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Abstract

We introduce emotions into an equilibrium notion. In a mental equilibrium each player
“selects” an emotional state which determines the player’s preferences over the outcomes of
the game. These preferences typically differ from the players’ material preferences. The
emotional states interact to play a Nash equilibrium and in addition each player’s emotional
state must be a best response (with respect to material preferences) to the emotional states of
the others. We discuss the concept behind the definition of mental equilibrium and show
that this behavioral equilibrium notion organizes quite well the results of some of the most
popular experiments in the experimental economics literature. We shall demonstrate the role
of mental equilibrium in incentive mechaisms and will discuss the concept of collective
emotions, which is based on the idea that players can coordinate their emotional states.
Keywords: Games, Equilibrium, Behavioral Economics, Emotions

1 Introduction

The tension between rational behavior as predicted by a variety of game-theoretic
models and experimental results has been the focus of attention of both game theorists
and experimental economists. There are two sources of rationality incompleteness that are
responsible for many of the discrepancies between experimental observations and game-
theoretic predictions. The first source arises from the fact that many strategic interactions
are too complex for subjects in the lab (or outside the lab) to analyze. For example, subjects
typically fail to realize that in a second-price auction it is a dominant strategy to bid the true
valuation and choose an inferior strategy. The second source of discrepancy has little to do
with complexity. While understanding the strategic considerations perfectly, players fail
to maximize their own monetary rewards simply because the way they value the different
outcomes of the game may be inconsistent with the maximization of material rewards.
Games like ultimatum bargaining, the dictator game, and the trust game are well-known
examples of this sort. Over the last decade several interesting and important models have
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been developed that try to reconcile the discrepancy between experimental results and
game-theoretic predictions, without neglecting the idea that players behave strategically.
The common objective of these papers is to reevaluate the outcomes of the game for each
player, while taking into account emotional factors such as inequality aversion, spitefulness,
and envy, so that in the new set of utility functions the equilibrium behavior is closer to the
experimental observations (see Fehr and Schmidt (1999), and Bolton and Ochenfels (2000)).
The main challenge of this strand of literature is to identify the set of parameters that best
explains the experimental results and use these parameters to understand players’ motives in
the underlying games. A somewhat different approach was proposed by Rabin (1993) with
the concept of fairness equilibrium. Here the material payoffs are also altered to incorporate
fairness into the utility function. The measure of fairness depends on the players’ actions
and beliefs, which are determined in equilibrium.

In this paper we attempt to take a more general approach by recognizing the fact that
different strategic environments can give rise to different types of immaterial preferences
(that may represent fairness or inequality aversion but also envy, spite, and a variety of other
emotions) and that these immaterial preferences are rational in the sense that they promote
players’ material interests. We shall use the term mental state to represent these emotions?
as part of an equilibrium concept called mental equilibrium, which seems to organize the
experimental evidence for some of the most prominent examples quite well. Much of the
focus of our analysis will be on deriving players’ behavioral preferences endogenously
through the equilibrium conditions.

The concept of mental equilibrium can be described as follows. Each player, who
we assume seeks to maximize only his material/monetary payoffs, is assigned a mental
state. A mental state is simply a utility function over the outcomes of the game (i.e., the
set of strategy profiles) which is typically different from the material utility function. A
strategy profile s of the game is said to be a mental equilibrium if two conditions hold:
firstly, s has to be a Nash equilibrium with respect to players’ mental states. Secondly,
each player’s mental state is a best response to the mental states of the other players, given
his material and selfish preferences. We offer two valid interpretations for our equilibrium
concept. The first involves the idea of the evolution of norms and emotions. Essential to
our model is the fact that the benchmark preferences of a player are selfish and material. It
is reasonable to assume that fairness, anger, envy, and revenge, which play a role in many
game situations, have been developed through evolutionary forces to increase individuals’
fitness to the social environment in which they live. Our equilibrium concept can be viewed
as a theoretical foundation for the emergence of such emotions. We are not proposing
any specific evolutionary model to this effect, but conceptually mental equilibrium can be
viewed as a stability concept arising from an evolutionary proccess. Evolutionary selection
reinforces different mental states in different strategic environments, and material payoffs
in the game can be viewed as a measure of fitness. This interpretation is in line with the
indirect evolutionary approach proposed by Gueth and Yaari (1992).

The second interpretation of our equilibrium concept is that of rational emotions. In
strategic environments individuals may decide to be in a certain emotional state that serves
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their interest. Emotional states are often induced through cognitive reasoning whether in full
or partial awareness and are used as a commitment device. In order for the commitment to
be credible, the emotional state has to be genuine and not feigned®. To further explain this
point we suggest two thought experiments that demonstrate how emotions are triggered by
incentives. Imagine that you are informed at the airport that your flight has been canceled
and that you should report to the airline desk the next day. Consider the following two
scenarios: in scenario A you observe most of the passengers leaving the terminal quietly. In
scenario B you run across an acquaintance who tells you that he was rerouted to a different
flight after explaining to the airline employees, in a very assertive and determined manner,
that he has to arrive at his destination that day. If you decide to go to the desk and request a
similar treatment you are most likely to find yourself in a very different emotional state from
the one in which you would have been in scenario A. You are likely to exhibit signs of anger
quite quickly in scenario B; in fact, these won’t be mere signs, you will actually be angry.
You have been offered incentives to be angry and as a consequence you “choose” to be
angry. The example above suggests that in certain environments mental states can be thought
of as outcomes of a cognitive choice. We refer the reader to an experimental testing of
rational emotions by Winter et al. (2010), which shows that the objective emotional reactions
of receivers in a dictator game strongly depend on the presence of incentives. Under the
interpretation of rational emotions one can think of mental equilibrium as an equilibrium in
an amended game of credible commitments. The material payoffs here are standard payoffs
in a game and not a measure of evolutionary fitness. The two interpretations we propose
are very distinct. The evolutionary interpretation fit emotions which are global and robust,
while under the rational emotion interpretation they can be specific and fragile. However, we
shall be subscribing to both interpretations and will not argue in favor of one of them as we
believe that the appeal of each of these interpretations is context-dependent . In particular,
in explaining the foundation of emotional conventions and norms in vaguely defined games
and that are robust to whether players can see each other or not, the evolutionary approach
seems more appropriate (most “blind” experiments fall under this category). On the other
hand, the interpretation of rational emotions might be more relevant to situations that rely
on mutual eye contact and are strongly responsive to incentives. We point out that the
distinction between the two interpretations is akin to the recent distinction made by Aumann
(2009) between rule rationality and act rationality. In both interpretations, however, we view
emotions as a mechanism to promote self-interests.

