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BOOTSTRAP INFERENCE UNDER RANDOM

DISTRIBUTIONAL LIMITS

Giuseppe Cavaliere∗† and Iliyan Georgiev†

Abstract

Asymptotic bootstrap validity is usually understood as consistency of the distri-
bution of a bootstrap statistic, conditional on the data, for the unconditional limit
distribution of a statistic of interest. From this perspective, randomness of the limit
bootstrap measure is regarded as a failure of the bootstrap. Nevertheless, apart from an
unconditional limit distribution, a statistic of interest may possess a host of (random)
conditional limit distributions. This allows the understanding of bootstrap validity
to be widened, while maintaining the requirement of asymptotic control over the fre-
quency of corrrect inferences. First, we provide conditions for the bootstrap to be
asymptotically valid as a tool for conditional inference, in cases where a bootstrap
distribution estimates consistently, in a sense weaker than the standard weak conver-
gence in probability, a conditional limit distribution of a statistic. Second, we prove
asymptotic bootstrap validity in a more basic, on-average sense, in cases where the
unconditional limit distribution of a statistic can be obtained by averaging a (random)
limiting bootstrap distribution. As an application, we establish rigorously the validity
of fixed-regressor bootstrap tests of parameter constancy in linear regression models.

Keywords: Bootstrap; Random Probability Measures; Parameter Constancy Tests.
JEL Classification: C32.

1 Introduction

Asymptotic bootstrap validity is usually understood and established as consistency of the
distribution of a bootstrap statistic, conditional on the data, for the unconditional limit
distribution of a statistic of interest. In many applications, however, the bootstrap statis-
tic may possess, conditionally on the data, a random limit distribution. Among others,
cases of random bootstrap limit distributions are documented for infinite variance processes
(Athreya, 1987; Knight, 1989; Aue et al., 2008; Cavaliere et al., 2016), time series with unit
roots (Basawa et al., 1991; Cavaliere et al., 2015), and parameters on the boundary of the
parameter space (Andrews, 2000). In most cases, the occurrence of a random limit distribu-
tion for a bootstrap statistic given the data – in contrast to a necessarily non-random limit
of the unconditional distribution of the corresponding statistic, computed on the original
sample – is taken as evidence of failure of the bootstrap.

In this paper we show that randomness in the limiting distribution of a bootstrap statistic
need not invalidate bootstrap inference, as the bootstrap may still deliver confidence inter-
vals (or hypothesis tests) with the desired coverage probability (or size) when the sample

∗Corresponding author. †Department of Statistical Sciences, University of Bologna, Italy. Correspondence
to: Giuseppe Cavaliere, Department of Statistical Sciences, University of Bologna, Via Belle Arti 41, 40125
Bologna, Italy; email: giuseppe.cavaliere@unibo.it.
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size diverges. Moreover, in such cases the bootstrap may also have the appealing asymptotic
interpretation of a conditional inferential procedure, and may deliver efficiency (or power)
gains over unconditional inference.

To see why, it is useful to recall that, apart from an unconditional limit distribution, a
statistic in general possesses a family of (random) conditional limit distributions, depending
on the choice of the conditioning σ-algebra. If one of these conditional (random) limit
distributions matches the (random) limit distributions of a chosen bootstrap statistic, then
– under regularity conditions that will be discussed in the paper – inference based on the
bootstrap is asymptotically valid and, importantly, conditional in nature. This observation
was initially made by Lepage and Podgorski (1996) but has not been pursued further in the
bootstrap literature, in particular because its development requires probabilistic tools that
are not widely popular in this field.

Conditional inference can be justified by the ‘conditionality principle’, according to which
“the evidential meaning of any outcome of any mixture experiment is the same as that of
the corresponding outcome of the corresponding component experiment, ignoring the overall
structure of the mixture experiment” (Birnbaum, 1962, p.271). Whenever for a statistic
of interest the bootstrap estimates consistently a component of the limit unconditional
distribution viewed as a mixture of conditional distributions, the bootstrap can be regarded
as a large-sample implementation of the conditionality principle.

In such cases the bootstrap replicates asymptotically the property of conditional tests
and confidence intervals to have conditionally constant size and coverage probability, respec-
tively. Regarding tests, this property has been argued to be necessary for test optimality
in the special case of conditioning on a complete sufficient statistic; see Lockhart (2012).
More generally, gains in power and precision can be expected to occur when the reference
population is effectively restricted to outcomes that share statistically relevant features with
the actual sample. For instance, in the case of confidence intervals, Lepage and Podgorski
(1996, Figure 2) provide numerical evidence of substantial precision gains in a particular
implementation of a permutation bootstrap with a random limit of the bootstrap statis-
tic, where conditioning is on the order statistics of regression residuals (ancillary in that
context).

Following a practice in the literature (see, e.g., Lockhart, 2012), we recast the constant
conditional size and coverage probability property into the requirement that bootstrap p-
values should be uniformly distributed conditionally, at least asymptotically. One of our
main results is a general sufficient condition for this to be the case. We also provide condi-
tions for the more basic property of unconditional asymptotic distributional uniformity of
p-values; this property implies asymptotic control of the frequency of wrong inferences on
average over the conditioning variables but no longer warrants a conditional interpretation
of the bootstrap inferential procedure.

When dealing with random limiting distributions, the usual convergence concept em-
ployed to establish bootstrap validity, i.e. weak convergence in probability, can only be
employed in some special cases. Therefore, in this paper we discuss asymptotic bootstrap
validity also in cases where consistency of the bootstrap distribution for a conditional (null)
limit distribution of an original statistic holds in a sense weaker than the usual weak con-
vergence in probability.

To show the practical relevance of our results, we include an analysis of the well-known
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and much applied (but also misunderstood) bootstrap tests of parameter constancy in re-
gression models where the design matrix could be random but be conditioned upon; see Hall
(1991,p.170). In the resampling process forming the bootstrap sample, it appears natural
to take the design matrix as fixed, i.e. it does not vary across the bootstrap repetitions.
Accordingly, bootstrap algorithms with this feature are sometimes labelled as ‘fixed de-
sign’, ‘fixed regressor’ or ‘conditional’ bootstrap. Under a set of assumptions proposed by
Hansen (2000), we argue that the fixed-regressor bootstrap test statistics have random limit
distributions, thus invalidating previous claims that the bootstrap is consistent for the un-
conditional limit distribution of the original parameter constancy test statistics. Then we
provide conditions under which the fixed-regressor bootstrap entails conditional asymptotic
inference.

The paper is organized as follows. Before presenting the theoretical results, in Section
2 we discuss a sequence of simplified preliminary examples, including – among others –
(Kolmogorov-Smirnov type) tests of correct distributional specification and CUSUM tests
under infinite variance. Our main theoretical results are presented in Section 3. In Section 4
we discuss bootstrap tests of parameter constancy. Auxiliary proofs are reported in Section
6, whereas proofs of the claims in Section 4 are collected in an on-line supplement.

Notation

We use the following notation throughout. The Skorokhod spaces of càdlàg functions R→
R, [0, 1]→ Rm×n and [0, 1]→ Rn are denoted by D(R), Dm×n and Dn, respectively; for the
latter, when n = 1 the subscript 1 is suppressed. Integrals are over [0, 1] unless otherwise
stated, Φ is the standard Gaussian cumulative distribution function [cdf], U(0, 1) is the
uniform distribution on [0, 1] and I(.) is the indicator function. If F is a (random) cdf, F−1

stands for the right-continuous generalized inverse, i.e., F−1(u) = sup{v ∈ R : F (v) ≤ u},
u ∈ R.

We assume always that well-defined conditional distributions exist. Whenever interest is
in the random elements of a Polish space, the existence of regular conditional distributions
is guaranteed and we assume without loss of generality that conditional probabilities are
regular (Kallenberg, 1997, Th. 5.3). For random cdf’s on R (resp., for the underlying
conditional distributions) equalities are understood up to indistinguishability.

For random elements (Z, Y ), (Zn, Yn) of some metric spaces S ′×S ′′ and S ′×S ′′n (n ∈ N),
and defined on a common probability space, we denote by Zn|Yn

w→p Z|Y (resp. Zn|Yn
w→a.s.

Z|Y ) the fact that E (g (Zn) |Yn)→ E (g (Z) |Y ) in probability (resp. a.s.) for all continuous
bounded functions g : S ′ → R. Whenever Zn and Z are scalar random variables [rv’s],
this is equivalent to the convergence P (Zn ≤ ·|Yn) → P (Z ≤ ·|Y ) of the random cdf’s, in
probability (resp. a.s.) in D(R). Further, whenever P (Z ≤ ·|Y ) = P (Z ≤ ·), it reduces
to the concept of weak convergence in probability (resp. a.s.) usually employed in the
bootstrap literature. By extension, we use the same terminology also when the random
process P (Z ≤ ·|Y ) has a non-degenerate distribution.

On the other hand, if (Z, Y ), (Zn, Yn) (n ∈ N) are defined on possibly different proba-
bility spaces, we denote by Zn|Yn

w→w Z|Y the fact that E(g(Zn)|Yn)
w→ E(g (Z) |Y ) for all

continuous bounded functions g : S ′ → R, which corresponds to the probabilistic concept of
weak convergence of random measures (here, of the random conditional distributions Zn|Yn;
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see Daley and Vere-Jones, 2008, p.138). If on another probability space we are given (Z̃, Ỹ )

distributed like (Z, Y ) and if Zn|Yn
w→w Z|Y , then Zn|Yn

w→w Z̃|Ỹ because E(g(Z̃)|Ỹ ) has
the same distribution as E(g (Z) |Y ).

