.d. random variables. Then, we can apply the conditional
WLLN of Lemma B.3 to each of the two terms K∗(o)2,T (θ) and K∗(e)2,T (θ) once it is verified
that E∗|κ∗2,t (θ) | = Op (1). This follows by noticing that

E∗|κ∗2,t (θ) | = E∗
∣∣∣ z∗2t
ω+αω̃T z

∗2
t−1

∣∣∣ = E∗
∣∣z∗2t ∣∣E∗ ∣∣∣ 1

ω+αω̃T z
∗2
t−1

∣∣∣ = 1
T

T∑
t=1

1
ω+αω̃T z̃

s2
t
≤ ω−1

L <∞,

thereby implying that G∗T (θ) = K∗1,T + ω̃T (K
∗(o)
2,T +K

∗(e)
2,T )

p∗→p 0.

Stochastic equicontinuity of GT (θ) and G∗T (θ)

Consider first GT (θ):
By the ULLN in Lange, Rahbek and Jensen (2011), the stochastic equicontinuity

condition for GT (θ) = 1
T

∑T
t=1 gt (θ) which implies the uniform convergence is given by

E sup
θ∈Θ
|2gt (θ)| = E sup

θ∈Θ

∣∣∣(log
(
ω + αω̃T z̃

s2
t

)
+ ω̃T

ω+αω̃T z̃
s2
t

)− Eθ†0`t (θ)
∣∣∣ < C <∞.

From the pointwise arguments on GT (θ) , this simplifies to

E sup
θ∈Θ

(|vt (θ)|+ |βt (θ)|) < C,
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where vt (θ) = log(ω + αω†0z
2
t )− E log(ω + αω†0z

2
t ), and βt (θ) = 1

ω+αω†0z
2
t

− E( 1

ω+αω†0z
2
t

).

Note that |βt (θ)| ≤ 2/ωL, and E supθ∈Θ |vt (θ)| is bounded by standard arguments for
ARCH models (with true parameter θ0 := θ†0) in Kristensen and Rahbek (2005).

Consider next G∗T (θ):
By Lemma B.4 the uniform convergence is implied by showing that for all θ1, θ2 ∈ Θ,

|G∗T (θ1)−G∗T (θ2) | ≤ B∗Th (||θ1 − θ2||),

where E∗B∗T = Op (1) and h (x) → 0 as x → 0. To establish this, rewrite G∗T (θ) as
G∗T (θ) = −1

2
(N∗T (θ) +M∗

T (θ)) with

M∗
T (θ) := 1

T

T∑
t=1

ω̃T z
∗2
t

ω+αω̃T z
∗2
t−1
− 1

T

T∑
t=1

ω̃T
ω+αω̃T z̃

s2
t

=: m∗1T (θ)−m∗2T (θ),

N∗T (θ) := 1
T

T∑
t=1

(
log
(
ω + αω̃T z

∗2
t−1

)
− log

(
ω + αω̃T z̃

s2
t

))
=: n∗1T (θ)− n∗2T (θ) .

Consider first m∗2T (θ):

|m∗2T (θ1)−m∗2T (θ2) | ≤ ω̃T
T

T∑
t=1

| 1
ω1+α1ω̃T z̃

s2
t
− 1

ω2+α2ω̃T z̃
s2
t
|

= ω̃T
T

T∑
t=1

| (ω2−ω1)+(α2−α1)ω̃T z̃
s2
t

(ω2+α2ω̃T z̃
s2
t )(ω1+α1ω̃T z̃

s2
t )
|

= ω̃T
Tω2L

T∑
t=1

(|ω2 − ω1|+ |α2 − α1| ω̃T z̃s2t )

= ω̃T
ω2L

(|ω2 − ω1|+ |α2 − α1| ω̃T 1
T

T∑
t=1

z̃s2t )

≤ ω̃T
max(1,ω̃T )

ω2L
(|ω2 − ω1|+ |α2 − α1|) =: B∗m2,T

h (||θ1 − θ2||),

where h (x) = x and E∗B∗m2,T
= B∗m2,T

≤ ω̃T
(1+ω̃T )

ω2L
= Op (1).