Our concept of mental equilibrium can also be viewed as a model of endogenous
preferences. Players in our model select their preferences in view of their beliefs about the
preferences of those with whom they interact. The remarkable feature of this concept is that
while the choice of preferences is done from a self-centered point of view, the equilibrium
choice of preferences may give rise to nontrivial social preferences in which the players’
behavior is very far from that of a self-centered player. Indeed, in some of our examples we
shall restrict the set of mental states to include only preferences of inequality aversion as in
Fher and Schmidt (1999), and we shall be able to endogenously derive conditions on the
parameters of inequality aversion that mental states must exhibit in equilibrium.

3 A considearble body of recent papers in the psychology literature discusses the

conscious control and regulation of emotions (see Demasio et al (2000), Ochsner

and Gross (2005)). Tice and Bratslavsky (2000) suggest specific types of emotion control tasks (such as “getting into"
and "getting out of" emotions) and discuss their regulation strategies.



An implicit assumption that is built into the definition of mental equilibrium is that
players must have correct beliefs regarding other players’ mental states when playing a
game. This is a critical issue when trying to answer the question of how a mental equilibrium
emerges. It is of lesser importance if we treat the concept of mental equilibrium as a static
stability concept (like the Nash equilibrium). Nevertheless, there are two grounds on which
this assumption can be justified. Firstly, players’ choice of mental states involves some sort
of pre-play comunication game that we intentionally leave unspecified. Players signal their
mental state in this game through body movement, facial expression, voice intonation, and
other actions. One cannot exclude deception, but it makes sense to assume that the longer
and the more elaborate this pre-play game is, the less likely and the more costly it is for
players to manage a successful deception. But even without direct eye contact players may
still form consistent beliefs about the mental states of their counterparts. Just as with the
learning literature that explains how consistent beliefs leading to Nash equilibrium emerge,
it is conceivable that one can come up with a dynamic model that converges to consistent
beliefs about mental states. Such a model can rely on the intuition that by experiencing
identical or similar strategic environments over and over again players can learn quite a bit
about the function that maps strategic environments onto mental states. While interesting
and important in themselves, these learning and signaling models are beyond the scope of
this paper.

The relevance and importance of our concept can be judged by two criteria: firstly, the
extent to which the story behind the concept is appealing and makes sense and, secondly,
the extent to which the concept is capable of explaining puzzling experimental results,
particularly those at odds with standard game-theoretic concepts such as Nash equilibria or
subgame perfect equilibria. To this end we shall introduce a battery of well-known games
about which considerable experimental data has been collected and we shall compare the
set of Nash equilibria to the set of mental equilibria. As we shall show, every pure Nash
equilibrium is also a mental equilibrium (however, interestingly, the outcomes that emerge
in the experimental results of the games considered here very often correspond to mental
equilibria that are not Nash equilibria). In doing so we shall identify the mental states that
support various prominent experimental results as mental equilibria.

In addition to its relation to the literature on social preferences that we have discussed
above, our work is related and inspired by two other strands of literature. The first is
the literature on delegation pioneered by Fershtman, Judd, and Kalai (1990). This paper
discusses strategic environments in which players can choose delegates to play a game on
their behalf. By setting up the incentives to delegates properly, players can support strategic
outcomes that are not standard Nash equilibria (see also Fershtman and Kalai (1997) and
Bester and Sakovic (2001)). The second strand of literature concerns papers that discuss
the evolutionary foundation of preferences. Gueth and Yaari (1992) introduced a game of
cooperation between two players and showed how preferences for cooperation (which in
their model boils down to be the value of a parameter in the utility function) can emerge
through evolution (see also Gueth and Kliemt (1999)). This approach, known as the indirect
evolutionary approach, has also been used recently by Dekel, Ely, and Yilankaya (2007),
who develop a more general model than that of Gueth and Yaari (1992). They consider the
class of all two-person games and interpret their payoffs as objective measures of fitness.
They then endow players with subjective preferences over outcomes according to which



they assume players play Nash equilibria. To select for the “optimal preferences,” they
impose evolutionary conditions (of selection and mutation). Several other papers use the
indirect evolutionary approach in specific economic environments, such as Bergman and
Bergman (2000) in the context of bargaining, Gueth and Ockenfels (2001) in the context
of legal institutions, and Fershtman and Heifetz (2006) in the context of elections and
political competition. Our paper departs from the two strands of literature discussed above
in motivation, interpretation, and formal modeling. Our objective is to study the role of
emotions in strategic decision-making. Accordingly, much of our attention will be given to
identifying the mental states that support specific strategic outcomes. We shall compare our
model with experimental observations and argue that it well organizes laboratory evidence
from several well-known experiments. In doing so we shall specify the mental states that
support various prominent experimental outcomes. In terms of formal modeling our model
differs from those used in the literatures discussed above. It is more general in that it deals
with the class of all games and with an arbitrary number of players. Mental states in our
model differ from delegates in the Fershtman et al. paper in the sense that they induce no
costs to the players (although one can think of a framework in which they can). Motivated
by the idea of rational emotions we do not specify evolutionary conditions for stability.
Instead, our model involves two levels of equilibrium conditions. One level involves the
mental game in which the payoffs are derived from players’ mental states (emotions) and the
other level involves the selection of players’ mental states to maximize material preferences.
At each of these levels agents are assumed to play Nash equilibria. As a consequence of
the fact that the Nash equilibrium conditions for the selection of emotions are less stringent
than Dekel et al.’s (2007) evolutionary conditions, our set of mental equilibria is typically
larger than the set of stable outcomes a la Dekel et al. (2007) and other related papers, and
our model admits a (pure) mental equilibria for any game. Finally, we expand the scope
of applications by defining mental equilibrium variants to other solution concepts (beyond
Nash equilibrium) including subgame perfect equilibrium and strong Nash equilibrium.

