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Abstract

We study a sequential (Stackelberg) all-pay auction where heterogeneous contestants are privately

informed about a parameter (ability) that a¤ects their cost of e¤ort. In the case of two contestants,

contestant 1 (the �rst mover) makes an e¤ort in the �rst period, while contestant 2 (the second mover)

observes the e¤ort of contestant 1 and then makes an e¤ort in the second period. Contestant 2 wins the

contest if his e¤ort is larger than or equal to the e¤ort of contestant 1; otherwise, contestant 1 wins. This

model is then generalized to any number of contestants where in each period of the contest, 1 � j � n,

a new contestant joins and chooses an e¤ort. Contestant j observes the e¤orts of all contestants in the

previous periods and then makes an e¤ort in period j: He wins if his e¤ort is larger than or equal to

the e¤orts of all the contestants in the previous periods and strictly larger than the e¤orts of all the

contestants in the following periods. We characterize the unique subgame perfect equilibrium of these

sequential all-pay auctions and analyze the use of head starts to improve the contestants�performances.
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1 Introduction

In many contest settings, e¤ort choices are made sequentially rather than simultaneously. The di¤erences

between simultaneous and sequential contests have been addressed in the literature by several researchers.1

Baik and Shogren (1992), Leininger (1993) and Morgan (2003) investigated the question of which form

of contest, sequential or simultaneous, naturally arises in competitive situations. They studied two-player

models where contestants compete in the (generalized) Tullock contest and each contestant is able to choose

between two dates to make their e¤orts. If the contestants choose di¤erent dates, a sequential contest occurs,

but if they choose the same date the contest will be a simultaneous one. They all showed that sequential

contests may arise endogenously in equilibrium.2 Despite these important �ndings, while numerous studies

have dealt with simultaneous all-pay auctions (all-pay contests) only a few have focused on sequential all-pay

auctions. The purpose of this paper is to �ll this gap in the literature by studying a sequential all-pay auction

with heterogeneous contestants under incomplete information.

In the all-pay auction each player submits a bid (e¤ort) and the player who submits the highest bid

wins the contest, but, independently of success, all players bear the cost of their bids. All-pay auctions

have been studied either under complete information where each player�s type (valuation for winning the

contest or ability) is common knowledge3 or under incomplete information where each player�s type is private

information and only the distribution from which the players�types is drawn is common knowledge.4 Most

studies dealing with sequential all-pay auctions assume a two-stage contest under complete information.

Leininger (1991) modeled a patent race between an incumbent and an entrant as a sequential asymmetric

all-pay auction under complete information, and Konrad and Leininger (2007) characterized the equilibrium

1Dixit (1987) studied a sequential Tullock contest and examined whether the ability to commit to an e¤ort choice before

other contestants choose their e¤ort while assuming that they can then observe this choice is advantageous or not. Linster

(1993) analyzed two-player sequential Tullock contests and showed that if the stronger player is the �rst (second) mover in the

sequential contest the players�total e¤ort is larger (smaller) than in the simultaneous contest.
2Hamilton and Slutsky (1990) Deneckere and Kovenock (1992) and Mailath (1993) studied sequential oligopoly games and

showed that sequential choices of quantities in a Cournot competition can be the equilibrium outcome of non-cooperative play.
3All-pay auctions under complete information have been studied, among others, by Hillman and Samet (1987), Hillman and

Riley (1989), Baye et al. (1993, 1996), Che and Gale (1998) and Siegel (2009)).
4All-pay auctions under incomplete information have been studied, among others, by Hillman and Riley (1989), Amman

and Leininger (1996), Krishna and Morgan (1997), Moldovanu and Sela (2001, 2006) and Moldovanu et al. (2010)).
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of the all-pay auction under complete information in which a group of players choose their e¤ort �early�and

the other group of players choose their e¤ort �late�. The assumption of incomplete information complicates

the analysis of the sequential all-pay auction but also makes it more relevant and interesting.

In this work, we study a sequential all-pay auction under incomplete information where the ability of

each contestant is private information. We consider �rst a sequential all-pay auction with two contestants

where contestant 1 (the �rst mover) makes an e¤ort in the �rst period, while contestant 2 (the second mover)

observes the e¤ort of contestant 1 and then makes an e¤ort in the second period. Contestant 2 wins the

contest if his e¤ort is larger than or equal to the e¤ort of contestant 1; otherwise, contestant 1 wins.5 This

particular type of sequential contest where the players�outputs are observable in any stage of the contest

has various applications, including sport contests such as athletics and gymnastics, political races in which

the candidates confront each other by a sequence of speeches, and court trials when the lawyers of both

sides make their �nal speeches. Moreover, in R&D and other market races it is sometimes the case that

the incumbent observes the output of the leader and only then decides how much e¤ort to put in. In all

these cases, the players in the later stages have some advantage because they have observed their opponents�

outputs in the previous stages. Similarly, in our model contestant 2 has an obvious advantage over contestant

1. For this reason contestant 1 exerts a relatively low e¤ort and sometimes, depending on the distribution

of his opponent�s abilities, he might even prefer not to participate in the contest at all (it is worth noting

that this feature of our model can explain why players sometimes choose to stay out of a contest). Given the

low e¤ort of contestant 1 in the �rst period as well as the rules of the contest according to which contestant

2 needs only to equalize the e¤ort of contestant 1 in order to win, we have a relatively low expected total

e¤ort as well as a low expected highest e¤ort. However, a designer who wishes to maximize the expected

total e¤ort or the expected highest e¤ort can change the rules of the sequential all-pay auction to make it

more pro�table by explicitly or implicitly favoring contestant 1 over contestant 2. In other words, he can

5The concept of Stackelberg games in which players choose their strategies sequentially was introduced and analyzed also

by computer scientists such as Garg and Narahari (2008), Luh et al. (1984) and others. All these authors impose a hierarchical

decision-making structure on a simultaneous game to describe sequential choices of strategies. The solution concept they use is

a Stackelberg equilibrium where the leaders use "secure strategies" that guarantees them a minimal payo¤ while the followers

use an optimal response strategy.
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give contestant 1 a head start.

There are numerous examples of real-life sequential contests in which the players who play in the �rst stage

are given a head start. Suppose, for example, that Microsoft Corporation is the �rst company to produce

a hardware product. Then, if Apple Inc. wants to produce a competitive product, in order to convince

customers to buy this new product it has to be either better or cheaper than the Microsoft product. In that

case, Microsoft is exogenously given a head start. However, head starts can also be given endogenously. For

example, a common situation often occurs in the labor market when an applicant gets a job and then any

new applicant is required to be better in order to win his place. Thus contests with head starts may raise

the contestants�expected total e¤ort or alternatively their expected highest e¤ort. Kirkegaard (2009), for

example, studied asymmetric all-pay auctions with head starts under incomplete information where players

simultaneously choose their e¤orts. He showed that the total e¤ort increases if the weak contestant is

favored with a head start, but if the contestants are su¢ ciently heterogenous, then in some cases the weak

contestant should be given both a head start and a handicap.6 Corns and Schotter (1999) demonstrated by

theoretical and empirical arguments that a head start in the form of a price preference policy that is given

to a subset of the �rms might not only bene�t that subset but can actually lower the purchasing cost of the

government. In our sequential all-pay auction therefore we wish to demonstrate that a head starts can not

only bene�t one of the players but can also enhance the overall expected performance of the players. Since in

our setting, contestant 2 has an advantage over contestant 1 because of the timing of their play, we assume

that contestant 1 is given a multiplicative head start which is exogenously determined . That is, contestant

