
 

ROBUST ESTIMATION OF MOMENT CONDITION MODELS 

WITH WEAKLY DEPENDENT DATA 

    

 

By 

 

Kirill Evdokimov, Yuichi Kitamura and Taisuke Otsu  

 

January 19, 2015 

 

 

RESEARCH INSTITUTE FOR ECONOMETRICS 

DISCUSSION PAPER NO. 2-15 

 

_____ 

DEPARTMENT OF ECONOMICS 

BAR-ILAN UNIVERSITY 

RAMAT-GAN 5290002, ISRAEL 
 

http://econ.biu.ac.il/en/node/2473 

http://econ.biu.ac.il/en/node/2473


ROBUST ESTIMATION OF MOMENT CONDITION MODELS WITH WEAKLY

DEPENDENT DATA

KIRILL EVDOKIMOV, YUICHI KITAMURA, AND TAISUKE OTSU

Abstract. This paper considers robust estimation of moment condition models with time series data.

Researchers frequently use moment condition models in dynamic econometric analysis. These models

are particularly useful when one wishes to avoid fully parameterizing the dynamics in the data. It is

nevertheless desirable to use an estimation method that is robust against deviations from the model

assumptions. For example, measurement errors can contaminate observations and thereby lead to

such deviations. This is an important issue for time series data: in addition to conventional sources

of mismeasurement, it is known that an inappropriate treatment of seasonality can cause serially

correlated measurement errors. Efficiency is also a critical issue since time series sample sizes are often

limited. This paper addresses these problems. Our estimator has three features: (i) it achieves an

asymptotic optimal robust property, (ii) it treats time series dependence nonparametrically by a data

blocking technique, and (iii) it is asymptotically as efficient as the optimally weighted GMM if indeed

the model assumptions hold. A small scale simulation experiment suggests that our estimator performs

favorably compared to other estimators including GMM, thereby supporting our theoretical findings.

1. Introduction

It is a common practice in empirical economics to estimate a dynamic economic model based

on moment restrictions it implies. Moment condition-based estimation is often computationally con-

venient; the GMM estimator Hansen (1982) is a prime example. It is argued that a moment condition

model imposes only mild assumptions and thereby enabling the researcher to conduct robust analysis,

especially when economic theory provides little guidance for dynamic specifications. Also, GMM is

generally regarded as a robust procedure. The last notion, however, deserves further investigation.
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Indeed, this paper demonstrates that an alternative estimator, which is termed the blockwise mini-

mum Hellinger distance estimator (the blockwise MHDE), possesses a desirable robust property. The

GMM estimator does not share this property, and our experimental result indicates that the latter

can be sensitive to deviations from the model assumptions.

We now introduce some notation to formalize our problem concerning robustness. Consider a

measurable space (Ω,F). Throughout this paper we consider time series of X -valued random variables,

where X ∈ Rd, and define X∞ = X×X×.... Let A∞ signify the Borel σ-algebra on X∞. A measurable

function X∞ : Ω → X∞ determines an infinite sequence X∞(ω) = (...X−1(ω), X0(ω), X1(ω)...) for a

given ω ∈ Ω.

Let g : X × Θ → Rm be a vector-valued function parameterized by a p-dimensional vector θ

which resides in Θ ⊂ Rp. Let P0 be a probability measure on the complete space of full trajectories

(Ω,F), and suppose a random sequence X∞ is strictly stationary under P0. Moreover, suppose a

model restriction of the following form holds for P0:

EP0 [g (Xt, θ0)] =

∫
g (Xt(ω), θ0)P0(dω)(1.1)

= 0, θ0 ∈ Θ.

The goal of the econometrician is to estimate the unknown θ0. Note that the parameter θ0 is identified

by the marginal distribution of Xt only.

The model (1.1) imposes only mild restrictions on P0, both in terms of distributional assump-

tions and dynamic specifications. It is, nevertheless, realistic to assume that the data observed by the

researcher is drawn from a probability measure that is not P0 in the model (1.1), but its perturbed

version, due to, say, measurement errors. Let Q denote such a “perturbed” probability measure. The

econometrician observes data (x1, ..., xn), n consecutive values in a realization of the random element

X∞ that obeys Q, and calculates an estimator θ̂ = θ̂(x1, ..., xn). The goal is to obtain an estimator

whose deviation from θ0 (which corresponds to P0) remains stable as far as Q is reasonably close to P0.

This paper develops a formal theory of robust estimation for moment condition model with

dependent data. There is a vast literature on robust methods in econometrics and statistics. A line of

research that is highly relevant to the current paper is initiated by a seminal paper by Beran (1977).

It considers robust estimation of parametric models with IID data, and shows that the minimum

Hellinger distance estimator (MHDE) has desirable properties. The parametric MHDE is robust in

the sense that it is relatively insensitive to perturbations in the density that generates observations.

Moreover, in the absence of such perturbations it is asymptotically equivalent to the ML estimator
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and therefore asymptotically efficient, at least to the first order. Thus the MHDE is robust and

asymptotically efficient at the same time. Further theoretical developments on this finding can be

found, for example, in Donoho and Liu (1988) and Rieder (1994). Kitamura, Otsu, and Evdokimov

(2013) consider the moment condition model as presented above, under the assumption that the

data is IID. They develop a robustness theory that deals with the semiparametric nature of the

moment condition model, and show that the MHDE applied to the moment restriction model (the

moment restriction MHDE) possesses an asymptotic minimax optimal robustness property. Also,

analogous to Beran’s result for the parametric MHDE, the moment restriction MHDE remains to be

semiparametrically efficient in the absence of perturbations. Thus the moment restriction MHDE is

robust and efficient in a semiparametric sense.

The present paper extends the above research on robustness to time series data. This is a

practically important problem. For example, in addition to conventional mis-measurements, it has

been pointed out that an inadequate seasonal adjustment yields serially correlated measurement errors

that are very hard to deal with (see, Ashley and Vaughgan, 1986, for example). In spite of this, robust

estimation has been mainly studied in the IID context. Dependent data introduces new challenges into

the analysis. For instance, the study of Kitamura, Otsu, and Evdokimov (2013) employs Le Cam-type

results but no such results are known for the case of dependent data, hence a different approach is

needed.

For dependent data, the literature has focused on parametric time series models Martin and

Yohai (1986) or location parameter estimation in Gaussian time series with infinite dimensional cor-

relation matrix (Andrews, 1982, 1988). The model considered here is semiparametric as it does not

make distributional assumptions, and it also involves nonparametric treatments of dependence. This

problem poses novel and important theoretical challenges. For example, robustness analysis as de-

veloped by Bickel (1981), Beran (1977, 1984) and Rieder (1994) requires a definition of infinitesimal

neighborhoods (of probability measures) against which one wishes to remain robust. This has been

considered extensively in the literature for IID data, though an appropriate its extension to weakly

dependent data is not obvious. Our analysis of optimal robustness also entails intricate technical

problems: for example, an appropriate least favorable distributions is an important building block of

our minimax optimality theory, and obtaining it under dependence and blocking calls for new tech-

niques. Needless to say, derivations of asymptotic distributions require appropriate treatments of

dependence as well. The paper addresses these problems.
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2. The Estimator

As in Andrews (1982) and Kitamura, Otsu, and Evdokimov (2013), the notion of MHDE plays

a central role in this paper. The Hellinger distance between two probability measures is defined as

follows:

Definition 2.1. Let P and Q be probability measures on X s := ⊗si=1X , s ≥ 1, with densities p and

q with respect to a dominating measure ν. The Hellinger distance between P and Q is then given by:

H (P,Q) =

{∫
X s

(
p1/2 − q1/2

)2
dν

}1/2

=

{
2− 2

∫
X s
p1/2q1/2dν

}1/2

.

One may rewrite the above as:

H (P,Q) =

{∫ (
dP 1/2 − dQ1/2

)2
}1/2

=

{
2− 2

∫
dP 1/2dQ1/2

}1/2

which is convenient as it avoids an explicit use of the dominating measure. Note that the above

definition can be used to define the distance between two s-dimensional joint distributions for an

arbitrary s, and the dimensionality s is treated implicitly in the notation.

The Hellinger distance H yields a natural method for estimating θ0 in (1.1). This is straightfor-

ward to see, at least when the data is IID. Suppose {xt}nt=1 is an IID sequence with each xt distributed

according to a measure µ0 defined on X , so that P0 = µ⊗n0 . Under this extra assumption (1.1) becomes

(2.1)

∫
X
g(x, θ0)dµ0 = 0.

Consider the following population problem:

v(θ) := min
µ̃�µ0

H(µ̃, µ0) s.t.

∫
g(x, θ)dµ̃ = 0,

∫
dµ̃ = 1.

An application of convex duality yields

v(θ) = max
γ
−
∫

1

1 + γ′g(x, θ)
dµ0

(see, for example, Kitamura (2006) for details). But if θ0 is identified in (2.1), minimizing v(θ)) over

θ ∈ Θ leads to θ0 = argminθ∈Θ v(θ). In sum,

θ0 = argmin
θ

max
γ
−
∫

1

1 + γ′g(z, θ)
dµ0 = argmin

θ
max
γ
−Eµ0

[
1

1 + γ′g(x, θ)

]
.

Form a natural sample analogue to define:

θ̂ = argmin
θ

max
γ
− 1

n

n∑
t=1

1

1 + γ′g(xt, θ)
.
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This is the moment restriction MHDE for the IID setting. If the data is dependent, however, it

is less efficient than the optimally weighted GMM when the model assumption holds for the data.

A way to deal with this issue fully nonparametrically is data blocking (see Kitamura, 1997 and

Kitamura and Stutzer, 1997 for applications of data blocking in empirical likelihood type estimators).

Consider data blocks {bj}nBj=1 of lengthM , where bj =
(
x(j−1)L+1, . . . , x(j−1)L+M

)
∈ XM , XM = X⊗M ,

nB = b(n−M) /Lc + 1, and b·c denotes the integer part of ·. The integer L (1 ≤ L ≤ M) is

the distance between starting points of blocks. Define the “smoothed moment function” φ (bj , θ) =

1√
M

∑M
l=1 g

(
x(j−1)L+l, θ

)
, j = 1, . . . , nB. In addition, define the empirical measure on the blocks P

(M)
n

as

P (M)
n =

1

nB

nB∑
j=1

δ(X(j−1)L+1,...,X(j−1)L+M).

Applying the moment restricted MHDE to smoothed moment functions, one obtains

(2.2) θ̂H = argmin
θ∈Θ

max
γ∈Rm

−E
P

(M)
n

[
1

1 + γ′φ(b, θ)

]
= argmin

θ∈Θ
max
γ∈Rm

− 1

nB

nB∑
t=1

1

1 + γ′φ(bj , θ)
.

This will be called the blockwise MHDE in this paper. Note that it can be seen as a mapping of

(empirical) probability measure on blocks of length M to the parameter space, i.e. θ̂H = T
(
P

(M)
n

)
,

where T (·) is defined by (2.2). This estimator enjoys a nice asymptotic efficiency property if the

model assumption holds for the observations, in the sense that the data obeys the law P0 that satisfies

(1.1). In this ideal scenario it is easy to show that
√
n(θ̂H − θ0)

d→ N(0,Σ), Σ = (G′ΩG)−1, G =

EP0 [ ∂∂θ′ g(zt, θ0)], Ω =
∑∞

t=−∞EP0g(zt, θ0)g(zt−j , θ0)′ under mild regularity conditions. The blockwise

MHDE is therefore as efficient as the optimally weighted GMM in the absence of data perturbation.

The subsequent sections show that it has desirable robustness properties as well. The blockwise

MHDE is, therefore, robust and efficient under weak dependence.

3. Main Results

The focus of this paper is estimation of the parameter θ when the data are generated by a

locally perturbed version of the probability measure P0 that satisfies the model (1.1). In particular,

we seek for an estimator that has small asymptotic MSE as far as the probability law of the data stays

within a shrinking neighborhood of P0. Since we study dependent data, an appropriate definition of

a local neighborhoods needs to take dependence into account.

To motivate our choice of neighborhood, consider the following definition.
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Definition 3.1. Let P and Q be probability measures on X s := ⊗si=1X , s ≥ 1, with densities p and

q with respect to a dominating measure ν. The α-divergence from Q to P is given by

Iα (P,Q) =
1

α(1− α)

∫ (
1−

(
p

q

)α)
qdν, α ∈ R.

If P is not absolutely continuous respect to Q, then
∫
I {p > 0, q = 0} dν > 0, and as a conse-

quence Iα (P,Q) =∞ for α ≥ 1. A similar argument shows that Iα (P,Q) =∞ if Q 6� P and α ≤ 0.

Note that Iα is well-defined for α = 1 by taking the limit α→ 1 in the definition. Indeed, L’Hospital’s

Rule implies that I1 corresponds to the well-known Kullback-Leibler (KL) divergence measure from

P to Q. The case of α = 0 corresponds to the KL divergence with the roles of P and Q reversed.

Note that the α-divergence includes the Hellinger distance as a special case, in the sense that

H2 (P,Q) =
1

2
I 1

2
(P,Q) .

Define the corresponding Iα-distance balls around a probability measure P with radius δ > 0:

BIα (P, δ) =
{
Q :

√
Iα (Q,P ) ≤ δ

}
.

The following Lemma provides an upper bound for the Hellinger distance. It generalizes well-

known information theoretic inequalities.

Lemma 3.2. For probability measures P and Q, and every α ∈ R,

(3.1) max (α, 1− α) Iα (P,Q) ≥ 1

2
I 1

2
(P,Q) .

This Lemma is proved in Kitamura, Otsu, and Evdokimov (2013) and implies that for any

constants L > 0, U > 0, and C (L,U) ≡ (1/2 + max (L,U))−1

(3.2) ∪α∈[ 1
2
−L, 1

2
+U] BIα (P, δ) ⊂ BI1/2

(
P,
√

2C (L,U)δ
)
.

That is, any Iα-based neighborhood for α ∈
[

1
2 − L,

1
2 + U

]
is covered by the Hellinger neighborhood

BI1/2 with a “margin” given by the multiplicative constant 2
√
C (L,U). The inclusion (3.2) is impor-

tant, since in what follows we consider robustness of estimators against perturbation of P0 within its

neighborhood, and it is desirable to use a neighborhood that is sufficiently large to accommodate a

large class of perturbations. The inclusion relationship shows that the Hellinger-based neighborhood

covers other neighborhood systems based on Iα, α ∈
[

1
2 − L,

1
2 + U

]
if the radii are chosen appropri-

ately. It is easy to verify that (3.2) does not hold if the Hellinger distance I 1
2

is replaced by Iα, α 6= 1
2 ,

showing the special status of the Hellinger distance among the α-divergence family.
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Since the goal of robust estimation is to guard against a large set of perturbations, the above

motivates using Hellinger distance for constructing neighborhoods. However, the above result only

applies to distributions of random vectors. It is not clear how to extend the notion of α-divergence

or Hellinger distance to stochastic processes. Yet, the neighborhoods we consider need to capture not

only the potential perturbations of the marginal distribution of Xt, but also the perturbations of the

dependence structure of the time series. To take into account the dependence aspects of the stochastic

process {Xt} we consider the Hellinger distance on expanding blocks.

Let us introduce some additional notation. For a probability measure P defined on (Ω,F),

let the notation P (k,t) signify the d × k-dimensional marginal distribution of (Xt(ω), . . . , Xt+k−1(ω))

under P . If the process X∞ that obeys P is strictly stationary, P (k,t) does not depend on t, and

the notation P (k) is used to denote it. The following definition of neighborhoods is suitable for the

development of our robustness theory for weakly dependent data:

Definition 3.3. Let P be a probability measure on the measurable space (Ω,F). For any δ > 0

and a positive integer M , we let B(P, δ) denote the set of all probability measures Q that satisfy the

following three conditions:

(i) H
(
Q(t,M), P (t,M)

)
≤ δ for each t;

(ii) a process X∞ that obeys Q is strong mixing with α-mixing coefficients α (k) satisfying∑∞
k=1 α (k)1−2/η <∞ for η > 2 defined in Assumption 3.1 (v) below;

(iii) for each t, EQ [supθ∈Θ |g (Xt, θ)|η] <∞ for η > 2 defined in Assumption 3.1 (v) below.

