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Abstract

This paper deals with an incomplete relation over events. Such a relation

naturally arises when likelihood estimations are required within environments that

involve ambiguity, and in situations which engage multiple assessments and disagreement

among individuals’ beliefs. The main result characterizes binary relations over

events, interpreted as likelihood relations, that can be represented by a unanimity

rule applied to a set of prior probabilities. According to this representation an event

is at least as likely as another if and only if there is a consensus among all the priors

that this is indeed the case. A key axiom employed is a cancellation condition,

which is a simple extension of similar conditions that appear in the literature.
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1 Introduction

1.1 Motivation and Background

Estimating the odds and comparing the likelihood of various events are essential parts of

processes carried out by many organizations. For instance, the US intelligence community

produces National Intelligence Estimates, in which the likelihood of various events is

assessed. Questions such as, ‘Is it more likely that democracy will prevail in Libya, or that

a military regime will be established?’, and the like, seem natural to ask. These questions

and many others call for likelihood comparisons of different events. Other examples in

which probabilistic estimates are used include forecasts published by central banks, that

address issues such as the odds of inflation or recession, assessments of market trends

supplied by committees of experts, estimated likelihood of natural events such as global

warming, that are based on individual opinions of scientists and on many experiments,

and so forth. In all these instances, statements of the type ‘event A is more likely than

event B’ seem fundamental to the respective context.

Typically, assessments of the kind given above rely on ‘objective’ data, such as reports

of military movements, temperature measurements and the like. Such assessments are

usually intended to be based as closely as possible on the data, in order to be considered

‘objective’. Frequently, though, the events examined involve some degree of ambiguity.

Knowledge or available information might be insufficient to determine which of two events

under consideration is more likely. For example, due to insufficient or conflicting data

about customers’ preferences, a committee of experts might be unable to determine which

of the smart phones and the tablet PCs markets will grow more rapidly in the next

few years. A likelihood relation in such situations might therefore leave the comparison

between some pairs of events unspecified. A question arises, as to what kind of probabilistic

representation, if any, may describe such likelihood relations, and reflect indeterminacy

with regard to some pairs of events.

The Bayesian approach suggests that an individual’s likelihood relation over events can

be represented by a prior probability measure. This probability is subjective in nature, as

it emerges from subjective likelihood comparisons. Ramsey (1931), de Finetti (1931,1937),

Savage (1954), and others who followed in their footsteps, introduced conditions on a

binary relation over events that characterize when it may be represented by a prior

probability. However, situations in which some events are incomparable cannot be captured

by a single prior probability, as a single probability determines likelihood order between
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any two events.

Arguments that question the validity of the completeness assumption of preference

relations, are by now well-known. Von Neumann and Morgenstern (1944) already doubted

that an individual can always decide from among all alternatives. Aumann (1962) stated

that ‘of all the axioms of utility theory, the completeness axiom is perhaps the most

questionable’, and doubted completeness on descriptive as well as normative grounds.

In later models, involving alternatives with unknown probabilities, completeness was

challenged based on ambiguity considerations. The leading rationale was that when the

decision situation is unclear (due, for instance, to lack of information) an individual might

be unable, or unwilling, to make decisions among some alternatives. In most of these

models, ambiguity was reflected in a difficulty to assess probabilities and choose one prior

probability to describe the decision maker’s belief. As a result, belief was represented by

a set of prior probabilities. Those models that are closely related to the current work are

further discussed in subsection 1.4 below.

For the same reasons of ambiguity, an individual may decline to decide between some

pairs of events and prefer to consider them incomparable. It is therefore reasonable to

assume that a likelihood relation over events is incomplete.

1.2 Subjective multi-prior probability

This paper proposes a characterization of a subjective probability, which differs from the

aforementioned classical works. Here, completeness is not assumed. The paper formulates

conditions on a binary relation over events, that are necessary and sufficient for the relation

to be represented by a set of prior probabilities. This set of priors should be considered

subjective, as it emerges from subjective likelihood comparisons.

The nature of the representing set of priors is that one event is considered at least

as likely as another, precisely when all the priors in the representing set agree that this

is the case. When the representing set contains at least two non-identical priors, there

always exist two events over which there is no consensus among the priors. Hence, the

likelihood order induced by two or more different priors is necessarily incomplete.

Formally, let % denote a binary relation over events, where A % B for events A and

B is interpreted as ‘A is at least as likely as B’. The main theorem of the paper introduces

necessary and sufficient conditions (‘axioms’) on % that guarantee the existence of a set
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of prior probabilities, P , for which,

A % B ⇔ µ(A) ≥ µ(B) for all µ ∈ P . (1)

When this happens it is said that the ‘at least as likely as’ relation has a subjective

multi-prior probability representation.