2 will win the contest if his e¤ort x2 is larger or equal to tx1, where x1 is the e¤ort of contestant 1 and

t is a constant larger than 1.7 We provide su¢ cient conditions under which by imposing a head start for

contestant 1 the designer of the contest can signi�cantly increase the expected e¤orts of both contestants,

particularly the expected total e¤ort as well as the expected highest e¤ort. The optimal head start can be

high enough such that several types of contestant 1 will win for sure since no type of contestant 2 will want

6Siegel (2010) provided an algorithm that constructs the unique equilibrium in simultaneous all-pay auctions with head

starts in which players do not choose weakly-dominated strategies.
7This multiplicative head start was chosen for the sake of convenience and may not necessarily be the optimal form of a

head start.
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to participate. As such, head starts may also play the role of a winning bid in a sequential all-pay auction

when contestant 1 has an incentive to participate independently of the distribution of his opponent�s type.

Finally, head starts improve the inherent ine¢ ciency of the sequential all-pay auction. The probability that

a low ability contestant wins against a high ability contestant in a contest with a head start is lower than

in a contest without any head start.

We then turn to study a sequential all-pay auction with n > 2 players. In this model, in each period

of the contest, 1 � j � n, a new contestant joins and chooses an e¤ort. Contestant j; j = 1; :::; n observes

the e¤orts of all contestants in the previous j � 1 periods and then makes an e¤ort in period j: Contestant

j wins if his e¤ort is larger than or equal to the e¤orts of all the contestants in the j � 1 previous periods

and strictly larger than the e¤orts of all the contestants in the following n � j periods. We also study

this n-player model with head starts.8 The analysis of the sequential all-pay auction with n players and

head starts turns out to be quite complicated since a head start which is given to the contestant in period

k a¤ects the equilibrium strategies of all the contestants in the following periods j � k: Furthermore, in

contrast to the model with two players, the use of head starts in the sequential all-pay auction with n > 2

players may decrease the number of active periods since players may choose to withdraw, and therefore may

lower the contestants� expected highest and total e¤ort. However, we provide su¢ cient conditions under

which there always exist some non-trivial head starts that increase the expected total e¤ort. Furthermore,

we show that using head starts for any subset of contestants who play in the �rst n � 1 periods increases

the expected highest e¤ort. Hence, our analysis establishes a key role for head starts in sequential all-pay

auctions, particularly in sequential contests under incomplete information.

The rest of the paper is organized as follows: Section 2 presents the two-player sequential all-pay auc-

tion. Section 3 presents the general form of the n-player sequential all-pay auction. Sections 2 and 3 also

characterize the unique sub-game perfect equilibrium with and without head starts and provide conditions

8When the head starts are relatively large so that they play the role of a winning bid, our sequential all-pay auctions are

related to sequential second price auctions with a buy price (see, e.g., Milgrom 2003) in which buyers arrive one after the other

without knowing their place in the queue. When a bidder arrives, he can either buy the object at the publicly announced "buy

price" and end the auction, or place a bid lower than the buy price. If no bidder takes the buy price a second price auction

determines the outcome.
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under which the use of head starts improves the contestants�performance. Section 4 concludes. All proofs

are in the Appendix.

2 The two-player model

We consider �rst a sequential all-pay auction with two contestants where contestant 1 (the �rst mover)

makes an e¤ort in the �rst period, while contestant 2 (the second mover) observes the e¤ort of contestant

1 and then makes an e¤ort in the second period. Contestant 2 wins the contest if his e¤ort (x2) is larger

than or equal to the e¤ort of contestant 1 (x1); otherwise, contestant 1 wins. Both contestants�valuation

for the prize is 1. An e¤ort xi causes a cost xi
ai
where ai � 0 is the ability (or type) of contestant i which

is private information to i.9 Contestants�abilities are drawn independently. Contestant i�s ability is drawn

from the interval [0; 1] according to a distribution function Fi which is common knowledge. We assume that

Fi; i = 1; 2 has a positive and continuous density function F 0i > 0:

We begin the analysis by considering the equilibrium e¤ort function of contestant 2 in the second period.

We assume that if both contestants make the same e¤ort then contestant 2 is the winner. Therefore contestant

2 makes the same e¤ort as contestant 1 as long as his type a2 is larger than or equal to the e¤ort of contestant

1; otherwise he stays out of the contest. Formally, the equilibrium e¤ort of contestant 2 is given by:

b2(a2; a1) =

8>><>>:
0 if 0 � a2 < b1(a1)

b1(a1) if b1(a1) � a2 � 1

where we assume that contestant 1 uses a strictly monotonic equilibrium e¤ort function b1(a1). Contestant

1 with ability a1 chooses to behave as an agent with ability s that solves the following optimization problem:

max
s

�
F2(b1(s))�

b1 (s)

a1

�
(1)

The F.O.C. is then

a1F
0
2(b1(s))b

0
1(s)� b01(s) = 0 (2)

and the S.O.C. is

a1F
00
2 (b1(s))(b

0
1(s))

2 + a1F
0
2(b1(s))b

00
1(s)� b001(s) = a1F 002 (b1(s))(b01(s))2 < 0

9An equivalent interpretation is that ai is player�s i valuation for the prize and his cost is equal to his bid.
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Note that if F2 is convex, the S.O.C does not hold and then b1(a1) = 0 for all a1 is the solution of the

maximization problem (1). Thus, in the following we assume that F2 is concave (F1 is not necessarily

concave). Then the S.O.C. holds and in equilibrium, the maximization problem (1) must be solved by

s = a1: Thus we obtain that the equilibrium e¤ort of contestant 1 with type a1 is

b1(a1) =

8>><>>:
0 if 0 � a1 � ~a

(F 02)
�1
�
1
a1

�
if ~a � a1 � 1

(3)

where the cuto¤ ~a is de�ned by max
n

1
F
0
2(0)

; 0
o
. This cuto¤depends on the distribution of the second player�s

ability. If F
0

2 (0) is a �nite number then types 0 � a1 � ~a do not �nd it optimal to exert a positive e¤ort.

As was mentioned above, for the class of convex distribution functions we have ~a = 1 such that all types of

contestant 1 choose to stay out of the contest (in the following we will solve this problem by providing an

incentive, a head start, for contestant 1 to participate in the contest). However, if contestant 2�s distribution

function F2 is concave, we have a real competition in the sequential all-pay auction even without head starts.

