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Abstract

Indices of financial returns typically display sample kurtosis that declines to-
wards the Gaussian value 3 as the sampling interval increases. This paper uses
stochastic unit root (STUR) and continuous time analysis to explain the phe-
nomenon. Limit theory for the sample kurtosis reveals that STUR, specifications
provide two sources of excess kurtosis, both of which decline with the sampling in-
terval. Limiting kurtosis is shown to be random and is a functional of the limiting
price process. Using a continuous time version of the model under no-drift, local
drift, and drift inclusions, we suggest a new continuous time kurtosis measure for
financial returns that assists in reconciling these models with the empirical kurto-
sis characteristics of returns. Simulations are reported and applications to several
financial indices demonstrate the usefulness of this approach.
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Time-varying coefficients.
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1 Introduction

Asset pricing models with roots in the vicinity of unity that correspond to near mar-
tingale generating mechanisms have attracted considerable attention in financial theory,
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predictive regression analyses, and empirical applications. Given the well-established
stylized features of heavy-tailedness, high peakedness, and higher moment conditional
dependence that are displayed by asset returns, plausible models also need to generate
non-Gaussian behavior and accommodate conditional heterogeneity. One class of model
that is capable of producing these characteristics while retaing near martingale behav-
ior is a nonlinear time dependent autoregression with a root that is local to unity or
stochastically local to unity.

A secondary stylized fact of financial asset returns is that their sample kurtosis
typically declines towards 3 as the sampling interval increases. This paper explores
whether variants of stochastic unit root (STUR) models are capable of mimicking this
additional characteristic. We use discrete time STUR models together with continuous
time analogues of these models and of the usual kurtosis measures to assist in explaining
this additional stylized fact of empirical asset return data.

To fix ideas, we consider the following local stochastic unit root (LSTUR) model
(Lieberman and Phillips, 2017¢, henceforth LP)
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where a and c are localizing coefficient parameters and p = p,, is a drift parameter that
may be zero, non-zero, or local to zero. Conditions on the STUR driver variable u; and
the error ¢; are given later in Assumption 1. For brevity, we write the time varying
autoregressive coefficient as 3,,, = 3, in what follows. This autoregressive coefficient is a
stochastically time varying parameter that fluctuates with u; and allows for additional
departures from unity by means of a conventional local-to-unit-root (LUR) specification
involving the fixed localizing coefficient c¢. The model is therefore ‘hybrid’ in the sense
that (3, includes both a deterministic localizing component and a stochastic component,
thus bringing together into one model two main streams of literature on autoregressions
with near unit roots, viz., LUR and STUR formulations. For the background literature
on these specifications see, among others, Chan and Wei (1987), Phillips (1987) and
Bykhovskaya and Phillips (2018, 2019) for the former stream, and Leybourne, McCabe
and Mills (1996), Leybourne, McCabe and Tremayne (1996), Granger and Swanson
(1997), McCabe and Smith, (1998), Yoon (2006), Lieberman (2012) and Lieberman and
Phillips (2014, 2017a, 2017b) for the latter. The hybrid model that combines these
elements was applied by LP in explaining the spread between an index of investment
grade rated corporate debt and the spot Treasury curve as a function of the return on
the S&P500 index.

Limit theory for the y/n-normalized process as well as for the nonlinear least squares
estimators (NLLS) of a, ¢ and of /3, were established by LP in the ;1 = 0 case and
were shown to be functionals of a nonlinear diffusion process that satisfies a nonlinear



stochastic differential equation corresponding to a structural model of option pricing that
has been considered in the continuous time mathematical finance literature (Féllmer and
Schweizer, 1993) and in some recent continuous time econometric work (Tao et al. 2018).
The results were shown to generalize the theory already known in the special cases of
LUR (Phillips 1987) and STUR (Lieberman and Phillips 2017a).

In this paper we show that the sample kurtosis of temporally aggregated returns
based on the LSTUR model converges to a random variable which exceeds the Gaussian
value 3 and decreases according to the level of aggregation. This result is consistent with
much financial return data and provides a model-based explanation for the empirical
phenomena. To assist in the analysis, we introduce new measures of kurtosis that are
based on continuous time versions of the model and investigate their limiting forms for
various configurations of base model, allowing for zero drift, local drift and dominant
drift cases. A further contribution is the asymptotic analysis of a fitted misspecified
fixed-coefficient autoregression and its associated kurtosis measures.

The plan for the rest of the paper is as follows. Notation and assumptions are given
in Section 2. Limit theory for the sample kurtosis of temporally aggregated return data
for the p = 0 case is established in Section 3 and for ; # 0 in Section 4. In Section 5
we analyze the effects of misspecification of an LSTUR model by a simple AR(1) model
and in Section 6 we introduce measures of kurtosis based on continuous time versions of
the model. Simulations are provided to explore numerical support for the limit theory
and the theoretical results on kurtosis in Section 7. An empirical application is given in
Section 8. Section 9 concludes and proofs are placed in the Appendix.

2 Notation and Assumptions

The following assumption is used in developing asymptotic theory of the LSTUR model
and estimated kurtosis coefficients for temporally aggregated data. The results that
follow no doubt hold with some modification under far weaker conditions, particularly
concerning temporal dependence as implied by the limit theory in Lieberman and Phillips
(2017b & c). Some generality is sacrificed in what follows in order to deliver simpler
formulae without compromising the validity of the main findings of the paper.