Next, consider m∗1T (θ) where similarly,

|m∗1T (θ1)−m∗1T (θ2) | ≤
∣∣∣∣ ω̃Tω2L 1

T

T∑
t=1

(
(ω1 − ω2) z∗2t + (α1 − α2)ω̃T z

∗2
t−1z

∗2
t

)∣∣∣∣
≤ ω̃T

max(1,ω̃T )
ωL

max( 1
T

T∑
t=1

z∗2t ,
1
T

T∑
t=1

z∗2t−1z
∗2
t )(|ω1 − ω2|+ |α1 − α2|)

=: B∗m1,T
h (||θ1 − θ2||),

and E∗B∗m1,T
= Op (1) since

E∗max( 1
T

T∑
t=1

z∗2t ,
1
T

T∑
t=1

z∗2t−1z
∗2
t ) ≤ 1

T

T∑
t=1

E∗z∗2t + 1
T

T∑
t=1

E∗(z∗2t−1z
∗2
t ) = 2.
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Turn to n∗1T (θ) , where by the mean-value theorem with (a, w)′ = λθ1 + (1− λ) θ2 for
some λ ∈ (0, 1),

|n∗1T (θ1)− n∗1T (θ2) | ≤
∣∣∣∣ 1
T

T∑
t=1

(ω1−ω2)

(w+aω̃T z
∗2
t−1)

+ 1
T

T∑
t=1

(α1−α2)ω̃T z
∗2
t−1

(w+aω̃T z
∗2
t−1)

∣∣∣∣
≤ ω̃T

(1+ω̃T )
ωL

(1 + 1
T

T∑
t=1

z∗2t−1) (|ω1 − ω2|+ |α1 − α2|)

=: B∗n1,T (|ω1 − ω2|+ |α1 − α2|),

with E∗B∗n1,T = ω̃T
2(1+ω̃T )

ωL
= Op (1). Finally, consider n∗2T (θ) where,

|n∗2T (θ1)− n∗2T (θ2) | ≤
∣∣∣∣ 1
T

T∑
t=1

(ω1−ω2)

(w+aω̃T z̃
s2
t )

+ 1
T

T∑
t=1

(α1−α2)ω̃T z̃
s2
t

(w+aω̃T z̃
s2
t )

∣∣∣∣
≤ 1+ω̃T

ωL
‖θ1 − θ2‖ =: B∗n2,T ‖θ1 − θ2‖,

with E∗B∗n2,T = B∗n2,T = Op (1).
With B∗T := B∗m1,T

+B∗m2,T
+B∗n1,T+B∗n2,T and h (x) = x the stochastic equicontinuity

of G∗T (θ) thus holds as desired.

A.2 Bootstrap score and information

Consider here the (scaled) bootstrap score and information as defined by

S∗T (θ) := 1
T

T∑
t=1

s∗t (θ) , J∗T (θ) := 1
T

T∑
t=1

j∗t (θ),

where s∗t (θ) := −2∂`∗t (θ) /∂θ and j∗t (θ) := 2∂2`∗t (θ) /∂θ∂θ′. The following result holds
irrespectively of the null hypothesis to hold.

Lemma A.3 Under Assumptions A and B and with θ0 ∈ Θ it holds that as T →∞:

T 1/2S∗T (θ̃T )
w∗→p N

(
0, (κ† − 1)J†

)
and J∗T (θ̃T )

p∗→p J
†, (A.5)

where

J† := 1

ω†20
Σ†, Σ† :=

(
1 ω†0
ω†0 ω†20 κ

†

)
(A.6)

with κ†, defined in Assumption B, equal to κ† = κ(1 − α2
0)/(1 − κα2

0). Moreover, the
convergence of J∗T (·) holds uniformly (in probability); that is,

sup
θ∈Θ

∣∣J∗T (θ)− J†
∣∣ p∗→p 0. (A.7)

Remark A.1 Note that for θ0 ∈ ΘH, Assumption A implies Assumption B holds and
the results in Lemma A.3 hold with the entries ω†0 and κ

† in Σ† reducing to ω0 and κ,
respectively.
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Proof of Lemma A.3: For the convergence to the Gaussian distribution in (A.5),

notice first that by definition, s∗t (θ) =
(

1− X∗2t
ω+αX∗2t−1

)
1

ω+αX∗2t−1

(
1, X∗2t−1

)′
, such that

s∗t (θ̃T ) =
(
1− z∗2t

)
1
ω̃T

(
1, X∗2t−1

)′
.

