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Abstract

It is said that risky asset h acceptance dominates risky asset k
if any decision maker who rejects the investment in h also rejects
the investment in k. As Hart (2011) shows, acceptance dominance
is an incomplete order on an ordinary set of gambles. We extend
the definition of acceptance dominance order to risky assets whose
values follow random processes. We refer to the risk that arises from
investing in such assets with a short investment time horizon as local
risk and show that for short investment time horizons, the acceptance
dominance order is a complete order that can be represented by an
index of local risk. Moreover, we show that the measures of riskiness
proposed by Aumann and Serrano (2008), Foster and Hart (2009),
and Schreiber (2011) all coincide with our index. We use differential
calculus as an analytical tool to present our results.
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1 Introduction

The renewed interest in measures of riskiness which started with the semi-
nal work of Aumann & Serrano (2008) focuses on the problem of accepting
or rejecting risky assets. In this literature, risky assets are characterized
by random variables whose values are interpreted either as absolute returns
(“gambles”) or relative returns (“securities”). Based on the simple decision
problem of acceptance or rejection of gambles, Hart (2011) defines an order
on the set of gambles, called acceptance dominance, and Schreiber (2011)
extends its definition to securities. Given two risky assets h and k, be they
two gambles or two securities, it is said that h acceptance dominates k if any
risk-averse decision maker who rejects the investment in h also rejects the
investment in k. On a regular set of risky assets—that is, those character-
ized by a random variable—acceptance dominance is an incomplete order.
Indeed, there are many cases of pairs of risky assets where none of them
acceptance dominates the other.

In this paper we extend the acceptance dominance order to financial as-
sets whose price follows continuous-time random processes. We say that a
decision maker accepts an asset if she is better off investing in such an as-
set; otherwise she rejects it. In principle, accepting or rejecting such assets
should depend on the investment time horizon. We limit our discussion only
to short investment time horizons. We show that on this set of assets, the
acceptance dominance order is a complete order that can be represented by
a measure of riskiness. Moreover, we show that several measures of riskiness
of regular assets that are compatible with the acceptance dominance order
on regular assets induce the acceptance dominance order in the continuous-
time setup. For instance, the Aumann & Serrano (2008) Economic Index of
Riskiness, the Foster & Hart (2009) Operational Measure of Riskiness, and
the Schreiber (2011) Economic Index of Relative Riskiness all coincide with
our measure of riskiness in the continuous-time setup.

The paper is organized as follows. In Section 2 we define the acceptance
dominance order on a set of risky assets whose value follows a continuous-
time random process. We also propose a measure of local riskiness of such
assets that induces the acceptance dominance order. In Section 3 we present
several measures of riskiness, defined on discrete-time assets, that relate to
the acceptance and rejection problem. We show that these measures of risk-
iness coincide with our measure of local riskiness in the continuous-time en-
vironment. In Section 4 we discuss some properties of the measure of local
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riskiness. Section 5 concludes. The main proofs are relegated to the Ap-
pendix.

2 Acceptance Dominance and Local Riskiness

In this paper a utility function is a von Neumann–Morgenstern utility func-
tion for money which is strictly monotonic, strictly concave, and twice con-
tinuously differentiable. For simplicity we assume that utilities are defined
over the entire real line.

It is quite common in the financial literature to model securities by
continuous-time random processes. A (continuous-time) security s is an as-
set whose value (price) follows a continuous-time random process. The value
of s at time zero, s0, is given and can be any real value. For any other time t,
0 < t < T , the value of s at t (st) is the unique strong solution of a stochastic
differential equation (SDE) of the form

dst = µtdt+ σTt dWt, (1)

where Wt is a vector of K independent standard Wiener processes. The su-
perscript T means transpose.1 A more rigorous description of the continuous-
time framework is relegated to the Appendix. We denote the collection of all
those securities by S.

The question whether an agent benefits from buying one unit of a security
depends, among other parameters, on the investment time horizon, which is
the length of time that an investment is held before it is liquidated. If, for
instance, the investment time horizon is t, buying one unit of security s causes
the wealth to be distributed as w− s0 + st, where w is the initial wealth. We
focus on only short investment time horizons. We say that an agent with
utility ui and initial wealth w accepts s, if there exists T ∗ > 0 such that

E
[
ui(w − s0 + st)

]
> ui(w),

for all t, 0 < t < T ∗. Otherwise, she rejects it.
Hart (2011) defines an incomplete order on a set of risky assets, which

he calls acceptance dominance. In particular, Hart defines acceptance dom-

1The drift µt and the vector of diffusion σt are both functions of st and t, i.e., µt =
µ(st, t) and σt = σ(st, t). In addition, we assume that the drift and the diffusion are both
continuous functions and that σT

t σt 6= 0.
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inance on the set of discrete-time gambles which are basically random vari-
ables.2 In the present paper, we extend the definition of acceptance domi-
nance to securities in the continuous-time framework. Let s and k be two
securities in S.