The expected e¤orts of contestants 1 and 2 are

TE1 =

Z 1

~a

b1 (a1)F
0
1(a1)da1 =

Z 1

~a

(F 02)
�1(

1

a1
)F 01(a1)da1

TE2 =

Z 1

~a

 Z 1

b1(a1)

b2 (a2; a1)F
0
2(a2)da2

!
F 01(a1)da1

=

Z 1

~a

�
1� F2((F 02)�1(

1

a1
))

�
(F 02)

�1(
1

a1
)F 01(a1)da1

Note that contestant 2 makes the same e¤ort as contestant 1 or else makes an e¤ort of zero. Therefore the

expected highest e¤ort is equal to the expected e¤ort of contestant 1 and is given by

HE =

Z 1

~a

(F 02)
�1(

1

a1
)F 01(a1)da1 (4)

The expected total e¤ort is given by10

TE = TE1 + TE2 =

Z 1

~a

�
2� F2((F 02)�1(

1

a1
))

�
(F 02)

�1(
1

a1
)F 01(a1)da1 (5)

Example 1 Consider a sequential all-pay auction with two contestants whose abilities are distributed accord-

ing to the distribution functions F1(x) = F2(x) = x0:5. By (3), the equilibrium e¤ort function of contestant

10We assume that the contest designer does not discount the e¤ort in the second period. We discuss this generalization and

its implication in Section 5.
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1 in the sequential all-pay auction is

b1(a1) =
a21
4

for all a1 � 0

Therefore by (4) the expected highest e¤ort is given by

HE =

Z 1

0

a21
4

1

2
p
a1
da1 = 0:05

and by (5) the expected total e¤ort is

TE =

Z 1

0

 
2�

r
a21
4

!
a21
4

1

2
p
a1
da1 =

23

280
� 0:0821

In Example 1, the contestants�expected highest e¤ort as well as their expected total e¤ort are signi�cantly

lower than in the standard all-pay auction where both contestants simultaneously choose their e¤orts. In

the next subsection we change the rules of the sequential all-pay auction by adding head starts to improve

the contestants�performance in the contest.

2.1 Head starts

In our sequential all-pay auction, contestant 2 has an advantage over contestant 1 because of the timing

of their play. Thus, contestant 1�s e¤ort is relatively low and sometimes, depending on the distribution of

contestant 2�s abilities, will choose to stay out of the contest. In that case there is no real competition. Thus

we examine whether the players�performance can be enhanced by using a head start for contestant 1. By

introducing a head start we may also improve the inherent ine¢ ciency of the sequential all-pay contest. The

probability that contestant 1 with a high ability wins against contestant 2 with a low ability is higher with a

head start. We want the head start to be independent of the contestant�s e¤ort and therefore we introduce a

multiplicative head start. We therefore assume that contestant 2 will win the contest if his e¤ort x2 is larger

than or equal to tx1 where x1 is the e¤ort of contestant 1 and t is a constant larger than 1. The equilibrium

e¤ort of contestant 2 is then given by

�2(a2; a1) =

8>><>>:
0 if 0 � a2 < t�1(a1)

t�1(a1) if t�1(a1) � a2 � 1
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where we assume that contestant 1 uses a strictly monotonic equilibrium e¤ort function �1(a1). Contestant

1 with ability a1 chooses to behave as an agent with ability s that solves the following optimization problem:

max
s

�
F2(t�1(s))�

�1 (s)

a1

�
(6)

The F.O.C. is

a1F
0
2(t�1(s))t�

0
1(s)� �01(s) = 0

and the S.O.C. is

aF 002 (t�1(s))(t�
0
1(s))

2 + a1F
0
2(t�1(s))t�

00
1(s)� �001(s) = a1F 002 (t�1(s))(t�01(s))2 < 0

Thus, if F2 is concave, in equilibrium, the above maximization problem must be solved by s = a1: Then we

obtain the following condition

a1F
0
2(t�1(a1))t� 1 = 0

and the equilibrium e¤ort of contestant 1 with type a1 is

�1(a1) =

8>>>>>><>>>>>>:
0 if 0 � a1 � ba

1
t (F

0
2)
�1
�

1
ta1

�
if ba � a1 � a�

1
t if a� � a1 � 1

(7)

where ba is de�ned as maxn 1
tF 0

2(0)
; 0
o
and a� is the minimum between 1 and the solution to the following

equation

t�1(a) = 1) a� = min

�
1;

1

tF 02 (1)

�
Note that a� � â since a� = 1 or a� = 1

tF 0
2(1)

, while â is either zero or â = 1
tF 0

2(0)
and F 02 is a decreasing

function. Furthermore, if 1 � t � 1
F 0
2(1)

, then a� = 1 and only when t > 1
F 0
2(1)

does there exist a cuto¤ type

0 < a� < 1 and an interval of types a� � a1 � 1 who exert the e¤ort b1 (a�) = 1
t and win for sure (this serves

as a winning bid).

The expected e¤orts of contestants 1 and 2 are given by

TE1(t) =

Z a�

â

1

t
(F 02)

�1(
1

a1t
)F 01(a1)da1 +

Z 1

a�

1

t
F 01(a1)da1

TE2(t) =

Z a�

â

�
1� F2((F 02)�1(

1

a1t
))

�
(F 02)

�1(
1

a1t
)F 01(a1)da1
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The expected total e¤ort is therefore

TE(t) = TE1(t) + TE2(t) (8)

=

Z a�

â

�
1

t
+ 1� F2((F 02)�1(

1

a1t
))

�
(F 02)

�1(
1

a1t
)F 01(a1)da1 +

Z 1

a�

1

t
F 01(a1)da1

Note that the expected e¤ort of contestant 1 is not always higher than the expected e¤ort of contestant 2

as was the case without a head start and therefore the expected highest e¤ort is not equal to the expected

e¤ort of contestant 1. The expected highest e¤ort is given by

HE(t) =

Z 1

0

Z 1

0

max f�1 (a1) ; �2 (a2; a1)gF 02 (a2) da2F 01 (a1) da1 (9)

=

Z a�

â

�
F2((F

0
2)
�1(

1

a1t
))

�
1

t
(F 02)

�1(
1

a1t
)F 01(a1)da1 (10)

+

Z a�

â

�
1� F2((F 02)�1(

1

a1t
))

�
(F 02)

�1(
1

a1t
)F 01(a1)da1 +

Z 1

a�

1

t
F 01(a1)da1

The �rst term describes those types of contestant 2 who choose to stay out of the contest (0 � a2 < t�1(a1))

in which case the highest e¤ort is equal to that of contestant 1, �1 (a1) =
1
t (F

0
2)
�1( 1

a1t
). The second term

describes those types of contestant 2 who equalize the e¤ort of contestant 1 multiplied by t in which case

the highest e¤ort is equal to t�1 (a1) = (F
0
2)
�1( 1

a1t
). The last term describes those types of contestant 1 who

win for sure by choosing the winning bid.

Below we discuss the equilibrium behavior of the contestants when the distribution function of contestant

2�s types is convex rather than concave (again, there is no restriction on the distribution of contestant 1�s

types). When F2 is convex and a head start t > 1 is given to contestant 1 then the equilibrium e¤ort of

contestant 2 is once again

�2(a2; a1) =

8>><>>:
0 if 0 � a2 < t�1(a1)

t�1(a1) if t�1(a1) � a2 � 1

while the equilibrium e¤ort of contestant 1 is given by

�1 (a1) =

8>><>>:
0 if 0 � a1 < 1

t

1
t if 1

t � a1 � 1

Note that when F2 is convex and a head start is given to contestant 1 some of contestant 1�s types participate

in the contest. In this case the expected total e¤ort and the expected highest e¤ort are the same and are

both equal to contestant 1�s expected e¤ort. The optimal head start it then t that maximizes 1t
�
1� F1

�
1
t

��
.
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Example 2 Consider a sequential all pay auction with two contestants where F1(x) = F2(x) = x0:5. By