The representing set of prior probabilities is not necessarily unique. This is the reason

why reference is made to the maximal, w.r.t. inclusion, representing set of priors. In the

case of a finite state set, the set of priors is not restricted in any sense. However, when

the state space is infinite, the priors should agree on any null-set, or more formally, to

satisfy a kind of uniform absolute continuity condition. Still, even in this case, the priors

need not agree on the probability of any event rather than null and universal events.

The main result of the paper is separated into two cases: when the state space is

finite and when it is infinite. While for the finite case three basic assumptions and the

main axiom, which is a Cancellation condition, suffice to characterize those relations

that are representable by a multi-prior probability, the infinite case requires an additional

assumption regarding the richness of the state space, akin to the Archimedean assumption

of Savage. The Cancellation condition used is discussed in the next subsection.

The use of a set of prior probabilities to describe an individual’s belief elicits likelihood

judgements that are more robust to ambiguity than a description by a single probability

measure. Suppose that an individual is uncertain as to the prior probability to choose.

Choice of a single prior probability is sensitive to uncertainty in the sense that two different

probabilities might exhibit reversal of likelihood order between some pair of events. On

the other hand, representing the uncertainty through a set of prior probabilities leaves

such conflicting comparisons undetermined, reflecting the individual’s lack of knowledge

regarding the ‘right’ prior to choose.

The technique of employing sets of probabilities to produce robust models is used

extensively in Bayesian Analysis. Robust Bayesian Analysis replaces a single Bayesian

prior with a set of priors so as to make the statistical model less sensitive to the prior

chosen. A well-known example of this approach is the ε-contamination class (see, for

instance, Berger 1994). The axiomatization presented here may therefore lend normative

ground to these robust, multi-prior Bayesian techniques1.

Two additional results, somewhat complementary to the elicitation of a subjective

multi-prior probability, are contained in the paper. One compares the ambiguity perceived

1We thank Tzachi Gilboa for bringing this example to our attention
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by two individuals, holding subjective multi-prior probability beliefs, by means of inclusion

of sets of priors. One individual is considered to perceive more ambiguity than another

if he or she is less decisive, that is, leaves more comparisons undetermined. In the

representation, the maximal (w.r.t. set inclusion) set of probabilities of the first individual

contains that of the second individual. The other result proposes a scheme to complete a

partial likelihood relation, that obtains a subjective multi-prior probability. This scheme

suggests aversion to ambiguity.

1.3 Axiomatization

Some notation is needed to facilitate the following discussion. Let S denote a nonempty

state-space with a typical element s. An event is a subset of S which is a member

of an algebra Σ over S. For an event E, 1E denotes the indicator function2 of E. A

binary relation % is defined over Σ, with � denoting its asymmetric part. A probability

measure P agrees with % if it represents it, in the sense that A % B ⇔ P (A) ≥ P (B).

A probability measure P almost agrees with % if the former equivalence is relaxed to

A % B ⇒ P (A) ≥ P (B). In other words, P almost agrees with % if it cannot be the

case that A % B , and at the same time, P (B) > P (A). It is possible, however, to have

P (A) ≥ P (B) yet ¬(A % B).

De Finetti introduced four basic postulates that must be satisfied by an ‘at least

as likely as’ relation. These postulates define an entity known since as a qualitative

probability. The four postulates are:

Complete Order: The relation % is complete and transitive.

Cancellation: For any three events, A,B and C, such that

A ∩ C = B ∩ C = ∅, A % B ⇔ A ∪ C % B ∪ C.

Positivity: For every event A, A % ∅.
Non Triviality: S � ∅.

De Finetti assumed that the ‘at least as likely as’ relation is complete, and, in addition,

satisfies three basic assumptions: Transitivity; Positivity, which states that any event is at

least as likely as the empty event; and Non-triviality, which states that ‘all’ (the universal

event) is strictly more likely than ‘nothing’ (the empty event).

2That is, 1E is the function that attains the value 1 on E and 0 otherwise.
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Beyond these three assumptions, de Finetti introduced another, more substantial

postulate, Cancellation. Cancellation implies a form of separability over events in the

following sense. Any event has its own likelihood weight, which is unrelated to other

disjoint events. In other words, any event has the same marginal contribution, no matter

what other disjoint events it is annexed to3.

The four de Finetti’s assumptions are necessary for the relation to have an agreeing

probability. de Finetti posed the question whether these postulates are also sufficient to

guarantee existence of an agreeing probability, or even of an almost agreeing probability.