Let M →∞ be such that M/n→ 0 as n→∞. Sequences of local neighborhoods of the form

B(P0, r
√
M/n) for r > 0 are used throughout our theoretical analysis in this section. We consider

the effect of perturbations of P0 within B(P0, r
√
M/n), that is, we analyze the maximum MSE of

estimators when the probability law Q of the data varies within B(P0, r
√
M/n). Note that the true

parameter θ0 and the true probability measure P0 do not depend on the sample size.

The neighborhood B(P0, r
√
M/n) shrinks as n increases, because we assume that M/n → 0

as n→∞. Its local nature has the effect of balancing the stochastic orders of the bias and standard

error of an estimator, thereby allowing comparison of estimators according to their MSE.

In the above setup, the distance between probability laws is defined by Hellinger distance

between the M -dimensional marginal distributions of the probability laws, where M grows with the

sample size n. An increase in block length M is “balanced” by the factor M in the radius of the

neighborhood B(P0, r
√
M/n). Since the block length M is growing with n, the distance measure
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H
(
Q(t,M), P (t,M)

)
in (i) incorporates further information about the dependence in the process as n

increases.

Note that we do not assume the perturbed measure Q to be stationary. Therefore, the finite

dimensional distributions on different blocks may differ; although we will impose that the process X∞

under P0 is strictly stationary, see Assumption 3.1). Condition (ii) imposes a mixing condition Q. This

does not seem to follow directly from (i) and Assumption 3.1 (i), which is a mixing condition on P0.

The local neighborhood system {B(P0, r
√
M/n), n ∈ N} introduced above has some connec-

tions with other definitions of neighborhood systems used in the robust estimation literature. Beran

(1977,1978,1980) investigates robust estimation of parametric models in cross-sectional settings us-

ing the ”‘standard” definition of Hellinger neighborhood. Suppose the statistical model is given by

{Pθ}θ∈Θ where Θ is a finite dimensional parameter space. Beran considers estimation of θ0 ∈ Θ from a

random sample drawn from a probability measure Q that satisfies H (Q,Pθ0) ≤ r/
√
n for all n. Beran

(1982) considers a similar problem with i.n.i.d. data, by introducing a definition of contamination

neighborhood appropriate for nonidentical distributions. Kitamura, Otsu, and Evdokimov (2013)

consider robust estimation when data are IID draws from a perturbed probability law of a semi-

parametric model, using a Hellinger-based neighborhood system as used in Beran (1977,1978,1980).

Andrews (1988), in a weak dependence setting, considers estimation of location parameter with data

being perturbations of a Gaussian stochastic process. Due to his interest in location parameter An-

drews only assumes that marginal distribution of the stochastic process lie in a neighborhood shrinking

at the
√
n rate and imposes weak restrictions on the perturbations of the dependence structure of

the process. The current paper differs from Andrews (1988) as it considers general moment condition

models. Moreover, this paper seeks robustness within neighborhoods defined for joint distributions of

stochastic processes over time by considering M -dimensional distribution with M → ∞, in contrast

to neighborhoods defined by (one-period) marginals in Andrews (1988).

Lemma 3.2 holds for every pair of measures (P,Q), even if P 6� Q or Q 6� P . It is useful to

consider the behavior of Iα when one of the two measures is not absolutely continuous with respect

to the other. Consider a sequence of probability measures {P (n)}∞i=1. Suppose Iα(P (n), P0) → 0 for

an α ∈ R, then Iα′(P
(n), P0) → 0 for every α′ ∈ (0, 1). But the reverse (i.e. reversing the roles of α

and α′) is not true. If P (n), n ∈ N are not absolutely continuous respect to P0, Iα′(P
(n), P0) =∞ for

every α′ ≥ 1 even if ρα(P (n), P0) → 0 for α ∈ (0, 1) (and a similar argument holds for α′ ≤ 0). This

shows that Iα-based neighborhoods with α /∈ (0, 1) are too small: there are measures that are outside

of BIα(P0, δ), α /∈ (0, 1) no matter how large δ is, or how close they are to P0 in terms of, say, the
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Hellinger distance H. This shortcoming applies to neighborhoods based on the KL divergence and

the χ2 measure, as they correspond to Iα with α = −1, 0, 1 and 2.

One may also be interested in considering distances that result in even larger neighborhoods

than the Hellinger distance allows, such as Kolmogorov-Smirnov distance. However, an estimator that

is robust to such a wide variety of perturbations will be less efficient than the GMM estimator when

the data does not contain perturbations. In contrast, blockwise MHDE estimator of this paper is

asymptotically as efficient as the optimally weighted GMM when the model assumptions hold. Thus,

blockwise MHDE possesses an optimal robustness property without sacrificing efficiency.

Let τ : Θ→ R be a possibly nonlinear transformation of the parameter. One may, for example,

choose τ(θ) = c′θ for a p-vector c. We study the estimation problem of the transformed parameter

τ (θ0), as in Rieder (1994). Transforming the vector valued θ to a scalar τ(θ) is convenient in calculating

MSE’s in our main theorem, which compares the asymptotic MSE of the blockwise MHDE with that

of alternative estimators.

We impose the following assumptions. Let U be an open neighborhood around θ0.

Assumption 3.1. The following conditions hold:

(i): The process X∞(ω) under the probability measure P0 strictly stationary and α-mixing, with

its α-mixing coefficients α (k) satisfying
∑∞

k=1 α (k)1−2/η <∞, where η is defined in (v) below;

(ii): Θ ⊂ Rp is compact;

(iii): θ0 ∈ int(Θ) is a unique solution to EP0 [g (Xt, θ)] = 0;

(iv): for each θ ∈ Θ, g (x, θ) is continuous for all x ∈ X ;

(v): EP0 [supθ∈Θ |g (Xt, θ)|η] <∞ for some η > 2, EP0

[
supθ∈U |g (Xt, θ)|4

]
<∞, g (x, θ) is con-

tinuously differentiable a.s. in U , EP0

[
supθ∈U |∂g (Xt, θ) /∂θ

′|2
]

< ∞, and

supx∈X 1
n ,θ∈U |∂g (x, θ) /∂θ′| ≤ o

(
n1/2

)
, where X 1

n is defined in the Appendix;

(vi): G has the full column rank and Ω is positive definite;

(vii): M = O (nα), 0 < α < η2−2η
2(η2−1)

. Everywhere M is implicitly assumed to depend on n.

(viii): τ is continuously differentiable at θ0.

Assumption 3.1 (i)-(vi) are standard in the literature of the GMM. Assumption (i) is a regu-

larity condition needed to guarantee that a Central Limit Theorem holds. Assumption 3.1 (iii) is a

global identification condition of the true parameter θ0. Assumption 3.1 (v) contains the smoothness

and boundedness conditions for the moment function and its derivatives. This is stronger than the

assumptions needed to derive the standard asymptotic normality result without data perturbation.
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Assumption 3.1 (vi) is a local identification condition for θ0. This assumption guarantees that the

asymptotic variance matrix Σ−1 is well defined. Assumption 3.1 (iv) is imposed to guarantee the

continuity of the truncated MHDE mapping of block-measures Q(M) to Θ that are used in the proof

of main results; see Appendix for the details. Assumption 3.1 (vii) restricts the rate of growth of block

length with the sample size. This restriction allows introduction of a trimming sequence mn, which

plays an important role in the theoretical arguments1. Assumption (vii) is only a sufficient condition;

we give a more general, but more complicated condition in the Appendix. Assumption 3.1 (viii) is a

standard requirement for the parameter transformation τ .

In addition we need some regularity conditions on the alternative estimators Ta : {X1, . . . , Xn} →

Θ. We assume that an estimator Ta satisfies the following property:

Assumption 3.2. There exists a sequence of functions ψn (x) such that for every r > 0, every ξ ∈ Rp,

and every sequence {Qn}n∈N ,

Qn ∈ B
(
P0, r

√
M/n

)
∩
{
P : EP

[
g
(
Xt, θ0 + ξ/

√
n
)]

= 0 for all t
}

the following holds

(3.3)
√
n (Ta ({X1, . . . , Xn})− θ0)− ξ − 1√

n

∑
ϕn (Xt)→d 0, under Qn,

where EQn

[
1√
n

∑n
t=1 ϕn (Xt)

]
→ 0 for all t, and EQn

[
1
n

∑n
t=1

∑n
τ=1 ϕn (Xt)ϕn (Xτ )′

]
→ Aϕϕ′, where

Aϕϕ′ − Σ−1is a positive-semidefinite matrix.

The above assumption is an asymptotic linearity condition, and satisfied by standard estima-

tors. The condition Aϕϕ′ ≥ Σ−1 is reasonable and holds for the optimal GMM/CUE and appropriate

blockwise versions of GEL estimators.

The next assumption is only used to derive the minmax bound. It is not needed to show the

properties of the blockwise MHDE estimator θ̂H .

Assumption 3.3. (i) All components of Xt are continuously distributed; (ii) η > 4.

Assumption 3.3 is restrictive and is used to construct appropriate least favorable distributions,

which are important building blocks of our minimax optimality theory. These constructions turn

out to be more complicated in the case of weakly dependenent data than in the case of IID data.

Assumption 3.3 (i) is permits using integral transform as a part of the proof. It may be possible to

1However, no trimming is needed for the estimation procedure.
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relax this condition at the expense of extra complexity in the proofs. Assumption 3.3 (ii) is strong.

Section 6.1 of Appendix introduces a trimming sequence mn → ∞ and trimmed moment condition

function φn (b, θ) such that |φn (b, θ)| ≤ mn for all b. On the one hand, the trimming sequence should

diverge fast enough, so that |EP0 [φn (B, θ0)]| = o
(√

M/n
)

, i.e. the moment condition based on the

φn (B, θ) is close enough to the original moment condition (1.1). On the other hand, the behavior of

φn (B, θ) should not be driven by the tail events, so mn should not grow too fast. To guarantee the

compatibility of these two requirements we impose the condition that supθ∈Θ |g (Xt, θ)| has more than

four moments bounded (under P0). Note that no trimming is necessary if moment condition function

is bounded.

Our main result is the following optimal MSE property of the blockwise MHDE estimator.

Theorem 3.4. Suppose that Assumption 3.1 holds. Define B∗ =
(
∂τ(θ0)
∂θ

)′
Σ−1

(
∂τ(θ0)
∂θ

)
. Then the

following holds for each r > 0:

(i): If an alternative estimator Ta satisfies the regularity Assumption 3.2 and Assumption 3.3

holds, then

lim
κ→∞

lim inf
n→∞

sup
Q∈B

(
P0,r
√
M/n

)
∫
κ ∧ n (τ ◦ Ta ({x1, . . . , xn})− τ (θ0))2 dQ ≥

(
1 + 4r2

)
B∗.

(ii): The blockwise MHDE estimator θ̂H = T
(
P

(M)
n

)
satisfies

lim
κ→∞

lim
n→∞

sup
Q∈B

(
P0,r
√
M/n

)
∫
κ ∧ n

(
τ
(
θ̂H

)
− τ (θ0)

)2
dQ =

(
1 + 4r2

)
B∗.

This theorem compares the asymptotic MSE of the blockwise MHDE T
(
P

(M)
n

)
= θ̂H with that

of an alternative estimator Ta = Ta ({x1, . . . , xn}). In particular, the theorem compares the maximum

values of their MSEs as the probability of law of data varies over B(P0, r
√
M/n).

Part (i) of the theorem derives the minmax bound for the (truncated) Mean Squared Error

(MSE) of any estimator satisfying (3.3). Part (ii) of the theorem shows that the bound of part (i)

is actually tight and that blockwise MHDE estimator attains it. Since Σ is positive definite from

Assumption 3.1 (vi), the lower bound
(
1 + 4r2

)
B∗ is positive and finite.

Parameter κ guarantees that the loss function is bounded, i.e. the theorem takes truncated

MSE as a loss function. Without an upper bound the MSE may be infinite, prohibiting any mean-

ingful comparison. This use of asymptotic truncation scheme is standard in the literature of robust

estimation. That κ→∞ in the limit theory allows the truncation parameter to be arbitrarily large.
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The theorem does not require stationarity of the perturbed measure Qn. Only the true mea-

sure P0 is assumed to be stationary. Measure Qn may, for example, be nonstationary if the data

contains seasonal measurement error. Alternatively, for data covering large time periods it is possible

that the measurement of the first observations is different from the measurement error in the last

observations, for instance, one may think that the variance of measurement error decreases with time

due to improvements in accounting techniques.

It is important to note that the theorem concerns estimation of the true value θ0, not of a

pseudo-true value. It therefore differs from the results in White (1982), Kitamura (1998), Kitamura

(2002), and Schennach (2007).

The proof of Theorem 3.4 consists of the following steps. We first obtain the maximum bias

of τ ◦ Ta over the neighborhoods B
(
P

(∞)
0 , r

√
M/n

)
. Second, we use this maximum bias to calculate

the lower bound for maximum MSE over B
(
P

(∞)
0 , r

√
M/n

)
. Then, we introduce trimmed blockwise

MHDE T̄ (·) and show that it achieves the lower bounds of bias and MSE on B
(
P

(∞)
0 , r

√
M/n

)
derived earlier. Finally, we show that the difference between MSE of trimmed estimator T̄

(
P

(M)
n

)
and MSE of blockwise MHDE T

(
P

(M)
n

)
is negligible and hence blockwise MHDE T

(
P

(M)
n

)
achieves

the lower bound.

4. Monte-Carlo Experiments

4.1. Experiment 1. Our Monte-Carlo experiments are based on the nonlinear moment condition

model considered by Hall and Horowitz (1996). The data are a bivariate trajectory of the stochastic

process (Xt, Zt)
n
t=1, where

Xt =
1

1− α2

∞∑
j=0

αjuxt−j , Zt =
1

1− α2

∞∑
j=0

αjuzt−j ,(4.1)

(uxt , u
z
t )
′ ∼ i.i.d. N

(
0,

0.42

1− α2
I2

)
,(4.2)

where I2 denotes the 2 × 2 identity matrix. Thus, Xt and Zt are independent AR(1) processes with

autocorrelation α = 0.75 (the initial values are taken to be (ux0 , u
z
0)′ ∼ N

(
0, 0.42I2

)
). Define

g (x, z; θ) = (exp {−0.72− θ (x+ z) + 3z} − 1)

 1

z

 ,

then the moment restriction E [g (Xt, Zt; θ0)] = 0 identifies θ0 = 3.

Our first Monte-Carlo experiment considers how various estimators perform in the presence

of infrequent but relatively large measurement error. Here I2 denotes the 2 × 2 identity matrix. We
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assume that the true data generating process is (4.1), however econometrician only observes (X̃t, Z̃t),

where

(X̃t, Z̃t) =

(Xt, Zt) with probability 0.95,

(Xt, Zt) + c · ξt with probability 0.05.

Where ξt is a 1×2 random vector of independent zero mean components, which may be interpreted as

measurement error. We are going to compare the results of estimation using the two-step generalized

method of moments (GMM) of Hansen (1982), the continuous updating GMM (CUE) of Hansen,

Heaton, and Yaron (1996) with optimal weighting, the blockwise empirical likelihood estimator (EL)

of Kitamura (1997) (which is a blockwise version of the EL estimator as in Qin and Lawless (1994),

Imbens, Spady, and Johnson (1998), and Owen (2001)), the time-smoothed exponential tilting esti-

mator (ET) of Kitamura and Stutzer (1997), and the blockwise minimum Hellinger distance estimator

(MHDE) of equation (2.2). The results are based on 10000 replications for each specification. Each

estimator is is obtained by minimizing its criterion function on a fine grid over Θ = [0, 10]. As dis-

cussed earlier, EL, MHDE, and ET use block moment conditions, with fully overlapping blocks of

length M . Correspondingly, for GMM and CUE estimators the weighting matrix is taken to be the

inverse of HAC covariance matrix of Newey and West (1987) with Bartlett kernel and M − 1 lags. In

the experiments with n = 100 observations M = 5 and M = 10 are considered. When n = 400, block

lengths M = 10 and M = 20 are considered. The results are presented in Tables 1 and 2.