(7), the equilibrium e¤ort function of contestant 1 is given by

�1(a1) =

8>><>>:
1
t (F

0

2)
�1( 1

a1t
) =

ta21
4 if 0 � a1 � min

�
2
t ; 1
	

1
t if min

�
2
t ; 1
	
< a1 � 1

The expected total e¤ort is given by

TE =

Z minf 2t ;1g

0

�
a21t

4

�
1

2
p
a1
da1 +

Z 1

minf 2t ;1g

�
1

t

�
1

2
p
a1
da1

+

Z minf 2t ;1g

0

 Z 1

a21t
2

4

�
a21t

2

4

�
1

2
p
a2
da2

!
1

2
p
a1
da1

The following �gure presents the expected total e¤ort as a function of t.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

t

TE

The optimal head start that yields the highest expected total e¤ort in the sequential all-pay auction is therefore

ttotal =
7

4

�
199� 5

p
1561

�
= 2: 541 9

and the expected total e¤ort is then

TE(ttotal) = 0:16492

The expected highest e¤ort is

HE =

Z minf 2t ;1g

0

0@Z a21t
2

4

0

�
a21t

4

�
1

2
p
a2
da2 +

Z 1

a21t
2

4

�
a21t

2

4

�
1

2
p
a2
da2

1A 1

2
p
a1
da1

+

Z 1

minf 2t ;1g
1

t

1

2
p
a1
da1
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The following �gure presents the expected highest e¤ort as a function of t.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

t

HE

The optimal head start that yields the highest expected highest e¤ort in the sequential all-pay auction is

therefore

thigh =
1�

1
180

p
10
p
317 + 7

36

p
2
�
2
= 2: 894 5

and the expected highest e¤ort is then

HE(thigh) = 0:1468

From Examples 1 and 2 we can see that the optimal head start signi�cantly increases the contestants�

expected highest e¤ort as well as their expected total e¤ort.

We now turn to examine the conditions under which a head start is e¢ cient in the sequential all-pay

auction, namely, those conditions on the distribution of the contestants�abilities that ensure that a head

start increases the expected highest e¤ort or the expected total e¤ort. The following condition is required

for establishing the e¤ects of a head start on contestant 1�s equilibrium e¤ort. Let h (a1) = (F 02)
�1
�
1
a1

�
represent the equilibrium e¤ort function of contestant 1 in the sequential all-pay auction without a head

start, when ~a � a1 � 1.

Condition 1 The function h (a1) is strictly convex for all ~a � a1 � 1:
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If Condition 1 is satis�ed11 , any head start t close to 1 increases the expected e¤ort of contestant 1 since

then, for t > 1 and ~a � a1 � 1 we have b1 (a1) < 1
t b1 (ta1) = �1 (a1). Given that without any head start, the

expected highest e¤ort is equal to the expected e¤ort of contestant 1, we obtain the following result about

the positive e¤ect of head starts on the expected highest e¤ort in the contest.

Proposition 1 If Condition 1 holds, then the expected highest e¤ort in the two-player sequential all-pay

auction with a head start 1 < t � 1
F 0
2(1)

is higher than the expected highest e¤ort in the sequential all-pay

auction without any head start.

Proof. See Appendix.

Now we examine the e¤ect of head starts on the expected e¤ort of contestant 2. On the one hand, the

e¤ort of every type of contestant 1 increases when a head start is given and therefore contestant 2 should

also increase his e¤ort if he wants to win the contest. But, on the other hand, by giving a head start to

contestant 1, low types of contestant 2 will prefer to stay out of the contest since the minimal e¤ort which

is required from them in order to win is relatively high.

The following conditions are required for establishing the e¤ect of a head start on the e¤ort of contestant

2.

Condition 2 The function G (x) = (1� F2 (x))x is concave.12

Condition 3 The highest equilibrium e¤ort of contestant 1 (the e¤ort of type a1 = 1) in the contest without

a head start is lower than x� = argmaxx2[0;1]G (x). Formally,

b1 (1) = (F
0
2)
�1
(1) < x�

Using conditions 1, 2 and 3 we obtain a positive e¤ect of relatively small head starts on the expected

e¤ort of contestant 2 as well.
11Note that if this condition holds then the density function F 02 (x) is convex. This follows by taking the derivative w.r.t. a of

both sides of the equality F 02 (h (a)) =
1
a
. We get �a2F 002 (h (a))h0 (a) = 1. Taking the derivative w.r.t. a of both sides of this

equality and rearranging yields the following equality h00 (a) = (2F 002 (h(a))+aF
000
2 (h(a))h0(a))h0(a)

�aF 002 (h(a))
and since by our assumptions

F 002 (h (a)) < 0 and h
0 (a) > 0 we conclude that h00 (a) > 0) F 0002 (h (a)) > 0:

12The failure (or hazard) rate of F is given by the function � (x) � F 0 (x) = [1� F (x)] : F is said to have an increasing failure

rate (IFR) if � (x) is increasing in x. The IFR condition implies Condition 2.
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Proposition 2 If Conditions 1,2 and 3 hold, then for t > 1 su¢ ciently close to 1, the expected e¤ort of

contestant 2 increases in t:

Proof. See Appendix.

Note that all the three conditions 1,2 and 3 hold for a large class of distribution functions including,

for example, every concave distribution function of the form F (x) = x
 ; 0 < 
 < 1. The combination of

Proposition 1 and Proposition 2 yields the result that the use of a head start in the sequential all pay auction

is e¢ cient for a designer who wishes to maximize the expected total e¤ort.

Proposition 3 If Conditions 1,2 and 3 hold, then the expected total e¤ort in the two-player sequential all-

pay auction with a head start t > 1 which is su¢ ciently close to 1 is higher than the expected total e¤ort in

the two-player sequential all-pay auction without any head start.

By Proposition 3, a head start t > 1 that is su¢ ciently close to 1 increases the expected highest e¤ort

as well as the expected total e¤ort. However, we cannot conclude that the optimal head start for a designer

who wishes to maximize the expected highest or total e¤ort is close to 1. Note that for 1 < t � 1
F 0
2(1)

the

e¤ort of every type of contestant 1 is higher than in the contest without a head start. However, for t > 1
F 0
2(1)

the e¤ort of low types of contestant 1 is higher than in the contest without a head start but the e¤ort of the

high types in the contest with a head start is not necessarily higher than their e¤orts in the contest without

a head start. In this case, the head start serves as a winning bid and therefore some high types will choose

the winning bid but not any bid above it as they might have done without the head start. Nevertheless, as

we can see from Example 2, the optimal head starts (those that imply the highest expected total e¤ort and

the highest expected highest e¤ort) might be obtained for a head start satisfying t > 1
F 0
2(1)

although such a

head start does not necessarily increase the e¤ort of all possible contestants�types.

3 The n-player model

We consider now a generalized sequential all-pay auction with n > 2 contestants with a head start t � 1 (the

case of t = 1 will be referred to as a contest without a head start). In this generalized model, contestant

j; 1 � j � n; observes the e¤orts of contestants 1; 2; :::; j�1 in the previous periods and then makes an e¤ort
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xj at period j. Contestant j wins a prize equal to 1 i¤ xj � txi for all i < j and txj > xi for all i > j.13 In

the case without head starts (t = 1) contestant j wins if his e¤ort is larger than or equal to the e¤orts of all

the contestants in the previous periods and his e¤ort is larger than the e¤orts of all the contestants in the

following periods.