The question was answered negatively by Kraft et al.(1959). They introduced a counter

example with a relation over a finite state space, that satisfies all the above conditions

and yet has no almost agreeing probability. Kraft et al.(1959) suggested a strengthening

of the Cancellation condition, and showed that with a finite state space, the strengthened

condition together with the above basic conditions imply that the relation has an almost

agreeing probability. Later on, other conditions that derive agreeing or almost agreeing

probabilities were proposed by Scott (1964), Kranz et al. (1971) and Narens (1974).

These conditions stated that for two sequences of events, (Ai)
n
i=1 (the A-sequence) and

(Bi)
n
i=1 (the B-sequence),

If
n∑
i=1

1Ai
(s) =

n∑
i=1

1Bi
(s) for all s ∈ S, (2)

and Ai % Bi for i = 1, . . . , n− 1,

then Bn % An.

The idea behind Finite Cancellation is similar in essence to that lying at the basis of

de Finetti’s Cancellation condition. Like Cancellation, Finite Cancellation is based on the

assumption that each state has always the same marginal contribution of likelihood, no

matter to which other states it is added. However, Finite Cancellation takes this rationale

a step further.

The equality, that appears in the axiom, between the two sums of indicators, means

that each state appears the same number of times in each of the sequences. Following

the rationale explained above, the weight of each state does not depend on the order and

manner in which it appears in each sequence. Hence, the equality between the two sums

3This assumption is violated, for instance, when states are evaluated through a nonadditive probability
v. Under such an evaluation, the marginal contribution of event C when added to event A, v(A∪C)−v(A),
is not necessarily the same as its marginal contribution when added to event B, v(B ∪ C)− v(B).
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suggests that it cannot be that the A-sequence has an overall likelihood weight greater

than that of the B-sequence. In order to explain this point we turn to an analogy from

accounting.

Consider a simple double-entry booking procedure with credit and debit that express

likelihood weights. In each of the n − 1 first lines of the ledger there are pairs of events

with Ai % Bi: Ai is recorded on the credit side, while Bi on the debit side. Another pair

of events An and Bn is now considered. Suppose that An is recorded on the credit column

and Bn on the debit column. This reflects the fact that An is at least as likely as Bn.

It is argued that this ranking contradicts the rationale behind Cancellation, of invariant

marginal contribution.

When An is ranked more likely than Bn, each event in the A-sequence is as likely

as its counterpart in the B-sequence. Therefore, the credit balance outweighs the debit

balance. Such an assertion contradicts the conclusion that the two sequences should have

the same overall likelihood weight, unless each pair consists of equally likely events. It

implies, in particular, that if An and Bn are comparable, it must be that Bn % An. Finite

Cancellation explicitly states that An and Bn are comparable, and that Bn is at least as

likely as An. For further details on Cancellation axioms and almost agreeing probabilities

see Fishburn (1986) for a thorough survey, and Wakker (1981) for a discussion and related

results.

This paper follows the path of studies described above and introduces an axiom termed

Generalized Finite Cancelation (GFC). This axiom postulates that for two sequences of

events, (Ai)
n
i=1 and (Bi)

n
i=1, and an integer k ∈ N,

If
n−1∑
i=1

1Ai
(s) + k1An(s) =

n−1∑
i=1

1Bi
(s) + k1Bn(s) for all s ∈ S,

and Ai % Bi for i = 1, . . . , n− 1,

then Bn % An.

GFC strengthens Finite Cancellation. Similarly to Finite Cancellation, it is concerned

with sequences of events with identical accumulation of indicators, which again should

have the same overall likelihood weight. However, the conclusion in GFC applies to

multiple repetitions of the last pair of events, An and Bn. As in Finite Cancellation, if

the first n − 1 events in one sequence are judged to weigh at least as much as the first

n− 1 events in the other sequence, then the last pair of events, repeated more than once
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in the aggregation, should balance the account. Thus, Bn is regarded at least as likely as

An.

This generalization of Finite Cancellation is required since the relation in this paper

is not assumed to be complete. For a complete relation, GFC is implied by Finite

Cancellation: ¬(Bn % An) translates to An � Bn, and under the assumptions of the

axiom, a contradiction to Finite Cancellation is inflicted. When the relation is incomplete,

such a contradiction may not arise, thus GFC specifically requires that Bn % An be

concluded.

As this work is concerned with incomplete relations, the role of GFC is two fold.

The first is to preserve consistency of the ‘at least as likely as’ relation, as explained

above. The second is to allow for extensions of the relation to yet undecided pairs of

events, on the basis of others. Suppose that a pair of yet-undecided events can play

the part of An and Bn for some sequences of events (Ai)
n
i=1 and (Bi)

n
i=1. GFC then

explicitly prescribes a completion rule that imposes the principle of each state having its

own marginal contribution, unrelated to other states.