In Section 2 we continue with the formal definition of mental equilibrium. We start with
the simplest model where mental states are assumed to play only pure strategies. In Section
3 we provide a useful characterization of mental equilibria in two-person games, which
we later use to study mental equilibria in some prominent games for which experimental
results have been accumulated. We then reflect on the mental states that support outcomes
that are observed in the laboratory. In Section 4 we discuss the consequence of restricting
the set of mental states, using the set of preferences of inequality aversion as our domain of
mental states. We then show how mental equilibrium can endogenously derive parameters
of inequality aversion for some prominent games.

We devote Section 5 to a discussion of the role of mental equilibrium in the context
of contracting and incentive mechanisms, using a simple model of moral hazard in
teams. Our main observation here is that the cost of implementing effort under mental
equilibrium is much less than the cost under Nash equilibrium and is in fact equivalent to
the cost of implementing effort in a sequential mechanism where players operate under full
transparency regarding peers’ effort. This is due to the fact that the extra incentive to exert
effort that emerges from the threat of retaliation by peers, when transparancy is available, is
internalized at the level of mental states even when no transparency is available.

Sections 6 and 7 deal with a model of mental equilibrium in which mental states can use



mixed strategies. This model is motivated in Section 6 by showing that for games with four
or more players the standard concept of mental equilibria (based on pure strategies) loses
its predictive power, since any strategy profile in such games is a mental equilibrium. This
follows from the fact that for some choices of mental states by the players the corresponding
mental game may possess no pure Nash equilibrium. We study properties of this amended
concept of mixed mental equilibrium and apply it to the game of voluntary contributions
(the n-person Prisoner’s Dilemma). We show that in a mental equilibrium either no one
contributes or the set of contributors is sufficiently large. These equilibria are supported

by very intuitive mental states in which players experience substantial disutility when they
contribute alone or together with a small group of contributors. In Section 8 we discuss
collective emotions. These emotions emerge through coordination within a group to enhance
the rational role of emotions as a commitment device. Our definition and analysis here builds
on Aumann’s (1959) notion of strong equilibrium. Strong mental equilibrium, which is our
main concept here, uniquely selects cooperation in the Prisoner’s Dilemma, quite differently
than anything else in the plethora of game-theoretic solution concepts. We conclude in
Section 9.

2 Basic Definitions

In the first part of this paper we shall assume players (in all their mental states) play only
pure strategies. Later we shall expand the model by allowing the mental game to involve
also mixed strategies. As we shall see, these two models are not nested. The pure strategy
model, while simpler to use for applications, is more limited in its predictive power for
games with more than two players.

Let G = (N, S,U) be a normal form game where N is the set of players,

S =51 x8,, ..., xS, is the set of strategy profiles for the players, and U = Uy, ...,U,
are the players’ utility functions over strategy profiles. We refer to U; as the benchmark
(selfish/material) utility function of the players and use u; to represent the mental states’
utility functions. A profile of mental states is denoted by u = wuy, ...., u,,. For a given game
G we denote by N E(G) the set of Nash equilibria of the game G.

Definition: A mental equilibrium of the game G = (N, S, U) is a strategy profile s € S
such that for some profile of mental states « the following two conditions are satisfied:

(1) s € NE(N, S, u).

(2) There exist no player ¢, a mental state «;, and a strategy profile s’ € NE(N, S,
ul, u—;) With U; (s") > U;(s).

Condition 1 in the definition of mental equilibrium requires that once the mental states
have been determined, the players’ interaction will result in a Nash equilibrium. Condition
2 requires that the players’ mental states be chosen rationally with respect to their material
preferences. We proceed with the following basic observation:

Observation 1: Any pure strategy Nash equilibrium s of a game is also a mental
equilibrium. To see that this is the case, choose for each player a mental state whose payoff
is such that s; is a strictly dominant strategy in the game. Clearly, s is an equilibrium in
the mental game. Suppose that player i assigns a different mental state. Clearly, in the new
mental game all other players will stick to their dominant strategy. Since s; is a best response



to s_; with respect to player i’s material preferences (since s is a Nash equilibrium), player 4
cannot be any better off by assigning a different mental state. It is interesting to note (as we
shall show later) that observation 1 does not hold for mixed strategy Nash equilibria.

3 Two-Person Games

In this section we offer a simple characterization for the set of mental equilibria in
two-person games, which will prove useful for various applications. In any Nash equilibrium
each player attains at least his maxmin value. Proposition 1 asserts that this property is both
a necessary and sufficient condition for (pure) mental equilibria in two-person games.

Proposition 1: Let G be a two-person game; then s € S is a mental equilibrium if and
only if U;(s) > max,, min,; U;(s;, s;) where i = (1,2) and i # j.

We show in the Appendix that Proposition 1 does not apply to three-person games and in
fact neither of the two directions of the proposition holds true.