Suppose now that Zn = (Z ′n, Z
′′
n), Yn = (Y ′n, Y

′′
n ), and similarly for Z and Y . We say

that Z ′n|Y ′n
w→w Z ′|Y ′ and Z ′′n|Y ′′n

w→w Z ′′|Y ′′ jointly (denoted also by (Z ′n|Y ′n, Z ′′n|Y ′′n )
w→w

(Z ′|Y ′, Z ′′|Y ′′)) if

(E (h (Z ′n) |Y ′n) , E (k (Z ′′n) |Y ′′n ))
w→ (E (h (Z ′) |Y ′) , E (k (Z ′′) |Y ′′)) (1)

for all continuous and bounded real functions h and k with matching domain. Even for
Y ′n = Y ′′n , this is distinct from the convergence (Z ′n, Z

′′
n)|Y ′n

w→w (Z ′, Z ′′)|Y defined by
E(g(Z ′n, Z

′′
n)|Y ′n)

w→ E(g(Z ′, Z ′′)|Y ) for all continuous and bounded g : S ′ × R. If Z ′n, Z
′′
n, Z

′

and Z ′′ are rv’s, (1) is equivalent to the weak convergence of the associated random cdf’s
as random elements of D(R)×D(R):

(P (Z ′n ≤ ·|Y ′n), P (Z ′′n ≤ ·|Y ′′n ))
w→ (P (Z ′ ≤ ·|Y ′), P (Z ′′ ≤ ·|Y ′′)) ;

cf. Daley and Vere-Jones (2008, pp.143-144).
On probability spaces where both the statistical data and the auxiliary variates used in

the construction of the bootstrap data are defined, we use Zn
w∗→p Z|Y (resp.

w∗→a.s,
w∗→w)

interchangeably with Zn|Yn
w→p Z|Y (resp.

w→a.s,
w→w), and write P ∗(·) for P (·|Yn), provided

that σ(Yn) coincides with the σ-algebra induced by the original data.

2 Examples

We anticipate our main results in a sequence of stylized examples. These serve as a vehicle
to make three important points. One point is that bootstrap validity in a sense as strong
as exact conditional inference can be accompanied by consistency properties of the boot-
strap formulated in terms of rather weak convergence concepts and involving random limits
(Sections 2.1, 2.2). A further point is that reasoning can be inverted and such consistency
properties can be used in order to establish the asymptotic validity of the bootstrap as a tool
for conditional inference (Section 2.3). A final point is that even when a conditional inter-
pretation of bootstrap inference is not warranted, the bootstrap may still be asymptoticaly
valid in a broader, on-average, sense (Sections 2.3, 2.4).

2.1 A Gaussian regression with stochastic regressors

Consider a simple linear model

yt = βxt + εt (t = 1, 2, ..., n) (2)

where {εt} are i.i.d. N(0, 1) and {xt} are observable random variables, independent of the
unobservable εt’s. We assume further that Mn :=

∑n
t=1 x

2
t > 0 a.s. for all n. Interest is in

inference on β; for instance, a test of a null hypothesis of the form H0 : β = 0. Let β̂ be the
OLS estimator of β. It is immediate to see that, given the xt’s, β̂ − β = M−1

n

∑n
t=1 xtεt is
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Gaussian with mean 0 and variance M−1
n , i.e. P (β̂ − β ≤ u|Xn) = Φ(M

1/2
n u), u ∈ R (Xn

being a shortcut for {xt}nt=1). For illustrational purposes, we do not consider the studentized
case.

The classic (parametric) fixed-design bootstrap sample is1

y∗t = β̂xt + ε∗t (t = 1, 2, ..., n)

where ε∗t is i.i.d. N(0, 1), independent of the original data. Then, if β̂
∗

is the OLS estimator

of β from the bootstrap sample, it holds that, conditionally on the original data, β̂
∗
−

β̂ ∼ N (0,M−1
n ) and P ∗(β̂

∗
− β̂ ≤ u) = Φ(M

1/2
n u), u ∈ R, where P ∗ denotes probability

conditional on the data. That is, the bootstrap statistic β̂
∗
− β̂ has the same distribution

conditional on the data (and, in fact, on Xn alone), as the original β̂−β conditional on Xn:

P ∗(β̂
∗
− β̂ ≤ u) = P (β̂ − β ≤ u|Xn) for all real u. A few comments follow.

(i) In finite samples, bootstrap inference on β (i.e., inference using the distribution of β̂
∗
− β̂

under P ∗ as reference for β̂ − β) is exact and this is due to the equality of two conditional
distributions.

(ii) Let n−αMn
p→ M as n → ∞, for some positive real constants α and M . Define

τn := nα/2(β̂−β) and τ ∗n := nα/2(β̂∗−β̂). Then the equality P (τn ≤ u|Xn) = P ∗ (τ ∗n ≤ u) =

Φ(n−α/2M
1/2
n u) for all u ∈ R restates the exactness of bootstrap inference, which is invari-

ant to non-random scaling. When n → ∞, it holds that Φ(n−α/2M
1/2
n u)

p→ Φ(M1/2u),

which implies that τn|Xn
w→p N(0,M−1) and τ ∗n

w∗→p N(0,M−1). Being N(0,M−1) a non-
random distribution, the conditioning of τn on Xn is asymptotically negligible, in the sense
that also the unconditional convergence τn

w→ N(0,M−1) holds. Therefore, the bootstrap
(conditional) distribution of τ ∗n estimates consistently the limiting (unconditional) distri-
bution of τn, and by continuity of Φ, the bootstrap possesses the usual validity property
supu∈R |P ∗ (τ ∗n ≤ u)− P (τn ≤ u) | p→ 0.

(iii) Let n−αMn
p→ M > 0 a.s. as n→∞, where M is now stochastic and non-degenerate.

Then, although bootstrap inference is still exact, the bootstrap no longer estimates consis-
tently the limit distribution of τn, and hence, fails to be valid in the usual sense. To see this,
notice that P (τn ≤ u) converges to the non-stochastic cdf of a mixed Gaussian distribution

with mixing conditional variance M−1, whereas supu∈R |P ∗ (τ ∗n ≤ u)−Φ(M1/2u)| p→ 0, which
implies that P ∗ (τ ∗n ≤ ·) converges (uniformly in probability) to the random cdf Φ(M1/2(·)).
Hence, supu∈R |P ∗ (τ ∗n ≤ u) − P (τn ≤ u) | is not op (1). However, since it also holds that

supu∈R |P (τn ≤ u|Xn) − Φ(M1/2u)| p→ 0, the bootstrap is consistent for a limiting condi-
tional distribution of τn. This result can be formalized as an ‘in probability’ convergence
of random measures on R: τn|Xn

w→p N(0,M−1)|M and τ ∗n|Dn
w→p N(0,M−1)|M , where

Dn := {xt, yt}nt=1 denotes the data.

(iv) Finally, if n−αMn
w→M > 0 a.s. as n→∞, where M is stochastic and non-degenerate,

then τn|Xn and τ ∗n|Dn need not converge weakly in probability, even to random distributions.
Nevertheless, the exactness of bootstrap inference for finite n still implies a consistency
property of the bootstrap which can be formulated as

(P (τn ≤ ·|Xn) , P ∗ (τ ∗n ≤ ·))′
w→ (1, 1)′Φ(M1/2·) (3)

1The value of 0 could be used instead of β̂, in which case β̂
∗

would replace β̂
∗
− β̂ in what follows.
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in the sense of weak convergence of random elements of D(R)×D(R), or equivalently

(τn|Xn, τ
∗
n|Dn)′

w→w (1, 1)′N(0,M−1)|M (4)

in the sense of a joint weak convergence of random measures on R. Thus, the bootstrap
is again consistent for a limiting conditional distribution of τn but the bootstrap and the
original statistic converge to this joint limit in a weaker sense than in case (iii).

In summary, the fact that the bootstrap distribution is random in the limit, and hence,
the bootstrap is not consistent (weakly in probability) for the unconditional limit distribu-
tion of a test statistic, does not imply that the bootstrap does not provide valid (in this
example, even exact) inference. It will be shown later in the paper that in more general
settings, where bootstrap inference is not exact, it can still be asymptotically valid as a
consequence of consistency properties as weak as (3) or (4).

2.2 A permutation CUSUM test under infinite variance

Neither the fixed-design construction of the bootstrap statistic nor gaussianity are essential
for the comments to the previous example. In fact, consider a standard CUSUM test for
the null hypothesis (say, H0) that {εt}nt=1 are i.i.d. random variables. The test statistic is
of the form

τn := ν−1
n max

t=1,...,n

∣∣∣∑t

i=1
(εi − εn)

∣∣∣ , εn := n−1
∑n

t=1
εt,

where νn is a permutation-invariant normalization sequence. Standard choices are ν2
n =∑n

t=1(εt − εn)2 in the case where Eε2
t < ∞, and νn = maxt=1,...,n |εt| when Eε2

t = ∞. In
particular, when εt is in the domain of attraction of a strictly α-stable law with α ∈ (0, 2),
the asymptotic distribution of τn depends on unknown parameters (e.g. the characteristic
exponent α), which makes the test difficult to apply. To overcome this problem, Aue et al.
(2008) consider a permutation-bootstrap analogue of τn, defined as

τ ∗n := ν−1
n max

t=1,...,n

∣∣∣∑t

i=1
(επ(i) − εn)

∣∣∣
where π is a (uniformly distributed) random permutation of {1, 2, ..., n}, independent of the
data.2 The results in Aue et al. (2008, Corollary 2.1, Theorem 2.4) imply that, under H0

and if εt is in the domain of attraction of a strictly α-stable law with α ∈ (0, 2), then it holds

that τn
w→ ρα(S) and τ ∗n

w∗→w ρα(S)|S for a certain random function ρα and S = (S1, S2)′,
with Si = {Sij}∞j=1 (i = 1, 2) being partial sums of sequences of i.i.d. standard exponential
rv’s, and with ρα independent of S.3

2The normalization of νn is only of theoretical importance for obtaining non-degenerate limit distribu-
tions. In practice, any bootstrap procedure comparing τn to the quantiles of τ∗n is invariant to the choice
of νn and can be implemented by setting νn = 1.

3To avoid centering terms, Aue et al. (2008) assume additionally that the location parameter of the limit
stable law is zero when α ∈ [1, 2). Moreover, although they provide conditional convergence results only
for the finite-dimensional distributions of the CUSUM process, these can be strengthened to conditional
functional convergence as in Proposition 1 of LePage et al. (1997) in order to obtain the conditional
convergence of τ∗n.
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(i) As in the previous example, also here the limit distribution of the bootstrap statistic τ ∗n
is random. As noticed in Aue et al. (2008, pp.128-129), this implies that the bootstrap does
not provide consistent estimation of the unconditional limit distribution of τn.