The data generating process corresponding to the first row of Table 1 has c = 0 and represents

the true model (4.1). For each scenario we report the Root Mean Squared Error (RMSE) and the

probabilities Pr{|θ̂ − θ0| > 1.0} (Pr{|θ̂ − θ0| > 0.5} in Table 2) for each estimator. Confirming the

theoretical findings of Newey and Smith (2004) and Kitamura and Otsu (2005) EL is superior on the

basis of both criteria. At the same time the Minimum Hellinger Distance estimator is only marginally

inferior to Empirical Likelihood estimator. We find that in a wide range of circumstances the finite

sample criterion function of MHDE is very close to the criterion function of the EL. ET is inferior

to both EL and MHDE, although only marginally. Two-step GMM is less efficient than the EL and

MHDE, especially with the larger sample. The results of the Continuous Updating GMM estimator

are inferior to all other methods. Even with a restricted parameter space Θ we find that finite sample

criterion function of CUE frequently has global minimum on the boundaries of Θ. Such behavior of

CUE in estimation of nonlinear models was noticed earlier by Hansen, Heaton, and Yaron (1996, see

p.272, Figure 5).
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In the presence of measurement error EL, MHDE, and ET still outperform GMM and CUE,

often by a wide margin. When measurement error is small EL may still outperform MHDE and

ET thanks to its higher order properties. When measurement errors become large none of the three

methods seems to dominate the other. Note that Theorem 3.4 does not imply that MHDE should be

optimal in all situations, but it rather shows its minimax property in terms of asymptotic MSE.

The column labeled “%f” is concerned with a computation issue of EL, MHDE, and ET. In

finite samples, it is possible that there exists no value of θ such that the zero vector is contained in

the convex hull of vectors {φ (bj , θ)}nBj=1. This is a situation where observations are providing strong

evidence against the validity of the moment condition model (1.1). EL, MHDE, and ET are not

well-defined in this case. The simulation experiment discards such replications in calculations of the

summary statistics. Column “%f” of Tables 1 and 2 reports the percentage of such replications. As

can be seen from Table 1, such cases are very rare in most cases, though become more likely for larger

c, especially in the case of the −χ2
1 measurement errors.

4.2. Experiment 2. The independent measurement error model of the previous subsection may be

somewhat restrictive, since in practice measurement errors could be correlated with the original data.

To explore this and other forms of deviations from the model assumptions, the following experiment

studies the effects of a family of local perturbations of the data generating process (4.1)-(4.2).

Note that the joint distribution Q(M) of the data block B = (X1, . . . , XM , Z1, . . . , ZM )′ of

length M is fully determined by the bivariate distribution of the disturbances (uxt , u
z
t )
′. The model

(4.1)-(4.2) assumes that vector (uxt , u
z
t )
′ has normal distribution with zero means and covariance

matrix Σ0 = 0.42

1−α2 I2, i.e. (uxt , u
z
t )
′ has independent components with equal variance. Following

the notation introduced in Section 3, let P
(M)
0 denote the distribution of B under (4.1)-(4.2). To

investigate the performance of the estimators we would like to consider various small perturbations of

this probabilistic model. One way to build a family of such perturbations is to allow the components

of the random vector (uxt , u
z
t )
′ to have unequal variances and to be correlated, i.e. to have bivariate

normal distribution with the covariance matrix

Σ(δ,ρ) =
0.42

1− α2

 (1 + δ)2 ρ (1 + δ)

ρ (1 + δ) 1

 ,

which is a perturbation of the matrix Σ0 when δ and ρ are small. The form of covariance ma-

trix is chosen so that V [Xt] /V [Zt] = V [uxt ] /V [uzt ] = (1 + δ)2 and the correlation Corr (Xt, Zt) =

Corr (uxt , u
z
t ) = ρ. Note that Σ(0,0) = Σ0.
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RMSE Pr{|θ̂ − θ0| > 1.0}

c ξtj EL MHDE ET GMM CUE EL MHDE ET GMM CUE %f

n = 100, M = 5

0 0.745 0.884 1.063 0.933 3.338 0.114 0.125 0.140 0.208 0.359 0.01

0.5 N 0.695 0.797 0.964 0.879 3.094 0.103 0.112 0.126 0.188 0.323 0.00

1 N 0.695 0.763 0.879 0.966 2.838 0.109 0.117 0.126 0.257 0.305 0.00

2 N 0.936 0.923 0.949 1.434 2.465 0.316 0.275 0.260 0.594 0.411 0.25

0.5 χ2
1 0.742 0.889 1.056 0.911 3.266 0.109 0.121 0.135 0.204 0.345 0.00

1 χ2
1 0.637 0.731 0.879 0.834 3.027 0.082 0.091 0.103 0.162 0.298 0.00

2 χ2
1 0.614 0.650 0.719 0.871 2.829 0.076 0.080 0.087 0.214 0.275 0.00

0.5 −χ2
1 0.735 0.860 0.991 0.944 3.098 0.119 0.132 0.144 0.227 0.331 0.00

1 −χ2
1 0.788 0.847 0.960 1.161 2.826 0.173 0.170 0.174 0.363 0.347 0.30

2 −χ2
1 1.011 0.990 1.041 1.497 2.580 0.290 0.247 0.241 0.527 0.390 2.27

0.5 t3 0.735 0.851 1.007 0.931 3.164 0.114 0.123 0.137 0.211 0.339 0.01

1 t3 0.717 0.794 0.911 0.996 2.897 0.122 0.126 0.132 0.252 0.310 0.18

2 t3 0.872 0.878 0.940 1.299 2.568 0.228 0.203 0.198 0.457 0.348 0.68

n = 100, M = 10

0 0.833 0.993 1.139 0.917 3.111 0.124 0.134 0.148 0.201 0.340 0.19

0.5 N 0.738 0.869 1.014 0.862 2.906 0.110 0.121 0.132 0.181 0.308 0.13

1 N 0.729 0.822 0.918 0.961 2.677 0.118 0.128 0.136 0.260 0.293 0.06

2 N 0.957 0.961 0.992 1.443 2.378 0.320 0.282 0.271 0.597 0.408 0.29

0.5 χ2
1 0.815 0.969 1.110 0.885 3.077 0.122 0.132 0.143 0.195 0.328 0.14

1 χ2
1 0.686 0.804 0.938 0.817 2.800 0.090 0.102 0.114 0.156 0.277 0.04

2 χ2
1 0.635 0.676 0.742 0.878 2.667 0.080 0.087 0.094 0.223 0.259 0.02

0.5 −χ2
1 0.799 0.943 1.070 0.934 2.911 0.131 0.140 0.152 0.225 0.319 0.08

1 −χ2
1 0.823 0.900 0.996 1.153 2.675 0.182 0.183 0.188 0.363 0.337 0.39

2 −χ2
1 1.047 1.014 1.069 1.497 2.458 0.305 0.258 0.250 0.525 0.388 2.29

0.5 t3 0.808 0.931 1.053 0.907 2.979 0.124 0.134 0.146 0.200 0.323 0.09

1 t3 0.776 0.864 0.973 0.989 2.714 0.130 0.135 0.143 0.251 0.297 0.29

2 t3 0.898 0.922 0.969 1.298 2.429 0.236 0.212 0.210 0.457 0.340 0.77

Table 1. In the second column (ξtj) N , χ2
1, −χ2

1, and t3 denote, respectively,

N(0, 1),(χ2
1 − 1)/

√
2,−(χ2

1 − 1)/
√

2, and Student-t3/
√

3 distributions of ξtj .
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RMSE Pr{|θ̂ − θ0| > 0.5}

c ξtj EL MHDE ET GMM CUE EL MHDE ET GMM CUE %f

n = 400, M = 10

0 0.292 0.294 0.309 0.409 2.668 0.082 0.084 0.089 0.111 0.229 0.00

0.5 N 0.282 0.286 0.296 0.400 2.679 0.074 0.075 0.078 0.104 0.222 0.00

1 N 0.281 0.281 0.290 0.383 2.452 0.070 0.071 0.074 0.103 0.203 0.00

2 N 0.473 0.455 0.444 0.678 2.609 0.305 0.276 0.263 0.486 0.409 0.00

0.5 χ2
1 0.284 0.286 0.293 0.397 2.662 0.076 0.078 0.082 0.105 0.223 0.00

1 χ2
1 0.278 0.279 0.284 0.377 2.586 0.067 0.069 0.072 0.092 0.206 0.00

2 χ2
1 0.268 0.269 0.274 0.339 2.422 0.058 0.058 0.059 0.087 0.182 0.00

0.5 −χ2
1 0.290 0.292 0.298 0.412 2.618 0.083 0.084 0.086 0.117 0.227 0.00

1 −χ2
1 0.367 0.358 0.358 0.589 2.371 0.142 0.133 0.133 0.255 0.264 0.01

2 −χ2
1 0.713 0.643 0.612 1.167 2.213 0.432 0.365 0.337 0.656 0.481 0.58

0.5 t3 0.286 0.287 0.294 0.407 2.677 0.078 0.079 0.081 0.110 0.225 0.01

1 t3 0.317 0.312 0.315 0.476 2.418 0.095 0.092 0.092 0.148 0.219 0.05

2 t3 0.494 0.461 0.447 0.800 2.297 0.237 0.210 0.198 0.403 0.329 0.42

n = 400, M = 20

0 0.300 0.310 0.317 0.401 2.533 0.088 0.091 0.094 0.111 0.218 0.00

0.5 N 0.290 0.294 0.305 0.384 2.545 0.079 0.081 0.084 0.101 0.212 0.00

1 N 0.285 0.291 0.297 0.374 2.326 0.074 0.075 0.077 0.105 0.194 0.00

2 N 0.473 0.455 0.448 0.693 2.527 0.302 0.278 0.265 0.501 0.404 0.00

0.5 χ2
1 0.292 0.296 0.303 0.385 2.544 0.083 0.085 0.087 0.103 0.216 0.00

1 χ2
1 0.285 0.287 0.292 0.363 2.465 0.076 0.076 0.078 0.093 0.198 0.00

2 χ2
1 0.273 0.275 0.279 0.333 2.283 0.062 0.063 0.064 0.087 0.170 0.00

0.5 −χ2
1 0.296 0.299 0.313 0.401 2.487 0.087 0.088 0.092 0.115 0.215 0.00

1 −χ2
1 0.372 0.365 0.365 0.590 2.259 0.150 0.142 0.139 0.260 0.257 0.01

2 −χ2
1 0.723 0.649 0.621 1.182 2.165 0.437 0.370 0.344 0.662 0.479 0.56

0.5 t3 0.293 0.296 0.305 0.398 2.553 0.083 0.084 0.087 0.107 0.216 0.01

1 t3 0.324 0.319 0.323 0.472 2.305 0.099 0.099 0.099 0.149 0.210 0.06

2 t3 0.499 0.465 0.451 0.809 2.204 0.242 0.216 0.203 0.412 0.323 0.43

Table 2. In the second column (ξtj) N , χ2
1, −χ2

1, and t3 denote, respectively,

N(0, 1),(χ2
1 − 1)/

√
2,−(χ2

1 − 1)/
√

2, and Student-t3/
√

3 distributions of ξtj .
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Each pair of parameters (δ, ρ) corresponds to a probability distribution on the block B; we

denote this distribution by P
(M)
(δ,ρ). Note that P

(M)
(0,0) = P

(M)
0 and hence measure P

(M)
(δ,ρ) can be seen as a

perturbed version of the measure P
(M)
0 .

The idea here is to investigate finite sample properties of the estimators as the data distribution

P
(M)
(δ,ρ) varies around the measure P

(M)
0 keeping at an approximately constant distance from it. One

can calculate that the Hellinger distance between the true and perturbed probability measures on the

block is H
(
P

(M)
0 , P

(M)
(δ,ρ)

)
≈
√
M/4

(
2δ2 + ρ2

)1/2
for small ρ and δ. Therefore values of (δ, ρ) that

satisfy c2 = δ2 + ρ2/2 for some constant c are considered. We consider 64 different designs indexed by

j ∈ {0, . . . , 63}. In the j-th design we set ωj = j/64, δj = c sin (2πωj), ρj =
√

2c cos (2πωj).
2 In the

Monte Carlo experiment we set c = 0.1, α = 0.75, and n = 400. Estimation is performed with fully

overlapping blocks of length 10. For each design 10000 replications are computed.

The results are presented in Figure ??. On the top panels, RMSE of the estimators are plotted

as functions of ωj . The bottom panels show the estimated probabilities Pr{|θ̂ − θ0| > 1.0}. As

in the first experiment, RMSE and Pr{|θ̂ − θ0| > 1.0} of CUE are much larger than those of other

estimators. To provide better insights on the relative performance of other estimators, the right panels

of the figure present the same plots as the left ones but exclude CUE. MHDE, EL, and ET outperform

GMM. Interestingly, EL and MHDE are very close for all scenarios. ET is close to EL and MHDE

although appears to be slightly less robust against a range of misspecifications.

Before closing this section it might be beneficial to discuss a possible interpretation of the

simulation results in light of the main theoretical results such as Theorem 3.4. Consider minimizing

the α-divergence in Definition 3.1, with the measure Q replaced by the blockwise empirical measure

P
(M)
n as we did in (2.2), subject to the moment constraint

∫
φ(b, θ)dQ = 0, θ ∈ Θ. This gives rise to

a family of estimator indexed by α, including the blockwise MHDE as a special case of α being 1
2 ,

which is optimally robust according to our Theorem 3.4. Note that the value of the estimator that

minimizes the α-divergence varies continuously with the value of α. Thus one expects that estimators

with their α close to the optimal 1
2 remain comparatively robust, and as α moves away from 1

2 the

corresponding estimator would grow increasingly susceptible to the effects of data contamination,

which is the paper’s major concern. The experimental results are consitent with this prediction: the

MHDE (α = 1
2) performs well over a wide range of data generating processes in both experiments, and

the same applies to the estimators with their corresponding values α relatively close to the optimal

value α = 1
2 , namely EL (α = 1), and ET (α = 0). On the other hand, the finite sample performance

2Note that design with ω = 1 coincides with the ω = 0 design and hence the graphs are closed loops.
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of CUE, which has the α value of 2 and thus quantitatively very different from the asymptotically

optimal MHDE, is poor. As GMM and CUE are both based on a closely related quadratic measure,

this also explains the erratic performance of GMM. Overall, the simulations provide strong support

for the theoretical results obtained in Section 3.

5. Conclusion

This paper studied robust estimation of moment restriction models with time series data.

Often the data used in empirical analysis is not ideal and is subject to errors, for instance due to

data contamination or incorrect deseasonalization. In such cases, the distribution of data at hand is

a perturbed version of the true data distribution. This paper studies robustness of a large class of

estimation procedures to perturbations in the data generating probability measure. The main result

of the paper is demonstrating that the blockwise MHDE possesses optimal minimax robust properties.

The paper derives minimax lower bound of MSE risk and shows that the blockwise MHDE estimator

achieves this bound. At the same time, blockwise MHDE is known to be semiparametrically efficient

in the ideal scenario of error-free data. Thus, blockwise MHDE estimator is both robust and efficient.