Proof : Let v; and v, be the maxmin values of players 1 and 2 respectively with s;
and s being the maxmin strategies. We first show that any mental equilibrium must yield
each player at least v;. Assume by way of contradiction that there is a mental equilibrium
s such that at least one of the players, say player 1, earns less than v;. Suppose that s is
supported as a mental equilibrium with the mental states u; and uo respectively. If instead of
uy player 1 deviates and chooses the mental state «} under which playing s; is a dominant
strategy, then in the resulting mental game (u}, us) there exists a pure Nash equilibrium
and all equilibria yield a payoff of at least v, for player 1. This contradicts the assumption
that s is a mental equilibrium, and proves one direction. We next argue that every profile
yielding at least the maxmin value for the two players is a mental equilibrium. For this we
construct the following mental game: Let s = (s1, s2) be a profile that yields each of the
two players at least his/her maxmin value. For the mental state of player 1 we set u;(s) = 1,
and uq (s}, s2) = 0 forall sj # s;. Furthermore, for every s, # s, there exists s} such
that Us(s), sb) < Us(s); otherwise the maxmin value of player 2 is greater than Uz (s),
which contradicts the definition of s. We now set u; (s}, s5) = 1 and w4 (s, s4) = 0 for
all st # s}. We now define the mental state of player 2 in a similar manner: uy(s) = 1,
and us(s1,s5) = 0 for all s, # so. Furthermore, for every s} # s; there exists sf, with
Ui (s}, sh) < Uy(s); otherwise the maxmin value of player 1 must be greater than U, (s),
which is impossible. We now have us (s}, s5) = 1 and us(s], s5) = 0 for all s # s,. We
can now show that s is a mental equilibrium of the game supported by u; and u,. Indeed,
s is clearly a Nash equilibrium under u, and us, as the mental game never has a payoff
of more than 1 for either player. To show that condition (2) in the definition of mental
equilibrium applies, note that if, say, player 1 changes his mental state to ), then a Nash
equilibrium of the new mental game (u}, u) must involve a strategy profile s’ such that
uz2(s") = 1. Otherwise the mental state of player 2 will deviate. But for such s’ we must have
Ui(s") < Ui(s), which implies that player 1 cannot make himself better off by changing
his mental state. The same argument applies to player 2 and we conclude that s must be a
mental equilibrium.



Proposition 1 almost immediately implies the existence of mental equilibrium for
two-person games:

Corollary 1: Every two-person game possesses a mental equilibrium.

Proof: Proposition 1 implies that it is sufficient to show that in any two-person game
there exists a strategy profile that pays each player at least his/her maxmin value. To show
this, let s} be a maxmin (pure) strategy for player 1, i.e., s| = arg max,, ming, U;(s1, s2)
and let s;, be a best response (pure) strategy to s}. Clearly, (s}, s) is the desired profile.
Player 1 gets paid at least his/her maxmin payoff per definition and for player 2 this holds
because a best response to any of player 1’s strategies must yield player 2 at least his
maxmin payoff.

Our definition of mental equilibrium relied on the assumption that players are optimistic
when contemplating deviations as it is enough that there exist at least one equilibrium in
the new mental game (after player 7 deviates) that player ¢ prefers to the original (putative)
equilibrium in order to trigger him to deviate. A more stringent condition on deviations
would require that player ¢ deviate only if all equilibria of the new mental game yield a
higher utility level. Since the conditions for deviations are stronger, this equilibrium notion
is weaker than the standard one. Formally:

Definition: A weak mental equilibrium of the game G = (N, S, U) is a strategy profile s
such that for some profile of mental states « the following two conditions are satisfied:

(1) s € NE(N, S, u).

(2) There exist no player ¢, and a mental state «/ such that NE(N, S, u},u_;) # & and
for every equilibrium,

s € NE(N, S, u},u_;) with U;(s") > U;(s).

Clearly, every mental equilibrium is a weak mental equilibrium, but we shall argue that:

Proposition 2: In two-person games the set of mental equilibria and the set of weak
mental equilibria coincide.

Proof: We have shown that the set of mental equilibria coincides with the set of all
strategy profiles that award each player at least his/her maxmin value. It is therefore enough
to show that any strategy profile that pays some player less than his/her maxmin value
cannot be a weak mental equilibrium. Indeed, suppose by way of contradiction that for
some profile s some player, say, player 1, gets a payoff x; that is less than his/her maxmin
value, and that s is a weak mental equilibrium supported by the mental states u = (uy, us2).
Let s; be the maxmin strategy of player 1. Consider a mental state «} under which s; is
a dominant strategy for player 1. Consider now the mental game ({1, 2}, S, (u} us2)). All
Nash equilibria of this game involve player 1 playing s; . Hence, player 1 gets at least
his/fher maxmin value (in the game G = (N, S, U)), but this contradicts the fact that s is a
weak mental equilibrium since player 1 is better off deviating under the condition imposed
by the definition of weak mental equilibrium.

A large body of experimental results has been obtained for two-person games.
Proposition 1 serves as a very useful tool for identifying the set of mental equilibria for such
games. We shall now discuss some of the most prominent examples of these games.

Example 1 The Prisoner’s Dilemma

We consider the game given by the matrix below. This is the Prisoner’s Dilemma game
with a unique Nash equilibrium using dominant strategies (D,D).



D 1,1 5,0
C 0,5 4,4

Observation 2: There are two mental equilibria in the Prisoner’s Dilemma game, (C,C)
and (D,D).

Proof: Players 1 and 2 can each guarantee that the other player gets no more than 1 by
playing the strategy D. Using Proposition 1 this means that (1,1) is a mental equilibrium.
Since (4,4) dominates (1,1) it is also a mental equilibrium. To show that (5,0) and (0,5) are
not mental equilibrium outcomes, note that a payoff of zero is less than the maxmin level
(which is 1). By Proposition 1, (D, C) and (D, C) are not mental equilibria.

It can be easily verified that the outcome (C, C') can be supported as a mental equilibrium
through the following mental states: u1(C, D) = us(C, D) = u1 (D, C) = us(D,C) = —1,
and u; = U; otherwise. Note that these mental preferences represent aversion to lack of
irreciprocity, i.e., both players suffer when one of them cooperates and the other one defects.