Definition 1. s acceptance dominates k, denoted by s ≥A k, if any decision
maker who rejects s at w also rejects k at w, for every w.

The result presented here is that the acceptance dominance order in the
continuous-time setup is a complete order and can be represented by a mea-
sure of riskiness. In general, a measure of riskiness is a real-valued function
defined on risky assets. The riskiness of a discrete-time asset—that is, an
asset characterized by a random variable—is simply a real number. By con-
trast, if assets are characterized by random processes as in our framework,
the riskiness is defined locally, i.e., indexed by time, as it may change over
time.

Let s be a security whose value is described by the SDE

dst = µtdt+ σTt dWt.

Let σ and µ denote the drift and the diffusion at time zero, i.e., σ ≡ σ0 and
µ ≡ µ0. We define the local riskiness of s at time zero as follows:

Rl(s) =
σTσ

2µ
. (2)

More generally, the local riskiness of security s at t is defined by Rl(s, t) =
σTt σt/(2µt). In what follows we will refer to the local riskiness only at time
zero.

Obviously, Rl induces a complete order on the set of securities S. Our
claim is that the acceptance dominance order and the order that is induced
by Rl are equivalent. Formally, let s and k be two securities in S. Then,

Theorem 2.1. s ≥A k ⇔ Rl(k) ≥ Rl(s).

Theorem 2.1 asserts that if security k is riskier than security s, then any
decision maker who benefits from buying one unit of k will benefit also from
buying one unit of s. Limiting investors to buying only one unit may seem
a strong restriction. It turns out that this restriction is unneeded. In other

2Formal definition is given in Section 3.
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words, k is riskier than s if and only if any decision maker who benefits
from buying x units of k will benefit also from buying x units of s, for
every x > 0. This generalization of Theorem 2.1 is derived directly from the
following lemma:

Lemma 2.2. Given two securities s and k, the following claims are equiva-
lent:

1. Any decision maker who rejects s at w also rejects k at w, for every w.

2. Any decision maker who rejects x units of s at w also rejects x units
of k at w, for every x > 0 and w.

To see why the lemma is correct, note that rejecting x units of security s
is equivalent to rejecting the security xs. Hence, Lemma 2.2 follows directly
from the homogeneity of the local riskiness; see Section 4.

3 Riskiness and Local Riskiness

3.1 Discrete-Time Gambles and Securities

In the previous section we defined an order of riskiness on a set of continuous-
time securities. Several recent papers deal with other types of risky assets,
namely, discrete-time gambles and securities. A gamble g is a real-valued
random variable with positive expectation and some negative values. A
discrete-time security r is a real-valued random variable with a geometric
mean greater than one and some values less than one.3

We say that a decision maker accepts gamble g if she is better off investing
in g, i.e., if E[u(w + g)] > E(u(w)); otherwise she rejects it. Similarly, we
say that a decision maker accepts the investment in a discrete-time security
r (or simply accepts r), if she is better off investing all her initial wealth4 w
in r, i.e., if E[u(wr)] > u(w); otherwise she rejects it. Based on the problem
of accepting or rejecting gambles, Hart (2011) defines an order on the set

3The definitions of a gamble and a security are taken from Aumann & Serrano (2008)
and Schreiber (2011), respectively.

4In principle, a similar result can be derived if the definition of acceptance relates to
only a certain fraction of the initial wealth. Following Schreiber (2011), we limit our
discussion to investment of all the initial wealth.
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of gambles, called acceptance dominance, and Schreiber (2011) extends its
definition to the set of securities: if h and k are two risky assets (two gambles
or two securities), we say that h acceptance dominates k (h ≥A k), if any
decision maker who rejects h at w also rejects k at w.