The Monte Carlo experiments suggest that GMM and Continuously Updated GMM are sensitive to

data perturbations, while MHDE is not.
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Appendix

6. Main Proofs

Notation. Let C > 0 be a generic positive constant, ‖·‖ is the L2-metric on the appropriate

space. When measure P is stationary the time subscript t is unnecessary and is omitted. Also, for

a finite dimensional measure P (k,t) of P , we sometimes omit the superscript (k, t) when it is clear

from the context which finite dimensional measure is used. Let M denote the set of all probability

measures that are defined on A∞. Let MS ⊂ M denote the set of all probability measures under

which the process X∞(ω) is strictly stationary. In the proofs, we also use the following notation:

θn = θ0 + ξ/
√
n, b = (x1, . . . , xM ) ∈ XM , φn (b, θ) = φ (b, θ) I

{
b ∈ XMn

}
,

Λ =
√
MG′Ω−1φ (b, θ0) , Λn =

√
MG′Ω−1φn (b, θ0) ,

Rn

(
Q(M), θ, γ

)
= −

∫
1

1 + γ′φn (b, θ)
dQ(M), P̄

(M)

θ,Q(M) = arg min
P (M)∈P̄ (M)

θ ,P (M)�Q(M)

H
(
P (M), Q(M)

)
Λ =

√
MG′Ω−1φ (b, θ0) , Λn =

√
MG′Ω−1φn (b, θ0) ,

ψ
n,Q

(M)
n

= −2

(∫
ΛnΛ

′
ndQ

(M)
n

)−1 ∫
Λn

{
dQ1/2

n − dP̄ 1/2
θ0,Qn

}
dQ1/2

n ,

BH

(
P

(M)
0 , δ

)
=

{
Q(M) ∈M(M) : H

(
Q(M), P

(M)
0

)
≤ δ
}
,

where M(M) is the set of all probability measures on the Borel σ-field
(
XM ,B

(
XM

))
, while XMn is

defined in subsection 6.1 below. As usual, xt and bj denote realizations of Xt and Bj . The abbreviation
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w.p.a.1 should be read as “with probability approaching 1 as n → ∞”, UWLLN stands for Uniform

Weak Law of Large Numbers, see for example Andrews (1987) or Potscher and Prucha (1989), and

CLT denotes the Central Limit Theorem of Herrndorf (1984).

The first subsection of this Appendix introduces trimmed estimators that are used in the

proofs. The second subsection gives several important lemmas that are used in the third section to

prove Theorem 3.4. Auxiliary lemmas are given in Section 7.

6.1. Trimming. An essential tool of the proofs is the following mapping fromM(M) to Θ defined by

a trimmed moment function:

T̄
(
Q(M)

)
= arg min

θ∈Θ

{
inf

P (M)∈P̄(M)
θ ,P (M)�Q(M)

H
(
P (M), Q(M)

)}
,

where P̄(M)
θ is the set of the M -dimensional measures P (M) of all probability measures P in P̄θ, where

the latter set is defined as

P̄θ =

{
P ∈MS :

∫
φ (b, θ) I

{
b ∈ XMn

}
dP (M) = 0

}
,

X kn =

{
(x1, . . . , xk) ∈ X k : sup

θ∈Θ
|g (xi, θ)| ≤ mn, i = 1, . . . , k

}
,

where {mn}n∈N is a sequence of positive numbers satisfying mn →∞ as n→∞, I {·} is the indicator

function, and |·| is the Euclidean norm, i.e., XMn is a trimming set to bound the moment function.

Thus the set P̄θ is the collection of probability measures satisfying the bounded moment condition

EP (M)

[
φ (B, θ) I

{
B ∈ XMn

}]
= 0. Trimming is needed to guarantee the existence of the mapping

T̄
(
Q(M)

)
. Lemma 7.1 (i) shows that for each n ∈ N and Q ∈ MS the value T̄

(
Q(M)

)
exists. To

simplify the notation below we sometimes denote T̄Q = T̄ (Q) for a measure Q when T̄ (Q) is well-

defined.

We may take the trimming sequence {mn}n∈N to satisfy 0 < lim infn→∞mn/n
β ≤

lim supn→∞mn/n
β <∞,

(6.1)
1

2 (η − 1)
+
α

η
< β < min

{
1

2
− α, 1

η

}
,

where α is from Assumption 3.1 (vii). Note that the restrictions imposed on α by Assumption 3.1 (vii)

guarantee existence of β that satisfies (6.1). Assumption 3.1 (vii) together with (6.1) are sufficient to

guarantee that
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(6.2) max
{
M1−1/ηm1−η

n n1/2,M3/4m−3
n n1/2,Mmnn

−1/2, nm−ηn ,M3n−1
}
→ 0,

which is used in the proofs below.

6.2. Key Lemmas. We introduce measure P̃θn that will be used in the subsequent proofs.

Definition 6.1. For any ξ ∈ R and n large enough (so that θn ∈ Θ) define a nonstationary process Zt

in the following way. For each integer k,
(
Z ′kM+1, . . . , Z

′
(k+1)M

)′
= Υn

((
X ′kM+1, . . . , X

′
(k+1)M

)′)
,

where for any Md dimensional random vector γ = (γ1, ..., γMd)
′, the r-th component of the vector

transformation Υn is defined as

Υn
r (γ) =

G
−1
r|
(
Fr| (γr|γr−1, . . . , γ1)

∣∣ (Υn
r−1 (γ) , . . . ,Υn

1 (γ)
))
, if r > 1,

G−1
1 (F1 (γ1)) , if r = 1,

where Fr| (γr|γr−1, . . . , γ1) is the cumulative distribution function of the r-th component of(
X ′kM+1, . . . , X

′
(k+1)M

)′
, conditional on the first (r − 1) components of this vector. Thus F|r is fully

defined by the cumulative distribution function F (·) of
(
X ′kM+1, . . . , X

′
(k+1)M

)′
, which corresponds

to the the probability measure P
(M)
0 . Similarly, G−1

r| is the inverse (in the first argument) of the

conditional cumulative distribution function Gr| (γr|γr−1, . . . , γ1), which is defined by the probability

measure P̃
(M,1)
θn

,

(6.3)
dP̃

(M,1)
θn

dP
(M)
0

(b) =
1 + ζ ′nφn (b, θn)∫

(1 + ζ ′nφn (b, θn)) dPM0 (b)
,

where b = (x1, . . . , xM ), and ζn = −E
P

(M)
0

[
φn (B, θn)φn (B, θn)′

]−1
E
P

(M)
0

[φ (B, θn)]. Denote the

probability measure of the nonstationary process Zt by P̃θn .

Lemma 6.2. Suppose that Assumptions 3.1 and 3.3 hold. Then, for each r > 0, any ε ∈
(
0, r2

)
, and

all n large enough, probability measure P̃θn satisfies

P̃θn ∈ B
(
P0, r

√
M/n

)
,

when 1
4ξ
′Σξ ≤ r2 − ε.
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Proof. 1. We first derive H
(
P̃

(M,1)
θn

, P
(M)
0

)
. Denote fn (b, θn, ζn) = dP̃

(M,1)
θn

(b) /dP
(M)
0 . By

Taylor expansion

(6.4) H
(
P̃

(M,1)
θn

, P
(M)
0

)
=

∥∥∥∥∥∥∥ζ ′n
∂fn (b, θn, 0)

∂ζn

1/2

dP
1/2
0 +

1

2
ζ ′n

∂fn

(
b, θn, ζ̇n

)
∂ζn∂ζ ′n

1/2

ζndP
1/2
0

∥∥∥∥∥∥∥ ,
where each element of ζ̇n is between the corresponding element of ζn and 0. Then

∂fn (b, θn, 0)

∂ζn

1/2

=
1

2

(
φn (b, θn)− E

P
(M)
0

[φn (B, θn)]
)
,

and

∂fn

(
b, θn, ζ̇n

)
∂ζn∂ζ ′n

1/2

= −1

4

(
1 + ζ ′nφn (b, θn)

)−3/2
(

1 + ζ ′nEP (M)
0

[φn (B, θn)]
)−1/2

φn (b, θn)φn (b, θn)′

+
3

4

(
1 + ζ ′nφn (b, θn)

)1/2 (
1 + ζ ′nEP (M)

0

[φn (B, θn)]
)−5/2

E
P

(M)
0

[φn (B, θn)]E
P

(M)
0

[φn (B, θn)]′

−1

4

(
1 + ζ ′nφn (b, θn)

)−1/2
(

1 + ζ ′nEP (M)
0

[φn (B, θn)]
)−3/2

×
(
φn (b, θn)E

P
(M)
0

[φn (B, θn)]′ + E
P

(M)
0

[φn (B, θn)]φn (b, θn)′
)
.

Lemma 7.4 and condition (6.2) imply that ζn = O
(√

M/n
)

and supb∈XM ζ ′nφn (b, θn) = o (1), and

hence it can be shown that

n

M
H
(
P̃

(M,1)
θn

, P
(M)
0

)2
=

n

M

∥∥∥∥1

2
ζ ′n

(
φn (b, θn)− E

P
(M)
0

[φn (B, θn)]
)
dP

1/2
0

∥∥∥∥2

+ o (1)

=
1

4

n

M
ζ ′nEP (M)

0

[
φn (B, θn)φn (B, θn)′

]
ζn + o (1) .

Therefore, from Taylor expansion

n

M
H
(
P̃

(M,1)
θn

, P
(M)
0

)2
=

1

4

n

M
E
P

(M)
0

[
φ (B, θn)′

] (
E
P

(M)
0

[
φn (B, θn)φn (B, θn)′

]−1 − Ω−1
)
E
P

(M)
0

[φ (B, θn)]

+
1

4

√
n

M
E
P

(M)
0

[
φ (B, θn)′

]
Ω−1 1√

M

(√
nE
[
∂φn

(
b, θ̇n

)
/∂θ′

]
θn −

√
MGξ

)
+

1

4

1√
M

(√
nE
[
∂φn

(
b, θ̇n

)
/∂θ′

]
θn −

√
MGξ

)′
Ω−1Gξ +

1

4
ξ′Σξ + o (1)

=
1

4
ξ′Σξ + o (1) ,
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where each element of vector θ̇n is between the corresponding element of θn and 0 and the second

equality follows from Lemma 7.4. Therefore, for any ε > 0, the condition H
(
P̃

(M,1)
θn

, P
(M)
0

)
≤ r
√
M/n

holds if 1
4ξ
′Σξ + ε < r2.

2. According to the Definition 3.3 we need to show that M -dimensional probability mea-

sures P̃
(M,t)
θn

on (Xt, . . . , Xt+M−1) satisfy H
(
P̃

(M,t)
θn

, P
(M)
0

)
≤ r
√
M/n for all t. Note that measures

P̃
(M,t+Mk)
θn

are the same for all integer k and hence we only need to consider measures P̃
(M,t)
θn

for

t = 1, . . . ,M . We have shown above that H
(
P̃

(M,1)
θn

, P
(M)
0

)
= O

(√
M/n

)
. We will now show that

H
(
P̃

(M,t)
θn

, P
(M)
0

)
= H

(
P̃

(M,1)
θn

, P
(M)
0

)
+ o

(√
M/n

)
for t = 2, . . . ,M .

To shorten the expressions denote gn (·) = gn (·, θn) /
√
M . Let P

(x1,...,x2M )\b
0 be the M -

dimensional distribution of (x1, . . . xt−1, xM+t, . . . , x2M ). For any t = 1, . . . ,M and any

b = (xt, . . . , xt+M−1) ∈ XMn we have

dP̃
(M,t)
θn

dP
(M)
0

(b) =

∫
A (x1, . . . , x2M ) dP

(x1,...,x2M )\b
0 ,

where

A (x1, . . . , x2M ) =

(
1 + ζ ′n

M∑
j=1

gn (xj)

)(
1 + ζ ′n

2M∑
j=M+1

gn (xj)

)
(1 +Mζ ′nEP0 [gn (X1)])2

=

1 + ζ ′n
2M∑
j=1

gn (xj) +
M∑
j=1

2M∑
l=M+1

ζ ′ng
n (xj) g

n (xl) ζn

(1 +Mζ ′nEP0 [gn (X1)])2

=

1 + ζ ′n
t+M−1∑
j=t

gn (xj)

1 +Mζ ′nEP0 [gn (X1)]

(
1 +Mζ ′nEP0 [gn (X1)]

)−1

+

ζ ′n

(
t−1∑
j=1

gn (xj) +
2M∑

j=t+M

gn (xj)

)
+

M∑
j=1

2M∑
l=M+1

ζ ′ng
n (xj) g

n (xl) ζn

(1 +Mζ ′nEP0 [gn (X1)])2

Then Lemma 7.4 and condition (6.2) imply that ζn = O
(√

M/n
)

, EP0 [gn (X1)] = O
(√

1/ (nM)
)

,

and that

dP̃
(M,t)
θn

dP
(M)
0

(b) =

1 + ζ ′n
t+M−1∑
j=t

gn (xj)

1 +Mζ ′nEP0 [gn (X1)]
+ o

(√
M/n

)
.
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Therefore, H
(
P̃

(M,t)
θn

, P
(M)
0

)

=

∥∥∥∥∥∥∥∥∥∥


1 + ζ ′n

t+M−1∑
j=t

gn (xj)

1 +Mζ ′nEP0 [gn (X1)]
+ o

(√
M/n

)
1/2

dP
1/2
0 − dP 1/2

0

∥∥∥∥∥∥∥∥∥∥
= H

(
P̃

(M,1)
θn

, P
(M)
0

)
+ o

(√
M/n

)
,

where the last equality follows from the definition of P̃θn and the triangle inequality.

3. Condition (ii) of Definition 3.3 is satisfied since for large k, α̃n (k) ≤ α̃n (k − 2M).

4. We now check condition (iii) of Definition 3.3,

E
P̃θn

[
sup
θ∈Θ
|g (X1, θ)|η

]
=

∫
sup
θ∈Θ
|g (x1, θ)|η

1 + ζ ′nφn (b, θn)

(1 + ζ ′nEP0 [φn (B, θn)])2dP0

≤ sup
b∈XMn

∣∣∣∣ 1 + ζ ′nφn (b, θn)

(1 + ζ ′nEP0 [φn (B, θn)])2

∣∣∣∣ ∫ sup
θ∈Θ
|g (X1, θ)|η dP0

where the equality follows from the definition of P̃θn and the second inequality follows from Assumption

3.1 (v) and the fact that supb∈XM ζ ′nφn (b, θn)=o (1).

Therefore, conditions (i-iii) of Definition 3.3 are satisfied, which concludes the proof.

Lemma 6.3. Suppose that Assumption 3.1 holds. Then, for each r > 0,

(6.5) lim sup
n→∞

sup
Q(M)∈BH

(
P

(M)
0 ,r
√
M/n

)n
(
τ ◦ T̄

(
Q(M)

)
− τ (θ0)

)2
≤ 4r2B∗.

Proof. A Taylor expansion of τ ◦ T̄
Q

(M)
n

around T̄
Q

(M)
n

= θ0, Lemmas 7.1 (ii) and 7.2, and

Assumption 3.1 (viii) imply that for each sequence Q
(M)
n ∈ BH

(
P

(M)
0 , r

√
n/M

)
and r > 0,

√
n
(
τ ◦ T̄

Q
(M)
n
− τ (θ0)

)
= −
√
n

(
∂τ (θ0)

∂θ

)′
(MΣ)−1

∫
ΛndQ

(M)
n + o (1)

= −n1/2M−1ν ′
∫

Λn

{
dQ1/2

n − dP 1/2
0

}
dQ1/2

n − n1/2M−1ν ′
∫

ΛndP
1/2
0

{
dQ1/2

n − dP 1/2
0

}
+ o (1) .

where we denote ν ′ = (∂τ (θ0) /∂θ)′Σ−1. From the triangle inequality,

n
(
τ ◦ T̄

Q
(M)
n
− τ (θ0)

)2

≤ nM−2


∣∣∣ν ′ ∫ Λn

{
dQ

1/2
n − dP 1/2

0

}
dQ

1/2
n

∣∣∣2 +
∣∣∣ν ′ ∫ Λn

{
dQ

1/2
n − dP 1/2

0

}
dP

1/2
0

∣∣∣2
+2
∣∣∣ν ′ ∫ Λn

{
dQ

1/2
n − dP 1/2

0

}
dQ

1/2
n

∣∣∣ ∣∣∣ν ′ ∫ Λn

{
dQ

1/2
n − dP 1/2

0

}
dP

1/2
0

∣∣∣
+ o (1)

= nM−2 {A1 +A2 + 2A3}
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For A1, observe that

A1 ≤
∣∣∣∣∫ ν ′ΛnΛ′nνdQn

∣∣∣∣ ∣∣∣∣∫ {dQ1/2
n − dP 1/2

0

}2
∣∣∣∣ ≤ B∗r2M

2

n
+ o

(
M2

n

)
,

where the first inequality follows from Cauchy-Schwarz inequality, and the second inequality follows

from Lemma 7.5 (i) and Q
(M)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
. Similarly, we have A2 ≤ B∗r2M

n . From these

results, A3 satisfies

A3 ≤

√
B∗r2

M2

n
+ o

(
M

n

)√
B∗r2

M2

n
= B∗r2M

2

n
+ o

(
M2

n

)
.