(ii) Aue et al. (2008) do not notice that the failure of the bootstrap to estimate consistently
the distribution of ρα(S) does not invalidate bootstrap inference. In fact, the situation is
similar to case (iv) of Section 2.1. Let Xn be the vector of order statistics of {εt}nt=1; then,

under H0, τn|Xn
d
= τ ∗n|{εt}nt=1. As a consequence, under H0 the permutation bootstrap

implements exact finite-sample inference conditional on Xn. Furthermore, under H0 and as
n→∞, the bootstrap estimates consistently the limit of the conditional distribution τn|Xn,
in the sense of joint weak convergence of random measures (see eq. (1) for the definition):

(τn|Xn, τ
∗
n|{εt}nt=1)′

w→w (1, 1)′ρα(S)|S . (5)

(iii) CUSUM tests can be applied to residuals in order to test for correct model specification
or stability of model parameters (see e.g. Ploberger and Krämer, 1992). Consider thus the
case where {εt} are the unobservable disturbances in a statistical model (as in the regression
model of Section 2.1) and we only have available residuals ε̂t obtained upon estimation of the
model using a sample Dn, say. The CUSUM statistic is τ̂n :=ν̂−1

n maxt=1,...,n |
∑t

i=1(ε̂i− ε̂n)|,
where ν̂n and ε̂n are the analogues of νn and ε̄n computed from ε̂t instead of εt, and
the bootstrap statistic is τ̂ ∗n :=ν̂−1

n maxt=1,...,n |
∑t

i=1(ε̂π(i) − ε̂n)|. It could be shown that if

τ̂n−τn
p→ 0 and (τ̂ ∗n−τ ∗n)|Dn

w→p 0 under H0 (e.g., due to consistent parameter estimation),
then the bootstrap is consistent in the sense that

(τ̂n|Xn, τ̂
∗
n|Dn)

w→w (1, 1)′ρα(S)|S. (6)

As a consequence, under the conjecture that P (ρα(S) ≤ ·|S) defines a continuous stochastic
process, the bootstrap p-value associated to the residual-based CUSUM statistic, p∗n :=
P ( τ̂ ∗n ≤ τ̂n|Dn), is asymptotically U(0, 1) distributed, both conditionally on Xn and on
average, by Corollary 1 in Section 3.1. The next example sheds more light on the implication
from

w→w bootstrap consistency to the asymptotic uniformity of bootstrap p-values in a
situation where bootstrap p-values are analysed without recourse to Corollary 1.

2.3 A cointegrating regression

A well-known example of a relation like (2) in the context of (non-stationary) time-series
data is the classic co-integrating regression where {xt} is a unit-root process and {εt} is
i.i.d. (not necessarily Gaussian) with unknown moments and independent of {xt}. In this
case, the bootstrap introduced in Section 2.1 still features a random limit distribution but
no longer delivers exact finite-sample inference.

Specifically, let xt =
∑t−1

s=1 ηs be the non-stationary regressor in (2) and et := (εt, ηt)
′

be a stationary and ergodic martingale difference sequence [mds] with p.d. variance matrix

Ω = diag{ωεε, ωηη}.4 Then n−1/2
∑bn·c

t=1 et
w→ (Bε, Bη)

′ in D2, where (Bε, Bη)
′ is a bivariate

4Non-diagonal Ω could be handled by either augmenting the estimated regression with ∆xt+1 (Saikkonen,
1991) or by modifying the definition of the bootstrap errors. Since for our purposes the case of non-diagonal
Ω is not qualitatively different, we stick to diagonal Ω.
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Brownian motion with covariance matrix Ω; see e.g. Chan and Wei (1988). Let β̂ be the
OLS estimator of β, with associated residual variance ω̂εε := n−1

∑n
t=1(yt − β̂xt)

2. It is
well-known that

τn := n(β̂ − β)
w→
(ˆ

B2
η

)−1 ˆ
BηdBε

d
= N(0, ωεεM

−1) (7)

with M :=
´
B2
η , the limit being mixed Gaussian due to the independence of Bη and Bε.

Consider the following bootstrap: y∗t = β̂xt + ω̂1/2
εε ε

∗
t (t = 1, ..., n) with ε∗t i.i.d. N(0, 1)

and independent of the data. The bootstrap analogue of β̂, say β̂
∗
, obtains by regression of

y∗t on xt and behaves similarly to case (iv) of Section 2.1. That is, with τ ∗n := n(β̂
∗
− β̂),

we have that τ ∗n|Dn ∼ N(0, nω̂εεM
−1
n )| (Mn, ω̂εε) where Dn := {xt, yt}nt=1 and n−2Mn :=

n−2
∑n

t=1 x
2
t
w→M jointly with (7). Provided ω̂εε

p→ ωεε, it follows that

P ∗(τ ∗n ≤ u) = Φ(ω̂−1/2
εε (n−1M1/2

n )u)
w→ Φ(ω−1

εε M
1/2u), u ∈ R,

by the continuous mapping theorem [cmt]. Hence, the bootstrap distribution has a random
limit:

τ ∗n
w∗→w N(0, ωεεM

−1)
∣∣M (8)

as a weak convergence of random measures, the weakest convergence concept listed in Section
2.1. The following additional points can be made out of this example.

(i) The unconditional limit of τn := n(β̂−β), see eq. (7), can be recovered by integrating over

M the conditional limit of τ ∗n := n(β̂
∗
− β̂) given the data. This property implies asymptotic

validity of the bootstrap in a basic sense that we will discuss under high level assumptions
in Section 3.2. To prepare the discussion, let p∗n := P ∗(τ ∗n ≤ τn) be the bootstrap p-value.
As τn is Dn-measurable, it holds that

p∗n = P ∗(τ ∗n ≤ u)|u=τn
= Φ(ω̂−1/2

εε M1/2
n (β̂ − β))

w→ Φ((ωεε
´
B2
η)
−1/2
´
BηdBε)

d
= Φ(N(0, 1))

d
= U(0, 1).

Hence, when inference (e.g. hypothesis testing) on β is based on the distribution of τ ∗n
conditional on the data, the frequency of wrong inferences can be controlled in large samples.
However, bootstrap inference cannot be guaranteed to have a conditional interpretation
asymptotically, as the convergence of p∗n occurs on average over Xn := {xt}nt=1, though not
necessarily conditionally on Xn (point (iv) below provides further elaboration).

(ii) The stronger result that bootstrap inference is asymptotically valid conditionally on Xn

can be obtained upon a strenghtening of our previous assumptions. For instance, assume
that εt is an mds with respect to Gt = σ({ε}ts=−∞∪{ηs}s∈Z), and that n−1

∑n
t=1E(ε2

t |{ηs}s∈Z)
a.s.→

ωεε. It then follows (by using Theorem 5 of Georgiev et al., 2016) that

(τn|Xn, τ
∗
n|Dn)′

w→w (1, 1)′
(ˆ 1

0

B2
η

)−1 ˆ 1

0

BηdBε

∣∣∣∣∣Bη (9)

d
= (1, 1)′N(0, ωεεM

−1)
∣∣M
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in the sense of eq. (1) or, equivalently,

(P (τn ≤ ·|Xn), P ∗(τ ∗n ≤ ·)) ′
w→ Φ(ω−1/2

εε M1/2(·))(1, 1)′

in D(R)×D(R). Hence, the bootstrap is consistent for the limiting conditional distribution
of τn|Xn. By the continuity of Φ, this implies that

sup
u∈R
|P ∗(τ ∗n ≤ u)− P (τn ≤ u|Xn)| p→ 0.

In contradistinction to Section 2.1, here the distributional proximity of τn given Xn and τ ∗n
given the data follows from their proximity to a common random limit (and not vice versa).
In Theorem 1 we will obtain some general inferential implications of such a proximity, that
we are next anticipating using the conditional normality of τ ∗n as a shortcut.

(iii) In terms of bootstrap p-values, the result in (ii) implies that

p∗n|Xn = Φ(ω̂−1/2
εε M1/2

n (β̂ − β))|Xn
w→w Φ (N(0, 1))

d
= U(0, 1)

because ω̂−1/2
εε M

1/2
n (β̂ − β)|Xn

w→w (ωεε
´
B2
η)
−1/2
´
BηdBε|Bη

d
= N(0, 1) by (9), the Xn-

measurability of Mn and the continuity of Φ. As asymptotic uniformity of p-values holds
conditionally, bootstrap inference will be asymptotically valid not only on average over Xn,
but also conditionally on Xn. Remarkably, in Section 3 we will show that such a strong
validity property results solely from a weak consistency property of the bootstrap (such as
(9)) and from the continuity of the limit random distribution.

(iv) The form of the unconditional limit of τn, see (7), does not imply that a conditional
result like eq. (9) should hold, unless the original assumptions are strengthened as in point
(ii). Hence, in general the bootstrap p-value p∗n can be asymptotically uniform without being
asymptotically conditionally uniform. To see this fact, consider the case where ηt = ξt(1 +
I{εt<0}), with {εt} and {ξt} two independent i.i.d. sequences of zero mean, unit variance rv’s.
Then, et = (εt, ηt)

′ is a zero-mean i.i.d. sequence with covariance Ω = diag{1, 2.5} and, as
derived in (i), (7) holds, yielding p∗n

w→ U(0, 1). However, in applying an invariance principle
to
∑t

s=1 εt conditionally on Xn, it should be taken into account that ηt is informative of the
sign of εt; hence the εt’s, conditionally on their own past and the whole sequence {xt}nt=1,
do not form an mds. As a consequence, it is shown in Section 6 that

τn|Xn
w→w

(ˆ
B2
η

)−1 ˆ
Bηd{

√
ωε|ηBy1 +

√
1− ωε|ηBy2}

d
= M−1/2(

√
ωε|ηξ1 +

√
1− ωε|ηξ2)

∣∣M, ξ2 (10)

where (By1, By2, Bx) is a standard trivariate Brownian motion, ωε|η := V ar(εs|ηs) ∈ (0, 1),
and M, ξ1, ξ2 are jointly independent with ξi ∼ N(0, 1), i = 1, 2. The bootstrap, instead of
estimating consistently the limiting conditional distribution of τn given Xn, estimates the
random distribution obtained by averaging this limit over ξ2. As a result, conditionally on
Xn the bootstrap p-value is not asymptotically uniformly distributed:

p∗n|Xn = Φ(ω̂−1/2
εε M1/2

n (β̂ − β))
∣∣∣Xn

w→w Φ(
√
ωε|ηξ1 +

√
1− ωε|ηξ2)

∣∣ ξ2, (11)

which is not the cdf of a U(0, 1) rv.
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2.4 A parametric bootstrap goodness-of-fit test

The parametric bootstrap is a standard technique for the approximation of a conditional
distribution of goodness-of-fit test statistics (Andrews, 1997; Lockhart, 2012). When these
are discussed in the i.i.d. finite-variance setting, the limit of the bootstrap distribution is
non-random. However, if we return to the relation (2), there exist relevant settings where
a random limit of n−αMn implies that parametrically bootstrapped goodness-of-fit test
statistics have random limit distributions.