Any relation % with a subjective multi-prior probability representation as in (1)

satisfies GFC. In the opposite direction, Theorems 1 and 2, the main results of the paper,

show that GFC, along with basic conditions (and when S is infinite an additional richness

assumption), imply that the relation % admits a subjective multi-prior representation.

An analogue axiom to GFC, formulated on mappings from states to outcomes, appeared

in Blume et al. (2009) (under the name ‘extended statewise cancellation’). In this paper,

the axiom was applied in a different framework, and was used to obtain a representation

that contains a subjective state space. Hence, the result of Blume et al. cannot be

employed to characterize a likelihood relation over a given, primitive state space.

1.4 Related literature

Incomplete Expected Utility models over objective lotteries (on a set of prizes) began

with Aumann (1962). Dubra, Maccheroni and Ok (2004) gave a full characterization of

an incomplete preference relation over lotteries, which obtains a unanimity representation

over a set of utility functions.

The path of dropping completeness for the sake of ambiguity, as suggested in this

paper, was taken in the literature by several authors. Galaabaatar and Karni (2011)

presented a model of incomplete preferences, in which incompleteness stems both from

ambiguity regarding a prior probability (which is the rationale advocated here) and from
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incompleteness of tastes. Their axiomatization characterizes an incomplete preference

relation in an uncertain environment, that admits a multi-probability expected multi-

utility representation. The special cases of expected multi-utility (w.r.t. a single probability

measure), and of multi-probability expected utility representation (w.r.t. a single utility),

were given specific axiomatizations. Other papers, which are the most related to the

current work, are Bewley (2002), Ghirardato et al (2003), and Nehring (2009). These

papers are discussed next.

Bewley (2002) axiomatized preference among alternatives that are mappings from

events to a rich set of consequences. Bewley worked in an environment with exogenous

probabilities, as in Anscombe and Aumann (1963; as rephrased by Fishburn 1970),

and showed that dropping completeness and maintaining the rest of Anscombe-Aumann

axioms yields a multi-prior expected utility representation. That is, for every pair of

alternatives f and g,

f % g ⇔ Eµ(u(f)) ≥ Eµ(u(g)) for every µ ∈ P , (3)

for a unique convex and closed set of priors P and a vN-M utility function u (Eµ denotes

the expectation operator w.r.t. the probability measure µ). In other words, under a quite

‘standard’ set of axioms, which is known to imply an expected utility representation with a

unique probability measure (as Anscombe and Aumann show), giving up the completeness

assumption leads to an expected utility representation with a set of probability measures.

Prior to Bewley, Giron and Rios (1980) phrased similar axioms over alternatives which

map an abstract state space to the real line. Giron and Rios took the alternatives to be

bounded, and assumed that they consist of a convex set (they mentioned randomization

as justification for convexity). Giron and Rios showed that their set of axioms implied a

multi-prior expected utility representation as in (3).

Both models, that by Giron and Rios and the one by Bewley, if applied with only two

consequences, may be used to extract beliefs without any implication to risk attitude.

However, they both assume convexity, which amounts to the fact that events may be

mixed using exogenous, objective probabilities. Hence, their setup is less general than the

purely subjective setup of Savage.

Ghirardato et al (2003) axiomatized multi-prior expected utility preferences in an

environment without exogenous probabilities. Instead, they assumed that the set of

consequences is connected, and that there exists an event on which all probabilities agree.
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The structure and axioms they employed do not permit applying the model for two

consequences alone. In order to obtain the mixtures used in their axioms, it necessitates

specifying preference on all binary alternatives contingent on the agreed-upon event (that

is, on all alternatives that yield one consequence on this event and another outside of it).

Thus, the model cannot be used to identify ‘pure’ belief.

Nehring (2009) presents a model based on an incomplete ‘at least as likely as’ relation

over events. Nehring formulates assumptions on the relation, and proves a multi-prior

representation result as in (1). In Nehring’s work, there is a unique convex and closed set

of priors that represents the relation. The model is placed in a general setup, where events

belong to an algebra over a state space. No assumptions a-priori are made on this space,

and in particular no objective probabilities are assumed. Nonetheless, one of the axioms

Nehring applies to characterize the multi-prior representation is Equidivisibility, which

hinges upon an explicit assumption that any event can be divided into two equally-likely

events. Nehring’s assumption is quite a strong one. It states that any event can be split

into two events in a way that all the priors involved agree that they are equally probable.

Formally, the set of priors in Nehring’s representation theorem is explicitly assumed to

have the property that, for any event A, there exists an event B ⊂ A such that all priors

µ agree that µ(B) = µ(A)/2. It implies, in particular, that all the priors agree on a rich

algebra of events: the one generated by dividing the entire space into 2n equally likely

events, for any integer n. This assumption restricts the plurality of the representing set

of priors. Moreover, it does not work in the finite case.