It is instructive to characterize the set of mental states that support the cooperative
outcome as a mental equilibrium in a general Prisoner’s Dilemma game. In fact we shall
characterize the set of mental states supporting cooperation for a larger class of games
which we call Cooperation Games. A two-person cooperation game is a game with two
strategies {D,C} for each player such that U, (D, C) > U, (C, C), Uy(C, D) > Uy (C, C)
and U;(C,C) > U;(D, D) for i = 1, 2. Every Prisoner’s Dilemma game is a cooperation
game but the set of Cooperation Games includes also all chicken games.

Observation 3: Let G = (N, S,U,Usz) be a Cooperation Game. Then (C,C) is a
mental equilibrium. Furthermore, a necessary and a sufficient condition for the mental
states (uq,ug) to sustain (C, C) as mental equilibrium in G is : u,(C,C) > uy(D,C),
ul(D, D) > ul(C, D) and UQ(C, C) > ’U,g(c, D), UQ(D, D) > UQ(D, C)

Proof: Consider first mental states (u,us) that satisfy the conditions above. It is
easily verified that (C, C) is a Nash equilibrium under these mental states. Furthermore,
in order for, say, player 1 to increase his material payoff, this player needs to deviate to a
mental state «} for which (D, C) is a Nash equilibrium under the payoff functions (v}, us).
But uz(D, D) > ue(D, C), which is a contradiction. So (C,C) is a mental equilibrium
supported by (u1,us). Consider now any profile of mental preferences (uy,us). First,
both the first and the third inequalities must hold. Otherwise, (C, C') cannot be a Nash
equilibrium under (u1, u2) (as player 1 would deviate if the first 1 fails and player 2 deviates
if the third one fails). Suppose that second inequality is violated, then the mental state of
player 2 is not optimal, as player 2 can be made better off (in terms of material preferences)
with the mental state w/, satisfying v, (C, D) > u4(C, C) as under (uq,u}) the outcome
(C, D) is a Nash equilibrium. Likewise if the fourth inequality fails to hold, then player 1
is better off deviating to v} with u} (D, C) > u}(C, C) and increase his material payoff as
under (u}, uz) the outcome (D, C)is a Nash equilibrium .

Observation 3 has the important implication that players’ mental states must have
the reciprocity-seeking property to sustain cooperation in any Prisoner’s Dilemma game.
This is an important insight that cannot be derived from standard game-theoretic solution
concepts. To elaborate on this point, we shall consider here two alternative types of
mental preferences—the first one involving altruism and the second based on inequality
aversion—to demonstrate that none of these can explain cooperation in the Prisoner’s
Dilemma.
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Starting with altruism we argue that mental preferences sustaining the cooperative
outcome cannot be of the form u; = «o;U; + 3;U;. Based on the payoff function in our
example above, these mental pereferences would result in the following mental game:

D C
D a;+pB.a0+08y aib,f55
C  B15,a2b 4(a1 + By),4(a2 + B)

For (C, C) to be an equilibrium in this mental game we need to have 4(as + 85) > Sas.
But this means that player 1 by sending a different mental state with «; = U; will be able to
sustain (D, C) as an equilibrium since 58, > ag + B,.

Note the difference between the social preferences given by u; = o;U; + 3;U; and the
one we used in Observation 2. The former represents a mental state with some degree of
altruism (if 5, > 0) or spitefulness (if 5, < 0). In contrast, the mental preferences that we
used to sustain (C, C') represent mental states with aversion to lack of reciprocity and they
sustain (C, C) regardless of the cardinal representation of the Prisoner’s Dilemma game.

We next discuss inequality aversion (a la Fehr and Schmidt (1999) or a la Bolton and
Ochenfels (2000)) and consider the following Prisoner’s Dilemma game:

D C
D 35,50 45,45
C 30,65 40,60

We point out that an inequality-averse mental state of player 1 must satisfy
u1(D,C) > u1(C,C). This is because (D, C) generates more (material) payoff for player
1, and involves more equality than the outcome (C, C'). Hence, given our discussion above,
there exists no profile of mental preferences that will support (C, C') as a mental equilibrium
in this Prisoner’s Dilemma game.

We conclude that aversion to lack of reciprocity can explain cooperation in every
Prisoner’s Dilemma game, but altruism, spitefulness, or inequality aversion cannot.

Example 2: The Chicken Game

Consider the following two-person game:

retreat  fight
retreat 1,1 -2,2
fight 2,—2 —10,-10

Observation 4: The game has three mental equilibria: the two Nash equilibria with the
outcomes (-2,2) and (2,-2) and another one which is the outcome (1,1). This can be easily
verified by using Proposition 1 and noting that the maxmin value for both players is -2.

Rapoport, Guyer, and Gordon (1976) have established experimental results for the
Chicken game by varying the payoff from (fight, fight). For this particular game they observe
an 87% probability of retreat and a 13% probability of fight. So the mental equilibria that
is not a Nash equilibrium is played with probability 75.6% more than the frequency of the
two Nash equilibria together. Substantial proportions of retreats have also been established
for much lower disutility levels from (fight, fight). It is interesting to note that the mental
preferences that sustain (retreat, retreat) as a mental equililibrium have the same form as
those we constructed for the Prisoners’ Dilemma, i.e., with players’ experiencing major
disutility whenever one of them fights and the other retreats.

Example 3: The Trust Game

Massive experimental data have been accumulating on the Trust game since Berg,
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Dickhaut, and McCabe (1995). In its most standard form the game can be described as
follows: Player 1 has an endowment of . He can make a transfer 0 < y < « to player 2. If
player 1 makes the transfer y, player 2 receives 3y. Player 2 can now reward player 1 with a
transfer of z < 3y. Finally, the payoff for player 1 is z — y + 3z and the payoff for player 2
is3y — z.

Observation 5: An outcome (a1, az) is a mental equilibrium outcome if and only if
a; > xand ay > 0.