Let the null hypothesis of interest, say H0, be that the standardized errors εt/σ in (2)
have certain known density f with mean 0 and variance 1. For expositional ease we assume
that σ = 1 and is known to the statistician. Then the Kolmogorov-Smirnov statistic based
on OLS residuals ε̂t is τn := n1/2 supu∈R |n−1

∑n
t=1 I{ε̂t≤u}−

´ u
−∞ f |. A (parametric) bootstrap

counterpart, τ ∗n, of τn could be constructed under H0 by (i) drawing {ε∗t}nt=1 as i.i.d. from

f , independent of the data; (ii), regressing them on xt, thus obtaining an estimator β̂
∗

and associated residuals ε̂∗t ; and (iii) calculating τ ∗n as τ ∗n := n1/2 supu∈R |n−1
∑n

t=1 I{ε̂∗t≤u} −´ u
−∞ f |.

To see that the distribution of the bootstrap statistic τ ∗n conditional on the data may have
a random limit, consider the Gaussian case, f = Φ′, and let P be the measure in the product
probability space on which the data and {ε∗t} are jointly defined. Under the assumptions of
Johansen and Nielsen (2016, Sec. 4.1-4.2), it holds (ibidem) that τ ∗n = τ̃ ∗n + oP(1) with

τ̃ ∗n := sup
u∈[0,1]

∣∣∣∣∣n−1/2

n∑
t=1

(I{ε∗t≤q(u)} − u) + Φ′(q(u))β̂
∗
n−1/2

n∑
t=1

xt

∣∣∣∣∣ ,
where q(u) = Φ−1(u) is the u-th quantile of Φ. The expansion of τ ∗n holds also conditionally

on the data Dn := {xt, yt}nt=1, i.e. τ ∗n − τ̃ ∗n
w∗→p 0, since convergence in probability to a

constant is preserved upon such conditioning. Hence, if τ̃ ∗n|Dn converges to a random limit
in the sense of eq. (1), so does τ ∗n|Dn for the same limit. Assume that n−α/2xbn·c

w→ X∞
in D for some α > 0 and that M :=

´
X2
∞ > 0 a.s. (e.g., X∞ = Bη for xt defined

as in Section 2.3); then (Mn, ξn) := (
∑n

t=1 x
2
t ,
∑n

t=1 xt) satisfies (n−α−1Mn, n
−α/2−1ξn)

w→
(M, ξ :=

´
X∞). Since Mn and ξn are functions of the data, this convergence is equivalent

to (n−α−1Mn, n
−α/2−1ξn)

w∗→w (M, ξ)|M, ξ. Furthermore, if W ∗
n(u) := n−1

∑n
t=1(I{ε∗t≤q(u)} −

u), u ∈ [0, 1], is the bootstrap empirical process in probability scale, then W ∗
n and M

1/2
n β̂

∗

are independent of the data individually (the second one being standard Gaussian), but not
jointly independent of the data, because

Cov∗(n1/2W ∗
n(u),M1/2

n β̂
∗
) = (n−α−1Mn)−1/2n−α/2−1ξnψ(u)

w→M−1/2ξψ(u),

u ∈ [0, 1], where ψ(·) := E∗[ε∗1I{ε∗1≤q(·)}] = −Φ′(q(·)) is a trimmed mean function. It is
argued in Section 6 that, more strongly,

(n1/2W ∗
n , n

(α+1)/2β̂
∗
, n−α/2−1ξn)

w∗→w

(
W,M−1/2b, ξ

)∣∣M, ξ (12)

on D×R2, where (W, b)|M, ξ is a pair of a standard Brownian bridge and a standard Gaussian
rv individually independent of M, ξ but with Gaussian joint conditional distributions having
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covariance Cov(W (u), b|M, ξ) = M−1/2ξψ(u), u ∈ [0, 1]. Combining these pieces with the
cmt yields

τ ∗n
w∗→w sup

u∈[0,1]

|W (u) + Φ′(q(u))M−1/2bξ| |M, ξ
d
= sup

u∈[0,1]

|W̃ (u)| |M, ξ , (13)

where, conditionally on M, ξ, W̃ is a zero-mean Gaussian process with W̃ (0) = W̃ (1) = 0
a.s. and conditional covariance function K(u, v) = u(1 − v) −M−1ξ2Φ′(q(u))Φ′(q(v)) for
0 ≤ u ≤ v ≤ 1. In summary, the limit bootstrap distribution is random because the latter
conditional covariance is random whenever M or ξ are such.

We now discuss whether, and in what sense, τ ∗n can provide a distributional approxima-
tion of τn.

(i) As for τ ∗n, under the null that εt ∼ i.i.d.N(0, 1), the assumptions and results of Johansen
and Nielsen (2016, Sec. 4.1-4.2) guarantee that τn has the expansion τn = τ̃n + op(1),

with τ̃n := supu∈[0,1] |n−1/2
∑n

t=1(I{εt≤q(u)} − u) + Φ′(q(u))β̂n−1/2
∑n

t=1 xt| defined similarly
to τ̃ ∗n. Hence, it is possible for τn|Xn (with Xn := {xt}nt=1) to have the same random limit
distribution as τ ∗n given the data (for instance, if the null hypothesis is true and {εt} is an
i.i.d. sequence independent of {xt}). In such a case, as we will show in Theorem 1, bootstrap
p-values are asymptotically U (0, 1) conditionally on Xn. However, it is implausible that
τn|Xn

w→w τ∞|M, ξ in general (for example under the assumptions that induced (10) of
Section 2.3), even if the εt’s are Gaussian. As a result, bootstrap inference cannot be
expected to be in general valid conditionally on Xn.

(ii) Under H0, however, bootstrap inference is valid at least in the basic sense of keeping
controlled the large-sample frequency of incorrect inferences. It is readily seen that τn =
τ̃n + op(1)

w→ supu∈[0,1] |W̃ (u)| =: τ∞, with W̃ defined previously. Thus, the unconditional
limit of τn obtains by averaging (over M, ξ) the conditional limit of τ ∗n. This is the main
prerequisite for establishing the stated basic validity property of the bootstrap via Theorem
2 below; see Remark 3.10 for details.

3 Bootstrap validity under weak convergence to ran-

dom distributions

We provide general conditions for bootstrap validity in cases where a bootstrap statistic con-
ditionally on the data possesses a random limit distribution. Before all else, we distinguish
between two concepts of bootstrap validity. The following definition employs the bootstrap
p-value as a summary indicator of the accuracy of bootstrap inferences (see Remark 3.4
below). The original and the bootstrap statistic are denoted by τn and τ ∗n, respectively.

Definition 1 Let τn = τn(Dn) and τ ∗n = τ ∗n(Dn,W
∗
n), where Dn = Dn(Xn, En) denotes

the data as a measurable function of some random elements Xn and En, not necessar-
ily observable, whereas W ∗

n are auxiliary variates used in the definition of the bootstrap
procedure and defined jointly with (Xn, En) on a possibly expanded probability space. Let
p∗n := P (τ ∗n ≤ τn|Dn) denote the bootstrap p-value.

11



We say that bootstrap inference based on τn and τ ∗n is asymptotically valid conditionally
on Xn if

P (p∗n ≤ q|Xn)
p→ q (14)

for all q ∈ (0, 1) as n→∞, so that bootstrap p-values are asymptotically U(0, 1) distributed
conditionally on Xn.

We say that bootstrap inference based on τn and τ ∗n is asymptotically valid on average
(over Xn) if

P (p∗n ≤ q)→ q (15)

for all q ∈ (0, 1) as n → ∞, so that bootstrap p-values are asymptotically U(0, 1) uncondi-
tionally.

Remark 3.1. In Definition 1, the original data Dn – hence the statistic τn – depend on two
(possibly unobservable) components, one of which (Xn) the statistician might like to make
inference conditional upon. Conversely, the bootstrap sample is defined in terms of the
original data Dn and of some auxiliary variates collected in W ∗

n . In standard applications,
W ∗
n are not Dn-measurable and often are generated independently of Dn.

Remark 3.2. The examples from the previous section can be cast within the framework
of Definition 1. For the regression models in Sections 2.1 and 2.3, we could consider Xn :=
{xt}nt=1, En := {εt}nt=1 and W ∗

n={ε∗t}nt=1, or alternatively, Xn := {xbnuc : u ∈ [0, 1]}, En :=

{n−1/2
∑bnuc

t=1 εt : u ∈ [0, 1]} and W ∗
n := {n−1/2

∑bnuc
t=1 ε∗t : u ∈ [0, 1]} if it is more convenient

to deal with (convergent) random elements of a fixed space like D . For the CUSUM test
from Section 2.2 with original data Dn := {εt}nt=1, we can let Xn := {ε(t)}nt=1 be the vector
of order statistics associated to {εt}nt=1 and En := {πt}nt=1 be the random permutation of
{1, ..., n} (uniformly distributed conditionally on Xn) for which it holds that εt = ε(πt)

(t = 1, ..., n). Similarly, W ∗
n is another random (uniformly distributed) permutation of

{1, ..., n}, independent of Dn.5 Finally, for the Kolmogorov-Smirnov test from Section 2.4
we could have Xn := {xbnuc : u ∈ [0, 1]}, En := {n−1/2

∑n
t=1(I{εt≤q(u)} − u) : u ∈ [0, 1]} and

W ∗
n := {n−1/2

∑n
t=1(I{ε∗t≤q(u)} − u) : u ∈ [0, 1]}.

Remark 3.3. Asymptotic bootstrap validity conditionally on Xn implies validity on aver-
age, by bounded convergence. The converse does not hold.