Assumption 1. u; ~;q (0, Buf = 02, Buf = py,,) , & ~iia (0, Ee? = 02, Be} = Ige)
both are symmetrically distributed about zero, and u,; is independent of €, for all t,s.

Then partial sums of w;, = (u, &)’ satisfy the invariance principle
]
n~1/? Zwt = B(-)=BM(X), ¥ = diag (O‘i, a?) , (2)
t=1

where |-| is the floor function and B = (B,,, B.)' is vector Brownian motion. By Lemma



1 of LP, when p = 0,
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It is convenient to set G*(r) = 0-'G,.(r) = ert@Bul) [Fe=pe=d'Bu®)qly (p) where
dependence of G* on (a,c) is suppressed for notational simplicity and where W (r) is
standard Brownian motion.
Sample statistics are often calculated using temporally aggregated data, such as
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where m is an aggregation parameter. For example, m = 5 for weekly financial data
when the original observations are daily. For simplicity in what follows and with no
loss of generality we assume that n/m is integer valued.The properties of the model and
the limit theory depend on whether or not © = 0. These cases are therefore analyzed
separately.

3 The Case =0

If Y, is a price process, then the return series of temporally aggregated data created from
{Y; 3/}, s given by
AP =Y =Y,
= <}/tm - Y;fmfl) + (Y;‘mfl - thmfZ) + -+ (nm—(m—l) - Y;mfm)
= ((ﬁtm - 1) Y;mfl + gtm) + ((ﬁtm—l - 1) Y;m72 + 5tm71)

+ A ((Bomemery = 1) Yimem + Stme(me1))
0

= > ((Bunss = 1) Yinssc1 + tms) , t=2,..,n/m. (4)

s=—(m—1)

Let b = (ao,)” and denote the standardized fourth moments of u and & by P = Haw/ T4
and py. = fiy./ o?. The limit distribution of the sample kurtosis of the m-aggregated
data is given in the following result.

Theorem 1 Under Assumption 1, for the model (1) with y = 0, as n — oo with m
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Evidently from the limit expression (5), v falls as m increase, matching the observed
behavior in the kurtosis measures of much financial data. When b = 0 (i.e., either a = 0
or o, = 0) the limit form ™ reduces to

m_gy o, _
v _3+m(p4,e 3)7 (6)

which is the result given by Lau and Wingender (1989, eq’n (10)) in the iid case. Oth-
erwise, the limit kurtosis (5) is a random variable. If ¢; is Gaussian

(1+0fy G2 d?") (1+be G (r dr)

which still depends on m. Thus, the LSTUR model has the property that the sample
kurtosis declines with m whether the error process is Gaussian or otherwise.

Also, irrespective of whether p,. > 3 and since fol G (r)dr > <f01 G2 (r)dr

a.s., which follows as in Phillips and Hansen (1990, lemmas A2 and A3), the model is
consistent with ™ > 3 whenever b # 0, which is in line with observed financial index
data. In other words, higher kurtosis in the observed process in the LSTUR model is
not dependent on Gaussian errors and kurtosis declines as temporal aggregation rises. If
the data generating mechanism (1) is STUR rather than LSTUR (i.e., ¢ = 0), the result
(5) changes only by the form of the limiting G process, with the corresponding limiting
STUR process G, (r) replacing that of the LSTUR process G, () . Thus, these findings
apply to both STUR and LSTUR generating mechanisms.

=3+

?



4 The Case u#0

Under Assumption 1 when p # 0, simple derivations following those for the driftless

case show that v .
LN H,.(r):= ,ueTCJraB“(T)/ e PemaBu®) gp (7)
n 0

Aggregating in this case leads to

AP =YY
— (Yo = Vi 1) + Yin1 = Yim2) + -+ Ym—tm-1) — Yimm)
= (n+ Bum = 1) Yom-1 + &m) + (4 + (Byn-1 = 1) Yim—2 + €im-1)
e (,U + (5tm—(m71) — 1) Yim—m + €tm7(mfl))

0
= mu + Z ((Bimrs = 1) Yimss—1 + Etmets) - (8)

s=—(m—1)

for t = 2,..,n/m. Let H(r) = uH*(r) := H,.(r), where for brevity we omit the
parameter dependencies in H, . ().

Theorem 2 Under Assumption 1 for the model (1) with u # 0,

m s (A L —3)+3) [LH™ (r)d
b — nZt:Z( ) S = = (m (,047u )-i— )fo (r) 7“. (9)

(2 ar?) (o a2y ar)

As n — oo followed by a — 0 (so that lower order terms are eliminated), the limit
(9) becomes

(i (o= 3) +3) Jo ()" (5 (Pauw=3) +3) Jyr' 9 (5 (paw—3) +3)
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which equals 5.4 when the STUR variable u, is Gaussian.

5 Effects of Misspecification

The use of a simple fitted AR(1) regression involves misspecifying the LSTUR model as
a fixed coefficient autoregression. As we have seen in Sections 3 and 4, the local and
stochastically local to unity specification leads to analytic formulae for the excess kurtosis
and in Section 8 these formulae will be shown to match closely direct computations of
kurtosis in the observed data. Similar close correspondence will be found in the case
of fitted values from a simple AR (1) regression. The explanation for this phenomenon

6



is that the misspecification in the fitted autoregression involves an error of O, (n™!)
and this error is sufficiently small to ensure the fitted AR kurtosis is asymptotically
equivalent to that of the data. Importantly, however, the AR(1) model does not explain
the source of the excess kurtosis and only provides an analytic asymptotic formula for
the kurtosis that is based on the underlying LSTUR model.