An e¤ort xi causes a cost xiai for contestant i, where ai � 0 is the ability (or type) of contestant i which is

private information to i. As previously, contestant i�s ability is drawn (independently of the other contestants�

abilities) from the interval [0; 1] according to a distribution function Fi which is common knowledge. We

assume that Fi has a positive and continuous density F 0i > 0; i = 1; 2; :::; n:

Note that contestant n faces the same problem as that of contestant 2 in the two-player model. Let

a�n = (a1; :::; an�1) then the equilibrium e¤ort of contestant n is given by

�n(an; a�n) =

8>><>>:
0 if 0 � an < maxj<n t�j(aj ; t; a1; :::; aj�1)

maxj<n t�j(aj ; t; a1; :::; aj�1) if maxj<n t�j(aj ; t; a1; :::; aj�1) � an � 1

We assume that contestant i; i = 2; :::; n � 1 uses a strictly monotonic equilibrium e¤ort function

�i(ai; t; a1; :::; ai�1). If contestant i observes an e¤ort �j (aj) for some j < i and t�j (aj) is higher than

his type, he will stay out of the contest. Otherwise, player i, i = 2; :::; n�1 with ability ai chooses to behave

as an agent with ability s to solve the following optimization problem:

max
s

�
Hi(t�i(s))�

�i (s)

ai

�
(11)

s:t �i (s) � t�j (aj) for all j < i

where

Hi (x) = �
n
j=i+1Fj (x)

Then, all types that �nd it optimal to participate (namely, ai � t�j (aj) for all j < i), but for whom

the constraint in the above maximization problem is binding, will exert the e¤ort of maxj<i t�j(aj). Let


i (t) = 
i (t; a1; :::; ai�1) = maxj<i t�j(aj ; t; a1; :::; ai�1). If Hi (x) is concave and 
i (t) � 1
t then contestant

13 If none of these coditions holds (i.e. there exists no player j such that xj � txi for all i < j and txj > xi for all i > j) then

there is no winner in the contest.
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i0s equilibrium e¤ort, i = 2; :::; n� 1 is given by

�i (ai; t; a1; :::; ai�1) =

8>>>>>>>>>><>>>>>>>>>>:

0 if 0 � ai < 
i
Hi(t
i)


i if 
i
Hi(t
i)

� ai < ai (t)

1
t (H

0
i)
�1
�
1
tai

�
if ai (t) � ai < !a i (t)

1
t if  !a i � ai � 1

(12)

where ai (t) is the solution to the following equation


i (t) =
1

t
(H 0

i)
�1
�
1

tai

�

and  !a i (t) is the minimum between 1 and the solution to the following equation

(H 0
i)
�1(

1
 !a it

) = 1

Note that ai =

i

Hi(t
i)
is the lowest type who gets a non negative expected payo¤ if she bids 
i. Moreover


i
Hi(t
i)

< ai (t) since for type ai (t) the expected payo¤ if she bids 
i is given by Hi(t
i)�

i
ai
and it is positive

since 
i =
1
t (H

0
i)
�1
�
1
tai

�
is the solution to this type�s maximization problem. However it is not necessarily

true here that ai (t) <
 !a i (t), and then the third range of (12) does not exist. Moreover it is also not

necessarily true that  !a i (t) < 1 and then the fourth range of (12) does not exist. Finally, if 1t < 
i then

contestant i0s equilibrium e¤ort, i = 2; :::; n� 1 is given by

�i (ai; t; a1; :::; ai�1) =

8>><>>:
0 if 0 � ai < 
i


i if 
i � ai < 1

Contestant 1 solves the same maximization problem as in the two-player model and therefore

�1(a1; t) =

8>>>>>><>>>>>>:
0 if 0 � a1 � a1 (t)

1
t (H

0
1)
�1
�

1
ta1

�
if a1 (t) � a1 �  !a 1 (t)

1
t if  !a 1 (t) � a1 � 1

(13)

where a1 (t) is de�ned as previously as max
n
0; 1

tH0
1(0)

o
and  !a 1 (t) is de�ned as min

n
1; 1

tH0
1(1)

o
:

The expected e¤ort of contestant 1 is then given by

TE1 (t) =

Z 1

0

�1(a1; t)F
0
1(a1)da1
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and the expected e¤ort of contestant i, i = 2; :::; n is given by

TEi (t) =

Z 1

0

Z 1

0

:::

Z 1

0

Z 1


i

�i(ai; t; a1; :::; ai�1)F
0
i (ai)daiF

0
i�1(ai�1)dai�1:::F

0
2(a2)da2F

0
1(a1)da1

The expected total e¤ort is therefore

TE (t) =
nX
i=1

TEi (t) (14)

For a given realization of the players�abilities a1; ::; an we de�ne

HE (t; a1; ::; an) = max
1�i�n

�i (ai; t; a1; :::; ai�1)

Then, the expected highest e¤ort is given by

HE (t) =

Z 1

0

Z 1

0

:::

Z 1

0

Z 1

0

HE (t; a1; ::; an)F
0
n(an)danF

0
n�1(an�1)dan�1:::F

0
2(a2)da2F

0
1(a1)da1 (15)

The following example illustrates the e¤ects of head starts in a three-player sequential all-pay auction.

Example 3 Consider a sequential all-pay auction with three contestants and Fi(x) = x0:5; i = 1; 2; 3. As-

sume that contestants 1 and 2 are given a head start t � 4. We have

H1 (x) = x
1
4

By (13), the equilibrium e¤ort of the �rst contestant is given by

�1(a1; t) =
1

t
(H 0

1)
�1
�
1

ta1

�
=
t
1
3 a

4
3
1

4
4
3

if 0 � a1 � 1

By (12), the equilibrium e¤ort of the second contestant for 1 � t � 2 is given by

�2 (a2; t; a1) =

8>>>>>><>>>>>>:
0 if 0 � a2 < t

1
6 a

2
3
1

4
2
3�

ta1
4

� 4
3 if t

1
6 a

2
3
1

4
2
3
� a2 < t

1
6 a

2
3
1

4
1
6

ta22
4 if t

1
6 a

2
3
1

4
1
6
� a2 � 1

For 2 � t � 2 87 = 2: 208 2 it is given by

�2 (a2; t; a1) =

8>>>>>>>>>><>>>>>>>>>>:

0 if 0 � a2 < t
1
6 a

2
3
1

4
2
3�

ta1
4

� 4
3 if t

1
6 a

2
3
1

4
2
3
� a2 < t

1
6 a

2
3
1

4
1
6

ta22
4 if t

1
6 a

2
3
1

4
1
6
� a2 � 2

t

1
t if 2

t � a2 � 1
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For 2
8
7 = 2: 208 2 � t � 4 we have several cases. If 0 � a1 � 4

t
7
4
then

�2 (a2; t; a1) =

8>>>>>>>>>><>>>>>>>>>>:

0 if 0 � a2 < t
1
6 a

2
3
1

4
2
3�

ta1
4

� 4
3 if t

1
6 a

2
3
1

4
2
3
� a2 < t

1
6 a

2
3
1

4
1
6

ta22
4 if t

1
6 a

2
3
1

4
1
6
� a2 � 2

t

1
t if 2

t � a2 � 1

and if 4

t
7
4
� a1 � 1 we have

�2 (a2; t; a1) =

8>><>>:
0 if 0 � a2 <

�
ta1
4

� 4
3

�
ta1
4

� 4
3 if

�
ta1
4

� 4
3 � a2 � 1

By (12) we also derive the equilibrium e¤ort of the third contestant. We have many di¤erent conditions. For

example, if 1 � t � 2 and 0 � a1 � 1 and 0 � a2 < t
1
6 a

2
3
1

4
2
3
then

�3 (a3; t; a1; a2) =

8>><>>:
0 if 0 � a3 <

�
ta1
4

� 4
3

�
ta1
4

� 4
3 if

�
ta1
4

� 4
3 � a3 � 1

while if 1 � t � 2 and 0 � a1 � 1 and t
1
6 a

2
3
1

4
2
3
� a2 < t

1
6 a

2
3
1

4
1
6
then

�3 (a3; t; a1; a2) =

8>><>>:
0 if 0 � a3 < t

7
3 a

4
3
1

4
4
3

t
7
3 a

4
3
1

4
4
3

if t
7
3 a

4
3
1

4
4
3
� a3 � 1

and many other sub cases as those. The following �gure presents the total e¤ort as a function of the head

start t.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

t

TE
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Thus, if we give a head start to contestants 1 and 2, the optimal head start that maximizes the expected total

e¤ort is

ttotal = 2:8401

and the highest expected total e¤ort is then

TE(ttotal) = 0:263 03

The following �gure presents the expected highest e¤ort as a function of the head start t.

1 2 3 4 5 6 7

0.08

0.10

0.12

0.14

0.16

0.18

0.20

t

HE

Thus, if we give a head start to contestants 1 and 2, the optimal head start that maximizes the expected

highest e¤ort is

thighest = 3:454 4

and the highest expected highest e¤ort is then

HE(thighest) = 0:217 40

The analysis of the expected total e¤ort as well as the expected highest e¤ort in this model with a head

start t > 1 is quite complicated since as we can see from the equilibrium analysis a head start which is

given to the contestant in period k a¤ects the equilibrium strategies of all consecutive contestants j � k:

Furthermore, in contrast to the model with two contestants, the use of a head start in the sequential all-pay

auction with n > 2 contestants may decrease the number of active contestants (those who choose to submit
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a positive bid) and therefore may decrease the contestants�expected total e¤ort and the expected highest

e¤ort. However, as we show in the following there are su¢ cient conditions on the distribution functions of

the contestants�types according to which the use of head starts is pro�table for a designer who wishes to

maximize the expected highest e¤ort as well as the expected total e¤ort in the sequential all-pay auction

with any number of contestants.

We �rst need a generalization of Condition 1.

Condition 4 The equilibrium e¤ort function of contestant i; i = 1; :::; n�1 in the sequential all-pay auction

without a head start (t = 1) given by (13) and (12) is strictly convex for all ai (1) � ai <  !a i (1) i.e. the

function hi (ai) = (H 0
i)
�1
�
1
ai

�
is strictly convex for all ai (1) � ai < !a i (1) and all 1 � i � n.

Using Condition 4 we can show our main result.

Theorem 1 If Condition 4 holds, then the expected highest e¤ort of the contestants in the sequential all-pay

auction with n players and a head start t > 1 su¢ ciently close to 1 is higher than the expected highest e¤ort

in the sequential all-pay auction without a head start.

Proof. See Appendix.

According to Theorem 1, if every contestant is given a head start with respect to his next opponent then

the expected highest e¤ort in the sequential contest with head starts is higher than in the sequential contest

without head starts. Moreover, by the proof of Theorem 1 this result holds even if a head start is given

only for a subset of the contestants. In the following, we will assume that the head start is not necessarily

given to all the contestants. In particular, we only give a head start to player n � 1: Then similarly to the

two-player model we assume the following conditions.

Condition 5 The function Gn (x) = (1� Fn (x))x is concave.

Condition 6 The equilibrium highest e¤ort of contestant n� 1 (the e¤ort of type an�1 = 1) in the contest

without a head start is lower than x�n = argmaxx2[0;1]Gn (x). Formally,

�n�1 (1) = (F
0
n)
�1
(1) < x�n

By the same arguments as in the proof of Proposition 3 we obtain
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Proposition 4 If Conditions 4,5 and 6 hold, then the expected total e¤ort in the sequential all-pay auction

with a head start to contestant n � 1, t > 1 which is su¢ ciently close to 1 is higher than the expected total

e¤ort in the sequential all-pay auction without a head start.

By Proposition 4, if a head start is given to contestant n � 1 only, the expected total e¤ort increases,

but obviously this is not the optimal allocation of head starts that maximizes the expected total e¤ort.

Furthermore, the optimal allocation of head starts may include di¤erent head starts for contestants according

to their timing of play.

4 Concluding remarks

We presented a model of sequential all-pay auctions in which contestants arrive one by one and where each

contestant observes the e¤ort of the previous contestants before making his e¤ort. We characterized the

equilibrium behavior of the contestants and derived expressions for the expected total and highest e¤orts.

Then we analyzed the implications of using a head start mechanism in which early contestants are favored

over later ones. These head starts, on the one hand, encourage early contestants to exert higher e¤orts

but, on the other, may cause later contestants to withdraw from the contest. We demonstrated that in

our model the allocation of head starts increases the expected highest e¤ort as well as the expected total

e¤ort. We assumed throughout that the contestants have asymmetric distribution functions for their types

Fi; i = 1; :::; n but are given the same head start t: It can be easily veri�ed that all the results in this paper

hold for asymmetric head starts ti; i = 1; :::; n as long as they are su¢ ciently close to 1.

The question of the optimal head start for the designer who wishes to maximize either the expected

total e¤ort or the expected highest e¤ort is a challenging problem but one that cannot be addressed in the

environment we deal with. The optimal head start can be explicitly calculated for only speci�c distribution

functions of the contestants�abilities, but not in general for all of them.

It is important to note that if we assume that the contest designer incurs some cost for each contestant,

either because of the discount of time or because of the cost of adding a new contestant, then the results

in this paper would still hold. In the two-player model, for example, the contest designer values more the
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e¤ort made in the �rst period and therefore he would want to increase the �rst mover�s expected e¤ort by

increasing the head start. Thus, we can show that every head start that increases the expected total e¤ort

or the expected highest e¤ort without any discount of time will also increase these terms when the second

mover�s e¤ort is discounted by some �xed factor between zero and one.

One direction for future research could consider the option to stop the sequential auction at any point

of time. The use of a such a "stopping rule" becomes especially crucial in contests in which adding a new

contestant is costly for the contest designer (either because time is costly or because bringing in a new

contestant involves a cost). In this context, one of the more complex research goals would be to �nd the

optimal stopping rule that maximizes the contestants�performance in an n-player sequential all-pay auction.