With F∗t−1 := σ
(
X∗t−i : i ≥ 1

)
, it follows that E∗(s∗t

(
θ̃T

)
| F∗t−1) = 0 and we verify

classic regularity conditions for the CLT for martingale difference arrays in Dvoretzky
(1972, Theorem 2.2) in the bootstrap case. The conditional variance is given by

E∗(s∗t (θ̃T )s∗t (θ̃T )′ | F∗t−1) = E∗(
(
1− z∗2t

)2 1
ω̃2T

(
1, X∗2t−1

)′ (
1, X∗2t−1

)
| F∗t−1)

= 1
ω̃2T

(
1, X∗2t−1

)′ (
1, X∗2t−1

)
1
T

T∑
t=1

(
1− z̃s2t

)2
.

By Lemma B.1, T−1
∑T

t=1 (1− z̃s2t )
2 p→ κ† − 1. Moreover, by Lemma A.1, ω̃T

p→ ω†0
and,

1
T

T∑
t=1

(
1, X∗2t−1

)′ (
1, X∗2t−1

) p∗→p Σ† :=

(
1 ω†0
ω†0 ω†20 κ

†

)
by Lemma B.3. Collecting terms, the average conditional variance of s∗t (θ̃T ) satisfies

1
T

T∑
t=1

E∗(s∗t (θ̃T )s∗t (θ̃T )′|F∗t−1)
p→ (κ† − 1)J†,

with J† = ω†−2
0 Σ†. Finally, the Lindeberg condition holds by showing that for any ε > 0

and λ = (λ1, λ2)′ ∈ R2,

1
T

T∑
t=1

E∗
(

(λ′s∗t (θ̃T ))2I
(
|λ′s∗t (θ̃T )| > εT 1/2

))
= E∗

(
(λ′s∗t (θ̃T ))2I

(
|λ′s∗t (θ̃T )| > εT 1/2

))
p→ 0

where the equality holds by (conditional) stationarity. First, observe that by definition
λ′s∗t (θ̃T ) = ω̃−1

T (1− z∗2t )
(
λ1 + λ2ω̃T z

∗2
t−1

)
. Using the standard inequality |xy| ≤ x2 +y2,

we can use the bound E∗((λ′s∗t (θ̃T ))2I(|λ′s∗t (θ̃T )| > εT 1/2)) ≤ ξ1,T + ξ2,T , where

ξ1,T := 1
ω̃T
E∗
(

(λ′s∗t (θ̃T ))2I(|
(
1− z∗2t

)
1
ω̃T
|2 > εT 1/2)

)
ξ2,T := 1

ω̃T
E∗
(

(λ′s∗t (θ̃T ))2I(|λ1 + λ2ω̃T z
∗2
t−1|2 > εT 1/2)

)
.

By (conditional) independence of z∗t and z
∗
t−1,

ξ1,T = 1
ω̃T
E∗
((

1− z∗2t
)2 I(|

(
1− z∗2t

)
1
ω̃T
|2 > εT 1/2)

)
E∗
((
λ1 + λ2ω̃T z

∗2
t

)2
)

= op (1)Op (1)

since ω̃−1
T E∗((λ1 + λ2ω̃T z

∗2
t )

2
) = ω̃−1

T T−1
∑T

t=1 (λ1 + λ2ω̃T z̃
s2
t )

2
= Op (1) by applying

Lemma B.1(i), while

E∗
((

1− z∗2t
)2 I
(
|
(
1− z∗2t

)
1
ω̃T
|2 > εT 1/2

))
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= 1
T

T∑
t=1

(
1− z̃s2t

)2 I
(
|
(
1− z̃s2t

)
1
ω̃T
|2 > εT 1/2

)
p→ 0

by using Lemma B.1(ii) with q = 1/4. By the same arguments we also find that

ξ2,T = op (1). This verifies the Lindeberg condition, and therefore that T 1/2S∗T (θ̃T )
w∗→p

N(0, (κ† − 1)J†).
Turning to the information, we have that, by definition, J∗T (θ) = T−1

∑T
t=1 j

∗
t (θ)

with
j∗t (θ) =

(
2

X∗2t
ω+αX∗2t−1

− 1
)

1
ω+αX∗2t−1

(
1, X∗2t−1

) (
1, X∗2t−1

)′
.