We denote the least squares estimators of B in a fitted AR( ) model under p = 0 and

7 0 by B =31, Y/, V2, and i =S VY /S, Y2, respectively,
Where V,:=Y,—Y and Y :=n"! Yo Y. By = Y — ﬁY 1 we denote the least squares

estimator of y in the fitted AR(1) model under y # 0, where Y_; = n~ 1Y 7",
Finally, we let V; = BY,_; in the case =0, and Yt“ = p + B Yi-1 in the case p 7£ 0
with the associated differences A, = Y, — Y, 1, Am = thl, Af = Y“ Yt_1 and

AT T Yaun’
A=Y =Y

Theorem 3 Under Assumption 1, for the model (1), fitted data from a misspecified
AR(1) model have kurtosis coefficients and limiting kurtosis as follows:

(i) When p = 0, the sample kurtosis which is based on a fitted AR(1) model that does
not include an intercept is

poy (Ar)  Fesirant

= = =",

YARn 2 2
’ ~ 2 > m n/m m
(% nj (A;ﬂ) ) p (z L ay )2)

where v is given in ().
(i) When p # 0, the sample kurtosis which is based on a fitted AR (1) model that includes
an intercept s

~ 4
M, 1 " Zn/m <At “u>

YARn = o\ 2
e

where Y™ is given by (9).
(1ii) When 11 # 0, the least squares estimator of v in a fitted AR(1) satisfies

= ,yma/»‘7

m+a/ola<s>d3u<s>—g/ola@ds.

These results show that the constant coefficient AR fitted kurtosis simply reproduces
the empirical sample kurtosis in models with and without drift, provided an intercept
is fitted in modeling the data in the case with drift. In the latter case, the result holds
in spite of the fact that u is inconsistently estimated, as shown in part (iii) of Theorem
3. Part (iii) of the theorem will be shown to be particularly useful in Section below
becauses it anticipates an important practical distinction between the empirical fitting

of an AR(1) model and an LSTUR model.



6 Continuous Time Measures of Kurtosis

6.1 The case of zero drift

When p = 0, an instantaneous kurtosis measure for the process increments dG(r) at r
can be obtained using the stochastic differential equation representation

dG(r) = aG (r)dB, (r) +dB. (r) + <c + g) G (r)dr. (10)

As indicated in the result that follows, we may define instantaneous kurtosis as in (11)
in terms of the conditional moments of the increment process dG(r) in (10).

Theorem 4 For the process (10),
_ E(E[(d ())4\7:})
{B (B [[c @) |17]))
[ < 1) - (B(G0))]

)))
b2 (E (G (7‘)2)) + o4+ 2b02E (G (r)?)

(11)

Kpe (1)

= 341+

+o(1). (12)

The second term in braces in (12) shows the excess kurtosis in the process increments
arising from the non-Gaussianity of G(r). As b — 0 evidently ;. — 3, as expected
since G (r) — J. (r) = [, e""PdB. (p) which is Gaussian in this case. But when ¢ — 0,
G (r) = Go(r) = e®Bu) [Fe=@'BuP)gB, (p), which is non-Gaussian and then o > 3.
For large b, after some calculation, we have

Ko (1) = M +o(1)~ 964177"7

(B(G (1)) 0

and the kurtosis of the process increments dG (r) grows exponentially with b irrespective
of the fixed value of c.

6.2 Local to zero drift

We next consider the case in which the limit of the standardized discrete time model
Y;/+/n has a discrete time drift comparable in magnitude to the stochastic term,which
occurs when the discrete model has drift local to zero of the form pu=a/y/n. The sto-
chastic differential equation for G(r) in this case is

dG(r) = aG (r)dB, (r) + dB. (r) + [a + <c + g) G (7“)] dr, (13)

8



whose solution is given by Follmer and Schweizer (1993; theorem 3.5). With initial
condition G(0) = 0, this solution has the following form

G(T) _ aechraBu(r)/ 6fpcfaBu(p)dp 4 eTC+lLBu(7’)/ e*pC*aBu(p)dBE (p) (14)
0 0

Define X = ¢+ b/2 and D (r) = bG* (r) + o2.

£

Theorem 5 For the process (13),

_ E(E[dG(r)-E (dG(r)|F))* | F])
(B (B [(dG (r) - E(dG(r)|F))*|F]) )
36°Var (G* (r)) + 6E [{b {G? (r) — E(G* (r))}} X2{G (r) — E(G (r))}] (dr)
{E (D (r)}* + 2E (D (r)) X2Var (G (r)) (dr)

Rp.c,a

— 34+ +0 ((dr)?).

To first order it again follows that xp., > 3 provided b # 0, and as b — 0 evidently
Rb,ca — 3.