Proof: Consider such an outcome (a1, as). Since a; > x player 2 can guarantee that
player 1 gets no more than a;. This can be done by transferring no money back to player
1 if player 2 received any money from player 1. Furthermore, it is clear that player 1 can
guarantee that player 2 receives no more than zero by simply making a zero transfer to
player 2. In view of Proposition 1, (a1, a2) is a mental equilibrium outcome. Consider a
mental equilibrium outcome (a1, as) such that either a; < x or as < 0. Then either player 1
or player 2 gets less than the maxmin value, which contradicts Proposition 1.

We note that the Trust game has a unique Nash equilibrium in which player 1 makes a
zero transfer to player 2. Observation 5 suggests that any level of trust displayed by player 1
coupled with a level of trustworthiness that compensates player 2 to at least the level of his
initial endowment can be supported by mental equilibria. We point out that experimental
results support a considerable level of trust by player 1 and a considerable reciprocity by
player 2 (see, e.g., Berg, Dickhaut, and McCabe (1995)). We shall return to this example
by restricting the set of mental states to include only Fehr and Schmidt (1999)-type utility
functions representing inequality aversion.

Example 4: The Centipede Game

The Centipede game is a sequential version of the trust game. The extensive form game,
presented in Figure 1, is a simple version of the Centipede game.

We recall that the Centipede game has a unique Nash equilibrium that results in player 1
choosing D in his first decision node. The set of mental equilibria is, however, larger.

Observation 6: In the game presented in Figure 1 all strategy profiles but the one leading
to the payoff outcome (0,2) are mental equilibria.

Proof: The maxmin value of player 1 is 1 (achieved by choosing D at the first node) and
it is zero for player 2 (player 1, by choosing D at his first node, can prevent player 2 from
getting more than zero). By Proposition 1, (0,2) cannot be a mental equilibrium outcome
because player 1 is getting less than his maxmin value. All other outcomes pay both players
at least their maxmin value and are therefore mental equilibrium outcomes.

The above observation can be easily extended to a general Centipede game. One might
find it intriguing that the second branch of the Centipede game can never be a mental
equilibrium. The intuition is however quite straightforward. If players assign mental states
for which this outcome is an equilibrium, then player 1 can deviate by assigning a different
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mental state with a utility function yielding an arbitrary large payoff for choosing D in the
first round by which he will guarantee a higher (material) payoff of 1 (instead of zero). This
argument does not apply for the outcome (3,1). This outcome can be supported by mental
states that assign the following payoffs to the terminal nodes of the game (from left): (0,1),
(0,2), (7,7), (0,0), and (0,0). Roughly speaking, any mental equilibrium outcome of the
Centipede game is supported by mental states in which players’ emotions are coordinated
to achieve cooperation up to a certain level of depth but not beyond. The fact that mental
equilibrium allows for outcomes in which players trust each other to move into the game
instead of opting out immediately is consistent with experimental results (see McKelvey
and Palfrey (1992)). Indeed, in these experimental results the second terminal node is also
reached with some propensity; however, in a different study by Nagel and Tang (1998)
where the centipede game was played in its normal form, the strategy profile with the lowest
propensity is either to exit at the second mode or to exit at the first node. Furthermore, in one
out of the five sessions the propensity of the second terminal node is substantially lower than
that of all other nodes. The second lowest is the first node, which is almost twice as frequent
as the second.

We now discuss our concept of mental equilibrium in the context of another prominent
game, the Ultimatum Bargaining game.

Example 5: The Ultimatum Game

The game involves two players. Player 1 has an endowment 1 from which he has to make
an offer to player 2. An offer is a number 0 < y < 1.

Player 2 can either accept the offer or reject it. If player 2 accepts the offer player 1
receives 1 — y and player 2 receives y. If player 2 rejects the offer both players receive a
payoff of zero. The subgame perfect equilibrium of the game predicts a zero offer by player
1, which is accepted by player 2. Massive experimental evidence starting with Gueth et
al. (1982) has however shown that player 1 makes substantial offers, with the mode of the
distribution being 50:50. To discuss the concept of mental equilibrium for this game we
first need to discuss the sequential/subgame perfect version of mental equilibrium. We shall
show that this concept has little bite if one is allowed to consider all mental states that will
motivate our interest in restricting the set of mental states in the next section. The following
is a natural definition of Mental Subgame Perfect Equilibrium:

Consider an n-person extensive form game G = (N, T, U) with perfect information,
where N is the set of players, T" is the game form defined by a tree, and U = Uy, ..., U,, are
payoff functions for players 1, 2, ..., n assigned to terminal nodes of the game. We denote
by SPE(G) the set of subgame perfect equilibria of the game G. We define the notion of
mental subgame perfect equilibrium:

Definition: A mental subgame perfect equilibrium of the game G is a strategy profile s
of GG such that for some profile of mental states « the following two conditions are satisfied:

(1) s € SPE(N,T,u).

(2) There exist no player 4, a mental state u/, and a strategy profile s’ €
SPE(N,T ) ’UJ_,‘) with Ui(S/) > U7(S)

) 27
As mentioned above, when the set of mental states from which players can choose is not
restricted, mental SPE loses much of its predictive power:
Observation 7: Take any extensive form game with perfect information G. Every Nash
equilibrium outcome of G is a mental SPE outcome of G.
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Proof: Let s be a Nash equilibrium of the game. We construct the following mental
(extensive form) game. For each player 7 choose a mental state u; in the following manner:
For each terminal node d of the game, u;(d) = 1 if and only if the path leading to d is
consistent with player i playing the strategy s;, i.e., at each decision node along this path
player i’s action is as specified by s; (note that d does not have to be part of the equilibrium
path of s). If the path leading to d is not consistent with s;, we take u;(d) = 0. The
construction described above can intuitively be thought of as making s; a dominant strategy
in the normal form version of the game. Unfortunately, we cannot work directly with
the normal form game as it has more strategies than the number of terminal nodes in the
extensive form game. We first argue that s constitutes a subgame perfect equilibrium in
the mental game based on a profile of mental states . This is done by backward induction
by noting that at each decision node if i has not yet deviated from s, then choosing to stay
with s would yield ¢ (using the induction hypothesis) a payoff of 1,while deviating from
s would get him zero. It is left to show that no player can unilaterally change his mental
state in such a way that the new mental game will possess a subgame perfect equilibrium
with a higher material payoff for this player. Suppose by way of contradiction that such a
mental state «/ exists, and consider the mental game based on (u} u_;).Again, by backward
induction all players j other than  must have SPE strategies that are consistent with their
s;. Let s/ be the SPE strategy of player ¢ in the new mental game. By assumption we have
U, (s}, s—;) > U;(s).But this cannot happen since s is a Nash equilibrium.