A measure of riskiness is compatible with the acceptance dominance order
if h ≥A k implies that k is riskier than h. Since the acceptance dominance
order is an incomplete order on the set of gambles and on the set of secu-
rities, there exist different measures of riskiness that are compatible with
the acceptance dominance order. Two such measures of riskiness are the
Aumann & Serrano (2008) index of riskiness, and the Foster & Hart (2009)
measure of riskiness, both defined on gambles. Formally, given a gamble g,
the Aumann–Serrano index of riskiness, RAS, is defined implicitly by

E

[
exp

(
− g

RAS(g)

)]
= 1, (3)

and the Foster–Hart measure of riskiness, RFH , is defined implicitly by

E

[
log

(
1 +

g

RFH(g)

)]
= 0. (4)

Originally the two measures were based on different considerations: RAS

is based on the dual relationship between risk and (absolute) risk aversion,
while RFH is based on considerations of avoiding bankruptcy. However, Hart
(2011) shows that the two measures are related to the acceptance dominance
order. In this work, Hart defines two orders that extend the acceptance
dominance order, namely, “wealth-uniform dominance” and ‘utility-uniform
dominance”. He shows that RAS induces the wealth-uniform dominance or-
der, while RFH induces the utility-uniform dominance order.5

As we showed, locally, acceptance dominance is a complete order. Hence,
locally, there is no difference between utility-uniform dominance and wealth-
uniform dominance as both of them coincide with the acceptance dominance
order. Formally, we show that the “local versions” of RAS and RFH coincide

5These orders are defined as follows: gamble g wealth-uniformly dominates gamble h if
any risk-averse utility function that rejects g at all wealth levels also rejects h at all wealth
levels; and g utility-uniformly dominates h if any wealth level at which all risk-averse
utility functions reject g is also a wealth level at which they all reject h. Note that Hart
(2011) considers a specific set of utilities which he calls “regular utilities”.
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with our measure of local riskiness Rl.
6

Another relevant index of riskiness that extends the acceptance domi-
nance order is the Schreiber (2011) index of riskiness, which is defined on
securities rather than on gambles. Following Aumann & Serrano (2008) who
characterize their index of riskiness of gambles by the duality of risk and ab-
solute risk aversion, Schreiber (2011) characterizes his index by the duality
of risk and relative risk aversion. Formally, if r is a discrete-time security,
the Schreiber measure of riskiness, denoted by RS, is defined implicitly by

E

[
r−1/R

S(r)

]
= 1. (5)

Schreiber (2011) defines the adjusted riskiness to be

R̃S(r) = RS(r)/(1 +RS(r)). (6)

Note that RS and R̃S are ordinally equivalent; i.e., given any two secu-
rities, the two measures will always agree on which one of the securities is
riskier.

3.2 Local Riskiness as a Limit of Riskiness

Let s be a continuous-time security. Recall that st—the value of s at time
t—is a random variable. Given a measure of riskiness of regular assets, R∗,
we define the local riskiness of s at time zero, based on R∗, as the limit of
the riskiness of s as t goes to zero. The local riskiness of s is not well defined
for all measures of riskiness and all securities, as some measures of riskiness
are not well defined on all random variables.7 We denote the local riskiness

6The practical use of these two measures has been analyzed by Kadan & Liu (2011),
who show how these two measures can be applied to address the problem of tail events
and rare disasters.

7For instance, Aumann & Serrano (2008) and Foster & Hart (2009) relate only to gam-
bles that have a positive expectation and take negative values with a positive probability.
If we dispense with these constraints, equations (3) and (4) may have no solution. See
Schulze (2010) who studies on which distributions the Aumann–Serrano index is well de-
fined. The idea that a measure of riskiness is not well defined on the whole set of risky
assets should come as no surprise, as almost any other familiar measure of riskiness is not
well defined on the entire set of random variables. For instance, it is quite common in
the financial literature (and in the industry) to measure the riskiness of a security by its
variance. But there are random variables that have no variance, such as random variables
that have the Cauchy distribution.
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by R∗l (s), which can be formally defined as follows:

R∗l (s) ≡ lim
t→0

R∗(st). (7)

Note that even if R∗ is well defined on st for all t, 0 < t < T ∗, it does not
guarantee that the expression in (7) is well defined.

The following theorem shows the connection between the local riskiness
based on the above-mentioned measures of riskiness and the local riskiness
as defined in Section 2.

Theorem 3.1.