Remark 3.4. The validity properties in Definition 1 ensure correct asymptotic size, condi-
tionally on Xn or on average, for bootstrap hypothesis tests which reject the null when the
bootstrap p-value p∗n does not exceed a chosen nominal level, say α ∈ (0, 1). If P (τ ∗n ≤ ·|Dn)
converges weakly in D(R) to a sample-path continuous random cdf (as we assume in this
section), then correct asymptotic size is ensured also for bootstrap tests rejecting the null
hypothesis when p̃∗n := P (τ ∗n ≥ τn|Dn) ≤ α. Finally, if τn is not a genuine statistic but
a function of a parameter evaluated at an unknown true value θ0, assume that the con-
dition τn(θ0) ∈ [q, q] can be solved for θ0 as θ0 ∈ S(Dn) for some set S(Dn), where q, q
are Dn-measurable bootstrap quantiles satisfying 1 + P (τ ∗n ≤ q|Dn)−P (τ ∗n ≤ q|Dn) = α.
Then the validity properties in Definition 1 and the weak convergence of P (τ ∗n ≤ ·|Dn)

5The CUSUM test based on residuals from a statistical model can be treated by including further
components in En.
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to a sample-path continuous random cdf ensure correct asymptotic coverage, conditionally
on Xn or unconditionally, of S(Dn) as a bootstrap confidence set for θ0 for a confidence
level of 1− α. �

3.1 Conditional bootstrap validity

We start by providing sufficient conditions for the bootstrap to be valid conditionally, i.e. in
the sense of (14). The main requirement is the (joint) weak convergence of the distribution of
the bootstrap statistic τ ∗n, conditional on the original data, and of a conditional distribution
of the original statistic τn, to the same random limit distribution.

Theorem 1 If, as n→∞, τn and τ ∗n of Definition 1 satisfy

(P (τn ≤ ·|Xn) , P (τ ∗n ≤ ·|Dn))
w→ (F, F ) (16)

in D (R)×D (R), where F is a sample-path continuous random cdf, then

sup
u∈R
|P (τn ≤ u|Xn)− P (τ ∗n ≤ u|Dn)| p→ 0 (17)

as n → ∞, and the bootstrap based on τn and τ ∗n is asymptotically valid conditionally on
Xn as well as on average.

Proof. Convergence (17) is direct from (16), the assumed continuity of F and the be-
haviour of F at ±∞. Convergence (17) implies for p∗n = P (τ ∗n ≤ τn|Dn) that p∗n =
Fn (u)|u=τn

+ op(1), where Fn (u) := P (τn ≤ u|Xn), u ∈ R.6 Let F−1
n be the right-

continuous generalized inverse of Fn. Then for q ∈ (0, 1) it holds that {Fn (u)|u=τn
≤

q} = {τn ≤ F−1
n (q)} as an equality of events and∣∣P (Fn (u)|u=τn

≤ q|Xn)− q
∣∣ =

∣∣P (τn ≤ F−1
n (q)

∣∣Xn

)
− q
∣∣ =

∣∣Fn (F−1
n (q)

)
− q
∣∣

≤ sup
v∈R
|Fn (v)− Fn (v-)| p→ 0,

the second equality by the Xn-measurability of F−1
n (q), and the zero limit from Fn

w→ F in
D(R) and the continuity of F . Thus, Fn (u)|u=τn

∣∣Xn
w→p U(0, 1). As p∗n = Fn (u)|u=τn

+
op(1) implies that E(g(p∗n)|Xn) = E(g(Fn (u)|u=τn

)|Xn) +op(1) for continuous and bounded

real functions g, also p∗n|Xn
w→p U (0, 1) . Unconditional asymptotic uniformity of p∗n follows

by bounded convergence. �

The Gaussian regression of Section 2.1 is a rare case where a convergence like (16) can be
established easily by a direct study of the involved finite-sample cdf’s, see eq. (4). In practice
it could be more natural to obtain (16) from a result about the weak convergence of the
random measures induced by conditioning the distributions of τn and τ ∗n. This observation
gives rise to the next corollary.

6We write Fn (u)|u=τn
instead of Fn(τn) to avoid confusion with P (τn ≤ τn|Xn).
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Corollary 1 Let Dn , Xn, En and W ∗
n be as in Definition 1. Let there exist a random vari-

able τ∞ and a random element X∞, not necessarily defined on the same probability space as
Dn and W ∗

n , such that

(τn|Xn, τ
∗
n|Dn)

w→w (τ∞|X∞, τ∞|X∞) (18)

as n → ∞, jointly in the sense of eq. (1). Let further F (u) := P (τ∞ ≤ u|X∞), u ∈ R,
define a sample-path continuous random cdf. Then (16) holds, and the bootstrap based on
τn and τ ∗n is asymptotically valid conditionally on Xn as well as on average.

Remark 3.5. [Examples, cont’d] For the CUSUM bootstrap test of Section 2.2, τ∞ =
ρα(S), X∞ = S and condition (18) takes the form of (5) or (6), whereas F (u) = P (ρα(S) ≤
u|S). Asymptotic validity of the bootstrap in a conditional sense will follow from Corollary 1
if F has a.s. continuous sample paths. For the co-integrating regression example, under the
extra assumptions in Section 2.3(ii), we can consider τ∞ = (

´
B2
η)
−1
´
BηdBε, X∞ = Bη and

condition (18) holds in the form of (9), with F having Gaussian cdf’s as sample paths, which
are continuous. By Corollary 1, this implies asymptotic bootstrap validity conditional on the
regressors. For the goodness of fit test, the relevant objects could be τ∞ = supu∈[0,1] |W̃ (u)|
and X∞ chosen as either (M, ξ) or the weak limit of n−α/2xbn·c in D . The sample paths
of P (τ∞ ≤ ·|M, ξ) are a.s. continuous, e.g., by Proposition 3.2 of Linde (1989) applied
conditionally on M, ξ. In order to guarantee that eq. (18) holds, conditions restricting the
dependence between regressors and disturbances would be needed; independence is certainly
sufficient but it is beyond the scope of this paper to explore possible generalizations. �

We conclude this section with a proof of two properties of the bootstrap when (16) does
not hold. First, we show that bootstrap validity conditionally on Xn is lost when τn given
Xn and τ ∗n given the data converge to distinct random limits; the discussion in Section
2.3(iv) falls within the framework of this result. Second, we establish that the bootstrap
may be valid at least on average, provided that the limit distribution of the bootstrap
statistic is a conditional average of the limit distribution of τn given Xn. We make the
simplifying assumption that τ ∗n depends on the data Dn through Xn alone, which involves
no loss of generality in the (counterexemplary) negative part of the next proposition. The
positive part of the proposition will be extended in Theorem 2 below with no recourse to
this simplification.

Proposition 1 With the notation of Definition 1, assume that P (τ ∗n ≤ ·|Dn) = P (τ ∗n ≤ ·|Xn).
Let it hold, as n→∞, that

(P (τn ≤ ·|Xn) , P (τ ∗n ≤ ·|Xn))
w→ (F,G) (19)

in D (R)×D (R), where F and G are random cdf’s with a.s. continuous sample paths. Let
G−1 be the right-continuous generalized inverse of G. Then, as n→∞:

(i) the bootstrap p-value p∗n = P (τ ∗n ≤ τn|Dn) satisfies

P (p∗n ≤ q|Xn)
w→ F

(
G−1(q)

)
(20)
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for almost all q ∈ (0, 1), so the bootstrap based on τn and τ ∗n is asymptotically valid condi-
tionally on Xn iff F = G;

(ii) provided that G(u) = E(F (u)|G∞), u ∈ R, for some sub-σ-algebra G∞ on the proba-
bility space where F and G are defined, the bootstrap based on τn and τ ∗n is asymptotically
valid on average.

Remark 3.6. An instance of (20) with F 6= G is provided in Section 2.3(iv), where

F (u) = P (M−1/2(
√
ωε|ηξ1 +

√
1− ωε|ηξ2) ≤ u|M, ξ2) = Φ(ω

−1/2
ε|η {M

1/2u−
√

1− ωε|ηξ2}),

G(u) = P (M−1/2(
√
ωε|ηξ1 +

√
1− ωε|ηξ2) ≤ u|M) = Φ(M1/2u), u∈ R.

Thus, F (G−1(q)) = Φ(ω
−1/2
ε|η {Φ−1(q) −

√
1− ωε|ηξ2}) is the random cdf corresponding to

the limit in eq. (11). Still, as it holds that G(u) = E(F (u)|G∞), u ∈ R, for G∞ = σ(M),
Proposition 1 implies that the bootstrap is asymptoticlly validit on average, as was directly
concluded in Section 2.3(i) by exploiting the simple construction of the bootstrap. �

3.2 Bootstrap validity on average

We proceed with a general result about on average asymptotic validity of the bootstrap
under requirements weaker than in Theorem 1. Specifically, assumption (16) is relaxed to
the requirement that the unconditional limit distribution of the original statistic τn should
be an average of the random limit distribution of the bootstrap statistic τ ∗n given the data.
Regarding the scope and the ease of application, this requirement has the advantage to
not be based on a conditional analysis of τn. The cost is the loss of convergence (17), of
conditional bootstrap validity, and hence, of the bootstrap as a tool for conditional inference.

Theorem 2 Let there exist a rv τ∞ and a random element X∞ of a Polish space S, both
defined on the same probability space, such that (τn, Gn)

w→ (τ∞, G) in R × D(R) for
Gn(u) := P (τ ∗n ≤ u|Dn) and G(u) := P (τ∞ ≤ u|X∞), u ∈ R. If the data Dn (n ∈ N) is
a random element of a Polish space and if the random cdf G is sample-path continuous,
then the bootstrap based on τn and τ ∗n is asymptotically valid on average.