Combining these terms,

lim sup
n→∞

n
(
τ ◦ T̄

Q
(M)
n
− τ (θ0)

)2
≤ 4r2B∗,

for any r > 0 and any sequence Q
(M)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
. Since BH

(
P

(M)
0 , r

√
M/n

)
is compact

for each n ∈ N and r > 0, we have

lim sup
n→∞

sup
Q(M)∈B(M)

H

(
P

(M)
0 ,r
√
M/n

)n
(
τ ◦ T̄Q(M) − τ (θ0)

)2
≤ 4r2B∗.

6.3. Proof of Theorem 3.4. Proof of (i). Pick any ε ∈
(
0, r2

)
and take

ξ̄ = 2
√
r2 − ε

[(
∂τ (θ0)

∂θ

)′
Σ−1

(
∂τ (θ0)

∂θ

)]−1/2

Σ−1∂τ (θ0)

∂θ

Then 1
4 ξ̄
′Σξ̄ = r2 − ε, and hence P̃∞

θ0+ξ̄/
√
n
∈ B

(
P0, r

√
M/n

)
for all n large enough by Lemma 6.2.

Also, E
P̃

(1,t)

θ0+ξ̄/
√
n

[
g
(
Xt, θ0 + ξ̄/

√
n
)]

= 0 from (6.3). Hence, P̃θn satisfies the conditions imposed on

measure Qn in Assumption 3.2. Then we have

lim
κ→∞

lim inf
n→∞

sup
Q∈B

(
P0,r
√
M/n

)
∫
κ ∧ n (τ ◦ Ta ({x1, . . . , xn})− τ (θ0))2 dQ

≥ lim
κ→∞

lim inf
n→∞

∫
κ ∧ n (τ ◦ Ta ({x1, . . . , xn})− τ (θ0))2 dP̃

(n,1)

θ0+ξ̄/
√
n

= lim
κ→∞

lim inf
n→∞

∫
κ ∧ n

((
∂τ (θ0)

∂θ

)′(
ξ̄ +

1√
n

∑
ϕn (Xt)

))2

dP̃
(n,1)

θ0+ξ̄/
√
n

=

((
∂τ (θ0)

∂θ

)′
ξ̄

)2

+

(
∂τ (θ0)

∂θ

)′
Aϕϕ′

(
∂τ (θ0)

∂θ

)′
≥

{
1 + 4

(
r2 − ε

)}
B∗

where the first inequality follows from P̃θn ∈ B
(
P0, r

√
M/n

)
, the first equality follows from the

assumption on Ta, Taylor expansion of τ ◦ Ta around Ta = θ0, and the continuous mapping theorem,

the second equality follows from Assumption 3.2, and the second inequality follows from the fact that
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Aϕϕ′−Σ−1 is positive-semidefinite and a direct calculation. Since ε can be arbitrarily small, we obtain

the conclusion.

Proof of (ii). Pick any r > 0. Observe that,

lim sup
n→∞

sup
Q∈B

(
P0,r
√
M/n

)
∫
κ ∧ n

(
τ ◦ T

(
P (M)
n

)
− τ (θ0)

)2
dQ

≤ lim sup
n→∞

sup
Q∈B

(
P0,r
√
M/n

)
∫
κ ∧ n

(
τ ◦ T

(
P (M)
n

)
− τ ◦ T̄

(
P (M)
n

))2
dQ

+2lim sup
n→∞

sup
Q∈B

(
P0,r
√
M/n

)
∫
κ ∧

{
n
∣∣∣τ ◦ T (P (M)

n

)
− τ ◦ T̄

(
P (M)
n

)∣∣∣ ∣∣∣τ ◦ T̄ (P (M)
n

)
− τ (θ0)

∣∣∣} dQ
+lim sup

n→∞
sup

Q∈B
(
P0,r
√
M/n

)
∫
κ ∧ n

(
τ ◦ T̄

(
P (M)
n

)
− τ (θ0)

)2
dQ

= A1 + 2A2 +A3,

for each κ > 0, where the inequality follows from the triangle inequality and κ∧(c1 + c2) ≤ κ∧c1+κ∧c2

for any c1, c2 ≥ 0. Denote X nn = {(x1, . . . , xn) ∈ X n : supθ∈Θ |g (xt, θ)| ≤ mn, t = 1, . . . , n}. For A1,

Markov’s inequality yields

A1 = lim sup
n→∞

sup
Q∈B

(
P0,r
√
M/n

)
{∫

(x1,...,xn)∈Xnn
κ ∧ n

(
τ ◦ T

(
P (M)
n

)
− τ ◦ T̄

(
P (M)
n

))2
dQ

+

∫
(x1,...,xn)/∈Xnn

κ ∧ n
(
τ ◦ T

(
P (M)
n

)
− τ ◦ T̄

(
P (M)
n

))2
dQ

}

≤ κ× lim sup
n→∞

sup
Q∈B

(
P0,r
√
M/n

)
∫

(x1,...,xn)/∈Xnn
dQ

≤ κ× lim sup
n→∞

sup
Q∈B

(
P0,r
√
M/n

)m−ηn
n∑
t=1

EQ

[
sup
θ∈Θ
|g (Xt, θ)|η

]
≤ κ× lim

n→∞
Cnm−ηn = 0,

where the second inequality follows from Markov inequality, and the third inequality follows from

Definition 3.3(iii). A similar argument proves that A2 = 0.

Thus, it is sufficient to show thatA3 ≤
(
1 + 4r2

)
B∗, as κ → ∞. Pick any κ > 0. Consider

the mapping fκ,n (Q) =
∫
κ ∧ n

(
τ ◦ T̄

(
P

(M)
n

)
− τ (θ0)

)2
dQ. For any ε > 0 and for all n ∈ N by
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definition of supremum there exists Q̃n ∈ B
(
P0, r

√
M/n

)
such that

sup
Qn∈B

(
P0,r
√
M/n

) fκ,n (Qn) ≤ fκ,n
(
Q̃n

)
+ ε/n

for each n. Then we have

A3 = lim sup
n→∞

sup
Q∈B

(
P0,r
√
M/n

)
∫
κ ∧ n

(
τ ◦ T̄

(
P (M)
n

)
− τ (θ0)

)2
dQ

≤ lim sup
n→∞

(∫
κ ∧ n

(
τ ◦ T̄

(
P (M)
n

)
− τ (θ0)

)
dQ̃n + ε/n

)
=

∫
κ ∧

(
z + t̃

)2
dN (0, B∗)

≤ B∗ + t̃2

where the third equality follows from Lemma 7.10 and the continuous mapping theorem, the second

inequality follows from κ ∧ c ≤ c and a direct calculation. Here,

t̃ =
√
n

τ ◦
 1

nB

nB∑
j=1

T̄
Q̃

(M,(j−1)L+1)
n

− τ (θ0)

 ,

which satisfies,

t̃2 ≤ lim sup
n→∞

sup
Q∈B

(
P0,r
√
M/n

)n
τ ◦

 1

nB

nB∑
j=1

T̄Q(M,(j−1)L+1)

− τ (θ0)

2

= lim sup
n→∞

sup
Q∈B

(
P0,r
√
M/n

)
 1

nB

nB∑
j=1

√
n

(
∂τ (θ0)

∂θ

)′ (
T̄Q(M,(j−1)L+1) − θ0

)
+ o (1)

2

≤ lim sup
n→∞

sup
Q(M)∈BH

(
P

(M)
0 ,r
√
M/n

)
(√

n

(
∂τ (θ0)

∂θ

)′ (
T̄Q(M) − θ0

)
+ o (1)

)2

≤ lim sup
n→∞

sup
Q(M)∈BH

(
P

(M)
0 ,r
√
M/n

)n
(
τ ◦
(
T̄Q(M)

)
− τ (θ0)

)2
≤ 4r2B∗,

where the equality follows from Lemma 7.1(ii) and Assumption 3.1 (viii), the second inequality follows

from the inclusion relationship Q
(M,(j−1)L+1)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
for all j ∈ 1, . . . , nB, which

follows from Definition 3.3(i), and the third inequality follows from Lemma 7.2, Assumption 3.1 (viii),

and the fact that BH

(
P

(M)
0 , r

√
M/n

)
is a compact for all n, and the last inequality follows from

Lemma 6.3. Hence A3≤
(
1 + 4r2

)
B∗, which concludes the proof.
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7. Auxiliary Lemmas

Lemma 7.1. Suppose that Assumption 3.1 holds. For each n (and correspondingly M) denote the

set of all probability measures on the Borel σ-field B
(
XM

)
on XM by M(M). Then

(i): T̄
(
Q(M)

)
and min

P (M)∈P̄(M)
θ ,P (M)�Q(M) H

(
P (M), Q(M)

)
exist for each n ∈ N, and each j,

and each Q(M) ∈M(M),

(ii): T̄
Q

(M)
n
→ θ0 as n→∞ for each r > 0 and each sequence Q

(M)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
.

Proof of (i). Pick any n ∈ N, j ∈ N, and Q(M) ∈ M(M). Denote Rn
(
Q(M), θ

)
=

inf
P∈P̄(M)

θ

H
(
P (M), Q(M)

)
. Since φn (b, θ) is bounded for each n ∈ N and θ ∈ Θ, the duality of

partially finite programming (Borwein and Lewis (1993)) yields that for each (Q, θ) ∈M×Θ,

(7.1) Rn

(
Q(M), θ

)
= max

γ∈Rm
Rn

(
Q(M), θ, γ

)
.

From Rockafeller (1970, Theorem 10.8) and Assumption 3.1 (iv), Rn
(
Q(M), θ

)
is continuous in(

Q(M), θ
)
∈ M(M) × Θ under the Levy metric. This continuity also implies that for each Q(M) ∈

M(M), Rn
(
Q(M), θ

)
is continuous in θ ∈ Θ. Since Θ is compact (Assumption 3.1 (ii)), T̄

(
Q(M)

)
=

arg minθ∈ΘRn
(
Q(M), θ

)
exists.

Proof of (ii). Pick any r > 0 and any sequence Q
(M)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
. The proof is

based on Newey and Smith (2004, proof of Theorem 3.1). From Lemma 7.6 (i),
∣∣∣E

Q
(M)
n

[
φn

(
B, T̄

Q
(M)
n

)]∣∣∣→
0. From the triangle inequality,

sup
θ∈Θ

∣∣∣E
Q

(M)
n

[φn (B, θ)]− E
P

(M)
0

[φ (B, θ)]
∣∣∣ ≤ sup

θ∈Θ

∣∣∣E
Q

(M)
n

[φn (B, θ)]− E
P

(M)
0

[φn (B, θ)]
∣∣∣(7.2)

+ sup
θ∈Θ

∣∣∣E
P

(M)
0

[
φ (B, θ) I

{
B /∈ XMn

}]∣∣∣ .
The first term of (7.2) satisfies

sup
θ∈Θ

∣∣∣E
Q

(M)
n

[φn (B, θ)]− E
P

(M)
0

[φn (B, θ)]
∣∣∣

≤ sup
θ∈Θ

∣∣∣∣∫ φn (b, θ)
{
dQ1/2

n − dP 1/2
0

}2
∣∣∣∣+ 2 sup

θ∈Θ

∣∣∣∣∫ φn (b, θ) dP
1/2
0

{
dQ1/2

n − dP 1/2
0

}∣∣∣∣
≤ mnr

2M

n
+ 2

√
E
P

(1)
0

[
sup
θ∈Θ
|g (X, θ)|2

]
r

√
M

n
= O

(√
M/n

)
,
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where the first inequality follows from the triangle inequality, the second inequality follows from

Q
(M)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
and Cauchy-Schwarz inequality, and the equality follows from Assump-

tion 3.1 (v) and condition (6.2). The second term of (7.2) satisfies

sup
θ∈Θ

∣∣∣E
P

(M)
0

[
φ (B, θ) I

{
B /∈ XMn

}]∣∣∣
≤
√
M

(∫
sup
θ∈Θ
|g (x, θ)|η dP (1)

0

)1/η (
M

∫
I {|g (x, θ)| > mn} dP (1)

0

)(η−1)/η

≤
√
M

(
E
P

(1)
0

[
sup
θ∈Θ
|g (X1, θ)|η

])1/η (
Mm−ηn E

P
(1)
0

[
sup
θ∈Θ
|g (X1, θ)|η

])(η−1)/η

= o
(√

M/n
)
,

where the first inequality follows from Holder’s inequality and the definitions of φ (·) and XMn , the

second inequality follows from Markov inequality, and the equality follows from Assumption 3.1 (v) and

condition (6.2). Combining these results, we obtain the uniform convergence

supθ∈Θ

∣∣∣E
Q

(M)
n

[φn (B, θ)]− E
P

(M)
0

[φ (B, θ)]
∣∣∣→ 0. From the triangle inequality,

∣∣∣E
P

(M)
0

[
φ
(
B, T̄

Q
(M)
n

)]∣∣∣ ≤ ∣∣∣E
P

(M)
0

[
φ
(
b, T̄

Q
(M)
n

)]
− E

Q
(M)
n

[
φn

(
b, T̄

Q
(M)
n

)]∣∣∣+∣∣∣E
Q

(M)
n

[
φn

(
b, T̄

Q
(M)
n

)]∣∣∣→ 0.

The conclusion is obtained from Lemma 7.6 (i) and Assumption 3.1 (iii).

Lemma 7.2. Suppose that Assumption 3.1 holds. Then, for each r > 0 and each sequence Q
(M)
n ∈

BH

(
P

(M)
0 , r

√
M/n

)
,

(7.3)
√
n
(
T̄
Q

(M)
n
− θ0

)
= −
√
n (MΣ)−1

∫
ΛndQ

(M)
n + o (1) .

Proof. The proof is based on Rieder (1994, proof of Theorems 6.3.4 (and maybe Theorem

6.4.5)). Pick any r > 0 and Q
(M)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
. Observe that

∥∥∥∥dQ1/2
n − dP̄ 1/2

θ0,Q
(M)
n

+
1

2

(
T̄
Q

(M)
n
− θ0

)′
ΛndQ

1/2
n

∥∥∥∥2

=

∥∥∥∥dQ1/2
n − dP̄ 1/2

θ0,Q
(M)
n

+
1

2
ψ
′

n,Q
(M)
n

ΛndQ
1/2
n

∥∥∥∥2

+

∥∥∥∥1

2

(
T̄
Q

(M)
n
− θ0 − ψn,Q(M)

n

)′
ΛndQ

1/2
n

∥∥∥∥2

+

{∫ (
dQ1/2

n − dP̄ 1/2

θ0,Q
(M)
n

+
1

2
ψ
′

n,Q
(M)
n

ΛndQ
1/2
n

)
Λ
′
ndQ

1/2
n

}(
T̄
Q

(M)
n
− θ0 − ψn,Q(M)

n

)
=

∥∥∥∥dQ1/2
n − dP̄ 1/2

θ0,Q
(M)
n

+
1

2
ψ
′

n,Q
(M)
n

ΛndQ
1/2
n

∥∥∥∥2

+

∥∥∥∥1

2

(
T̄
Q

(M)
n
− θ0 − ψn,Q(M)

n

)′
ΛndQ

1/2
n

∥∥∥∥2

,(7.4)
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where the second equality follows from∫ {
dQ1/2

n − dP̄ 1/2

θ0,Q
(M)
n

+
1

2
ψ
′

n,Q
(M)
n

ΛndQ
1/2
n

}
Λ
′
ndQ

1/2
n

=

∫
Λ
′
n

{
dQ1/2

n − dP̄ 1/2

θ0,Q
(M)
n

}
dQ1/2

n +
1

2
ψ
′

n,Q
(M)
n

∫
ΛnΛ

′
ndQ

(M)
n = 0.