1. Let s ∈ S be a security where s0 = 0. There exists T ∗ such that RAS(st)
is well defined for all t, 0 < t < T ∗ and

RAS
l (s) = Rl(s). (8)

2. Let s ∈ S be a security where s0 = 0. There exists T ∗ such that RFH(st)
is well defined for all t, 0 < t < T ∗ and

RFH
l (s) = Rl(s). (9)

3. Let s ∈ S be a security where s0 = 1 and assume that 2µs/σsTσs > 1.
There exists T ∗ such that R̃S(st) is well defined for all t, 0 < t < T ∗

and

R̃S
l (s) = Rl(s). (10)

The decision problem underlying the measures of riskiness proposed by
Aumann–Serrano and Foster–Hart concerns whether to accept or reject a
gamble whose price is zero. Hence, the first two parts of Theorem 3.1 relate
only to securities whose price at t = 0 is zero. In this case, RAS

l and RFH
l

coincide with Rl. Similarly, the decision problem underlying the measure of
riskiness of Schreiber (2011) concerns whether to accept or reject a security
whose price at t = 0 is a positive number. Hence, the third part of Theo-
rem 3.1 relates only to securities whose price at t = 0 is a positive number
(normalized to one). The condition 2µs/σsTσs > 1 in the third part of the
theorem is equivalent to the property of a discrete-time security asserting
that its geometric mean is greater than one.
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4 Properties

The concepts of stochastic dominance provide the most uncontroversial no-
tions of riskiness (Hadar & Russell (1969), Levy & Hanoch (1969), Rothschild
& Stiglitz (1970)). For two given discrete-time risky assets, h and k, whether
gambles or securities, it is said that h (second-degree) stochastically dom-
inates k if and only if all decision makers prefer h to k. As Hart (2011)
shows, acceptance dominance is an extension of the stochastic dominance
order, in the sense that if an asset h stochastically dominates an asset k,
then h also acceptance dominates k (the opposite does not hold). In order
to study these relations in our setup of continuous time, we extend the defi-
nition of stochastic dominance to continuous-time processes as follows. If s
and k are two securities, we say that s stochastically dominates k at t = 0
(denoted by s >SD k) if there exist T ∗ > 0 such that for all 0 < t < T ∗,
st stochastic dominates kt. The following theorem asserts that the relation
between stochastic dominance and acceptance dominance is preserved in the
continuous-time setup.

Theorem 4.1.
s >SD k ⇒ Rl(k) > Rl(s).

Theorem 4.1 follows from the relationship between stochastic dominance
and acceptance dominance of standard assets: if s >SD k, then, by definition,
there is a range of time in which st >SD kt implies that in the same range of
time st >AD kt implies that Rl(k) > Rl(s).

Other properties of the measure of local riskiness are summarized in the
following theorem.

Theorem 4.2. Let s and k be two continuous-time securities. The local
riskiness has the following properties:

1. Homogeneity: Rl(λs) = λRl(s) for every λ > 0.

2. Subadditivity: Rl(s+ k) ≤ Rl(s) +Rl(k).

3. Convexity: Rl(λs + (1 − λ)k) ≤ λRl(s) + (1 − λ)Rl(k) for every 0 <
λ < 1.
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Duality of Local Risk and Risk Aversion

Aumann & Serrano (2008) characterize their index of riskiness by two axioms:
duality and homogeneity. The duality axiom reflects the idea that “risk is
what risk averters hate” (Machina and Rothschild (2008)). We take a similar
approach and characterize our measure of local riskiness by similar axioms.

We denote by ρi the well-known Arrow-Pratt coefficient of absolute risk
aversion (ARA) of a decision maker i with a utility function ui and an initial
wealth wi, i.e., ρi = −u′′i (wi)/u′i(wi). Let i and j be two decision makers
and let s and k be two securities. Let Ql be a measure of local riskiness;
i.e., Ql is a real-valued function of continuous-time securities. The following
axiom characterizes a kind of dual relationship between local risk (Ql) and
risk aversion (ρ).

Axiom 1. If ρi > ρj, i accepts s at wi, and Ql(s) > Ql(k), then j accepts k
at wk.

As Aumann & Serrano (2008) explain, the axiom says that if the more
risk-averse of two decision makers accepts the riskier of two securities, then
a fortiori the less risk-averse decision maker accepts the less risky security.
The second axiom concerns homogeneity:

Axiom 2. Ql(λs) = λQl(s) for all λ > 0.

As Aumann & Serrano (2008) explain, positive homogeneity embodies
the cardinal nature of riskiness. If s is a security, it makes sense to say that
2s is “twice as” risky as s, not just “more” risky.

Theorem 4.3. For each security s ∈ S, Ql = Rl satisfies Axioms 1 and 2,
and any index that satisfies these axioms is a positive multiple of Rl.

Note that Axiom 1 and its equivalent—the original Aumann–Serrano du-
ality axiom—are not identical. While both of them describe the relationship
between risk and risk aversion, the definition of risk aversion in the two ax-
ioms is different: Axiom 1 refers to the Arrow–Pratt absolute risk aversion,
and the Aumann–Serrano duality axiom refers to an incomplete order of the
set of decision makers, which they call the “uniform risk aversion” order.
Note that this difference is not crucial for our characterization of local risk-
iness. In other words, Axiom 1 could be formulated in terms of uniform
risk aversion (instead of Arrow–Pratt risk aversion) and Theorem 4.3 would
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still be valid. Yet, the opposite is not true; i.e., the Aumann–Serrano Index
cannot be characterized by a duality axiom that refers to the risk aversion
instead of the uniform risk aversion.