The setup employed in this paper is as general as that of Savage4. Neither exogenous

probabilities nor any manner of mixture is assumed or required. As the assumptions apply

to events alone, they are free of any risk attitude.

1.5 Outline of the paper

Section 2 describes the essentials of the subjective multi-prior probability model. It details

the setup and assumptions, and then formulates representation theorems, separately for

the cases of a finite and an infinite spaces. Section 3 presents some examples, and Section

4 elaborates on three issues: a relative notion of ‘more ambiguous than’; an embedding of

ambiguity attitude that yields a complete relation; and minimal sets of priors. All proofs

appear in the last section.

4In fact the setup is even somewhat less restrictive than that of Savage, in that it requires Σ to be an
algebra and not a σ-algebra.
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2 The subjective multi-prior probability model

2.1 Setup and assumptions

Let S be a nonempty set, Σ an algebra over S, and % a binary relation over Σ. A

statement A % B is to be interpreted as ‘A is at least as likely as B’. For an event

E ∈ Σ, 1E denotes the indicator function of E. In any place where a partition over S

is mentioned, it is to be understood that all atoms of the partition belong to Σ.

The following assumptions (‘axioms’) are employed to derive a subjective multi-prior

probability belief representation.

P1. Reflexivity:

For all A ∈ Σ, A % A.

P2. Positivity:

For all A ∈ Σ, A % ∅.

P3. Non Triviality:

¬(∅ % S).

These first three assumptions are standard. Positivity and Non-Triviality are two of de

Finetti’s suggested attributes. Since Completeness is not supposed, Reflexivity is added

in order to identify the relation as a weak one. Transitivity is implied by the other axioms,

hence it is not written explicitly.

The next assumption is the central one in the derivation of the main result of the paper.

P4. Generalized Finite Cancellation:

Let (Ai)
n
i=1 and (Bi)

n
i=1 be two sequences of events from Σ, and k ∈ N an integer.

Then

If
n−1∑
i=1

1Ai
(s) + k1An(s) =

n−1∑
i=1

1Bi
(s) + k1Bn(s) for all s ∈ S,

and Ai % Bi for i = 1, . . . , n− 1 ,

then Bn % An .
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Generalized Finite Cancellation is based on the basic assumption that every state has

the same marginal contribution of likelihood, no matter to which other states it is added.

Generalized Finite Cancellation applies this underlying assumption to sequences of events

that have exactly the same aggregation for each and every state, that is, in cases where

each state appears the same number of times in each of the sequences. As each state

should add the same likelihood weight to each of these aggregations, the axiom requires

that likelihood judgements be balanced among the two sequences.

Basic Cancellation (de Finetti’s condition) is obtained from Generalized Finite Cancellation

by letting A1 = A, B1 = B, A2 = B ∪ C and B2 = A ∪ C, for events A, B and C such

that (A ∪B) ∩ C = ∅. The indicators sum is identical,

1A1 + 1A2 = 1A + 1B∪C = 1A + 1B + 1C = 1A∪C + 1B = 1B1 + 1B2 ,

and hence A % B implies A ∪ C % B ∪ C and vice versa. Transitivity is obtained

by letting A1 = B3 = A, A2 = B1 = B, and A3 = B2 = C. The following remark sums

several implications of Generalized Finite Cancellation.

Remark 1. Generalized Finite Cancellation implies that % satisfies Transitivity, and

together with Positivity yields that A % B whenever A ⊃ B. It also results in

additivity: A % B ⇔ A∪E % B ∪E , whenever A∩E = B ∩E = ∅. In particular5,

A % B ⇔ Bc % Ac, hence S % B for all events B.

2.2 Subjective multi-prior probability representation

2.2.1 The case of a finite space S

The next theorem states that when S is finite, assumptions P1-P4 are sufficient to obtain

a subjective multi-prior probability representation of %. For simplicity, Σ is assumed to

be the collection of all subsets of S (that is, Σ = 2S).

Theorem 1. Suppose that S is finite, and let % be a binary relation over events in S.

Then statements (i) and (ii) below are equivalent:

(i) % satisfies axioms P1 through P4.

5To understand the following, note that A = (A ∩ Bc) ∪ (A ∩ B) % (B ∩ Ac) ∪ (A ∩ B) = B ⇔
A ∩Bc % B ∩Ac ⇔ Bc = (A ∩Bc) ∪ (Ac ∩Bc) % (B ∩Ac) ∪ (Ac ∩Bc) = Ac.
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(ii) There exists a nonempty set P of additive probability measures over events in S,

such that for every A,B ⊆ S,

A % B ⇔ µ(A) ≥ µ(B) for every µ ∈ P .