From the triangle inequality, the left hand side of (7.4) satisfies∥∥∥∥dQ1/2
n − dP̄ 1/2

θ0,Q
(M)
n

+
1

2

(
T̄
Q

(M)
n
− θ0

)′
ΛndQ

1/2
n

∥∥∥∥
≤

∥∥∥∥∥dQ1/2
n − dP̄ 1/2

T̄
Q

(M)
n

,Q
(M)
n

∥∥∥∥∥+

∥∥∥∥∥dP̄ 1/2

T̄
Q

(M)
n

,Q
(M)
n

− dP̄ 1/2

θ0,Q
(M)
n

+
1

2

(
T̄
Q

(M)
n
− θ0

)′
ΛndQ

1/2
n

∥∥∥∥∥
≤

∥∥∥∥∥dQ1/2
n − dP̄ 1/2

T̄
Q

(M)
n

,Q
(M)
n

∥∥∥∥∥+ o
(√

M
∣∣∣T̄
Q

(M)
n
− θ0

∣∣∣)+ o
(√

M/n
)

≤

∥∥∥∥∥dQ1/2
n − dP̄ 1/2

θ0+ψ
n,Q

(M)
n

,Q
(M)
n

∥∥∥∥∥+ o
(√

M
∣∣∣T̄
Q

(M)
n
− θ0

∣∣∣)+ o
(√

M/n
)

≤
∥∥∥∥dQ1/2

n − dP̄ 1/2

θ0,Q
(M)
n

+
1

2
ψ
′

n,Q
(M)
n

ΛndQ
1/2
n

∥∥∥∥+

∥∥∥∥∥−dP̄ 1/2

θ0+ψ
n,Q

(M)
n

,Q
(M)
n

+ dP̄
1/2

θ0,Q
(M)
n

− 1

2
ψ
′

n,Q
(M)
n

ΛndQ
1/2
n

∥∥∥∥∥
+o
(√

M
∣∣∣T̄
Q

(M)
n
− θ0

∣∣∣)+ o
(√

M/n
)

=

∥∥∥∥dQ1/2
n − dP̄ 1/2

θ0,Q
(M)
n

+
1

2
ψ
′

n,Q
(M)
n

ΛndQ
1/2
n

∥∥∥∥+o
(√

M
∣∣∣T̄
Q

(M)
n
− θ0

∣∣∣)+o
(√

M
∣∣∣ψ
n,Q

(M)
n

∣∣∣)+o
(√

M/n
)
,

where the second inequality follows from Lemma 7.3 (i), the third inequality follows from the definition

of T̄
Q

(M)
n

, the fourth inequality follows from the triangle inequality, and the equality follows from

Lemma 7.3 (ii). Thus, from (7.4),∣∣∣∣∣
∥∥∥∥dQ1/2

n − dP̄ 1/2

θ0,Q
(M)
n

+
1

2
ψ
′

n,Q
(M)
n

ΛndQ
1/2
n

∥∥∥∥2

+

∥∥∥∥1

2

(
T̄
Q

(M)
n
− θ0 − ψn,Q(M)

n

)′
ΛndQ

1/2
n

∥∥∥∥2
∣∣∣∣∣
1/2

≤
∥∥∥∥dQ1/2

n − dP̄ 1/2

θ0,Q
(M)
n

+
1

2
ψ
′

n,Q
(M)
n

ΛndQ
1/2
n

∥∥∥∥+o
(√

M
∣∣∣T̄
Q

(M)
n
− θ0

∣∣∣)+o
(√

M
∣∣∣ψ
n,Q

(M)
n

∣∣∣)+o
(√

M/n
)
.

This implies

o
(√

M
∣∣∣T̄
Q

(M)
n
− θ0

∣∣∣)+ o
(√

M
∣∣∣ψ
n,Q

(M)
n

∣∣∣)+ o
(√

M/n
)

≥

√
1

4

(
T̄
Q

(M)
n
− θ0 − ψn,Q(M)

n

)′ ∫
ΛnΛ′ndQn

(
T̄
Q

(M)
n
− θ0 − ψn,Q(M)

n

)
≥ C

√
M
∣∣∣T̄
Q

(M)
n
− θ0 − ψn,Q(M)

n

∣∣∣ ,(7.5)
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for all n large enough, where the second inequality follows from Lemma 7.5 (i) and Assumption 3.1

(vi).

We now analyze ψ
n,Q

(M)
n

. From the definition of ψ
n,Q

(M)
n

,

ψ
n,Q

(M)
n

= −2

{(∫
ΛnΛ

′
ndQ

(M)
n

)−1

−M−1Σ−1

}∫
Λn

{
dQ1/2

n − dP̄ 1/2
θ0,Qn

}
dQ1/2

n

−2M−1Σ−1

∫
Λn

{
dQ1/2

n − dP̄ 1/2

θ0,Q
(M)
n

}
dQ1/2

n .(7.6)

Note that from the convex duality of partially finite programming (Borwein and Lewis (1993)),

the Radon-Nikodym derivative the dP̄
(M)

θ,Q(M)/dQ
(M) can be written as

(7.7)
dP̄

(M)

θ,Q(M)

dQ(M)
=

1(
1 + γn

(
θ,Q(M)

)′
φn (b, θ)

)2 ,

for each n ∈ N, θ ∈ Θ, and Q(M) ∈M(M), where γn (θ,Q) solves

0=

∫
φn (b, θ)(

1 + γn
(
θ,Q(M)

)′
φn (b, θ)

)2dQ
(M) =

∫
φn (b, θ)

{
1−2γn

(
θ,Q(M)

)′
φn (b, θ)+%n

(
x, θ,Q(M)

)}
dQ(M),

where

%n

(
x, θ,Q(M)

)
=

3
(
γn
(
θ,Q(M)

)′
φn (b, θ)

)2
+ 2

(
γn(θ,Q(M))′φn (b, θ)

)3(
1 + γn

(
θ,Q(M)

)′
φn (b, θ)

)2 .

Thus, if
∫
φn (b, θ)φn (b, θ)′ dQ(M) is invertible, γn

(
θ,Q(M)

)
is written as

γn

(
θ,Q(M)

)
=

1

2

(∫
φn (b, θ)φn (b, θ)′ dQ(M)

)−1 ∫
φn (b, θ) dQ(M)(7.8)

+

(∫
φn (b, θ)φn (b, θ)′ dQ(M)

)−1 ∫
%n

(
x, θ,Q(M)

)
φn (b, θ) dQ(M).
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The second term of (7.6) is

−2M−1Σ−1

∫
Λn

{
dQ1/2

n − dP̄ 1/2

θ0,Q
(M)
n

}
dQ1/2

n

= −2Σ−1M−1/2G′Ω−1

(∫
φn (b, θ0)φn (b, θ0)′ dQ(M)

n

)
γn

(
θ0, Q

(M)
n

)

+2Σ−1M−1/2G′Ω−1

∫ γn

(
θ0, Q

(M)
n

)′
φn (b, θ0)

1 + γn

(
θ0, Q

(M)
n

)′
φn (b, θ0)

φn (b, θ0)φn (b, θ0)′ dQ(M)
n

 γn

(
θ0, Q

(M)
n

)

= −Σ−1M−1/2G′Ω−1

{∫
φn (b, θ0) dQ(M)

n +
1

2

∫
%n (b, θ0, Qn)φn (b, θ0) dQ(M)

n

}
+ o

(
n−1/2

)
= −M−1Σ−1

∫
ΛndQ

(M)
n + o

(
n−1/2

)
,(7.9)

where the first equality follows from (7.7), the second equality follows from (7.8) and Lemma 7.5, and

the third equality follows from Lemma 7.5. Similarly, the first term of (7.6) is o
(
n−1/2

)
. Therefore,

√
nψ

n,Q
(M)
n

= −
√
n (MΣ)−1

∫
ΛdQ(M)

n + o (1) ,

and
∣∣∣ψ
n,Q

(M)
n

∣∣∣ = O
(
n−1/2

)
from Lemma 7.5. Then from (7.5),

√
n
(
T̄
Q

(M)
n
− θ0

)
=
√
nψ

n,Q
(M)
n

+ o
(√

n
∣∣∣T̄
Q

(M)
n
− θ0

∣∣∣)+ o (1) .

By solving for
√
n
(
T̄
Q

(M)
n
− θ0

)
, the conclusion is obtained. The above also shows that T̄

Q
(M)
n
− θ0 =

O (1/
√
n).

Lemma 7.3. Suppose that Assumption 3.1 holds. Then, for each r > 0 and each sequence Q
(M)
n ∈

BH

(
P

(M)
0 , r

√
M/n

)
,

(i):

∥∥∥∥∥dP̄ 1/2

T̄
Q

(M)
n

,Q
(M)
n

− dP̄ 1/2

θ0,Q
(M)
n

+ 1
2

(
T̄
Q

(M)
n
− θ0

)′
ΛndQ

1/2
n

∥∥∥∥∥ = o
(√

M
∣∣∣T̄
Q

(M)
n
− θ0

∣∣∣)+o
(√

M/n
)

,

(ii):

∥∥∥∥∥dP̄ 1/2

θ0+ψ
n,Q

(M)
n

,Q
(M)
n

− dP̄ 1/2

θ0,Q
(M)
n

+
√
M
2 ψ

′

n,Q
(M)
n

ΛndQ
1/2
n

∥∥∥∥∥ = o
(√

M
∣∣∣ψ
n,Q

(M)
n

∣∣∣)+ o
(√

M/n
)

,
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Proof of (i). Denote tn = T̄
Q

(M)
n
− θ0. Pick any Q

(M)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
and r > 0.

From (7.7),

∥∥∥∥dP̄ 1/2

T̄
Q

(M)
n

,Qn
− dP̄ 1/2

θ0,Qn
+

1

2
t′nΛndQ

1/2
n

∥∥∥∥
≤

∥∥∥∥{γn (θ0, Q
(M)
n

)′
φn (b, θ0)− γn

(
T̄
Q

(M)
n

, Qn

)′
φn

(
b, T̄

Q
(M)
n

)}
dQ1/2

n +
1

2
t′nΛndQ

1/2
n

∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥

{
γn

(
θ0, Q

(M)
n

)′
φn (b, θ0)− γn

(
T̄
Q

(M)
n

, Qn

)′
φn

(
b, T̄

Q
(M)
n

)}
×

 1(
1+γn

(
T̄
Q

(M)
n

,Qn

)′
φn

(
b,T̄

Q
(M)
n

))(
1+γn

(
θ0,Q

(M)
n

)′
φn(b,θ0)

) − 1

 dQ
1/2
n

∥∥∥∥∥∥∥∥∥∥
= T1 + T2.

For T2, Lemmas 7.5 and 7.6 imply

T2 ≤ o (1)

∥∥∥∥γn (T̄Q(M)
n

, Qn

)′
φn

(
b, T̄

Q
(M)
n

)
dQ1/2

n + γn

(
θ0, Q

(M)
n

)′
φn (b, θ0) dQ1/2

n

∥∥∥∥ = o

(√
M

n

)
.

Thus, we focus on T1. From (7.8),

T1 ≤

∥∥∥∥∥∥∥
−

1
2

(∫
φn

(
b, T̄

Q
(M)
n

)
dQn

)′(∫
φn

(
b, T̄

Q
(M)
n

)
φn

(
b, T̄

Q
(M)
n

)′
dQ

(M)
n

)−1

φn

(
b, T̄

Q
(M)
n

)
+1

2

(∫
φn (b, θ0) dQ

(M)
n

)′ (∫
φn (b, θ0)φn (b, θ0)′ dQ

(M)
n

)−1
φn (b, θ0) + 1

2 t
′
nΛn

 dQ1/2
n

∥∥∥∥∥∥∥
+

∥∥∥∥∥
{(∫

%n (b, θ0, Qn)φn (b, θ0) dQ(M)
n

)′(∫
φn (b, θ0)φn (b, θ0)′ dQ(M)

n

)−1

φn (b, θ0)

}
dQ1/2

n

∥∥∥∥∥
+

∥∥∥∥∥
{(∫

%n

(
b, T̄

Q
(M)
n

, Qn

)
φn

(
b, T̄

Q
(M)
n

)
dQn

)′(∫
φn

(
b, T̄

Q
(M)
n

)
φn

(
b, T̄

Q
(M)
n

)′
dQ(M)

n

)−1

φn (b, θ0)

}
dQ1/2

n

∥∥∥∥∥
= T11 + T12 + T13.
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Lemmas 7.5 and 7.6 imply that T12 = o
(√

M/n
)

and T13 = o
(√

M/n
)

. Thus, we focus on T11.

Taylor expansions of φn

(
b, T̄

Q
(M)
n

)
around T̄

Q
(M)
n

= θ0 yield

T11 ≤

∥∥∥∥∥∥∥
−1

2

(∫
φn

(
b, T̄

Q
(M)
n

)
dQ(M)

n

)′
(∫

φn

(
b, T̄

Q
(M)
n

)
φn

(
b, T̄

Q
(M)
n

)′
dQ

(M)
n

)−1

−
(∫

φn (b, θ0)φn (b, θ0)′ dQ
(M)
n

)−1

φn
(
b, T̄

Q
(M)
n

) dQ1/2
n

∥∥∥∥∥∥∥
+

∥∥∥∥∥−1

2

(∫
φn(b, T̄

Q
(M)
n

)dQn

)′(∫
φn (b, θ0)φn (b, θ0)′ dQ(M)

n

)−1 {
φn

(
b, T̄

Q
(M)
n

)
− φn (b, θ0)

}
dQ1/2

n

∥∥∥∥∥
+

∥∥∥∥∥∥∥−
1

2
t
′
n

∫ ∂φn

(
b, θ̇
)

∂θ′
dQ(M)

n −
√
MG

′(∫ φn (b, θ0)φn (b, θ0)′ dQ(M)
n

)−1

φn (b, θ0) dQ1/2
n

∥∥∥∥∥∥∥
+

∥∥∥∥∥
√
M

2
t
′
nG
′

{
Ω−1 −

(∫
φn (b, θ0)φn (b, θ0)′ dQ(M)

n

)−1
}
φn (b, θ0) dQ1/2

n

∥∥∥∥∥
= o

(√
M/n

)
+ o

(√
Mtn

)
,

where θ̇ is a point on the line joining θ0 and T̄
Q

(M)
n

, and the inequality follows from the triangle

inequality and Lemmas 7.5 (i) and 7.6 (i).

Proof of (ii). The proof is similar to that of Part (i).

Lemma 7.4. Suppose that Assumption 3.1 holds. Then, for each ξ ∈ Rp, |EP0 [φn (B, θ0)]| =

o
(√

M/n
)

, |EP0 [φn (B, θn)]| = O
(√

M/n
)

,
∣∣EP0

[
φn (B, θn)φn (B, θn)′

]
− Ω

∣∣ = o (1), and∣∣∣EP0 [∂φn (B, θn) /∂θ′]−
√
MG

∣∣∣ = o
(√

M
)

.

Proof of the first statement. Observe that,

|EP0 [φn (B, θ0)]| =

∣∣∣∣∣
∫

1√
M

M∑
i=1

g (xi, θ0) I
{
b /∈ XMn

}
dP

(M)
0

∣∣∣∣∣
≤

∣∣∣∣∫ |φ (b, θ0)| I
{
b /∈ XMn

}
dP

(M)
0

∣∣∣∣
≤
√
M

(∫
|g (x, θ0)|4 dP (1)

0

)1/4(∫
I
{
b /∈ XMn

}
dP

(M)
0

)3/4

≤
√
M

(∫
|g (x, θ0)|4 dP (1)

0

)1/4(
M

∫
I
{

sup
θ∈U
|g (x, θ)| > mn

}
dP

(1)
0

)3/4

≤
√
MC

(
Mm−4

n E
P

(1)
0

[
sup
θ∈U
|g (Xt, θ0)|4

])3/4

= o
(√

M/n
)
,(7.10)
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where the second inequality follows from Holder’s inequality, the third inequality follows from the

definition of XMn , the fourth inequality follows from Markov inequality, and the second equality follows

from Assumption 3.1 (v) and condition (6.2).

Proof of the second statement. Pick any ξ ∈ Rp. From the triangle inequality,

(7.11) |EP0 [φn (B, θn)]| ≤
∣∣∣∣∫ φ (b, θn) I

{
b /∈ XMn

}
dP

(M)
0

∣∣∣∣+ |EP0 [φ (B, θn)]| .