5 Conclusion

We extended the acceptance dominance order, originally defined by Hart
(2011) on gambles, to include risky assets whose values follow random pro-
cesses in a continuous-time setup. We presented a measure of local riskiness
of such assets that induces the acceptance dominance order. This shows that
on this set of assets, acceptance dominance is a complete order. In addition,
we showed that several measures of riskiness defined on random variables
coincide locally with our measure of local riskiness.

The focus on risky assets whose random returns evolve continuously over
time enables us to analyze cases where the risks are in some sense small, by
focusing only on short investment time horizons. Such situations have been
studied already by different methods. For example, Pratt (1964) showed that
if the distribution of the returns is sufficiently concentrated, which means
that the third absolute central moment is sufficiently small compared with
the variance, then for any decision maker, the magnitude of the so-called
risk premium is correlated with the level of the decision maker’s risk aver-
sion. Another similar interpretation of risk-aversion measures was developed
independently by Arrow (1965). In addition, Samuelson (1970) showed that
the classic mean-variance analysis, initiated by Markowitz (1959), applies
approximately to all utility functions, in situations that involve what he calls
“compact” distribution.

Analysis of decision problems in these methods is interesting since the
decision of a decision maker regarding investments with “concentrated” or
“small” returns depends on her utility function (and its derivatives) only at
the initial wealth. This enables us to find an order on risks in a way that is
relevant to all decision makers. In our analysis, this order is the acceptance
dominance order. By contrast, if changes of wealth are not infinitesimally
small, the utility at any possible future wealth level should be taken into
account, and an order that is relevant for all decision makers does not exist.

Since our measure of local riskiness is relevant to all decision makers,
we would expect any measure of riskiness in the discrete-time environment,
which relates to the acceptance or rejection decision problem, to coincide with
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our measure of local riskiness in the continuous-time environment. In this
sense, our measure of local riskiness can be used to identify proper measures
of risks.

A The Securities Model

The uncertainty in this model is generated by K standard Wiener pro-
cesses W 1, ... ,WK defined on a filtered probability space (Ω, FT , F, P ) that
satisfies the so-called usual conditions. The filtration F = (Ft)t∈[0,T ] is
the augmentation of the natural filtration FW , generated by the vector
W = {W (t) = W 1(t)...WK(t), t ∈ [0, T ]} of standard independent Wiener
processes; see Karatzas & Shreve (1998).

Let S be the set of securities whose prices follow continuous-time random
processes and whose properties are described as follows. Let s ∈ S be a
security. The value of s at time zero is given, denoted by s0. For any other
value of time t, 0 < t < T , st is the unique strong solution of a stochastic
differential equation, described by

dst = µtdt+ σTt dWt, (11)

where µt ≡ µ(st, t) is a continuous function (∀t, µt > 0) and σt ≡ σ(st, t) is
a (column) vector of continuous functions. The superscript T means “trans-
pose”. We assume also that σt 6= 0 a.s.

B Proofs

Throughout the proofs we shall use Ito’s lemma several times. It is worth-
while to recall a simple version of this lemma. If s is a random process
described by

ds = µdt+ σTdW, (12)

and f(s, t) is a twice differentiable function of two variables, then

dfs,t = [µtfs + 0.5σTσfss + ft]dt+ fsσ
TdW, (13)

where fs and fss are the first and second derivatives of f in relation to s,
and ft is the first derivative of f in relation to t.
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Proof of Theorem 2.1.
Given a security s, an agent benefits from buying a unit of s with investment
time horizon t if and only if Eu(w − s0 + st)− u(w) > 0. According to Ito’s
lemma,

Eu(w − s0 + xst)− u(w)

= E

[ ∫ t

0

xu′(w − s0 + st)µk +
1

2
u′′(w − s0 + st)σ

T
k σkdk

]
. (14)

Since the expression Eu(w − s0 + st) − u(w) is continuous over time, the
agent accepts s if and only if the limit of Eu(w − s0 + st)− u(w), as t goes
to zero, is positive. Following (14), this condition can be written as

limt→0E

[ ∫ t
0

(
u′(w − s0 + st)µs + 1

2
u′′(w − s0 + st)σ

T
s σs
)
ds

/
t

]
> 0

u′(w)µ0 + 1
2
u′′(w)σT0 σ0 > 0

− u
′(w)

u′′(w)
>
σT0 σ0
2µ0

. (15)

The left-hand side of the equation is the reciprocal of the ARA of the decision
maker and the right-hand side is Rl(s). It follows from (15) that the question
whether a decision maker accepts or rejects a security depends on two pa-
rameters only: the riskiness of the security Rl, and her Arrow-Pratt absolute
risk aversion at the initial wealth. Hence, any decision maker who rejects a
security s at w also rejects a security k at w if and only if Rl(k) ≥ Rl(s).