6.3 Dominating drift term

When the drift is fixed rather than local to zero in the discrete time model (1) the
resulting trend in the time series dominates asymptotically. In this case the limit process
corresponding to Y;_,, /n is

G(T) _ Merc—l—aBu(r) /T e—pc—aBu(p)dp’
0
in place of (14). Then, E (dG(r)) = {u+ XEG (r)} dr = {p+ (e*" — 1) } dr,

dG(r) = cG(r)dr+ue’"c+“Bu(T)/ e P Bu®)dpadB, (r)
0

1 T
—I—iuercﬂB“(”/ e_pc_“B“(p)dpazaidr + pdr
0

= {XG(r)+ ptdr+aG(r)dB,(r),

and E (dG(r)|F,) = {XG (r) + p} dr, so that dG(r) — E (dG(r)|F,) = aG(r)dB, (r). It
follows that the instantaneous kurtosis at r is given by

E (B [(dG (r) — E(dG(r)|F))" |])
{E (B[(dG (r) - B(G()| 7)) |7])}
E (a'G(r)'E [(dB. (n)*|F]) 5 BGT)]
(B (a2G(r)%E [dB, (r)*|F])} {BIGr)?}

Kbep (1) =

-

9



Observe that when X =0 and a — 0, G(r) — pr is deterministic and xp, — 3.
G(T)*l%}%?(r)lfr)
dr

By contrast, we may consider the kurtosis of the averaged relative increments d
over an interval such as [0, ¢|, defined as

4
dG(r)—E(dG(r)|F:)
E (5 J'E [( HaoIFe) ) yﬂ} dr)

2 2
dG(r)—E(dG(r)|Fr)
(e (s | (g i o)

B (L[ alolG(r)'dr) i REGEd
E

Rb,c,u (Q) =

0

= 7 = 2
{B(Lfya2o2Gyar) ) (LT BIGE)? dr)
In this case when X =0 and a — 0, G(r) — pr and

41 (9,4 1,44
ju ridr 2 27
u (% IN r2d7’) (54%)

which can also be obtained by a direct calculation from the discrete time model in this
special case.

7 Simulations

The purpose of this section is to corroborate some of the analytical results. To this end
we have simulated a driftless STUR model with parameter settings a = 0.7, u; i t(6)
(so that 02 = 1.5 and p,,, = 6), and & w N (0,1), as well as a drifting STUR model
with parameter y = 2.5. In addition, an LSTUR model with ¢ = —b was simulated with
the same settings for both drift and driftless cases.

For each model we compared the mean and standard deviation of the sample kurtosis
with those of the asymptotic formulae given in (5) and (9), corresponding to the zero
mean and drift cases. We also constructed PP-plots of the finite sample distributions of
the sample kurtosis against the limit distributions in each case. The simulation design
comprised temporal average settings with m = 1, 3,5, sample sizes n = 9,000, 21, 000,
48,000, 99,000, 240,000, 500 integral points and 5,000 replications. The results are
summarized in Tables 1-4 and Figures 1-4.!

Inspection of the figures reveals that the PP-plots move closer to the 45 degree line as
the sample size increases, irrespective of whether the generating mechanism contains a
drift or otherwise. This movement is also clear in the tables. When the model contains a
drift (and less so in the driftless case), there is a marked shift near the origination point

'For brevity only four figures are displayed. Other cases deliver very similar conclusions.
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in the PP-plots which reflects the fact that the finite sample distribution of the sample
kurtosis has a non-zero probability of being less than 3, whereas for the asymptotic
distribution this probability is zero. The shift at zero becomes smaller as n increases,
but even with 240, 000 observations the discontinuity does not entirely vanish. Overall,
the simulations corroborate the analytic findings on the kurtosis patterns associated
with these non-Gaussian models.

8 An Empirical Application

This section explores how well the kurtosis theory developed above is supported by
observed return data on various indices. In particular, we demonstrate that the sam-
ple kurtosis of the observed data match those which are based on the fitted LSTUR-
estimates and decline with the frequency of the data, just as in direct calculations from
the data. Using Theorem 3(iii), through the drift parameter estimates, evidence will be
given in favour of the LSTUR specification and against the traditional fixed coefficient
autoregression. The data employed in these comparisons is now briefly described.

8.1 Data

The data for the empirical application comprises Exchange Traded Fund (ETF) and
Exchange Traded Note (ETN) data obtained from the following sources. ETF closing
prices data were retrieved from Yahoo Finance, covering the period from January 2010
to December 2017, giving a total of 2013, 417 and 95 observations for the daily, weekly
and monthly frequencies, respectively. The US equity ETF data includes SPDR S&P
500 ETF (SPY) , SPDR S&P 600 Small Cap ETF (SLY) and SPDR S&P MidCap 400
ETF (MDY). IShares MSCI Emerging Markets ETF (EEM) and iShares Global 100
ETF (I00) were also used, the first seeking to track the investment results of the SCI
Emerging Markets and the second - the S&P Global 100 indices.

The bond ETF data includes iShares Core US Aggregate Bond ETF (AGG), iShares
1-3 Year Treasury Bond ETF (SHY), iShares iBoxx investment grade corporate bond
ETF (LQD) and SPDR Bloomberg Barclays high yield bond ETF (JNK) closing price
series.

In addition, we have used the ETFs and ETNs replicating the prices of commodities.
These include SPDR Gold Shares (GLD), iShares Silver Trust (SLV), iPath S&P GSCI
crude oil ETN (OIL) and Rogers International Agriculture commodity total return index
ETN (RJA).

Finally, we have also used the Currency Shares Euro ETF (FXE), which tracks
changes in value of the Euro relative to the US dollar.

11



8.2 Results

LSTUR and simple AR(1) models with and without drift were estimated for the empirical
data according to whether they exhibited trend. The LSTUR model was estimated under
the restriction ¢ + b = 0. For simplicity, for each realization of the LSTUR variates, u;
was generated as u; YN (0,1) with 2000 replications. Average estimates over the
replications are reported in Table 5 for a model with fitted drift and in Table 6 for a
model without drift.