The set of prior probabilities need not be unique. However, the union of all representing

sets is itself a representing set, and is maximal w.r.t. inclusion by its definition. When

analyzing judgements made under ambiguity, the maximal set w.r.t. inclusion seems to

be a natural choice to express belief, as it takes into consideration all priors that may

be relevant to the case at hand. In fact, the maximal w.r.t. inclusion set includes all the

probability measures that almost agree with the relation.

Suppose, for instance, that after identifying a subjective multi-prior probability, an

individual is interested also in the extreme probabilities of each event. The maximal

set yields the largest range of probabilities for each event, without casting unnecessary

limits. On that account, the notion of a maximal w.r.t. inclusion set is claimed to be a

satisfactory notion of unique belief.

When S is finite, then even if completeness is assumed, there is no one unique

probability measure that represents the relation. That is to say, even if % is complete,

the maximal representing set is not a singleton (see Example 1 below).

2.2.2 The case of an infinite space S

To obtain representation when S is infinite, an additional richness assumption is required.

Without this assumption, for an infinite S , it is possible to obtain a set P of probability

measures that only almost agrees with %, in the sense that for all events A and B,

A % B ⇒ µ(A) ≥ µ(B) for every µ ∈ P , but not necessarily the other way around.

To obtain the full ‘if and only if’ representation, a Non-Atomicity axiom is added. The

assumption requires a definition of strong preference for its formulation (the definition

originates in Nehring, 2009).

Definition 1. For two events A,B ∈ Σ, the notation A �� B states that there exists

a finite partition {G1, . . . , Gr} of S, such that A \Gi % B ∪Gj for all i, j.

Strong preference in the representation (thus when all the axioms are assumed to hold),
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whenever the set P is the maximal w.r.t. inclusion set6, is equivalent to the condition

that there exists δ > 0 for which µ(A)− µ(B) > δ > 0 for every µ ∈ P .

P5. Non-Atomicity:

If ¬(A % B) then there exists a finite partition of Ac, {A′1, . . . , A′m}, such that for all i,

A′i �� ∅ and ¬(A ∪ A′i % B).

Remark 2. As ¬(A % B) ⇔ ¬(Bc % Ac), Non-Atomicity can equivalently be phrased

as:

If ¬(A % B) then there exists a finite partition of B, {B1, . . . , Bm}, such that for all i,

Bi �� ∅ and ¬(A % B \Bi).

Non-Atomicity is the incomplete-relation version of Savage’s richness assumption P6.

Adding Completeness makes P5 (along with the definition of strict preference) identical

to Savage’s P6, as negation of preference simply reduces to strict preference in the other

direction. The setup used here is somewhat weaker than that in Savage, as Σ is assumed

to be an algebra and not necessarily a σ-algebra. Still, adding Completeness yields a

unique probability that represents the ‘at least as likely as’ relation % (see Kopylov

(2007) for this result for an even more general structure of Σ)7. The difference from

Savage’s theorem is that the derived probability need not be convex-ranged, only locally

dense:

Definition 2. A probability measure µ over Σ is locally dense if, for every event B, the

set {µ(A) | A ⊂ B} is dense in [0, µ(B)].

In a similar fashion, Non Atomicity implies that each probability measure in the

subjective multi-prior probability set is locally dense.

Definition 3. A set P of probability measures is said to be uniformly absolutely continuous

if:

(a) For any event B, µ(B) > 0 ⇔ µ′(B) > 0 for every pair of probabilities µ, µ′ ∈ P .

6or any other compact set
7Generalized Finite Cancellation obviously implies additivity (de Finetti’s Cancellation), thus when

adding completeness to axioms P2 through P5, Savage’s result follows.
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(b) For every ε > 0, there exists a finite partition {G1, . . . , Gr} of S, such that for all

j, µ(Gj) < ε for all µ ∈ P .

The following is a representation result of the subjective multi-prior probability model

for the case of an infinite set S .

Theorem 2. Let % be a binary relation over Σ. Then statements (i) and (ii) below are

equivalent:

(i) % satisfies axioms P1-P5.

(ii) There exists a nonempty, uniformly absolutely continuous set P of additive probability

measures over Σ, such that for every A,B ∈ Σ,

A % B ⇔ µ(A) ≥ µ(B) for every µ ∈ P . (4)

Corollary 1. Assume that % admits a subjective multi-prior probability representation

as in (ii) of Theorem 2. Then all the probability measures in the representing set are

locally dense.