The following lemma will be useful in the proof of Theorem 3.1.

Lemma B.1. Let ft(x), t > 0, be a set of continuous real-valued functions,
defined on the set of real numbers. Let f(x) be a function and let x0 > 0 be
a number, such that:

1. limt→0 ft(x) = f(x) for all x > 0.

2. f(x0) = 0

3. There exists δ∗ > 0 such that f is strictly monotonic on (x0−δ∗, x0+δ∗).

Then,
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1. ∃ε s.t. ∀t 0 < t < ε ∃xt s.t. ft(xt) = 0.

2. limt→0 xt = x0.

Proof. Without loss of generality we can assume that f(x0 − δ∗) < 0 and
f(x0 + δ∗) > 0. For any δ, 0 < δ ≤ δ∗, we define

l(δ) = min{|f(x0 − δ)|, f(x0 + δ)}.

It follows from the first condition that for all δ, 0 < δ ≤ δ∗ there exists
εδ s.t. ∀t < εδ :

|f(x0 + δ)− ft(x0 + δ)| < l(δ)

|f(x0 − δ)− ft(x0 − δ)| < l(δ).

Hence, ft(x0 + δ) > 0 and ft(x0 − δ) < 0 and since ft are continuous,
∀t 0 < t < εδ, there exists xt ∈ (x0− δ, x0 + δ) s.t. ft(xt) = 0. Define a series
δn = δ∗/n, the limit of the appropriate series xt is x0.

Let f be a real-valued function defined on the real numbers. In addition
assume that its first derivative is positive and its second derivative is negative.
Define the measure of riskiness Rf on gambles implicitly by the equation

Ef(g/Rf (g)) = f(0), (16)

the following lemma will also be useful for the proof of Theorem 3.1.

Lemma B.2. Let s be a security in the continuous-time environment, s0 = 0,
and dst = µtdt+ σtdW . There exists T ∗ > 0 such that Rf is well defined on
st for all t, 0 < t < T ∗, and

Rf
l (s) = −f

′′

f ′
σTσ

2µ
,

where f ′ and f ′′ are the first and second derivatives of f(x) where x = 0.
Rf
l is the local riskiness defined by Rf by Equation 7.
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Proof. Given a security s, we look at the stochastic process f(sk/x), where
0 < k < T . Using Ito’s lemma, f is characterized by the SDE

dfk =

(
1

x
µkf

′
k +

1

2

1

x2
σTk σkf

′′
k

)
dk

+
1

x
σTk f

′
kdW, (17)

where f ′k denotes the first derivative of f at the point sk/x and f ′′k denotes the
second derivative of f at the point sk/x. Taking the expectation of f(st/x),
we get

E0

[
f(st/x)

]
= f(0) + E0

[ ∫ t

0

(
1

x
µkf

′
k +

1

2

1

x2
σTk σkf

′′
k

)
dk

]
. (18)

It remains to show that for all t, 0 < t < T (for some T > 0), there exists xt
such that

E0

[
f(st/xt)

]
= f(0), (19)

or

E0

[ ∫ t

0

(
1

xt
µkf

′
k +

1

2

1

x2t
σTk σkf

′′
k

)
dk

]
= 0, (20)

and that the limit of xt, as t goes to zero, is Rf
l (s).

Let ht be a set of functions defined by

ht(x) = E

[ ∫ t

0

(
1

x
µkf

′
k +

1

2

1

x2
σTk σkf

′′
k

)
dk

]/
t, (21)

and let h(x) be defined as the limit of ht(x) as t goes to zero:

h(x) =
1

x
µ0f

′
0 +

1

2

1

x2
σT0 σ0f

′′
0 . (22)

Now, let x0 be s.t.

h(x0) = 0⇒ x0 =
−f ′′0
f ′0

σT0 σ0
2µ0

≡ −f
′′

f ′
σTσ

2µ
.
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Since limt→0 ht(x) = h(x) and h(x0) = 0, the first and the second conditions
of Lemma B.1 are satisfied. To see that the third condition of the lemma is
also satisfied, note that h′(x0) = 4(f ′µ)3/(f ′′σTσ)2 > 0. So it follows from
Lemma B.1 that there exists ε > 0 s.t. for all t, 0 < t < ε, there exists xt s.t.
ht(xt) = 0 and limt→0 xt = x0. Defining T ∗ = ε, Rf (st) = xt, and Rf

l (s) = x0
completes the proof.