For the model fitted with a drift, the kurtosis estimates from the observed return
data, from the returns based on the fitted LSTUR~estimates, and from the returns based
on a fitted AR(1) model, are all very close to each other and all decline with the frequency
of the data. The kurtosis estimates for the model fitted without a drift exhibit a similar
pattern, decreasing as the frequency increases, as expected.

The findings also corroborate Theorem 3, which shows that the kurtosis estimate
based on a fitted AR(1) model is first order equivalent to that based on an LSTUR
model. Importantly, the LSTUR-based drift parameter estimates are very close to the
actual return means in all cases, whereas those based on the AR(1) model are evidently
biased upwards, again corresponding to the asymptotic results. Indeed, this feature of
the empirical results matches the finding in part (iii) of Theorem 3, which shows that
when LSTUR is the generating mechanism and the fitted model is misspecified as an
AR(1), the drift parameter estimate from the misspecified autoregression is inconsistent,
which is further evidence of the usefulness the local stochastic unit root specification over
traditional fixed coefficient autoregression.

9 Conclusions

Asset price data are typically well described as martingales and their returns as mar-
tingale differences, thereby capturing the prominent feature of near-unpredictability. A
secondary feature of great practical importance is their characteristic peaked and heavy-
tailed distribution, with high kurtosis that steadily declines towards the Gaussian value
of 3 with increasing temporal aggregation of the returns. The present results reveal
that all of these features are captured by stochastic unit root models. The nonlinear
stochastic nature of these models induces non-Gaussian behavior even when the first
two moments correspond closely to a simple process like a Gaussian random walk. Most
notably, the asymptotic behavior of sample kurtosis measures from these variants of
STUR models and their continuous time analogues and associated kurtosis measures
all mimick the defining characteristics of observed financial returns. Several empirical
applications to a variety of financial indices confirm these useful capabilities.

12
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Table 1. STUR with a drift

n Al A A3 3 AD P
9000 Mean 12.40 12.84 8.37 8.56 7.57 7.64
Std. dev. 7.34 3.58 3.42 2.39 3.03 2.09

21000 Mean 12.73 12.93 8.50 8.62 7.61 7.71
Std. dev. 10.62 3.67 4.66 2.45 2.62 2.18

4000 Mean 12.64 12.85 8.44 8.57 7.66 7.45
Std. dev. 7.87 3.50 3.20 2.33 2.39 2.20

99000 Mean 12.79 12.84 8.53 8.56 7.57 7.66
Std. dev. 6.42 3.70 3.05 2.46 2.28 2.14

940000 Mean 12.74 12.81 8.51 8.54 7.72 7.72
Std. dev. 4.58 3.61 2.58 2.41 2.20 2.17

Notes: calculated with 5000 replications and 500 integral points, u; w t(6),
e WN(0,1), p=25,a=0.T.

Table 2. STUR without a drift

n Al ’}/1 A3 73 AS 75
9000 Mean 415 | 418 | 3.66 | 3.67 | 3.57 | 3.58
Std. dev. 2.47 1.93 1.31 1.14 1.07 1.01
91000 Mean 4.2 4.23 3.68 3.7 3.56 3.6
Std. dev. 2.36 1.97 1.2 1.16 1.05 1.06
48000 Mean 418 | 4.21 3.68 | 3.69 | 3.57 | 3.59
Std. dev. 2.13 2.01 1.17 1.19 0.97 1
99000 Mean 4.2 421 | 3.68 | 3.69 | 3.58 | 3.58
Std. dev. 2.34 2.01 1.26 1.19 0.95 0.99
940000 Mean 418 | 4.22 3.68 3.7 418 | 4.19
Std. dev. 2.14 1.94 1.21 1.15 3.57 3.58

Notes: calculated with 5000 replications and 500 integral points, u; i t(6),
e, X N(0,1), a =0.7.
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Table 3. LSTUR with a drift

n Al A A3 3 AD P
9000 Mean 11.55 11.58 7.68 7.72 6.87 6.96
Std. dev. 12.60 2.93 4.67 1.95 3.29 1.74
21000 Mean 11.34 11.61 7.62 7.74 6.80 6.96
Std. dev. 7.21 2.96 2.95 1.97 2.02 1.83
4000 Mean 11.48 11.62 7.69 7.75 6.92 6.98
Std. dev. 5.89 2.97 3.13 1.98 2.03 1.79
99000 Mean 11.52 11.52 7.70 7.68 6.98 6.97
Std. dev. 5.15 2.84 2.47 1.89 2.92 1.78
940000 Mean 11.52 11.63 7.69 7.75 6.91 6.92
Std. dev. 4.32 2.99 2.26 1.99 1.77 1.75

Notes: calculated with 5000 replications and 500 integral points, u; w t(6),
& W N(0,1), p=25,a=0.7,c=—b.