It is a known fact that existence of fine partitions, as depicted in the definition of

uniform absolute continuity, imply local denseness (see, for instance, Lehrer and Schmeidler,

2005). Hence, if % admits a subjective multi-prior probability representation as in (ii)

of Theorem 2, then all the probability measures in the representing set are locally dense.

Observation 1. The union of all sets of probabilities that represent % as in (ii) of

Theorem 2 is itself a representing set of %. Thus, the union of all sets that represent %

satisfies (ii) of Theorem 2. By its definition, every other representing set is contained in

it, namely it is the maximal w.r.t. inclusion representing set of %.

Note that for general sets of probability measures, the fact that all sets in the union

are uniformly absolutely continuous does not imply that the union itself is uniformly

absolutely continuous (as the union may be over an infinite number of sets). However, if

the sets represent %, then (i) of Theorem 2 guarantees uniform absolute continuity of the

union. As already explained in the introduction, the set of probabilities which represents

% need not be unique. Nevertheless, the maximal representing set, which is the union of

all representing sets, is unique by its definition.
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A few words on the reason for lack of uniqueness, even when Non-Atomicity is assumed,

are in order. The difficulty in obtaining uniqueness is that it is impossible, under the

assumptions made, to produce an ‘objective measuring rod’ for probabilities. The probabilities

in the priors set need not agree on any event which probability is strictly between zero and

one. Moreover, there even need not be events with probability that is ε-close to some value

0 < p < 1, according to all measures (see Example 2 in section 3). In addition, the domain

to which the relation applies is scarce. Translating events, to which the relation applies

to vectors in RS, only indicator vectors are subject to comparison, and preference calls

among vectors with values other than zero and one are meaningless. The problem is not

only technical, for there are examples with two distinct (convex and closed) representing

sets of priors. An example may be found in Nehring (2009; Example 1).

3 Examples

Example 1. Let S = {H,T}, Σ = 2S. If it is the case that H % T , then any probability

measure of the type (H : p ; T : 1−p) , for 0.5 ≤ p ≤ 1 , represents the relation. In that

case, even though the relation is complete, there is no unique representing probability

measure, or unique representing probability measures set.

In the following examples, λ denotes the Lebesgue measure.

Example 2. Let S = [0, 1) and denote by Σ the algebra generated by all intervals [a, b)

contained in [0, 1). Define measures π1 and π2 through their densities:

f1(s) =

{
1
2

s ∈ [0, 0.5)
3
2

s ∈ [0.5, 1)
, f2(s) =

{
3
2

s ∈ [0, 0.5)
1
2

s ∈ [0.5, 1)

In other words, π1 distributes uniform weight of 1
4

on [0, 0.5) and uniform weight of
3
4

on [0.5, 1), and π2 distributes uniform weight of 3
4

on [0, 0.5) and uniform weight of 1
4

on [0.5, 1). Let P denote the convex set generated by π1 and π2. A set P of this form

may express an individual’s ambiguity as to the way the probabilistic weight is divided

between the lower and upper halves of a considered range, with the constraint that at

least 1
4

of the weight is placed on each half, and with otherwise uniform belief.

For every pair of measures π, π′ ∈ P , π(A) = 0 ⇔ π′(A) = 0, and for ε > 0,

λ(E) < 2
3
ε guarantees πi(E) < ε for i = 1, 2, therefore for all measures in P . Thus, fine

partitions as required exist, and P is uniformly absolutely continuous. The subjective
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multi-prior probability induced by P is:

A % B , if and only if,

1

2
[ λ(A)− λ(B) ] ≥ λ(B ∩ [0.5, 1))− λ(A ∩ [0.5, 1))

and
1

2
[ λ(A)− λ(B) ] ≥ λ(B ∩ [0, 0.5))− λ(A ∩ [0, 0.5)) .

In this example, a necessary condition to obtain A % B is λ(A) ≥ λ(B), but this

condition is not sufficient. It should also be that on each half separately, event B does not

have a ‘large-enough edge’. For instance, ¬ ( [0, 0.5) % [0.8, 1) ), but [0, 0.45)∪ [0.95, 1) %

[0.8, 1). Events A and B are considered equally likely if they have the same Lebesgue

measure, divided in the same manner between [0, 0.5) and [0.5, 1).

Example 3. Let S = [0, 1) and Σ the algebra generated by all intervals [a, b) contained

in [0, 1). For A ∈ Σ such that λ(A) = 1
2
, let πA to be the probability measure defined by

the density:

fA(s) =

{
1
2

s ∈ A
3
2

s /∈ A

Let P be the convex and closed set generated by all probability measures πA. All

measures in the set are mutually absolutely continuous with λ. For ε > 0, letting

{E1, . . . , En} be a partition with λ(Ei) <
2
3
ε obtains πA(Ei) < ε for all measures

πA, hence for all measures in P . The set P is therefore uniformly absolutely continuous.