Proof of Theorem 3.1. We define fAS(g/x) = 1− e−g/x and fFH(g/x) =
log(1 + g/x). The proof of the first two parts of the theorem follows from
Lemma (B.2). The proof of the third part of the theorem is as follows.

It follows from (5) and (6) that if r is a discrete-time security, R̃S(r) can
be defined implicitly by the equation

E

[
r
1− 1

R̃S(r)

]
= 1, (23)

where R̃S(r) 6= 1. Now let s ∈ S be a security and assume that s0 = 1. We

look at the stochastic process f(sk) = s
1−1/x
k , where 0 < k < T . Using Ito’s

lemma, f(sk) can be described by the SDE as

dfk =

(
(1− 1

x
)µks

− 1
x

k −
1

2

1

x
(1− 1

x
)σTk σks

−( 1
x
+1)

k

)
dk

+
1

x
s
− 1

x
k σTk dW, (24)

where by the assumption of the theorem, f(s0) ≡ s
1− 1

x
0 =1.

Taking the expectation in (24), we get

E0

[
s
1− 1

x
t

]
= s

1− 1
x

0

+E0

[ ∫ t

0

(
(1− 1

x
)µks

− 1
x

k −
1

2

1

x
(1− 1

x
)σTk σks

−( 1
x
+1)

k

)
dk

]
. (25)

It remains to show that for t, 0 < t < T ∗ (for some T ∗ > 0), there exists xt
such that

E0

[
s
1− 1

xt
t

]
= 1 (26)
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or

E0

[ ∫ t

0

(
(1− 1

xt
)µks

− 1
xt

k − 1

2

1

xt
(1− 1

xt
)σTk σks

−( 1
xt

+1)

k

)
dk

]
= 0, (27)

and that the limit of xt, as t goes to zero, is R̃S
l (s).

Let ht be a set of real-valued functions, defined by

ht(x) =

E0

[ ∫ t

0

(
(1− 1

x
)µks

− 1
x

k −
1

2

1

x
(1− 1

x
)σTk σks

−( 1
x
+1)

k

)
dk

]/
t,

(28)

and let h(x) be defined as the limit of ht(x) as t goes to zero:

h(x) = (1− 1

x
)µ0 −

1

2

1

x
(1− 1

x
)σT0 σ0. (29)

Now, let x0 be s.t. h(x0) = 0. Recall that R̃l 6= 1 so we are not interested in
the solution x0 = 1. Hence,

x0 =
σT0 σ0
2µ0

.

Since limt→0 ht(x) = h(x) and h(x0) = 0, the first and the second conditions
of Lemma B.1 are satisfied. To see that the third condition of the lemma is
also satisfied, note that h′(x0) = 2µ2/σTσ − 4µ3/(σTσ)2 < 0. So it follows
from Lemma B.1 that there exists ε > 0 s.t. for all t, 0 < t < ε, there exists
xt s.t. ht(xt) = 0 and limt→0 xt = x0. Defining T ∗ = ε, R̃S(st) = xt, and
R̃S
l (s) = x0 completes the proof.

Proof of Theorem 4.2.
Homogeneity. If ds = µdt + σTdW , the security λs is described by the
SDE d(λs) = λµdt+ λσTdW . Hence, Rl(λs) = λσ

T σ
2µ

= λRl(s).

Subadditivity. Let ds = µsdt + σs TdW and dk = µkdt + σk TdW be
two securities. The sum s + k is characterized by the SDE d(s + k) =
(µs + µk)dt+ (σs T + σs T )dW . By definition, the riskiness of s+ k is

Rl(s+ k) =
(σs T + σk T )(σs + σk)

µs + µk
.
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We have to show that

(σs T + σk T )(σs + σk)

µs + µk
≤ σs Tσs

µs
+
σk Tσk

µk
. (30)

Note that

1. σs Tσs = ΣK
i=1(σ

s
i )

2.

2. σk Tσk = ΣK
i=1(σ

k
i )2.

3. σs Tσk = σk Tσs = ΣK
i=1σ

s
iσ

k
i .