Hence as for the score,

J∗T (θ̃T ) = 1
ω̃T

1
T

T∑
t=1

(
2z∗2t − 1

) (
1, X∗2t−1

) (
1, X∗2t−1

)′ p∗→p
1

ω†20
Σ† = J†,

which establishes (A.5). Next, to establish (A.7), we apply Lemma B.4. Observe first
that

|j∗t (θ)| =
∣∣∣(2

X∗2t
ω+αX∗2t−1

− 1
)

1
ω+αX∗2t−1

(
1, X∗2t−1

)′ (
1, X∗2t−1

)∣∣∣ ≤ δ∗T ,

with δ∗T :=
(

2X∗2t
ωL

+ 1
)(

1+X∗4t−1
ωL

)
. And moreover,

E∗δ∗T = E∗
((

2ω̃T z
∗2
t

ωL
+ 1
)(

1+ω̃2T z
∗4
t−1

ωL

))
=
(

2ω̃T
ωL

+ 1
)

1
ωL

(
1 + ω̃2

T
1
T

T∑
t=1

z̃s4t

)
p→ δ,

with δ := (
2ω†0
ωL

+ 1)(
1+ω†20 κ

†

ωL
), which establishes (A.7). �

B Auxillary lemmas

In this section we list some auxiliary lemmas used in the previous. These include a
bootstrap weak LLN and a bootstrap uniform law.

Lemma B.1 With {z̃st : t ≥ 1} defined in Section 3, under Assumptions A and B,
as T → ∞, (i) T−1

∑T
t=1 z̃

s4
t

p→ κ† and (ii) for any q ∈ (0,∞) and for all ε > 0,
ÑT := T−1

∑T
t=1 z̃

s4
t I(|z̃st | > εT q)

p→ 0.

Proof: For Part (i), using the equality z̃t = ω̃
−1/2
T Xt, we have that

T−1
T∑
t=1

z̃s4t =

(
T−1

T∑
t=1

(
Xt − X̄T

)2
)−2

T−1
T∑
t=1

(
Xt − X̄T

)4 p→ κ†

under Assumptions A and B.
For Part (ii), we first show that

NT := 1
T

T∑
t=1

X4
t I (|Xt| > εT q)

p→ 0 (B.1)
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and next that (B.1) implies that ÑT
p→ 0. The result in (B.1) follows as in van der

Vaart (1998, proof of Theorem 23.4) by noting that for any M ≤ εT q, almost surely
(a.s.)

NT ≤
1

T

T∑
t=1

(X4
t I(X2

t > M))
a.s.→ γM := EX4

t I(X2
t > M),

by stationarity and ergodicity of Xt and Assumption B. Choosing M large enough γM
can be made arbitrarily small and hence, for any small η, lim supNT < η a.s., such that
(B.1) holds.
Next, consider ÑT . Notice that the restricted residuals satisfy z̃st = s−1

xT (Xt − X̄T )

with s2
xT := T−1

∑T
t=1

(
Xt − X̄T

)2 →p σ
2
x := V (X2

t ) under Assumptions A and B. We
may also express s2

xT as s
2
xT = σ2

x (1 +BT ) where BT := σ−2
x (s2

xT − σ2
x) = op (1). In

particular, for any 0 < ρ < 1, (1 +BT ) ≥ ρ with probability tending to 1 as T → ∞.
Hence, for T large enough,

I(|z̃st | > εT q) = I(|Xt − X̄T | > εs2
xTT

q) = I(|Xt − X̄T | > εσ2
xT

q(1 +BT ))

≤ I
(
|Xt − X̄T | > cρT

q
)
,

with cρ := εσ2
xρ > 0. This again implies that

1
T

T∑
t=1

z̃s4t I(|z̃st | > εT q) ≤ 1
Ts2x

T∑
t=1

(
Xt − X̄T

)4 I
(
|Xt − X̄T | > cρT

q
)

≤ 1
Tσ2x

T∑
t=1

X4
t I (|Xt| > cρT

q) + op (1) = 1
σ2x
NT + op (1) .