Proof of Theorem 2. The random element (τ∞, G) of R×D(R) is a measurable function
of (τ∞, X∞) and this function is fully determined by the joint distribution of (τ∞, X∞). By
extended Skorokhod coupling (Corollary 5.12 of Kallenberg, 1997), we can regard the data
and (τ∞, X∞) as defined on a special proability space where (τn, Gn) → (τ∞, G) a.s. in
R × D(R) and G(·) = P (τ∞ ≤ ·|X∞) still holds. We show that Gn(τn)

a.s.→ G(u)|u=τ∞ ∼
U(0, 1) on the special probability space, so in general Gn(τn)

w→ U(0, 1).
Since G is continuous and Gn, G are (random) cdf’s, Gn

a.s.→ G in D(R) implies that
supu∈R |Gn(u) − G(u)|a.s.→ 0. Therefore, Gn(τn) − G(u)|u=τn

a.s.→ 0. Since τn
a.s.→ τ∞ and G

is uniformly continuous, it holds further that G(u)|τn − G(u)|τ∞
a.s.→ 0, so also Gn(τn) −

G(u)|u=τ∞
a.s.→ 0. From the equality of events {G(u) ≤ q} = {u ≤ G−1(q)}, q ∈ (0, 1), it

follows that

P (G(u)|u=τ∞ ≤ q|X∞) = P
(
τ∞ ≤ G−1(q)

∣∣X∞) = G
(
G−1(q)

)
= q,
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the penultimate equality because G−1(q) is X∞-measurable. We conclude that G(u)|u=τ∞

is uniformly distributed conditionally on X∞, and hence, unconditionally. Then Gn(τn)
a.s.→

G(u)|u=τ∞ ∼ U(0, 1). �

Remark 3.7. A trivial special case of Theorem 2 is obtained for independent τ∞ and X∞.
In this case the bootstrap distribution of τ ∗n estimates consistently the limiting unconditional
distribution of τn and the bootstrap is asymptotically valid in the usual sense (see point (ii)
in Section 2.1).

Remark 3.8. Proposition 1(ii) is another special case of Theorem 2. Indeed, on an ex-
tension of the probability space where F and G are defined, there exists a rv θ ∼ U(0, 1)
independent of F. Then (19) implies that (τn, Gn)

w→ (τ∞, G) for τ∞ := F−1(θ), X∞ := F
and S := D(R).

Remark 3.9. A third special case of Theorem 2 involves stable convergence of the original
statistic τn (see Häusler and Luschgy, 2015, for a definition). With the notation of Theorem
2, let the data Dn and the random element X∞ be defined on the same probability space,
whereas the rv τ∞ be defined on an extension of this probability space. Assume that
τn → τ∞ stably and Gn

p→ G. Then (τn, Gn)
w→ (τ∞, G) by Theorem 3.7(b) of Häusler and

Luschgy (2015). For instance, in the statistical literature on integrated volatility, a result
of the form τn → τ∞ is contained in Theorem 3.1 of Jacod et al. (2009) for τn defined

as a t-type statistic for integrated volatility, whereas the corresponding Gn
p→ G result is

established in Theorem 3.1 of Hounyo et al. (2017) for a combined wild and blocks-of-blocks
bootstrap introduced in the latter paper.

Remark 3.10. [Examples, cont’d] Return to the goodness-of-fit test example of Section 2.4.
As proved in Section 6, it holds that (τn, Xn, Gn)

w→ (τ∞, X∞, G) with Xn := n−α/2xbn·c ∈ D

and τ∞ := supu∈[0,1] |W̃ (u)|. As G is sample-path continuous by Proposition 3.2 of Linde
(1989), Theorem 2 guarantess on average asymptotic validity of the bootstrap. This con-
clusion holds without extra conditions restricting the dependence between regressors and
disturbances; cf. Remark 3.5.

Remark 3.11. Even if, as in the previous remark, there exist random elements Xn ∈ S
measurable with respect to the data and such that the condition of Theorem 2 holds in the
stronger form (τn, Xn, Gn)

w→ (τ∞, X∞, G), it need not hold that τn|Xn
w→w τ∞|X∞. Still, by

extended Skorokhod coupling, if the data and (τ∞, X∞) are redefined on a special probability
space where (τn, Xn, Gn)

a.s.→ (τ∞, X∞, G) , then the convergence τn
a.s.→ τ∞ implies, by the

martingale convergence theorem (Loève, 1978, p.75, ex.10), that

τn|{X1, ..., Xn}
w→a.s. τ∞|F∞,

where F∞ is the null-sets completion of σ({Xn}n∈N).7 From the completeness of F∞, it
follows that X∞ is F∞-measurable as the a.s. limit of F∞-measurable functions. Hence, for
F (u) := P (τ∞ ≤ u|F∞), we find that G(u) = E[F (u)|X∞], u ∈ R. Thus, implicitly, the
limit bootstrap distribution is a mixture of limiting conditional distributions of the original
statistic (upon a redefinition of the probability space), similarly to Proposition 1(ii). �

7Other conditioning choices are possible, e.g. σ{Xn, Xn+1, ...} on the left side and the completion of the
tail σ-algebra of {Xn} on the right side.
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4 Bootstrap tests of parameter constancy

4.1 Problem and standard asymptotic theory

Here we apply the results of Section 3 to the classic problem of parameter constancy testing
in regression models (Chow, 1960; Quandt, 1960; Nyblom, 1989; Andrews, 1993; Andrews
and Ploberger, 1994). Specifically, we deal with bootstrap implementations when the mo-
ments of the regressors may be unstable over time; see Hansen (2000) and Zhang and Wu
(2012), inter alia.

Consider a linear regression model for ynt ∈ R given xnt ∈ Rm, in triangular array
notation:

ynt = β′txnt + εnt (t = 1, 2, ..., n). (21)

The null hypothesis of parameter constancy is H0 : βt = β1 (t = 2, ..., n), which is tested
here agains the alternative H1 : βt = β1 + θnI{t≥n∗} (t = 2, ..., n), where n∗ := br∗nc and
θn 6= 0 respectively denote the timing and the magnitude of the possible break,8 both
assumed unknown to the statistician. The so-called break fraction r∗ belongs to a (known)
closed interval [r, r] in (0, 1). In order to test H0 against H1, it is customary to consider
the ‘supF ’ (or ‘sup Wald’) test (Quandt, 1960; Andrews, 1993),9 based on the statistic
F n := maxr∈[r,r] Fbnrc, where Fbnrc is the usual F statistic for testing the auxiliary null
hypothesis that θ = 0 in the regression

ynt = β′xnt + θ′xntI{t≥brnc} + εnt.

We make the following assumption, allowing for non-stationarity in the regressors (see
also Hansen, 2000, Assumptions 1 and 2).

Assumption H

(i) (mda) εnt is a martingale difference array (mda) with respect to the current value of xnt
and the lagged values of (xnt, εnt);

(ii) (wlln) ε2
nt satisfies the law of large numbers n−1

∑bnrc
t=1 ε

2
nt

p→ r(Eε2
nt) = rσ2 > 0 as

n→∞, for all r ∈ (0, 1];

(iii) (non-stationarity) in Dm×m ×Dm×m ×Dm: 1
n

bn·c∑
t=1

xntx
′
nt,

1
nσ2

bn·c∑
t=1

xntx
′
ntε

2
t ,

1
n1/2σ

bn·c∑
t=1

xntεnt

 w→ (M,V,N)

as n → ∞, where M and V are a.s. continuous and (except at 0) strictly positive-
definite valued processes, whereas N , conditionally on {V,M}, is a zero-mean Gaus-
sian process with covariance kernel E{N (r1)N (r2)′} = V (r1) (0 ≤ r1 ≤ r2 ≤ 1).

8We suppress the possible dependence of βt = βnt on n with no risk of ambiguities.
9Alternative tests can be considered similarly, see e.g. Hansen (2000, sec.2).
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Remark 4.1. A special case of Assumption H is obtained when the regressors satisfy the
weak convergence xnbn·c

w→ U (·) in Dm (see, e.g., the example from Section 2.3). In this
case, M (·) =

´ ·
0
UU ′ and, under appropriate restrictions on the squared errors, V equals M

(this equality will be important for the asymptotic validity of the first bootstrap procedure
discussed below). For instance, if supn supt=1,...,nE|E(ε2

nt − σ2|Fn,t−m)| → 0 as m→∞ for
some filtrations Fn,t, n ∈ N, to which {ε2

nt} is adapted, then M = V (see Theorem A.1 of
Cavaliere and Taylor, 2009).

Remark 4.2. In a recent paper Zhang and Wu (2012) assume that the xnt’s are ‘locally
stationary’, i.e. of the form xnt = G (t/n;Ft) for Ft := σ (..., εt−1, εt), {εt} being a sequence
of i.i.d. rv’s and G a sufficiently smooth random function. Regressors of this form are
not ruled out by Assumption H. The main difference is that Zhang and Wu (2012) place
(smoothness and moment) restrictions on the function G, whereas Assumption H restricts
the large sample behaviour of the sample moments.10

Remark 4.3. The case of (asymptotically) covariance stationary regressors is covered by
Assumption H and corresponds to M (r) = rΣ for a non-random variance matrix Σ. �

The null asymptotic distribution of F n under Assumption H is provided in Hansen
(2000, Theorem 2):

F n
w→ sup

r∈[r,r]

{
Ñ(r)′M̃ (r)−1 Ñ(r)

}
(22)

with Ñ (u) := N (u) − M (u)M (1)−1N (1) and M̃ (r) := M (r) − M (r)M (1)−1M (r).
In the case of (asymptotically) stationary regressors, F n converges to the supremum of
a squared tied-down Bessell process; see Andrews (1993). In the general case, however,
since the asymptotic distribution in (22) depends on the joint distribution of the limiting
processes M,N, V , which is unspecified under AssumptionH, asymptotic inference based on
(22) is unfeasible. Simulation methods as the bootstrap can therefore be appealing devices
to compute p-values associated with F n. In particular, if the statistician is not interested
in modeling the distribution of the regressors xnt, but opts instead for inference conditional
on xnt, it appears natural to resort to the fixed regressor bootstrap, where xnt, t = 1, ..., n,
are fixed across bootstrap repetitions.

4.2 Bootstrap implementations and (random) limit theory

Following Hansen (2000), we discuss here two implementations of the fixed-regressor boot-
strap. In the first procedure, the bootstrap sample is generated as y∗t,1 = w∗t (t = 1, ..., n),
with w∗t i.i.d. N (0, 1) and independent of the original data Dn := {xnt, ynt}nt=1. The boot-
strap statistic is then defined as

F ∗
1,n := max

r∈[r,r]
F ∗1,bnrc,

10Zhang and Wu (2012) propose, without theory, a fully parametric bootstrap for computing p-values
associated to their parameter constancy test. We conjecture that validity of their bootstrap could be
established using the general theory of the present paper.
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where F ∗1,bnrc is the usual F statistic for testing the auxiliary null hypothesis θ∗ = 0 in the
regression

y∗t,1 = β∗′xnt + θ∗′xntI{t≥brnc} + error∗nt. (23)

The second bootstrap procedure is a fixed-regressor wild bootstrap (Wu, 1986; Liu, 1988;
Mammen, 1993) and is introduced to accommodate possible conditional heteroskedasticity
of εnt.