Hence, (30) can be rewritten as

ΣK
i=1(σ

s
i )

2 + ΣK
i=1(σ

k
i )2 + 2ΣK

i=1σ
s
iσ

k
i

µs + µk
≤ ΣK

i=1(σ
s
i )

2

µs
+

ΣK
i=1(σ

k
i )2

µk

(ΣK
i=1(σ

s
i )

2 + ΣK
i=1(σ

k
i )2 + 2ΣK

i=1σ
s
iσ

k
i )µsµk ≤ ΣK

i=1(σ
s
i )

2µk(µs + µk)

+ΣK
i=1(σ

k
i )2µs(µs + µk)

µsµk2ΣK
i=1σ

s
iσ

k
i ≤ (µk)2ΣK

i=1(σ
s
i )

2

+(µs)2ΣK
i=1(σ

k
i )2

0 ≤ ΣK
i=1(µ

kσsi − µsσki )2. (31)

Since the last line is always satisfied, it completes the proof of subadditivity.

Convexity. Follows directly from homogeneity and subadditivity.

Proof of Theorem 4.3 .
To see that Rl satisfies the first axiom, recall that according to Equation 15,
a decision maker dm = (u,w) accepts a security s if and only if

− u
′(w)

u′′(w)
>
σsTσs

2µs
.

The left-hand side of the equation is the reciprocal of the ARA of the decision
maker and the right-hand side is Rl(s). So if a decision maker i is less averse
to risk than decision maker j and if j accepts a security, i would accept this
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security and any riskier security. The second axiom (homogeneity) is proved
above.

To see that any measure of local riskiness that satisfies the axioms is a
positive multiple of Rl, assume that Hl is a measure of riskiness that satisfies
the two axioms. The first axiom implies that Rl and Hl are ordinally equiv-
alent, i.e., for any two securities s and r, if s is riskier according to Rl then s
is also riskier according to Hl. Indeed, it follows from (15) that if a measure
of riskiness Hl satisfies the first axiom, then Hl(s) > Hl(r) if and only if

σsTσs

2µs
>
σrTσr

2µr
.

Now let r be an arbitrary but fixed security and set λ = Rl(r)/Hl(r). If
s is any security and t = Hl(s)/Hl(r), then Hl(tr) = tHl(r) = Hl(s), so
Rl(tr) = tRl(r) = Rl(s) by the ordinal equivalence between Hl and Rl,
so Rl(s)/Rl(r) = t = Hl(s)/Hl(r), so Hl(s)/Rl(s) = Rl(r)/Hl(r) = λ, so
Hl(s) = λRl(s). This completes the proof of the theorem.

References

Arrow, J. Kenneth. 1965. Aspects of The Theory of Risk-Bearing. Yrjo
Jahnssonin Saatio, Helsinki.

Aumann, Robert J., & Serrano, Roberto. 2008. An Economic Index
of Riskiness. Journal of Political Economy, 116, 810–836.

Foster, Dean P., & Hart, Sergiu. 2009. An Operational Measure of
Riskiness. Journal of Political Economy, 785–814.

Hadar, Josef, & Russell, R. William. 1969. Rules for Ordering Un-
certain Prospects. The American Economic Review, 59, 25–34.

Hart, Sergiu. 2011. Comparing Risks by Acceptance and Rejection. Jour-
nal of Political Economy, 119, 617–638.

Kadan, Ohad, & Liu, Fang. 2011. Performance Evaluation with High
Moments and Disaster Risk. Working Paper.

Karatzas, Ioannis, & Shreve, Steven E. 1998. Methods of Mathemat-
ical Finance. Springer.

19



Levy, Haim, & Hanoch, G. 1969. The Efficiency Analysis of Choices
Involving Risk. The Review of Economic Studies, 36, 335–346.

Markowitz, Harry. 1959. Portfolio Selection: Efficient Diversification of
Investments. John Wiley & Sons, New York.

Pratt, John W. 1964. Risk Aversion in the Small and in the Large.
Econometrica, 32, 122–136.

Rothschild, Michael, & Stiglitz, E. Joseph. 1970. Increasing Risk:I
A definition. Journal of Economic Theory, 2, 225–243.

Samuelson, Paul A. 1970. The Fundamental Approximation Theorem of
Portfolio Analysis in terms of Means, Variances and Higher Moments. The
Review of Economic Studies, 37, 537–542.

Schreiber, amnon. 2011. An Economic Index of Relative Riskiness. Work-
ing Paper.

Schulze, Klaas. 2010. Existence and Computation of the Aumann–
Serrano Index of Riskiness. Working Paper.

20