By the same argument as (7.10), the first term of (7.11) is o
(√

M/n
)

(note that EP0 [|g (X, θn)|η] <∞

from Assumption 3.1 (v)). The second term of (7.11) satisfies

|EP0 [φ (B, θn)]| ≤ EP0

[√
M sup

θ∈U

∣∣∣∣∂g (Xt, θ)

∂θ

∣∣∣∣] ∣∣∣∣ ξ√n
∣∣∣∣ = O

(√
M/n

)
,

for all n large enough, where the inequality follows from a Taylor expansion around ξ = 0 and

Assumption 3.1 (iii), and the equality follows from Assumption 3.1 (v). Therefore, the conclusion is

obtained.

Proof of the third statement. Pick any ξ ∈ Rp. Observe that

∣∣EP0

[
φn (B, θn)φn (B, θn)′

]
− Ω

∣∣
≤

∣∣EP0

[
φn (B, θn)φn (B, θn)′

]
− EP0

[
φ (B, θn)φ (B, θn)′

]∣∣
+
∣∣EP0

[
φ (B, θn)φ (B, θn)′

]
− EP0

[
φ (B, θ0)φ (B, θ0)′

]∣∣
+
∣∣EP0

[
φ (B, θ0)φ (B, θ0)′

]
− Ω

∣∣
≤

∣∣∣∣∫ φ (b, θn)φ′ (b, θn)′ I
{
b /∈ XMn

}
dP0

∣∣∣∣+ o (1) + o (1)

≤ M

√∫
|g (x, θn)|4 dP0

√∫
I {b /∈ XMn } dP0 + o (1)

≤ M3/2C

√
m−4
n EP0

[
sup
θ∈U
|g (Xt, θ)|4

]
+ o (1)

≤ M3/2Cm−2
n + o (1) = o (1) ,

where the first inequality follows from the triangle inequality, the second inequality follows from the

continuity of g (x, θ) at θ0 and the definition of Ω, the third inequality follows from Cauchy-Schwarz

inequality for n large enough, the fifth inequality follows from Markov inequality, and the last line

follows from Assumption 3.1 (v) and (ix), and condition (6.2).

Proof of the fourth statement. Pick any ξ ∈ Rp. Observe that
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∣∣EP0

[
∂φn (B, θn) /∂θ′

]
− EP0

[
∂φ (B, θ0) /∂θ′

]∣∣
≤

∣∣EP0

[
∂φn (B, θn) /∂θ′

]
− EP0

[
∂φ (B, θn) /∂θ′

]∣∣
+
√
M
∣∣EP0

[
∂g (Xt, θn) /∂θ′

]
− EP0

[
∂g (Xt, θ0) /∂θ′

]∣∣
≤
√
M

√√√√EP0

[
sup
θ∈U

∣∣∣∣∂g (Xt, θ)

∂θ′

∣∣∣∣2
]√

m−ηn EP0

[
sup
θ∈Θ
|g (Xt, θ)|η

]
+ o

(√
M
)

= o
(√

M
)
,

where the first inequality follows from the triangle inequality, the second inequality follows from the

triangle, Cauchy-Schwarz, and Markov inequalities and the continuity of ∂g (x, θ) /∂θ′ at θ0, and the

equality follows from Assumption 3.1 (v) and condition (6.2).

Lemma 7.5. Suppose that Assumption 3.1 holds. Then, for each r > 0 and each sequence Q
(M)
n ∈

BH

(
P

(M)
0 , r

√
M/n

)
,

(i):
∣∣∣E

Q
(M)
n

[φn (B, θ0)]
∣∣∣ = O

(√
M/n

)
, and

∣∣∣E
Q

(M)
n

[
φn (B, θ0)φn (B, θ0)′

]
− Ω

∣∣∣ = o (1),

(ii): γn

(
θ0, Q

(M)
n

)
= arg maxγ∈Rm −

∫
1

(1+γ′φn(b,θ0))dQ
(M)
n exists for all n large enough, and∣∣∣γn (θ0, Q

(M)
n

)∣∣∣ = O
(√

M/n
)

, and supb∈XM

∣∣∣∣γn (θ0, Q
(M)
n

)′
φn (b, θ0)

∣∣∣∣→ 0.

Proof of (i). Proof of the first statement. Pick any r > 0 and any sequence Q
(M)
n ∈

BH

(
P

(M)
0 , r

√
M/n

)
. Observe that

∣∣∣E
Q

(M)
n

[φn (B, θ0)]
∣∣∣

≤
∣∣∣∣∫ φn (b, θ0)

{
dQ(M)

n − dP (M)
0

}∣∣∣∣+
∣∣∣E

P
(M)
0

[φn (B, θ0)]
∣∣∣

≤
∣∣∣∣∫ φn (b, θ0)

{
dQ1/2

n − dP 1/2
0

}2
∣∣∣∣+ 2

∣∣∣∣∫ φn (b, θ0) dP
1/2
0

{
dQ1/2

n − dP 1/2
0

}∣∣∣∣+ o
(√

M/n
)

≤ mnr
2M

n
+ 2E

P
(M)
0

[
|g (B, θ0)|2

]
r

√
M

n
+ o

(√
M/n

)
= O

(√
M/n

)
,

where the first and second inequalities follow from the triangle inequality and Lemma 7.4, the third in-

equality follows from Cauchy-Schwartz inequality and Q
(M)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
, and the equality

follows from Assumption 3.1 (v) and condition (6.2).
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Proof of the second statement. Pick any r > 0 and any sequenceQ
(M)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
.

From the triangle inequality,∣∣∣E
Q

(M)
n

[
φn (B, θ0)φn (B, θ0)′

]
− Ω

∣∣∣
≤

∣∣∣E
Q

(M)
n

[
φn (B, θ0)φn (B, θ0)′

]
− E

P
(M)
0

[
φn (B, θ0)φn (B, θ0)′

]∣∣∣+
∣∣∣E

P
(M)
0

[
φn (B, θ0)φn (B, θ0)′

]
− Ω

∣∣∣
≤

∣∣∣∣∫ φn (b, θ0)φn (b, θ0)′
{
dQ1/2

n − dP 1/2
0

}2
∣∣∣∣+ 2

∣∣∣∣∫ φn (b, θ0)φn (b, θ0)′ dP
1/2
0

{
dQ1/2

n − dP 1/2
0

}∣∣∣∣+ o (1)

≤ m2
nr

2M

n
+ 2E

P
(M)
0

[
|g (B, θ0)|4

]
r

√
M

n
+ o (1) = o (1)

where the first inequality follows from the triangle inequality, the second inequality follows from the

triangle inequality and Lemma 7.8 (i), the third inequality follows from Cauchy-Schwarz inequality

and Q
(M)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
, and the equality follows from Assumption 3.1 (v) and condition

(6.2).

Proof of (ii). The proof is based on Newey and Smith (2004, proofs of Lemmas A.1-3). Pick

any ξ ∈ Rp. Define

(7.12) Γn = {γ ∈ Rm : |γ| ≤ an}

with an
√
Mmn → 0 and an

√
n/M →∞. Observe that

(7.13) sup
γ∈Γn,b∈XM ,θ∈Θ

∣∣γ′φn (b, θ)
∣∣ ≤ an√Mmn → 0.

Since Rn

(
Q

(M)
n , θn, γ

)
is twice continuously differentiable with respect to γ and Γn is compact, γ̃ =

arg maxγ∈Γn Rn

(
Q

(M)
n , θn, γ

)
exists for each n ∈ N. A Taylor expansion around γ̃ = 0 yields

−1 = Rn

(
Q(M)
n , θn, 0

)
≤ Rn

(
Q(M)
n , θn, γ̃

)
= −1 + γ̃′E

Q
(M)
n

[φn (B, θn)]− γ̃′E
Q

(M)
n

[
φn (B, θn)φn (B, θn)′

(1 + γ̇′φn (B, θn))3

]
γ̃

≤ −1 + γ̃′E
Q

(M)
n

[φn (B, θn)]− Cγ̃′E
Q

(M)
n

[
φn (B, θn)φn (B, θn)′

]
γ̃

≤ −1 + |γ̃|
∣∣∣E

Q
(M)
n

[φn (B, θn)]
∣∣∣− C |γ̃|2 ,(7.14)

for all n large enough, where γ̇ is a point on the line joining 0 and γ̃, the second inequality follows

from (7.13), and the last inequality follows from Lemma 7.4 and Assumption 3.1 (vi). Thus, Lemma

7.5 (i) implies

(7.15) C |γ̃| ≤
∣∣∣E

Q
(M)
n

[φn (B, θn)]
∣∣∣ = O

(√
M/n

)
.
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From an
√
Mn1/2 → ∞, γ̃ is an interior point of Γn and satisfies the first-order condition

∂Rn

(
Q

(M)
n , θ0, γ̃

)
/∂γ = 0 for all n large enough. Since Rn

(
Q

(M)
n , θ0, γ

)
is concave in γ for all

n large enough, γ̃ = arg maxγ∈Rm Rn

(
Q

(M)
n , θn, γ

)
for all n large enough. Thus, the first statement

is obtained. Also, from (7.15), the second statement is obtained. Using condition (6.2), the third

statement follows from

(7.16) sup
b∈XM

∣∣∣∣γn (θn, Q(M)
n

)′
φn (b, θn)

∣∣∣∣ ≤ O (Mn−1/2mn

)
= o (1) .

Lemma 7.6. Suppose that Assumption 3.1 holds. Then, for each r > 0 and each sequence Q
(M)
n ∈

BH

(
P

(M)
0 , r

√
M/n

)
,

(i):
∣∣∣E

Q
(M)
n

[
φn

(
B, T̄

Q
(M)
n

)]∣∣∣ = O
(√

M/n
)

,

∣∣∣∣EQ(M)
n

[
φn

(
B, T̄

Q
(M)
n

)
φn

(
B, T̄

Q
(M)
n

)′]
− Ω

∣∣∣∣ = o (1),

and∣∣∣E
Q

(M)
n

[
∂φn

(
B, T̄

Q
(M)
n

)
/∂θ′

]
−
√
MG

∣∣∣ = o
(√

M
)

,

(ii): γn

(
T̄
Q

(M)
n

, Qn

)
= arg maxγ∈Rm −

∫
1(

1+γ′φn

(
b,T̄

Q
(M)
n

))dQn exists for all n large enough,

∣∣∣γn (T̄Q(M)
n

, Qn

)∣∣∣ = O
(√

M/n
)

, and supb∈X (M)

∣∣∣∣γn (T̄Q(M)
n

, Qn

)′
φn

(
b, T̄

Q
(M)
n

)∣∣∣∣→ 0.

Proof of (i). Proof of the first statement. Pick any r > 0 and any sequence Q
(M)
n ∈

BH

(
P

(M)
0 , r

√
M/n

)
. Define γ̃ =

√
M/nE

Q
(M)
n

[
φn

(
B, T̄

Q
(M)
n

)]
/
∣∣∣E

Q
(M)
n

[
φn

(
B, T̄

Q
(M)
n

)]∣∣∣. Since

|γ̃| =
√
M/n,

(7.17) sup
b∈XM ,θ∈Θ

∣∣γ̃′φn (b, θ)
∣∣ ≤Mmn/

√
n→ 0.

Observe that,
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∣∣∣∣EQ(M)
n

[
φn

(
B, T̄

Q
(M)
n

)
φn

(
B, T̄

Q
(M)
n

)′]∣∣∣∣
≤

∫
sup
θ∈Θ
|φn (b, θ)|2

{
dQ1/2

n − dP 1/2
0

}2
+ 2

∫
sup
θ∈Θ
|φn (b, θ)|2 dP 1/2

0

{
dQ1/2

n − dP 1/2
0

}
+EP0

[
sup
θ∈Θ
|φn (B, θ)|2

]

≤ Mm2
nr

2M

n
+ 2mn

√
ME

 M∑
j=1

EP0

[
sup
θ∈Θ

∣∣g (X1, θ) g (Xj , θ)
′∣∣]1/2

r

√
M

n

+

M∑
j=1

E
P

(M)
0

[
sup
θ∈Θ

∣∣g (X1, θ) g (Xj , θ)
′∣∣]

≤ 2

r2M
2m2

n

n
+

M∑
j=1

12α (j − 1)1−2/η EP0

[
sup
θ∈Θ
|g (X1, θ)|η

]2/η
 ,(7.18)

and hence is bounded due to condition (6.2) and Assumption 3.1 (i,v). Here the first inequality

follows from the triangle inequality, the second inequality follows from Cauchy-Schwartz inequality

and Q
(M)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
, and the third inequality follows from Davydov (1968).

A Taylor expansion around γ̃ = 0 yields Rn

(
Qn, T̄Q(M)

n
, γ̃
)

= −1 + γ̃′E
Q

(M)
n

[
φn

(
B, T̄

Q
(M)
n

)]
− γ̃′E

Q
(M)
n

φn
(
B, T̄

Q
(M)
n

)
φn

(
B, T̄

Q
(M)
n

)′
(

1 + γ̇′φn

(
B, T̄

Q
(M)
n

))3

 γ̃
≥ −1 +

√
M/n

∣∣∣E
Q

(M)
n

[
φn

(
B, T̄

Q
(M)
n

)]∣∣∣− Cγ̃′E
Q

(M)
n

[
φn

(
B, T̄

Q
(M)
n

)
φn

(
B, T̄

Q
(M)
n

)′]
γ̃

≥ −1 +
√
M/n

∣∣∣E
Q

(M)
n

[
φn

(
B, T̄

Q
(M)
n

)]∣∣∣− CM/n,(7.19)

for all n large enough, where γ̇ is a point one the line joining 0 and γ̃, the first inequality follows

from (7.17), and the second inequality follows from γ̃′γ̃ = M/n and (7.18). From the definitions of

γn

(
T̄
Q

(M)
n

, Qn

)
and T̄

Q
(M)
n

,

−1 +

√
M

n

∣∣∣E
Q

(M)
n

[
φn

(
B, T̄

Q
(M)
n

)]∣∣∣− CM
n

≤ Rn

(
Qn, T̄Q(M)

n
, γ̃
)
≤ Rn

(
Qn, T̄Q(M)

n
, γn

(
T̄
Q

(M)
n

, Qn

))
≤ Rn

(
Qn, θ0, γn

(
θ0, Q

(M)
n

))
,(7.20)
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where the first inequality follows from (7.19). From
∣∣∣γn (θ0, Q

(M)
n

)∣∣∣ = O
(√

M/n
)

and
∣∣∣E

Q
(M)
n

[φn (B, θ0)]
∣∣∣ =

O
(√

M/n
)

(by Lemma 7.5 (ii) and (i)), similar to (7.14) we have Rn

(
Qn, θ0, γn

(
θ0, Q

(M)
n

))
(7.21) ≤ −1 +

∣∣∣γn (θ0, Q
(M)
n

)∣∣∣ ∣∣∣E
Q

(M)
n

[φn (B, θ0)]
∣∣∣− C ∣∣∣γn (θ0, Q

(M)
n

)∣∣∣2 = −1 +O (M/n) .

Combining (7.20) and (7.21), we have
∣∣∣E

Q
(M)
n

[
φn

(
B, T̄

Q
(M)
n

)]∣∣∣ = O
(√

M/n
)

.

Proof of the second statement. Pick any r > 0 and any sequenceQ
(M)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
.