Table 4. LSTUR without a drift

n Al ’}/1 A3 73 AS 75
9000 Mean 3.7 3.69 3.39 3.39 3.32 3.34
Std. dev. 1.62 1.179 0.84 0.68 0.68 0.62

Mean 3.71 3.71 3.39 3.4 3.39 3.38

21000 1 gid dev. | 192 | 119 | 088 | 07 | 074 | 0.69
sooy | Mean | 871 | 371 | 34 | 341 | 333 | 332
Std. dev. | 2.08 | 126 | 081 | 074 | 061 | 057
oonng | Mean 57 | 371 | 34 | 341 | 335 | 3.35
Std. dev. | 1.3 | 129 | 075 | 0.76 | 0.69 | 0.63
i | Mean | 369 | 369 | 339 | 330 | 331 | 334

Std. dev. 1.34 1.18 0.74 0.69 0.64 0.63

Notes: calculated with 5000 replications and 500 integral points, wu; £ t(6),
e X N(0,1), a = 0.7, c = —b.
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Table 5. Estimates for the model with a drift

~

Ticker | Frequency | Ay | [i,157UR | Fnors | Brors | GnLSTUR | KAy | KAgLSTUR | KAGOLS
SPY daily 0.0004 0.0004 | 0.0031 | 0.9995 | —0.0029 | 7.622 7.594 7.620
SPY weekly 0.0021 0.0021 | 0.0124 | 0.9980 | 0.0023 | 5.051 5.035 5.042
SPY monthly 0.0096 0.0095 | 0.0560 | 0.9910 | 0.0008 | 3.478 3.442 3.442
SLY daily 0.0005 0.0005 | 0.0063 | 0.9987 | 0.0019 | 6.574 6.569 6.573
SLY weekly 0.0022 0.0022 | 0.0280 | 0.9940 | 0.0029 | 4.914 4.899 4.904
SLY monthly 0.0101 0.0096 | 0.1230 | 0.9750 | 0.0045 | 3.330 3.329 3.333

MDY daily 0.0005 0.0005 0.006 | 0.9990 | —0.0034 | 7.916 7.886 7.915

MDY weekly 0.0023 0.0023 | 0.0250 | 0.9960 | —0.0030 | 5.772 5.744 5.760

MDY | monthly 0.0105 0.0100 | 0.1080 | 0.9820 | —0.0050 | 3.640 3.588 3.612
100 daily 0.0002 0.0002 | 0.0093 | 0.998 | —0.0015 | 7.822 7.815 7.818
100 weekly 0.0010 0.0010 | 0.0360 | 0.9920 | —0.0120 | 5.028 4.904 5.017
100 monthly 0.0051 0.0049 | 0.1440 | 0.967 | —0.0043 | 3.369 3.331 3.336

AGG daily 0.0000 0.0000 | 0.0390 | 0.9920 | 0.0002 | 4.805 4.803 4.803
AGG weekly 0.0001 0.0001 | 0.1780 | 0.9620 | 0.0005 | 4.341 4.335 4.336
AGG | monthly 0.0005 0.0005 | 0.5900 | 0.8740 | —0.0027 | 3.656 3.573 3.618
LQD daily 0.0001 0.0001 | 0.0230 | 0.9950 | 0.0017 | 5.006 4.982 5.004
LQD weekly 0.0004 0.0004 | 0.1130 | 0.9760 | —0.0001 | 4.882 4.880 4.880
LQD monthly 0.0015 0.0012 | 0.4410 | 0.9080 | —0.0038 | 3.218 3.184 3.201
OIL daily —0.0007 | —0.0007 | 0.0003 | 0.9990 | 0.0110 | 7.504 7.480 7.500
OIL weekly —0.0033 | —0.0033 | 0.0004 | 0.9990 | 0.0027 | 3.923 3.925 3.926
OIL monthly | —0.0134 | —0.0130 | 0.0002 | 0.9950 | —0.0360 | 3.368 3.327 3.360
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Table 5 Continued

~

Ticker | Frequency | Ay | fi,p570R | FnoLs | Brnors | nrsTur | Kay | KagLSTUR | Kag0LS
SLV daily 0.0000 | —0.0001 | 0.0054 | 0.9980 | 0.0120 | 9.711 9.656 9.707
SLV | weekly | —0.0001 | 0.0002 |0.0270 | 0.9910 | 0.0370 |13.391 | 12.720 | 13.397
SLV | monthly | 0.0001 | 0.0000 | 0.1340 | 0.9960 | 0.0036 | 4.040 | 4.003 4.004
RJA daily [ —0.0001 [ —0.0001 [ 0.0016 [ 0.9990 | —0.0028 [ 6.700 | 6.690 6.700
RJA weekly —0.0007 | —0.0007 | 0.007 | 0.9960 | —0.0009 | 4.895 4.887 4.887
RJA | monthly | —0.002 | —0.002 | 0.051 | 0.9740 | —0.0024 | 4.452 | 4.407 4.407
FXE daily | —0.0001 | —0.0001 [ 0.0100 [ 0.9980 | —0.0017 | 4.483 | 4.477 4.483
FXE | weekly | —0.0005 | —0.0005 | 0.0500 | 0.9900 | —0.0013 | 3.451 3.452 3.453
FXE | monthly | —0.0019 | —0.0018 | 0.2010 | 0.9580 | 0.0012 | 3.617 | 3.581 3.582

Notes: wu; is simulated as IID N (0, 1); ji, 57y and an rsrur are the means of the

MLEs of LSTUR in 2000 replications; i, ;s and Bn,O s are the OLS intercept and
slope estimates; kKay rsrur is the mean kurtosis of Agyrsryr in 2000 replications;

RAg,0LS is the kurtosis of AQOLS‘
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Table 6. Estimates for the model without a drift

Ticker | Frequency Ay Un,LSTUR | KAy | KAGLSTUR | KAG,OLS
EEM daily 0.0001 —0.0020 | 6.232 6.227 6.230
EEM weekly 0.0003 —0.0110 | 4.668 4.628 4.660
EEM monthly 0.0022 —0.0140 | 4.552 4.556 4.513

SHY daily 0.0000 | —0.0010 | 5.149 5.144 5.147
SHY weekly 0.0000 0.0000 | 4.350 4.344 4.345
SHY | monthly 0.0000 0.0005 | 3.685 3.680 3.713