11 It is based on the residuals ẽnt from the OLS regression of ynt on xnt and xntI{t≥br̃nc},
where r̃ := arg maxr∈[r,r] Fbnrc is the estimated break fraction for the original sample. The
bootstrap statistic is

F ∗
2,n := max

r∈[r,r]
F ∗2,bnrc,

where F ∗2,bnrc is the F statistic for the auxiliary null that θ∗ = 0 in (23), with y∗t,1 now
replaced by the wild bootstrap innovation y∗t,2 := ẽntw

∗
t .

The weak limit properties of the bootstrap statistics F ∗
1,n and F ∗

2,n are stated in the
next theorem.

Theorem 3 Under Assumption H, and for i = 2, additionally, under H0, it holds that

F ∗
i,n

w∗→w sup
r∈[r,r]

{
Ñi(r)

′M̃ (r)−1 Ñi(r)
}∣∣∣∣∣M,V, i = 1, 2, (24)

where M̃ (r) := M (r) −M (r)M (1)−1M (r), Ñi (r) := Ni (r) −M (r)M (1)−1Ni (1) (i =
1, 2), N1 conditionally on M,V is a zero-mean Gaussian process with covariance kernel
E{N1(r1)N1(r2)′|M} = M (r1) for r ≤ r1 ≤ r2 ≤ r, and N2|M,V is distributed like N |M,V
of Assumption H.

Remark 4.4. Theorem 3 establishes that, in general, the weak limits of the fixed-regressor
bootstrap statistics are random. In particular, they are distinct from the limit in eq. (22)
and, as a result, the bootstrap does not estimate consistently the unconditional limit distri-
bution of the statistic Fn under H0 (contrary to the claim in Theorems 5 and 6 of Hansen,
2000). To highlight the source of the limiting randomness, consider the case M = V . Here,
for fixed r ∈ [r, r], Ñi(r)

′M̃ (r)−1 Ñi(r) is χ2(m)-distributed conditionally on M (i = 1, 2)
and, hence, is independent of M . Nevertheless, the non-contemporaneous covariances of
the process M̃ (r)−1/2 Ñi(r) conditional on M do depend on M , and therefore, the limit
distributions in (24) are random whenever M is random.

Remark 4.5. In addition to the previous remark, consider the case of a scalar regressor
xnt ∈ R. By a change of variable (as in Theorem 3 of Hansen, 2000), convergence (24)
reduces to

F ∗
1,n

w∗→w sup
u∈I(M,r,r̄)

{
W (u)2

u(1− u)

}∣∣∣∣∣M for I(M, r, r̄) :=
[
M(r)
M(1)

, M(r̄)
M(1)

]
,

where W is a standard Brownian bridge on [0, 1], independent of M . As the maximization
interval I(M, r, r̄) depends on M , so does the supremum itself. �

Next, we formulate conditions under which the fixed-regressor bootstrap is asymptoti-
cally valid in the sense of Definition 1.

11It can also accommodate forms of unconditional heteroskedasticity that violate Assumption H(ii). Fol-
lowing Hansen (2000), we do not pursue this extension.
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4.3 Bootstrap validity

Although the bootstrap procedures do not mimic the asymptotic (unconditional) distribu-
tion in (22), bootstrap validity on average (over Xn := {xnt}nt=1) can be established using
Theorem 2. For establishing bootstrap validity conditionally on Xn by means of Theorem
1, we strengthen Assumption H as follows.

Assumption C. Assumption H holds and, as random measures on Dm×m ×Dm×m ×Dm, 1
n

bn·c∑
t=1

xntx
′
nt,

1
nσ2

bn·c∑
t=1

xntx
′
ntε

2
nt,

1
n1/2σ

bn·c∑
t=1

xntεnt

∣∣∣∣∣∣Xn
w→w (M,V,N) |M,V .

Remark 4.6. Assumption C is stronger than AssumptionH due to the fact that –differently
from the bootstrap variates w∗t – the errors {εnt} need not be independent of {xnt}. The
example in Section 2.3(iv) illustrates the effect of dependence on conditional limits. With
the notation of Section 2.3(iv), let xnt := n−1/2xt and εnt := εt. Then Assumption H(iii)
holds with M = V =

´ ·
0
B2
η and N =

√
ωε|η
´ ·

0
BηdBy1 +

√
1− ωε|η

´ ·
0
BηdBy2. However,

n−1/2
∑n

t=1 xntεnt
∣∣Xn

w→w N(1)|{M,V,
´
BηdBy2} with the limit distributed differently from

N(1)|M,V . Thus, the actual conditioning in the limit is more complex than required in
Assumption C. �

We now establish the asymptotic validity of the bootstrap parameter constancy tests
under the introduced assumptions.

Theorem 4 . Let the parameter constancy hypothesis H0 hold for model (21). Then, under
Assumption H, the bootstrap based on τn = F n and τ ∗n = F ∗

2,n is asymptotically valid on
average. If Assumption C holds, then (17) holds for Xn = {xnt}nt=1 and the bootstrap based
on F n and F ∗

2,n is asymptotically valid also conditionally on Xn. The same results hold for
the bootstrap based on τn = F n and τ ∗n = F ∗

1,n provided that M = V .

5 Conclusions

In this study of bootstrap statistics with random limit distributions given the data, we have
provided a formal analysis of the asymptotic validity of bootstrap inference, in a conditional
and on-average sense. For both types of asymptotic validity, we have established sufficient
conditions. These differ mainly in their demands on the dependence structure of the data,
and are more restrictive for conditional validity to hold. We have seen that this difference
is essential and not an artefact of our approach.

6 Additional proofs

Proof of Eq. (10). Let
∑t

s=1 εs = Y̊t + Y e
t with Y̊t :=

∑t
s=1{εs − E(εs|ηs)} and Y e

t :=∑t
s=1E(εs|ηs). A standard fact is that n−1/2(Y̊bn·c, Y

e
bn·c,

∑bn·c
s=1 ηs)

w→ (
√
ωε|ηBy1,

√
1− ωε|ηBy2, Bx)
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in D3, where (By1, By2, Bx) is a standard Brownian motion in R3. Further, by the conditional
invariance principle of Rubstein (1996),

n−1/2 Y̊bn·c

∣∣∣ bn·c∑
s=1

ηs
w→p
√
ωε|ηBy1

d
=
√
ωε|ηBy1

∣∣By2, Bx

as a convergence of random measures on D . Since σ(
∑bn·c

s=1 ηs) = σ(Y e
bn·c,

∑bn·c
s=1 ηs) =

σ({xt}nt=1), the convergence

n−1/2

Y̊bn·c, Y e
bn·c,

bn·c∑
s=1

ηs

∣∣∣∣∣∣ {xt}nt=1
w→w

(√
ωε|ηBy1,

√
1− ωε|ηBy2, Bx

)∣∣By2, Bx

follows by Theorem 2.1 of Crimaldi and Pratelli (2005), for random measures on D3. By
using conditional convergence to stochastic integrals (Theorem 5 of Georgiev et al., 2016)
for the statistic τn of (7), eq. (10) follows. �

Proof of Eq. (12) and Remark 3.10. By extended Skorokhod coupling (Corollary
5.12 of Kallenberg (1997)), we can regard the data as defined on a special probability space
such that (n−α/2xbn·c, n

−1/2
∑n

t=1{I{εt≤q(·)} − u}) → (X∞,W ) a.s. in D × D ; then, by a
product-space construction, we can expand this space to define also an i.i.d. standard
Gaussian sequence {ε∗t}. Consider outcomes in the component-space of n−α/2xbn·c such that
(n−α−1Mn, n

−α/2−1ξn) → (M, ξ), n−(α+1)/2 sup |xbn·c| → 0 and M > 0; such outcomes are

almost all. For every such outcome, (n1/2W ∗
n ,M

1/2
n β̂

∗
) is tight in D×R because n1/2W ∗

n

and M
1/2
n β̂

∗
are tight in D and R resp., and its finite-dimensional distributions converge

to those of (W, b) by the Lyapunov CLT. It follows that (n1/2W ∗
n ,M

1/2
n β̂

∗
)|xbn·c

w→a.s. (W, b),

and further, that (n1/2W ∗
n ,M

1/2
n β̂

∗
, n−α−1Mn, n

−α/2−1ξn)|xbn·c
w→a.s. (W, b,M, ξ)|M, ξ, by the

xbn·c-measurability of (n−α−1Mn, n
−α/2−1ξn). Still further, by continuity considerations,

(n1/2W ∗
n , n

(α+1)/2β̂
∗
, n−α/2−1ξn)|xbn·c

w→a.s.

(
W,M−1/2b, ξ

)∣∣M, ξ on the special probability
space. This implies (12) on a general probability space. Back on the special probabil-
ity space, we conclude by the same argument as for eq. (13) that τ ∗n|xbn·c

w→p τ∞|X∞
so that Gn(·) := P (τ ∗n ≤ ·|Dn)

p→ G(·) := P (τ∞ ≤ ·|X∞) in D(R). As further τn
p→

τ∞ on the special probability space, we can collect the previous convergence facts into
(τn, Xn, n

−α−1Mn, n
−α/2−1ξn, Gn)

p→ (τ∞, X∞,M, ξ,G) on that same space, which proves
that (τn, Yn, Gn)

w→ (τ∞, Y∞, G) on a general probability space, for the two choices of Yn
given in Remark 3.10.