To see why the last inequality holds, use that

I
(
|Xt − X̄T | > cρT

q
)
≤ I

(
|Xt|+ |X̄T | > cρT

q
)
≤ I

(
|Xt| > cρ

2
T q
)

+ I
(
|X̄T | > cρ

2
T q
)

which implies

1
T

T∑
t=1

(
Xt − X̄T

)4 I
(
|Xt − X̄T | > cρT

q
)
≤ 1

T

T∑
t=1

(
Xt − X̄T

)4 I
(
|Xt| > cρ

2
T q
)

+ 1
T

T∑
t=1

(
Xt − X̄T

)4 I
(
|X̄T | > cρ

2
T q
)

where

1
T

T∑
t=1

(
Xt − X̄T

)4 I
(
|X̄T | > cρ

2
T q
)

= I
(
|X̄T | > cρ

2
T q
)
Op (1) = op (1)

since I(|X̄T | > cρ
2
T q)

p→ 0. Moreover, by the standard inequality (x+ y)4 ≤ c (x4 + y4)
for some finite constant c ≥ 9,

1
T

T∑
t=1

(
Xt − X̄T

)4 I
(
|Xt| > cρ

2
T q
)
≤ c

T

T∑
t=1

X4
t I
(
|Xt| > cρ

2
T q
)

+ X̄4
T
c
T

T∑
t=1

I
(
|Xt| > cρ

2
T q
)
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where the second term on the right hand side is of op (1) using X̄4
T = Op (1) and the

same arguments used for proving (B.1). This shows the missing result that NT
p→ 0

implies ÑT
p→ 0, as required. �

Lemma B.2 With {ẑst : t ≥ 1} defined in Section 3, Remark 3.3, under Assumptions
A and B’, as T →∞,

T−1
T∑
t=1

ẑs4t
p→ κ.

Proof: By definition, ẑt = Xt/σt(θ̂T ) = ztσt(θ0)/σt(θ̂T ). Consider first the case of
α0 > 0, for which is follows that with δT = op (1) ,

ẑ2
t = z2

t (1 + δT ), (B.2)

such that T−1
∑T

t=1 ẑ
4
t

p→ Ez4
t = κ under Assumption A and B’. To see (B.2), observe

that,
z2
t − ẑ2

t = z2
t {

(ω̂T−ω0)

ω̂T+α̂TX
2
t−1

+
(α̂T−α0)X2

t−1
ω̂T+α̂TX

2
t−1
},

and use, with δT := δ1T + δ2T ,∣∣∣ ω̂T−ω0
ω̂T+α̂TX

2
t−1

∣∣∣ ≤ |ω̂T−ω0|
|ω̂T | =: δ1T = op (1) and

∣∣∣ (α̂T−α0)X2
t−1

ω̂T+α̂TX
2
t−1

∣∣∣ ≤ |α̂T−α0|
|α̂T | =: δ2T = op (1) .

Next, consider the case when α0 = 0, where by definition

z2
t − ẑ2

t = z2
t {

(ω̂T−ω0)

ω̂T+α̂TX
2
t−1

+ z2
t−1

α̂Tω0
ω̂T+α̂TX

2
t−1
}.

As before,
∣∣∣ ω̂T−ω0
ω̂T+α̂TX

2
t−1

∣∣∣ ≤ |ω̂T−ω0|
|ω̂T | = δ1T , while

∣∣∣ α̂Tω0
ω̂T+α̂TX

2
t−1

∣∣∣ ≤ |α̂T |
|ω̂T /ω0| := δ3T = op (1).

Collecting terms,
ẑ2
t = z2

t

(
1 + δ1T + z2

t−1δ3T

)
,

and hence

1
T

T∑
t=1

ẑ4
t = 1

T

T∑
t=1

z4
t

(
1 + δ1T + z2

t−1δ3T

)2
= 1

T

T∑
t=1

z4
t + op (1),

where we have used that under Assumptions A and B’, δ2
3TT

−1
∑T

t=1 z
4
t z

4
t−1 = op (1) .�

Lemma B.3 (WLLN) Let {Z∗t : t ≤ T} denote a bootstrap sample obtained by i.i.d.
resampling of the triangular array {ZT,t : t ≤ T}. Suppose that µ̂T := E∗(Z∗t )

p→ µ ∈ R
and E∗|Z∗t | ≤ CT , where CT is a function of {ZT,t : t ≤ T} such that CT

p→ c ∈ R.
Then, Z̄∗T

p∗→p µ and Z̄∗T − µ̂T
p∗→p 0 as T →∞.
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Proof: With u ∈ R, denote the characteristic function of Z∗t , conditional on {ZT,t, t ≤
T}, by φ∗(u) := E∗ (exp (iuZ∗t )). Since E∗|Z∗t | ≤ CT = Op (1), a stochastic Taylor
expansion (see e.g. van der Vaart, 1998, p.15) yields

φ∗T ( u
T

) = E∗(exp( iu
T
Z∗t )) = 1 + iu

T
µ̂T + op(

1
T

) .