JNK daily 0.0000 0.0006 | 11.632 11.624 11.627
JNK weekly —0.0001 | 0.0030 | 6.770 6.729 6.754
JNK | monthly | —0.0006 | 0.0050 | 4.775 4.667 4.735

GLD daily 0.0001 | —0.0004 | 8.483 8.481 8.481
GLD weekly 0.0003 0.0030 4.040 4.040 4.042
GLD | monthly 0.0016 | —0.0030 | 2.817 2.795 2.795
Notes: wu; is simulated as IID N (0, 1); a, Lsrur is the mean of the MLE of ¢ in LSTUR
in 2000 replications; kay rsrur is the mean kurtosis of Ayrgryr in 2000 replications;
kagors is the kurtosis of Agors; Bn,O s ~ 1 for all indices (the deviations from unity
are < 10~ in all cases).
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Proofs
Proof of Theorem 1. Using (4)
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The second term in (15) is
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and so ™ " (AT = mo? (1 + bfol G2 (r) dr) . Continuing,
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4
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All other terms in (16) are negligible. The sample kurtosis of the m-period return is
thus
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Proof of Theorem 2. In the case u # 0, using (8) and letting ry = [tm + s] /y/n,
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As Y, = O, (n), the second term in (19) is
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Consider the case m = 2. The fourth term in (20) yields
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Consider the case m = 2. We have
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Proof of Theorem 3. In the = 0 case,
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by virtue of the limit theory in Ibragimov and Phillips (2008) in the present case of
independence between u, and €s. Next, consider the kurtosis measure based on the
simple fitted AR regression Y, = BY,_1, for which

~ ~ ~ ~ p+b/2
At:ZYt—YH:ﬁ(YH—Ytz):{ + O, ( )}(Yil—Y;z)
and upon temporal aggregation,

A;n : = }A/;m - }A/Zfl = (i/;fm - ﬁm—l) + <}A/;5m—1 - ﬁm—?) + ...+ <}A/;§mf(mfl) - }A/tm—m)
= B{(Y;im - th—l) + (Y;,m—l - th—2> + ...+ (Y;‘m—(m—l) - }/tm—m)}

o c4b/2 1
= BAM = {eﬁi’/ +0, (ﬁ)}A?'

The asymptotic behavior of the kurtosis measure based on the fitted, misspecified con-
stant parameter AR is therefore given by

sy (M) ey apy

= = n = i’y s

TARm (m n/m (Am) )2 54 <% ?/?(A?)2>2

m

n

and part (i) of the theorem is completed.
To establish parts (ii) and (iii), in the p # 0 case the least squares regression under
the misspecification that 3, = 3 is constant gives

B, Y2 + Y e
6 _ZY;}/} 1/2}/;21_2151 t-t—1 %:tl tlt’
D Y

where Y,_; = Y; — Y is defined prior to Theorem 3. Since 3, has the approximate form
(21), we deduce that

2
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= e n +

31



Hence,

c uie
c+b/2 i”_g ?:1 {a;_%+gj( )+O (_/)}}/1521—’_ Zt 13/75 1€¢
() - n
2 i Vi
ol H (57 dBu ()
fol H(s)’ds
where H (r) fo s)ds, and H (r) is given in (7).

Next, consider the estlmate of the intercept in the regression Y,

~ —

1 & .
6Y1:u+5§jﬁtn_l+é—6’“‘y =
t=1

. 1
ey, <ﬁ)> Y, +E

e w— U b 1
= M‘I‘FZ((I\/—%—%—FOZ; (5))5/;5—14‘01,(1)

= pu+a

0 2 0

showing that the fitted intercept estimator is inconsistent.
Now, consider the kurtosis measure based on the simple fitted AR regression Y; =

i+ BMYt_l so that f/t

= Buﬁ_l. Then

— ju+3"Y; 1, where

et = Z(ﬁt

)Y;f 1+¢&

~ ~ ~ A c+b/2 1
A=Y=V =3 (Vi — Vi) = {6 w40, (5> } (Vi1 —Yi0)

and upon temporal aggregation,
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The asymptotic behavior of the kurtosis measure based on the fitted, misspecified con-
stant parameter AR is then

m Zn/m <Am,y>4
m7l"/ [y— t
YARn ‘T o\ 2

just as in (9). So, the constant coefficient AR fitted kurtosis measure again repro-
duces the actual data kurtosis in spite of the fact that the intercept is inconsistently
estimated.Hl

= ,.)/m,u’

Proof of Theorem 4. Defining the filtration 7, = o {(B, (s),B:(s)),0 < s <r}
and letting X = c+ g, we have

E [(dG (r)*|F] =E[aG (r )dB ( )+ dB. (r) + XG (r) dr|F,)*
:E[(aG(r)dB (r) 4+ dBe (r }

+4XE [(aG (r)dB, (r )+dB ( ))SG(m F.] dr

+6X°E [(aG (r)dB, (r) + dB. (r))* G (r)*|F] (d

+4X3E [(aG( )dB, (r) + dB. (r))G(r) | T} (dr)