A Appendix

A.1 Proof of Proposition 1

The expected highest e¤ort in the two-player model without a head start is equal to contestant 1�s expected

e¤ort, while the expected highest e¤ort in the two-player model with a head start is larger than or equal to

contestant 1�s expected e¤ort. Thus, in order to prove that a head start increases the expected highest e¤ort

it is su¢ cient to show that a head start increases contestant 1�s expected e¤ort. However, what we actually

show is even stronger. In that for every type of contestant 1 who made a positive e¤ort when there was no

head start, this e¤ort increases when a head start is given. Therefore we show that

�1(a1) � b1(a1) for all 0 � a1 � 1 and 1 � t �
1

F 02 (1)

Note that if Condition 1 holds then since b1 (a1) is increasing in a1 and ~a � 0 then for all t > 1;

�1 (a1) =
1

t
(F 02)

�1
�
1

ta1

�
> (F 02)

�1
�
1

a1

�
= b1 (a1)

Likewise, the lowest type of contestant 1 who is active in the two-player model with a head start is lower

than the lowest active type of contestant 1 in the two-player model without any head start. Formally,
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ba = maxn 1
tF 0

2(0)
; 0
o
� ea = maxn 1

F 0
2(0)

; 0
o
for any t � 1: Thus, we have

�1 (a1) =
1

t
(F 02)

�1
�
1

ta1

�
> (F 02)

�1
�
1

a1

�
= b1 (a1) for all ea � a1 � 1

�1 (a1) =
1

t
(F 0)

�1
�
1

ta1

�
> b1 (a1) = 0 for all ba � a1 � ea

�1 (a1) = b1(a1) = 0 for all 0 � a1 � ba
and the expected e¤ort of contestant 1 with a head start t is higher than his expected e¤ort without any

head start. Q:E:D:

A.2 Proof of Proposition 2

The expected e¤ort of contestant 2 given an e¤ort �1 (a1; t) > 0 of contestant 1 is

E2(t; a1) = (1� F2 (t�1 (a1; t))) t�1 (a1; t)

The expected e¤ort of contestant 2 is then

TE2(t) =

Z 1

0

E2(t; a1)F
0
1(a1)da1 =

Z 1

ba E2(t; a1)F
0
1(a1)da1 > 0

The function t�1 (a1; t) = (F 02)
�1
�

1
a1t

�
is increasing in a1 as well as in t. By Condition 3 we know that

(F 02)
�1
(1) < x�. Therefore we obtain that, for t > 1 close enough to 1 and for all a1 � 1;

t�1 (a1; t) � t�1 (a1 = 1; t) = (F 02)
�1
�
1

t

�
< x�

Thus by Condition 2 we have

dE2(t; a1)

dt
> 0

So far we showed that for all types ba � a1 � 1 for which contestant 1 exerts a positive e¤ort the expected
e¤ort of contestant 2 increases in t as long as t is su¢ ciently close to 1. By Condition 1, the interval of types

of contestant 1 who exert a positive e¤ort increases in t, i.e., dbadt = d
dt max

n
1

tF 0
2(0)

; 0
o
� 0 and therefore, if t

is su¢ ciently close to 1 we established that

d

dt
TE2(t) =

d

dt

Z 1

0

E2(t; a1)F
0
1(a1)da1 =

d

dt

Z 1

ba E2(t; a1)F
0
1(a1)da1 > 0

Q:E:D:
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A.3 Proof of Theorem 1

By Condition 4, the function hi (ai) = (H 0
i)
�1
�
1
ai

�
is strictly convex and therefore, for t > 1 and i =

1; :::; n� 1 we have
1

t
(H 0

i)
�1
�
1

tai

�
> (H 0

i)
�1
�
1

ai

�
(16)

Denote the equilibrium e¤ort of contestant i with a type ai in the contest without any head start by

�i(ai; t = 1; a1; :::; ai�1) = bi(ai; a1; :::; ai�1) for i = 2; :::; n and by �1(a1; t = 1) = b1 (a1) ; then we have

Lemma 1 For t > 1 close enough to 1 if the equilibrium e¤ort of contestant i with a type ai is positive,

then this equilibrium e¤ort is higher than or equal to his equilibrium e¤ort in the contest without a head start

(t = 1). Formally, for i = 1 if a1 � a1 (t) then

�1(a1; t) � b1 (a1)

and for i = 2; :::; n if ai � 
i
Hi(t
i)

then

�i (ai; t; a1; :::; ai�1) � bi (ai; a1; :::; ai�1)

Proof: By (13) and (12) if t = 1 contestant i�s equilibrium e¤orts i = 2; :::; n� 1 are given by

bi (ai; a1; :::; ai�1) =

8>>>>>><>>>>>>:
0 if 0 � ai < 
i(1)

Hi(
i(1))


i (1) if 
i(1)
Hi(
i(1))

� ai < ai (1)

(H 0
i)
�1
�
1
ai

�
if ai (1) � ai � 1

(17)

Note that 
i (1) = maxj<i bj(aj ; a1; :::; ai�1): And

b1 (a1) =

8>><>>:
0 if 0 � a1 � a1 (1)

(H 0
1)
�1
�
1
a1

�
if a1 (1) � a1 � 1

While for t close enough to 1,
i (t) � 1
t and

�i (ai; t; a1; :::; ai�1) =

8>>>>>><>>>>>>:
0 if 0 � ai < 
i(t)

Hi(t
i(t))


i (t) if 
i(t)
Hi(t
i(t))

� ai < ai (t)

1
t (H

0
i)
�1
�
1
tai

�
if ai (t) � ai < 1
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and

�1(a1; t) =

8>><>>:
0 if 0 � a1 � a1 (t)

1
t (H

0
1)
�1
�

1
ta1

�
if a1 (t) � a1 � 1

For i = 1 since a1 (t) � a1 (1) the result follows from (16). We prove the rest of the lemma by induction on

i. For i = 2, if b1 (a1) = 0 then 
2 (1) = 0 and

b2 (a2; a1) =

8>><>>:
0 if 0 � a2 < a2 (1)

(H 0
2)
�1
�
1
a2

�
if a2 (1) � a2 � 1

where a2 (1) = max
n
0; 1

H0
2(0)

o
and if b1 (a1) = (H 0

1)
�1
�
1
a1

�
then 
2 (1) = (H

0
1)
�1
�
1
a1

�
and

b2 (a2; a1) =

8>>>>>>><>>>>>>>:

0 if 0 � a2 <
(H0

1)
�1� 1

a1

�
H2

�
(H0

1)
�1� 1

a1

��
(H 0

1)
�1
�
1
a1

�
if

(H0
1)

�1� 1
a1

�
H2

�
(H0

1)
�1� 1

a1

�� � a2 < a2 (1)
(H 0

2)
�1
�
1
a2

�
if a2 (1) � a2 � 1

where a2 (1) = 1

H0
2

�
(H0

1)
�1� 1

a1

�� . For t > 1 if �1(a1; t) = 0 then 
2 (t) = 0 and

�2 (a2; t; a1) =

8>><>>:
0 if 0 � a2 < a2 (t)

1
t (H

0
2)
�1
�

1
ta2

�
if a2 (t) � a2 < 1

where a2 (t) = max
n
0; 1

tH0
2(0)

o
and if �1(a1; t) =

1
t (H

0
1)
�1
�

1
ta1

�
then 
2 (t) = (H

0
1)
�1
�

1
ta1

�

�2 (a2; t; a1) =

8>>>>>>><>>>>>>>:

0 if 0 � a2 <
(H0

1)
�1� 1

a1

�
H2

�
t(H0

1)
�1� 1

a1

��
(H 0

1)
�1
�

1
ta1

�
if

(H0
1)

�1� 1
a1

�
H2

�
t(H0

1)
�1� 1

a1

�� � a2 < a2 (t)
1
t (H

0
2)
�1
�

1
ta2

�
if a2 (t) � a2 < 1

where a2 (t) = 1

tH0
2

�
t(H0

1)
�1� 1

ta1

�� .
We need to show that if a2 � 
2(t)

H2(t
2(t))
then

�2 (a2; t; a1) � b2 (a2; t; a1)

If 
2 (t) = 0 then since a1 (t) � a1 (1) if �1(a1; t) = 0 then b1 (a1) = 0 and then the lemma follows as before

from the fact that max
n
0; 1

tH0
2(0)

o
� max

n
0; 1

H0
2(0)

o
and (16). Otherwise 
2 (t) > 0.