Proof of Proposition 1. Let Fn (u) := P (τn ≤ u|Xn) andGn (u) := P (τ ∗n ≤ u|Xn) for
u ∈ R, such that, by (19), (Fn, Gn)

w→ (F,G) in D (R)×D(R). By assumption, p∗n = Gn(τn).
If G−1

n stands for the right-continuous generalized inverse of Gn, it follows from the cmt that
(Fn, G

−1
n (q))

w→ (F,G−1(q)) in D (R)×R for every q ∈ (0, 1) at which G−1 is a.s. continuous.
For such q we find that

P (p∗n ≤ q|Xn) = P (τn ≤ G−1
n (q)|Xn) = Fn(G−1

n (q))
w→ F

(
G−1(q)

)
, (25)
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the second equality by the Xn-measurability of G−1
n (q), and the limit by the cmt and the

continuity of F . Since such q ∈ (0, 1) are all but countably many, (20) follows. Asymptotic
validity of the bootstrap conditional on Xn requires that F (G−1(q)) = q for almost all
q ∈ (0, 1), which by the continuity of F and G reduces to F = G. For part (ii), let g(·) =
min{·, 1}I[0,∞)(·). By the definition of weak convergence, (25) implies

P (p∗n ≤ q) = E{g(P (p∗n ≤ q|Xn))} w→ E{F (G−1(q))}
= E{E[F (G−1(q))|G∞} = E{G(G−1(q))} = q

using for the penultimate equality the G∞-measurability ofG−1(q) and the relationE(F (γ)|G∞) =
G(γ) for G∞-measurable rv’s γ. Thus, P (p∗n ≤ q)→ q for almost all q ∈ (0, 1), which proves
that p∗n

w→ U (0, 1). �
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Häusler E. and H. Luschgy (2015): Stable Convergence and Stable Limit Theorems,
Springer-Verlag: Berlin.
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SUPPLEMENT: PROOFS TO THE PARAMETER CONSTANCY SECTION

Proof of Theorem 3. Let (Mn, Ṽn) := (n−1
∑bn·c

t=1 xntx
′
nt, n

−1σ−2
∑bn·c

t=1 xntx
′
ntẽ

2
nt). As

Ṽn = n−1σ−2
∑bn·c

t=1 xntx
′
ntε

2
nt+op(1) under H0, under AssumptionH it holds that (Mn, Ṽn)

w→
(M,V ) in Dm×m×Dm×m. The original data Dn := {xnt, ynt}nt=1 and the bootstrap multi-
pliers {w∗t }t∈N can be regarded (upon padding with zeroes) as defined on the Polish space
(R∞)k+2. Therefore, by Corollary 5.12 of Kallenberg (1997), there exists a special probabil-
ity space where (M,V ), and for every n ∈ N, also the original data and the bootstrap data
can be redefined, maintaining their distribution (with a slight abuse, we also maintain the
notation), such that (Mn, Ṽn)

a.s.→(M,V ).
The first ingredient of the proof is the conditional convergence

N∗i |Mn, Ṽn
w→a.s. Ni|M,V (26)

on the special probability space, for N∗i := n−1/2σ−1
∑bn·c

t=1 xnty
∗
t,i, as an a.s. convergence of

random measures on Dm. As N∗i conditional on the data is a zero-mean Gaussian process
with independent increments and variance function σ−2Mn and Ṽn resp. for i = 1, 2, the
argument for Theorem 5 of Hansen (2000) yields (26). We notice that, for i = 1, the
process N∗i conditionally on Mn is independent of Ṽn, and therefore, for i = 1, (26) and the
subsequent results hold independently of whether H0 is true or not (which plays a role in
the asymptoics of Ṽn).

The second ingredient of the proof is the joint convergence(
Mn, Ṽn, N

∗
i

)
w→ (M,V,Ni) (27)

in (Dm×m)2×Dm, which follows from (26) and the marginal convergence (Mn, Ṽn)
a.s.→ (M,V )

in (Dm×m)2. Jointly (26) and (27), by Corollary 4.1 and Proposition 4.3 of Crimaldi and
Pratelli (2005), imply that(

Mn, Ṽn, N
∗
i

)∣∣∣Mn, Vn
w→p (M,V,Ni)|M,V (28)

as a convergence in probability of random measures on (Dm×m)2 ×Dm, in the sense that

E
[
f
(
Mn, Ṽn, N

∗
i

)∣∣∣Mn, Ṽn

]
p→ E [f (M,V,Ni)|M,V ] (29)

for any continuous bounded real f with matching domain.
The proof of the theorem is completed as in Theorems 5 and 6 of Hansen (2000), by

using the following expansion which is uniform in r ∈ [r, r] : F ∗i,bnrc = F̃in(r)+oP(1) with

F̃in(r) =
∥∥(Mn(r)−Mn(r)Mn(1)−1Mn(r))−1/2(N∗i (r)−Mn(r)Mn(1)−1N∗i (1))

∥∥2

and where P is the joint measure over the original and the bootstrap data. As F̃i(r) depends
on the data only through Mn, Ṽn, it follows that

P ∗(max
r∈[r,r]

F̃in(r) ≤ ·) = P (max
r∈[r,r]

F̃in(r) ≤ ·|Mn, Ṽn),
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and since maxr∈[r,r] F̃in(r)|Mn, Ṽn
w→p Fi,∞|M,V by (28), with Fi,∞ := supr∈[r,r]{Ñi(r)

′M̃ (1)−1 Ñi(r)}
(i = 1, 2), also maxr∈[r,r] F̃in(r)

w∗→p Fi,∞|M,V . Finally, as
P→ becomes

w∗→p upon condition-

ing on the data, we conclude for F ∗
i,n = maxr∈[r,r] F

∗
i,bnrc that F ∗

i,n
w∗→p Fi,∞|M,V on the

special probability space. Then F ∗
i,n

w∗→w Fi,∞|M,V in general. �

Proof of Theorem 4. Additionally to the notation introduced in the proof of Theorem
3, let Vn := n−1σ−2

∑bn·c
t=1 xntx

′
ntε

2
nt and Xn := {xnt}nt=1. Under Assumption H, consider a

common probability space where, for every n ∈ N, the original and the bootstrap data is
redefined such that (maintaining the notation),Mn, Vn, Ṽn,

1
n1/2σ

bn·c∑
t=1

xntεnt,Fn

 a.s.→ (M,V, V,N,F∞) (30)

in (Dm×m)3 × Dm × R, with F∞ := supr∈[r,r]{Ñ(r)′M̃ (r)−1 Ñ(r)} of eq. (22). On this

space also F ∗
i,n

w∗→p Fi,∞|M,V (i = 1, 2) hold, by the proof of Theorem 3. Equivalently,

P ∗(F ∗
i,n ≤ ·)

p→ P (Fi,∞ ≤ ·|M,V ) in D(R). Defining Yn := (Mn, Ṽn) and Y∞ := (M,V ),

we see that (Fn, Yn, P (F ∗
i,n ≤ ·|Dn))

p→ (F∞, Y∞, P (Fi,∞ ≤ ·|Y∞)), i = 1, 2, on the special
probability space. Whenever

P (Fi,∞ ≤ ·|Y∞) = P (F̀∞ ≤ ·|Y∞) (31)

holds for some i = 1, 2, the convergence (Fn, Yn, P
∗(F ∗

i,n ≤ ·))
p→ (F∞, Y∞, P (F∞ ≤ ·|Y∞))

on the special probability space implies that (Fn, Yn, P
∗(F ∗

i,n ≤ ·))
w→ (F∞, Y∞, P (F∞ ≤

·|Y∞)) on general probability spaces. As sample-path continuity of the conditional cdf

P (F̀∞ ≤ ·|Y∞) is guaranteed by Proposition 3.2 of Linde (1989) applied conditionally on
M,V , Theorem 2 becomes applicable. Specifically, for i = 1, equality (31) holds if M = V,
whereas for i = 2 it holds independently of how M and V are related. Hence, in these
cases the conclusions of Theorem 3 about asymptotic validity of the bootstrap procedures
on average obtain from Theorem 2.

Let now Assumption C hold. Let the original and the bootstrap data be redefined on

another probability space where (30) holds (and thus, F ∗
i,n

w∗→p Fi,∞|M,V , i = 1, 2), and
additionally, the convergence in Assumption C holds as an a.s. convergence of random
probability measures:Mn, Vn,

1
n1/2σ

bn·c∑
t=1

xntεnt

∣∣∣∣∣∣Xn
w→a.s. (M,V,N) |M,V.

The latter is possible by Corollary 5.12 of Kallenberg (1997), because the random measures
in the previous display map measurably Xn and (M,V ) to the Polish space of probability
mesures on (Dm×m)2×Dm, equipped with the Prokhorov metric. Summarising, on the new
probability space,(

E
[
g
(
Mn, Vn,

1
n1/2σ

∑bn·c
t=1 xntεnt

)∣∣∣Xn

]
E
[
h
(
F ∗
i,n

)∣∣Dn

] )
p→
(
E [g (M,V,N)|M,V ]
E [h (Fi,∞)|M,V ]

)
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for all continuous bounded real functions g, h. By expanding Fi,bnrc similarly to F ∗i,bnrc in

the proof of Theorem 3 and choosing g = k ◦ s, where s is the maximum over r ∈ [r, r] of
the leading term in that expansion and k : R → R is an arbitray continuous and bounded
function, we can conclude that(

E (k (Fn)|Xn) , E
(
h
(
F ∗
i,n

)∣∣Dn

)) p→ (E (k (F∞)|M,V ) , E (h (Fi,∞)|M,V ))

for all continuous bounded real functions k and h. As the distributions of the involved con-
ditional expectations are fully determined by k, h and the distributions of (Fn,F ∗

i,n, Xn, Dn)
and (F∞,Fi,∞,M, V ), on general probability spaces the above convergence holds weakly.
We notice that for i = 1, Ñ1 conditionally on M is independent of V (which can be removed
from the conditioning in the second component of the limit).

As previously, sample-path continuity of the conditional distribution functions of F∞
and Fi,∞ (i = 1, 2), all conditional on M,V , is implied by Proposition 3.2 of Linde (1989)
applied conditionally on M and V . This satisfies the continuity requirements of Corollary
1 (with X∞ := (M,V )). The following cases emerge. Let M = V . Then the bootstrap
based on Fn and F ∗

1,n is asymptotically valid conditionally on Xn, by Corollary 1 with
τ∞ := F1,∞ and X∞ := M . For both M = V and M 6= V , the bootstrap based on Fn and
F ∗

2,n is asymptotically valid also conditionally on Xn, by Corollary 1 with τ∞ := F2,∞ and
X∞ := (M,V ). �
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