+X'E [G (r)*|F] (dr)*

E [(aG (r)dB, (r) + dB: (r))* | /]
+6X°E [(aG (r) dB, (r) + dB. (r))* G (r)?|F] (dr)* + O ((dr)")
= [30°G (r)* + 6b0%G (r)? + 30?] (dr)? (22)
+6X2 [bG (r)* + G (r)? 02] (dr)” + O ((dr)*) ,

since E [(aG (r) dB, () + dB-: (r)* G (r) | 7] dr = 0. Similarly

E [(dG (r))® ] E [aG (r)dB, (r) + dB. (r) + XG (r) dr|F,]?
= E[(aG(r)dB )+dB (M) |F] + X°E [G (r)?|F] (dr)?
= E[(a®02G (r)* + o) |F] dr + X*E [G (r)* | 7] (dr)?
= G ()’ +o }dr+X2G(r) (dr)?. (23)

We define the instantaneous kurtosis measure

E (E [(dG (r)"|F])
{E (B [(dG ()| 7))}’

Kpe (1) =
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and using (22) - (23) we obtain

E (E [(aG (r) dB, (r) + dB. (r))*|F]) + o ((dr)?)
(B (B [(aG (r) dB, (r) + dB: (r))* | F]) + O ((dr)*)}"

Kb (1) =

30%E (G (r)*!) + 6b02E (G (r ) *) + 30% .
(0B (G (r)*) + )
302K (G (r)*) + 6ba2E( r)?) + 30
b (E (G ( r)2)) + ot + 2b02E (G (r)?
32 [B (G (1) - (B(G ()]
v (B (G (1))’ +02‘+2602E (G (r)?)

= 3+

as required. Wl

Proof of Theorem 5. Under independence of B, and B.,

EG (r) = « /T 6(T—p)cEea(Bu(T)—Bu(p))dp -« /T eX(T—p)dp — anr —1
0 0 X
and
E (dG(r)) = {a+ XEG (r)}dr = {a+a (X" = 1) } dr = ae™"dr.
We have
A(r) dG(r) — E (dG(r))

[T
)
)
©

W (1) +dB. (1) + (a+ XG (r))dr — (a+ XE (G (r))) dr
W (r)+dB: (r) + X (G (r)) —E(G (r)) dr.

It follows that the instantaneous kurtosis of the returns in this case is

E (E [(dG () — E(dG(r)|F))" | 7))
{E (B [(dG (r) — BE(dG()|F)) | 5]}
E (E [(aG () dB, (r) + dB. (1)) |F]) + o ((dr)*)
{E (B [(aGdB, (r) + dB. (r))* |F,]) + o ((dr))}*

Rpca =

We have

E(A(r) = (bE(G*(r) +0?)dr + E[[X{G (r) = E(G (n)}]’] (dr)’
= E(D(r))dr+ X*Var (G (r)) (dr)*.
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Furthermore,

(B (A2 (1)) = {B(D (r)}? (dr)* + 2B (D (1)) X2Var (G (r)) (dr)* + o (dr®)

and
E (A% (r))
= E[aG (r)dB, (r) +dB. (r)]*
+6E{[a (r)dB ()—i—dB()] 2{ (r)—E(G }} (dr) —|—O(d7”)
= {30°E (G*(r)) + 302 + 6b0E (G* (1)) } (dr)®
+6E [{aG (r)dB, (r) + dB. (r)}* X*{G (r) = E(G (r)}*] (dr) + o (dr?)

= 3v’Var (G*(r)) (dr)?
+3 {b2 (E(G* (r)))2 + ol + 2b02E (G (T))} (dr)?
+6E [{b{G*(r) —E (G*(r)) } + bE (G2 (r)) + 02} X*{G (r) = E(G (r))}?] (dr)’
+o (dr®)
= 3b*Var (G2 (r)) (dr)> + 3{E (D (r))}* (dr)?
+6E [{b{G*(r) —E (G*(r)) }} X*{G (r) = E(G (r)}*] (dr)’
+6{E(D (r)} X*Var (G (r)) (dr)* + o (dr®) .

Hence,

E (B [(dG (r) - E (dG(r)|F))" | )
{B (B[(dG (1) — E(G0)| 7)) |17])}
3{E (D (r))}* (dr)* + 6 {E (D (r))} X*Var (G (r)) (dr)’
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N 3v*Var (G? (1)) (d?“)2
{E (D (r))}* (dr)* + 2B (D (r)) X2Var (G (r)) (dr)* + o (dr?)
| O {G? (r) —B(G* ()} X*{G (r) =B (G (n)}’] (dr)’ + o (dr®)
{B (D ()} (dr)* + 2B (D (r)) X2>Var (G (r)) (dr)* + o (dr?)
302Var (G* (r)) + 6B [{b {G* (r) — E(G* (r))}} X*{G (r) = B (G (r))}"] (dr)

) )
- [E(D ()} + 2B (D (1) X2Var (G (1)) (dr) + O (dr)

Rpem =

+0 ((dr)z) )
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Figure 1: LSTUR with a drift: PP Plot of A® against its asymptotic distribu-
tion, 7 = 9000, u; "< £(6), & 4 N(0,1), p= 2.5, a=0.7, c = —b.
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Figure 2: LSTUR with a drift: PP Plot of A® against its asymptotic distribu-
tion, n = 240000, u; < ¢(6), & %4 N(0,1), p=2.5, a=0.7, c = —b.
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Figure 3: LSTUR without a drift: PP Plot of A% against its asymptotic distri-
bution, n = 9000, u; < £(6), & ** N(0,1), a = 0.7, ¢ = —b.
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Figure 4: LSTUR without a drift: PP Plot of A% against its asymptotic distri-
bution, n = 240000, u; < ¢(6), &, ¢ N(0,1), a = 0.7, ¢ = —b.
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