By the conditional independence of Z∗t , Z̄
∗
T has (conditional) characteristic function

satisfying

φ̄T (u) := E∗
(
exp

(
iuZ̄∗T

))
= (φ∗(u/T ))T = (1 + iu

T
µ̂T + op(

1
T

))T
p→ exp (iuµ) .

Therefore, Z̄∗T
w∗→p µ, which also implies Z̄∗T

p∗→p µ by standard arguments. Since
Z̄∗T − µ̂T = Z̄∗T − µ + (µ− µ̂T ) = Z̄∗T − µ + op (1), the second statement in the lemma
also holds. �

Lemma B.4 (ULLN) Let {Z∗t : t ≤ T} and {ZT,t : t ≤ T} be as in Lemma B.3. With
G∗T (θ) a function of θ ∈ Θ ⊆ Rk for some k ≥ 1 and of {Z∗t : t ≤ T}, assume that the
following conditions hold:

(i) Θ is a compact subset of Rk.

(ii) For all θ ∈ Θ, G∗T (θ)
p∗→p 0.

(iii) For all θ, θ′ ∈ Θ,
|G∗T (θ)−G∗T (θ′) | ≤ B∗Th (||θ − θ′||) (B.3)

where h (x) → 0 for x → 0 and B∗T is independent of θ and such that E
∗ (B∗T ) =

Op (1).

Then, as T →∞,
sup
θ∈Θ
|G∗T (θ) | p

∗
→p 0.

Proof: The proof follows by arguments similar to Lange, Rahbek and Jensen (2011).
First notice that, since Θ is a compact subset of Rk, it holds that for any δ > 0 there
exists a finite cover {B (θj, δ) , j = 1, ..., J} of Θ, where J is a finite number, such that
for any θ1, θ2 ∈ B (θj, δ), ||θ2 − θ1|| ≤ δ (all j = 1, ..., J).
By standard inequalities

sup
θ∈Θ
|G∗T (θ) | = sup

θ∈Θ
|G∗T (θ)−G∗T (θj) +G∗T (θj) | ≤ sup

θ∈Θ
|G∗T (θ)−G∗T (θj) |+ |G∗T (θj) |

≤ max
j=1,..,J

sup
θ′∈B(θj ,δ)

|G∗T (θ′)−G∗T (θj) |+ max
j=1,..,J

|G∗T (θj) |.

Since for all θj, condition (B.3) implies

sup
θ′∈B(θj ,δ)

|G∗T (θ′)−G∗T (θ) | ≤ B∗Th (||θ′ − θ||) ≤ B∗Th (δ),
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we have that
sup
θ∈Θ
|G∗T (θ) | ≤ B∗Th (δ) + max

j=1,..,J
|G∗T (θj) |.

This implies that

P ∗
(

sup
θ∈Θ
|G∗T (θ) | > 2ε

)
≤ P ∗ (B∗Th (δ) > ε) + P ∗

(
max
j=1,..,J

|G∗T (θj) | > ε

)
, (B.4)

where by Bonferroni’s inequality, the pointwise convergence assumption and the finite-
ness of J we have that

P ∗
(

max
j=1,..,J

|G∗T (θj) | > ε

)
≤

J∑
j=1

P ∗ (|G∗T (θj) | > ε)
p→ 0.

Regarding the first probability on the right hand side of (B.4), it suffi ces to notice that
by the conditional Markov’s inequality

P ∗ (B∗Th (δ) > ε) ≤ 1

ε
E∗ (B∗Th (δ)) =

h (δ)

ε
E∗ (B∗T ),

and

P (P ∗ (B∗Th (δ) > ε) > γ) ≤ P

(
h (δ)

ε
E∗ (B∗T ) > γ

)
= P

(
E∗ (B∗T ) ≥ εγ

h (δ)

)
.

Since E∗ (B∗T ) is an Op (1) random variable, the latter probability can be made arbi-
trarily small by picking δ small enough. �
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