From the triangle inequality,∣∣∣∣EQ(M)
n

[
φn

(
B, T̄

Q
(M)
n

)
φn

(
B, T̄

Q
(M)
n

)′]
− E

P
(M)
0

[
φ (B, θ0)φ (B, θ0)′

]∣∣∣∣
≤

∣∣∣∣EQ(M)
n

[
φn

(
B, T̄

Q
(M)
n

)
φn

(
B, T̄

Q
(M)
n

)′]
− E

P
(M)
0

[
φn

(
B, T̄

Q
(M)
n

)
φn

(
B, T̄

Q
(M)
n

)′]∣∣∣∣
+

∣∣∣∣EP (M)
0

[
φ
(
B, T̄

Q
(M)
n

)
φ
(
B, T̄

Q
(M)
n

)′
I
{
B /∈ XMn

}]∣∣∣∣
+

∣∣∣∣EP (M)
0

[
φ
(
B, T̄

Q
(M)
n

)
φ
(
B, T̄

Q
(M)
n

)′]
− E

P
(M)
0

[
φ (B, θ0)φ (B, θ0)′

]∣∣∣∣ .(7.22)

The first term of (7.22) satisfies∣∣∣∣EQ(M)
n

[
φn

(
B, T̄

Q
(M)
n

)
φn

(
B, T̄

Q
(M)
n

)′]
− E

P
(M)
0

[
φn

(
B, T̄

Q
(M)
n

)
φn

(
B, T̄

Q
(M)
n

)′]∣∣∣∣
≤

∣∣∣∣∫ φn

(
b, T̄

Q
(M)
n

)
φn

(
b, T̄

Q
(M)
n

)′ {
dQ1/2

n − dP 1/2
0

}2
∣∣∣∣

+2

∣∣∣∣∫ φn

(
b, T̄

Q
(M)
n

)
φn

(
b, T̄

Q
(M)
n

)′
dP

1/2
0

{
dQ1/2

n − dP 1/2
0

}∣∣∣∣
≤ Mm2

nr
2M

n
+MEP0

[
sup
θ∈U
|g (X, θ)|4

]1/2

r

√
M

n
= o (1) ,

for all n large enough, where the first inequality follows from the triangle inequality, the second

inequality follows from the consistency of T̄
Q

(M)
n

(Lemma 7.1 (ii)) and Cauchy-Schwartz inequality,

and Q
(M)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
, and the equality follows from Assumption 3.1 (v) and condition

(6.2). The second term of (7.22) satisfies∣∣∣∣EP (M)
0

[
φ
(
B, T̄

Q
(M)
n

)
φ
(
B, T̄

Q
(M)
n

)′
I
{
B /∈ XMn

}]∣∣∣∣
≤ M3/2

(∫
sup
θ∈U

∣∣g (x, θ) g (x, θ)′
∣∣2 dP0

)1/2(∫
I {|g (x, θ)| > mn} dP0

)1/2

≤M3/2

(
EP0

[
sup
θ∈U
|g (X, θ)|4

])1/2(
m−4
n EP0

[
sup
θ∈U
|g (X, θ)|4

])1/2

= o (1) ,
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where the first inequality follows from Cauchy-Schwarz inequality, the second inequality follows from

Markov inequality, and the equality follows from Assumption 3.1 (v) and condition (6.2). the third

term of (7.22) is o (1) by the continuity of g (x, θ) at θ0, consistency of T̄
Q

(M)
n

, Assumption 3.1 (v) and

the dominated convergence theorem.

Proof of the third statement. Pick any r > 0 and any sequenceQ
(M)
n ∈ BH

(
P

(M)
0 , r

√
M/n

)
.

From the triangle inequality,∣∣∣E
Q

(M)
n

[
∂φn

(
B, T̄

Q
(M)
n

)
/∂θ′

]
− E

P
(M)
0

[
∂φ (B, θ0) /∂θ′

]∣∣∣
≤

∣∣∣E
Q

(M)
n

[
∂φn

(
B, T̄

Q
(M)
n

)
/∂θ′

]
− E

P
(M)
0

[
∂φn

(
B, T̄

Q
(M)
n

)
/∂θ′

]∣∣∣
+
∣∣∣E

P
(M)
0

[
∂φ
(
B, T̄

Q
(M)
n

)
/∂θ′I

{
B /∈ XMn

}]∣∣∣
+
∣∣∣E

P
(M)
0

[
∂φ
(
B, T̄

Q
(M)
n

)
/∂θ′

]
− E

P
(M)
0

[
∂φ (B, θ0) /∂θ′

]∣∣∣ .(7.23)

The first term of (7.23) satisfies∣∣∣E
Q

(M)
n

[
∂φn

(
B, T̄

Q
(M)
n

)
/∂θ′

]
− E

P
(M)
0

[
∂φn

(
B, T̄

Q
(M)
n

)
/∂θ′

]∣∣∣
≤

∣∣∣∣∫ ∂φn

(
b, T̄

Q
(M)
n

)
/∂θ′

{
dQ1/2

n − dP 1/2
0

}2
∣∣∣∣+ 2

∣∣∣∣∫ ∂φn

(
b, T̄

Q
(M)
n

)
/∂θ′dP

1/2
0

{
dQ1/2

n − dP 1/2
0

}∣∣∣∣
≤ sup

θ∈U

∣∣∂φn (b, θ) /∂θ′
∣∣ r2M

n
+ 2EP0

[
sup
θ∈U

∣∣∂φn (b, θ) /∂θ′
∣∣2]1/2

r

√
M

n

= O
(√

M3/n
)

= o (1) ,

where the first inequality follows from the triangle inequality, the second inequality follows from

Cauchy-Schwartz inequality, and the equality follows from Assumption 3.1 (v) and condition (6.2).

The second term of (7.23) satisfies∣∣∣E
P

(M)
0

[
∂φ
(
B, T̄

Q
(M)
n

)
/∂θ′I

{
B /∈ XMn

}]∣∣∣
≤M

(∫
sup
θ∈U

∣∣∂g (x, θ) /∂θ′
∣∣2 dP0

)1/2(∫
I
{

sup
θ∈U
|g (x, θ)| > mn

}
dP0

)1/2

≤ CM

(
m−4
n EP0

[
sup
θ∈U
|g (X, θ)|4

])1/2

= o (1) ,

where the first inequality follows from Cauchy-Schwarz inequality, the second inequality follows from

Markov inequality, and the equality follows from Assumption 3.1 (v) and from condition (6.2). The

third term of (7.23) is o
(√

M
)

by the continuity of ∂g (x, θ) /∂θ′ at θ0, consistency of T̄
Q

(M)
n

, Assump-

tion 3.1 (v) and the dominated convergence theorem. Therefore, the conclusion is obtained.



42 KIRILL EVDOKIMOV, YUICHI KITAMURA, AND TAISUKE OTSU

Proof of (ii). The proof is exactly as for Lemma 7.5 (ii) except using Lemma 7.6 (i) instead

of Lemma 7.5 (i).

Lemma 7.7. Suppose that Assumption 3.1 holds. Then, for each r > 0 and each sequence Qn ∈

B
(
P0, r

√
M/n

)
, T̄

P
(M)
n
→p θ0 under Qn.

Proof. The proof is based on Newey and Smith (2004, proof of Theorem 3.1). From the

triangle inequality,

sup
θ∈Θ

∣∣∣E
P

(M)
n

[φn (B, θ)]− E
P

(M)
0

[φ (B, θ)]
∣∣∣ ≤ sup

θ∈Θ

∣∣∣∣∣∣EP (M)
n

[φn (B, θ)]− 1

nB

nB∑
j=1

E
Q

(M,(j−1)L+1)
n

[φn (B, θ)]

∣∣∣∣∣∣
+

1

nB

nB∑
j=1

sup
θ∈Θ

∣∣∣E
Q

(M,(j−1)L+1)
n

[φn (B, θ)]− E
P

(M)
0

[φn (B, θ)]
∣∣∣

+ sup
θ∈Θ

∣∣∣E
P

(M)
0

[φn (B, θ)]− E
P

(M)
0

[φ (B, θ)]
∣∣∣→p 0

where the convergence follows from a UWLLN for the first term, while the last two terms are

shown to be o (1) in the proof of Lemma 7.1 (ii) . From the first statement of Lemma 7.9 (i),∣∣∣E
P

(M)
n

[
φn

(
B, T̄

P
(M)
n

)]∣∣∣ p→ 0. Thus, by the triangle inequality,

∣∣∣E
P

(M)
0

[
φ
(
B, T̄

P
(M)
n

)]∣∣∣ ≤ ∣∣∣E
P

(M)
0

[
φ
(
B, T̄

P
(M)
n

)]
− E

P
(M)
n

[
φn

(
B, T̄

P
(M)
n

)]∣∣∣+∣∣∣E
P

(M)
n

[
φn

(
B, T̄

P
(M)
n

)]∣∣∣→p 0.

The conclusion follows from Assumption 3.1 (iii).

Lemma 7.8. Suppose that Assumption 3.1 holds. Then, for each r > 0 and each sequence Qn ∈

B
(
P0, r

√
M/n

)
the followings hold under Qn:

(i):
∣∣∣E

P
(M)
n

[φn (B, θ0)]
∣∣∣ = Op

(√
M/n

)
,
∣∣∣E

P
(M)
n

[
φn (B, θ0)φn (B, θ0)′

]
− Ω

∣∣∣ = o (1),

(ii): γn

(
θ0, P

(M)
n

)
= arg maxγ∈Rm−

∫
1

(1+γ′φn(b,θ0))dP
(M)
n exists w.p.a.1,

∣∣∣γn (θ0, P
(M)
n

)∣∣∣=Op

(√
M/n

)
,

and supb∈XM

∣∣∣∣γn (θ0, P
(M)
n

)′
φn (b, θ0)

∣∣∣∣→p 0.

Proof of (i). Observe that,
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∣∣∣E
P

(M)
n

[φn (B, θ0)]
∣∣∣(7.24)

≤

∣∣∣∣∣∣EP (M)
n

[φn (B, θ0)]− 1

nB

nB∑
j=1

E
Q

(M,(j−1)L+1)
n

[φn (B, θ0)]

∣∣∣∣∣∣
+

1

nB

nB∑
j=1

∣∣∣E
Q

(M,(j−1)L+1)
n

[φn (B, θ0)]
∣∣∣ = Op

(√
M/n

)
+O

(√
M/n

)
,

where the inequality follows from the triangle inequality, and the equality follows from the CLT and

Lemma 7.5 (i).

Proof of the second statement. Pick any r > 0 and any sequence Qn ∈ B∞
(
P0, r

√
M/n

)
.

From the triangle inequality,

∣∣∣∣∫ φn (b, θ0)φn (b, θ0)′ dP (M)
n − Ω

∣∣∣∣
≤

∣∣∣∣∣∣ 1
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nB∑
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E
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n
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E
Q
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n

[
φ (B, θ0)φ (B, θ0)′

]∣∣∣∣∣∣ = op (1) ,

where the first term is o (1) by the triangle inequality and Lemma 7.5 (i) and the second term is op (1)

by UWLLN.

Proof of (ii). The proof is exactly as for Lemma 7.5 (ii) except using Lemma 7.8 (i) instead

of Lemma 7.5 (i).

Lemma 7.9. For each r > 0 and each sequence Qn ∈ B
(
P0, r

√
M/n

)
the followings hold under Qn:

(i):
∣∣∣E

P
(M)
n
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P
(M)
n
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)
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n

)
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(
B, T̄
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n

)′]
− Ω

∣∣∣∣ =

o (1), and∣∣∣E
P

(M)
n

[
∂φn

(
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P
(M)
n

)
/∂θ′

]
−G

∣∣∣ = o
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M
)

,

(ii): γn

(
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P

(M)
n

, P
(M)
n

)
= arg maxγ∈Rm −

∫
1(

1+γ′φn

(
b,T̄

P
(M)
n

))dP (M)
n exists w.p.a.1,

∣∣∣γn (T̄P (M)
n

, P
(M)
n

)∣∣∣ = Op

(√
M/n

)
, and supb∈XM

∣∣∣∣γn (T̄P (M)
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, P
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n
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P
(M)
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)∣∣∣∣→p 0.
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Proof of (i). By UWLLN,

(7.25) sup
θ∈Θ

∣∣∣∣∣∣EP (M)
n

[
φn (B, θ)φn (B, θ)′

]
− 1

nB

nB∑
j=1

E
Q

(M,(j−1)L+1)
n

[
φn (B, θ)φn (B, θ)′

]∣∣∣∣∣∣→p 0,

Then, from the calculation of the last 3 lines of (7.18) and the triangle inequality, w.p.a.1 the following

holds

sup
θ∈Θ

∣∣∣∣EP (M)
n

[
φn

(
B, T̄

P
(M)
n

)
φn

(
B, T̄

P
(M)
n

)′]∣∣∣∣ < CE
P

(1)
0

[
sup
θ∈Θ
|g (X, θ)|η

]2/η

.

From here the proof of the first statement is the same as for the first statement of Lemma 7.6

(i) except using Lemma 7.8 instead of Lemma 7.5.

The second statement follows from (7.25) and Lemma 7.6 (i). The third statement of the

lemma follows from continuity ∂φn (x, θ) /∂θ′ at θ0, Lemma 7.7 and Lemma 7.6 (i).

Proof of (ii). The proof is similar to the proof of Lemma 7.5 (ii) except using Lemma 7.9 (i)

instead of Lemma 7.5 (i).

Lemma 7.10. Suppose that Assumption 3.1 holds. Then, for each r > 0 and each sequence Qn ∈

B
(
P0, r

√
M/n

)
,

(7.26)
√
n
(
T̄
P

(M)
n
− θ0

)
= −
√
n (MΣ)−1

∫
ΛndP

(M)
n + op (1) under Qn,

(7.27)
√
n

T̄
P

(M)
n
− 1

nB

nB∑
j=1

T̄
Q

(M,(j−1)L+1)
n

→d N
(
0,Σ−1

)
under Qn,

where Q
(M,(j−1)L+1)
n is the M -dimensional measure on the j-th block, j = 1, . . . , nB.

Proof. The proof of (7.26) is similar to that of Lemma 7.2. Replace Q
(M)
n with P

(M)
n and use

Lemmas 7.8 and 7.9 instead of Lemmas 7.5 and 7.6.

Now we prove (7.27). Lemma 7.2 shows that for any Qn ∈ B
(
P0, r

√
M/n

)
and for any block

j,
√
n
(
T̄
Q

(M,(j−1)L+1)
n

− θ0

)
= −
√
n (MΣ)−1

∫
ΛndQ

(M,(j−1)L+1)
n + o (1) .

Hence,

√
n

 1

nB

nB∑
j=1

T̄
Q

(M,(j−1)L+1)
n

− θ0

 = −
√
n (MΣ)−1 1

nB

nB∑
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∫
ΛndQ
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n + o (1) ,
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Subtracting the above from (7.26) one obtains

√
n

T̄
P

(M)
n
− 1

nB

nB∑
j=1

T̄
Q

(M,(j−1)L+1)
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
= −

√
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n − 1

nB

nB∑
j=1

∫
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n


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√
n (MΣ)−1 1

nB

nB∑
j=1

(
Λn (Bj)−

∫
Λn (b) dQ(M,(j−1)L+1)

n

)

= −Σ−1G′Ω−1 1 +MnB/n

M
√
n

nB∑
j=1

(√
Mφn (Bj)−

∫ √
Mφn (b) dQ(M,(j−1)L+1)

n

)
→d N

(
0,Σ−1

)
,

where the second equality follows from the definition of P
(M)
n , third equality follows from the definition

of the block empirical measure, and the convergence follows from the CLT and the fact that

EQn

[
1

n

n∑
t=1

n∑
k=1

g (Xt, θ0) g (Xk, θ0)′
]
− Ω +O (M/n)

= EQn

[
2

n

n−M∑
t=1

M∑
m=1

g (Xt, θ0) g (Xt+m, θ0)′ +
1

n

n∑
t=1

g (Xt, θ0) g (Xt, θ0)′
]
− Ω +O (M/n)

+
1

n
EQn

[
n∑

t=n−M+1

n∑
k=1

g (Xt, θ0) g (Xt+m, θ0)′
]

+ EQn

[
2

n

n−M∑
t=1

n∑
m=M+1

g (Xt, θ0) g (Xt+m, θ0)′
]

≤ o (1) +
2

n

n−M∑
t=1

n∑
m=M+1

12α (m)1−2/η EQn

[
sup
θ∈Θ
|g (Xt, θ)|η

]2/η

= o (1) ,

where the O (M/n) term accounts for the weighting of the first M − 1 and last M − 1 observations

due to blocking, the first equality is a rearrangement of the sum, the seqond equality follows from the

definition of Ω, an argument similar to the proof of the second statement of Lemma 7.5 (i), and the

result of Davydov (1968), and the third equality follows from Definition 3.3 (ii) and (iii).
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