Note that indeed it is always the case that

(H 0
1)
�1
�
1

ta1

�
> (H 0

1)
�1
�
1

a1

�
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since the bid function is increasing in a: However we might have either of the following inequalities

�a2 (1) < �a2 (t) or �a2 (1) > �a2 (t)

We need to show that for a2 �
(H0

1)
�1� 1

a1

�
H2

�
t(H0

1)
�1� 1

a1

�� we have �2 (a2; t; a1) > b2 (a2; a1). We consider two cases.
Case 1) If

(H0
1)

�1� 1
a1

�
H2

�
t(H0

1)
�1� 1

a1

�� � a2 < a2 (t) then either (H0
1)

�1� 1
a1

�
H2

�
t(H0

1)
�1� 1

a1

�� � a2 < a2 (1) or a2 (1) � a2 � 1. If
(H0

1)
�1� 1

a1

�
H2

�
t(H0

1)
�1� 1

a1

�� � a2 < a2 (1) then the lemma follows from �2 (a2; t; a1) = (H
0
1)
�1
�

1
ta1

�
> (H 0

1)
�1
�
1
a1

�
=

b2 (a2; a1). If a2 (1) � a2 � 1 then the lemma follows since in this range the constraint for player 2 is binding

and therefore �2 (a2; t; a1) = (H 0
1)
�1
�

1
ta1

�
> 1

t (H
0
2)
�1
�

1
ta2

�
> (H 0

2)
�1
�
1
a2

�
= b2 (a2; a1) where the last

inequality follows from (16).

Case 2) If a2 (t) � a2 � 1 then either a2 (1) � a2 � 1 or
(H0

1)
�1� 1

a1

�
H2

�
t(H0

1)
�1� 1

a1

�� � a2 < a2 (1). If a2 (1) � a2 � 1
then the lemma follows from (16). If

(H0
1)

�1� 1
a1

�
H2

�
t(H0

1)
�1� 1

a1

�� � a2 < a2 (1) then in this range �2 (a2; t; a1) =

1
t (H

0
2)
�1
�

1
ta2

�
� (H 0

1)
�1
�

1
ta1

�
> (H 0

1)
�1
�
1
a1

�
= b2 (a2; a1) :

Assume by induction that the lemma is true for all i = 2; :::; l � 1. We need to show that for all

al � 
l(t)
Hl(t
l(t))

we have �l (al; t; a1; :::; al�1) > bl (al; a1; :::; al�1). By the induction assumption, we know that

t�i (ai; t; a1; :::; ai�1) > bi (ai; a1; :::; ai�1) for i = 1; ::; l�1 and ai such that �i (ai; t; a1; :::; ai�1) > 0, therefore


l (t) > 
l (1). The inequality might be an equality only in the case where �i (ai; t; a1; :::; ai�1) = 0 for all

i < l but in this case the proof is similar to the proof of the second player. Thus we assume 
l (t) > 
l (1).

Similarly to the case of l = 2 we have two cases. Case 1) If 
l(1)
Hl(
l(1))

� al < al (t) then either


l(1)
Hl(
l(1))

� al < al (1) or al (1) � al � 1. If 
l(1)
Hl(
l(1))

� al < al (1) then the lemma follows from

�l (al; t; a1; :::; al�1) = 
l (t) > 
l (1) = bl (al; a1; :::; al�1). If al (1) � al � 1 then the lemma follows since in

this range the constraint for player l is binding and therefore �l (al; t; a1; :::; al�1) = 
l (t) >
1
t (H

0
l)
�1
�
1
ta;

�
>

(H 0
l)
�1
�
1
al

�
= bl (al; a1; :::; al�1) where the last inequality follows from (16). Case 2) If al (t) � al � 1 then

either al (1) � al � 1 or 
l(1)
Hl(
l(1))

� al < al (1). If al (1) � al � 1 then the lemma follows from (16).

If 
l(1)
Hl(
l(1))

� al < al (1) then in this range �l (al; t; a1; :::; al�1) =
1
t (H

0
l)
�1
�
1
ta;

�
� 
l (t) > 
l (1) =

bl (al; a1; :::; al�1) :�

We use Lemma 1 to prove the theorem. For a given realization of the contestants�abilities: a1; :::; an we

denote by HE (a1; :::; an) the highest e¤ort when t = 1. Notice that this e¤ort can be made by more than
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one contestant. Therefore we denote by j0 = j0 (a1;:::; an) the �rst (i.e. the lowest indexed) contestant that

makes this highest e¤ort. Formally, if l 2 argmax1�i�n bi (ai; a1; :::; ai�1) then l � j0.

It is su¢ cient to prove that when a head start t su¢ ciently close to 1 is given to the contestants, then

for any given realization the highest bid increases i.e.,

HE (t; a1; :::; an) = max
1�i�n

�i (ai; t; a1; :::; ai�1) > bj0 (ai; a1; :::; aj0�1) = HE (a1; :::; an)

Since HE (t; a1; :::; an) � �j0 (aj0 ; t; a1; :::; aj0�1) it is enough to show that

�j0 (aj0 ; t; a1; :::; aj0�1) > bj0 (aj0 ; a1; :::; aj0�1)

This last inequality was proved in Lemma 1 but only if �j0 (aj0 ; t; a1; :::; aj0�1) > 0: Thus, it remains to show

that �j0 (aj0 ; t; a1; :::; aj0�1) > 0 or equivalently that aj0 �

j0 (t)

Hj0(t
j0 (t))
. First note that we must have

bj0 (aj0 ; a1; :::; aj0�1) =
�
H 0
j0

��1� 1

aj0

�
and aj0 > aj0 (1)

Otherwise, either bj0 (aj0 ; a1; :::; aj0�1) = 0 (but then obviously this cannot be the highest bid), or bj0 (aj0 ; a1; :::; aj0�1) =


j0 (1) which contradicts the de�nition of j0 as the lowest indexed contestant who submits the highest e¤ort.

By (17)


j0 (1)

Hj0
�

j0 (1)

� � aj0 (1) < aj0 (18)

and from Lemma 1


j0 (1)

Hj0
�

j0 (1)

� < 
j0 (t)

Hj0
�
t
j0 (t)

� (19)

Moreover, since

lim
t!1


j (t)

Hj
�
t
j (t)

� = 
j (1)

Hj
�

j (1)

�
then by (18) and (19) we can �nd t > 1 close enough to 1 such that


j0 (1)

Hj0
�

j0 (1)

� < 
j0 (t)

Hj0
�
t
j0 (t)

� � aj0 (1) < aj0
Note that it might be the case that for all i < j0 we have bi (ai; a1; :::; ai�1) > 0 while �i (ai; t; a1; :::; ai�1) = 0

but in this case 
j0 (t) = 0 and obviously aj0 �

j0 (t)

Hj0(t
j0 (t))
. Q:E:D:
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