Subgame perfect equilibria are often described as Nash equilibria with credible threats.
Mental equilibria that are based on commitment can turn non-credible threats into credible
ones. This is the basic insight of Observation 7 and of the fact that a mental subgame perfect
equilibrium is not an effective refinement of mental equilibria. An alternative definition
would be to require that mental subgame perfect equilibrium induce a mental equilibrium on
every subgame*. Using a backward induction argument one can easily verify that in games
of perfect information the set of equilibria under this definition will coincide with the set of
subgame perfect equilibria (with the standard definition)®. In the Discussion section of this
paper we suggest an intermediate concept that allows players to change their mental state
during the course of the game, but the formal analysis is beyond the scope of this paper.
As we have seen, without restricting the set of mental states a mental SPE does not have
sufficient teeth in games of perfect information. Going back to the Ultimatum game we shall
show that restricting the set of mental states offers a much better insight into the game.

4 Restricting the Set of Mental States

Observation 6 implies that without restricting the set of mental states all allocations of
the unit of goods between the two players are sustainable as a mental SPE of the Ultimatum

4 Parallel to the definition of SPE which requires that it induce a Nash equilibrium on every subgame.

5 This is not the case for games with imperfect information. Consider for example the
two-player game in which player 1’s first choice is between “exit” and “enter.” If he chooses “exit” both players get 3.
If he chooses enter, they play the Prisoner’s Dilemma with the payoffs specified in Example 1. The game has a unique
SPE outcome, which is player 1 choosing exit. On the other hand a mental SPE
admits two equilibria: one in which player 1 chooses “exit” (expecting (D,D) to
be played if he “enters™) and another equilibrium in which player 1 enters and (C,C) is played in the subgame.
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game, since the set of Nash equilibrium outcomes covers the entire set of allocations.
We now wish to confine our attention to mental states that display inequality aversion as
characterized by Fher and Schmidt’s (1999) model. We shall start with the Ultimatum game
and then explore mental equilibria in this framework for other games. This analysis will
contribute to the debate conducted in the early nineties over the role of fairness in Ultimatum
games and games in general. Our objective in the analysis below is also methodological,
as it will show how standard models of social preferences can be incorporated into the
framework of mental equilibrium to offer further insight into experimental results.

To recall: in a two-person game each mental state of player 7 has a utility
function w;(x;,x;) over the allocations (z;, x;), which is of the following form:
wi(wi,x;) = x; — a;(z; — x;)T — Bi(x; — z;)t, where 2 = max(z,0),0 < 3; <1,
and a; > ;. oy represents the disutility from one’s opponent earning more than one, while
B, stands for the disutility arising from one getting more than one’s opponent. We shall
introduce a bound on the value of «; denoted by « so that («;, 8;) belong to the trapezoid
with the vertices (0, 0), (1,1), (af, 1), and (a7, 0).

Observation 8: There exists a unique mental subgame perfect equilibrium outcome for

the Ultimatum Bargaining game, which is (llj;f*, 1;;95&* ). Furthermore, as the bound o
2 2

goes to infinity the unique equilibrium outcome goes to (1/2, 1/2), which is the mode of the
distribution of accepted offers in experimental results on the Ultimatum game.

Proof: It is clear that player 1 will be no better off if he selects a mental state different
from the one with zero inequality aversion. Suppose that the mental state of player 1
offers the mental state of player 2 a payoff of less than 1/2, and assume that s, 3, are the
parameters of inequality aversion of player 2. Then the mental state of 2 will accept the
offer if and only if x5 — ca (1 — x2) > 00r 2y > 1+‘“22a2 ; the fact that the right-hand side is
increasing in a, and that the mental state of 1 can be assumed to be perfectly rational (has
preferences identical to the material preferences) implies that player 2 should be assigned a

mental state with maximal «, i.e., @5. This in turn implies that among the mental states in

the game the equilibrium outcome is (llj;f; , 1f2;a; ) and furthermore no player by changing
his mental state can generate a better SPE from his point of view. Finally, as a5 approaches
infinity the allocation approaches (1/2,1/2).

We conclude this section by revisiting the Trust game in the current framework where
the set of mental states includes only Fher and Schmidt (1999)-type utility functions. We
saw earlier that if we allow the set of mental states to include all utility functions, then
any outcome in which the sender makes some transfer (possibly zero) and the receiver
reimburses the sender for at least his cost can be supported by a mental equilibrium and
nothing else. In our framework here, as we shall show, there exists a unique mental
equilibrium, which yields the socially optimal outcome. In this equilibrium the sender sends
his entire bundle to the receiver and the receiver shares the amplified amount equally with
the sender.

Observation 9: Assuming that the set of mental states includes all inequality averse-type
utility functions, there exists a unique mental subgame perfect equilibrium in the Trust
game. In this equilibrium the sender sends = to the receiver and the receiver pays back %3: to
the sender.

Proof: Clearly, the sender cannot do better by having a mental state with a positive
inequality aversion because what counts is not the preferences of the sender but his action.
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The receiver’s best response to the sender’s mental state is to have a mental state with an
inequality aversion parameter /3 large enough so that it would make sense for the sender’s
mental state (whose preferences are identical to those of the sender) to transfer a positive
amount and thus induce the mental state of player 1 to transfer the entire bundle to player
2. Note that if 5 < 1/2, the sender’s mental state will make no transfer. On the other hand,
if 1/2 < 8 < 1, the receiver’s mental state will attempt to equalize his own payoff to that
of the sender’s mental state. Hence, the sender’s mental state is better off when he sends his
entire endowment and gets back %x

Interestingly, Observation 9 shows how the level of inequality aversion is determined
endogenously. In equilibrium the receiver’s mental state must have 8 between 1/2 and 1.

5 Implementing Effort with Mental Equilibrium

The concept of mental equilibrium has interesting implications in the context of
contracting and incentive mechanisms. This section attempts to demonstrate this in a simple
model of moral hazard. If emotions play a role in contractual environments, then a principal
who attempts to implement a desirable outcome through a contract or a mechanism may
wish to use mental equilibrium (rather then the standard Nash equilibrium) as the uderlying
solution concept. To demonstrate the consequences of this approach, we shall use the
following two-agent model that builds on Winter (2004), Winter (2006), and Winter (2009).

Two individuals cooperate on a project. Each individual is responsible for a single task.
For the project to succeed, both individuals must succeed at their task. Players can choose
to exert effort towards the performance of their task at a cost ¢ which is identical for both
agents. Effort increases the probability that the task succeeds from oo < 1 to 1. The principal
cannot monitor the agents for their effort nor can she observe the success of individual tasks.
However, she is informed about the success of the entire project. An incentive mechanism
is therefore given by a vector v = (v1, v9) With agent ¢ getting the payoff v, if the project
succeeds and zero otherwise (limited liability). Given a mechanism the two agents face a
normal form game G(v) with two strategies for each player: 0 for shirking and 1 for effort.
The principal wishes to implement effort by both players at a minimal expense; i.e., she is
looking for the least expensive mechanism under which there exists an equilibrium with
both agents exerting effort. In Winter (2004) it is shown that the optimal mechanism pays
each player ¢/(1 — «) when agents’ effort decisions are taken simultaneously. If agents
move sequentially (assuming that the second player observes the effort decision of the first),
then the optimal incentive mechanism pays +<to the second player, but the first player gets
1=, Which is less. Under this mechanism player 2 will exert effort if and only if player 1
does so. This generates an implicit incentive on the part of player 1 that allows the principal
to pay him less than he pays in the simultaneous case (and less than the payoff of player 2 in
the sequential case; see Winter (2006)). To model an environment in which the two agents
can monitor each other’s effort, we would need to split each agent’s task to n small sub-tasks
and introduce a game of alternating effort decision (i.e., player 1 decides on the effort of the
first sub-task, then player 2 decides on the first sub-task, then player 1 decides on the second
sub-task, etc.) To keep the accounting in line, we have to set the cost of effort on each
sub-task to be ¢/n, and the probability of success for each task (when no effort is exerted) to
be o'/™. It can be shown that in this environment, when the number of sub-tasks (the value
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of n) goes to infinity the optimal mechanism pays both players —-, which is what player
1 (the player whose effort is observable) gets in the standard sequential case ©. In fact, the
principal expenditure monotonically declines with the number of sub-tasks with the limit
being —%. Intuitively, the larger », the more agents have internal information about effort,
the larger is the implicit incentive to exert effort and the less the principal has to expend to
sustain effort. The equilibrium through which effort is being implemented with the optimal
mechanism is one based on reciprocity. Each player continues to exert effort as long as his
peer has done so as well. We shall now show that mental equilibrium implements effort with
the same limit mechanism (i.e., a payoff of ;== to each agent) even when agents move
simultaneously and have no feedback at all about each other’s effort.

Roughly, the reciprocity that builds up in the sequential mechanism (with multiple
sub-tasks) through the threat of shirking is sustained with a mental equilibrium in the
simultaneous case through mental states under which players experience aversion to
situations without reciprocity. Substantial experimental and empirical evidence points out
that workers in real organizations are very much endowed with these kinds of mental states.
They tend to tend to exert effort in response to effort by their peers also when such effort
does not pay off, but are reluctant to exert effort when detecting shirking by their peers (see

Ichino and Maggi (2000), Fischbacher, Gaechter, and Fehr (2001), Fehr and Falk (2002),

Falk and Ichino (2006)).

Observation 10: The optimal mechanism for sustaining effort under mental equilibrium
(in the Simultaneous Move game) is (=%, 757 )-

Proof: Consider any pair of mental states (u;,u2) for the two agents such that given
the action of player 4, player j # i’s best response is to imitate the action of player 4
(i.e., j prefers to exert effort if and only if 4 does so). We shall show that under v =
(%2, 75z ), effort by both players is a mental equilibrium (note however that it is
not a Nash equilibrium). Indeed, under the mental states specified earlier effort by both
players is a Nash equilibrium. We therefore need to check only the second equilibrium
condition. Assume w.l.0.g. that player 1 changes his mental state, thereby generating a Nash
equilibrium that he prefers with respect to his material preferences, and denote this mental
state by uf. It must be the case that under «) taking the same action as player 2 cannot be
the best response. Hence, either (1) v} (1,1) < }(0,1) or (2) w}(0,0) < w{(1,0) or both.
Furthermore, since the only strategy profile in which player 1’s material payoff improves
is the one in which player 1 shirks and player 2 exerts effort; this profile must be a Nash
equilibrium in the new mental game with the preferences (v}, u2). This means that (1)
must hold. But if (1) holds, player 2’s mental state u» must be such that exerting effort is
a dominant strategy. But this contradicts the property of u, as specified at the beginning
of the proof. This contradiction rules out that player 1 or player 2 can be made better off
by changing their mental s