The resulting subjective multi-prior probability representation satisfies assumptions

P1-P5. Note that for any event B ∈ Σ for which 0 < λ(B) < 1,

max
π∈P

π(B) =
3

2
min(λ(B),

1

2
) +

1

2
max(0, λ(B)− 1

2
)

>
1

2
min(λ(B),

1

2
) +

3

2
max(0, λ(B)− 1

2
) = min

π∈P
π(B).

That is, the measures in P do not agree on any event which is non-null and non-universal.

This example points to the problem of producing an ‘objective measuring rod’. One

cannot hope to be able to produce events which are unambiguous, in the sense that all

probabilities in the set assign those events the same probability. Moreover, there are even

no events with probability ε-close to a fixed value 0 < p < 1. Note also that for events A

and B, it cannot be that all measures in P agree that A and B have the same probability,

therefore events cannot be partitioned into equally likely events.
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4 Extensions and comments

4.1 A relative notion of ‘more ambiguous than’

Next, a relative notion of ‘more ambiguous than’ is presented. One subjective multi-prior

probability is considered to be more ambiguous than another, if it is less decisive, and

leaves more comparisons open. As can be expected, the ‘more ambiguous than’ relation

is characterized by inclusion of the %-maximal representing sets of priors. Being more

ambiguous means having a larger, in the sense of set inclusion, set of priors.

Proposition 1. Let %1 and %2 be two binary relations over Σ, satisfying P1-P5, with

P1 and P2 the maximal representing sets (unions of all representing sets) of %1 and %2,

respectively. Then the following statements are equivalent:

(i) %1 ⊆ %2.

(ii) P2 ⊆ P1.

A result similar to this one is presented in Ghirardato, Maccheroni and Marinacci

(2004). The setup in Ghirardato et al. contains alternatives which are mappings from a

state space to a set of consequences. In that paper, a definition of ‘reveals more ambiguity

than’ is given, that amounts to inclusion of one relation in another, where both relations

admit a multiple-priors expected utility representation. Ghirardato et al. show that such

inclusion of the relation implies reversed inclusion of the priors sets 8.

4.2 Ambiguity attitude

A subjective multi-prior probability may be viewed as representing the unambiguous

judgements of an individual. According to this view, some comparisons between events

are left open due to ambiguity, and those that are determined are the ‘unambiguous part’

of the individual’s likelihood judgements.

In the representation, a set of prior probabilities represents the scenarios the individual

considers possible. An event is judged at least as likely as another if this is the case

under every possible scenario. The set of priors thus represents all the ambiguity that

the individual perceives in the situation, and the unanimity rule characterizes those

comparisons that are not affected by this ambiguity.

8In order to obtain the other direction in Ghirardato et al., an additional assumption of identical
utility for both relations is required.
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After ambiguity itself is identified, attitudes towards it may be added. One obvious

possibility is completion using one probability measure from the multi-prior probability

set. Another possibility, in a setup with an infinite space S, is suggested next. It

exhibits aversion to ambiguity, and describes an individual who judges events by their

lowest possible probability. A similar treatment, of completing an incomplete relation, is

suggested by Gilboa et al. (2010) and Ghirardato, Maccheroni and Marinacci (2004). In

these models, a set of priors is obtained as a description of the ambiguity perceived by

an individual. The relations discussed in those papers apply to alternatives which map

states to lotteries over an abstract set of consequences, and appraisal of acts involves a

procedure of expected utility. Here, the relation applies to events alone, but the treatment

of ambiguity separately from ambiguity attitude is similar in spirit.

In order to obtain an ambiguity averse completion, the framework of Sarin and Wakker

(1992) is adopted. In that framework, an exogenous sub-sigma-algebra is taken as part of

the model primitives, and is meant to represent a (rich) set of unambiguous events. An

assumption of Ambiguity Aversion is further used. The aversion to ambiguity is expressed

by supposing that the individual ranks unambiguous events strictly above other events,

whenever this does not contradict consistency with the incomplete, ‘original’ relation.

Let A denote a sigma-algebra contained in Σ, and % a binary relation over Σ. Events

in A should be thought of as unambiguous. For a complete relation %′, the relations �′

and ∼′ denote its asymmetric and symmetric components, respectively.

First, a weak order assumption is required for the relation %′.

P1’. Weak Order:

For any two events A and B, either A %′ B or B %′ A. (Completeness)

For any three events A,B and C, if A %′ B and B %′ C then A %′ C. (Transitivity)

Next, a richness assumption, Savage’s postulate P6 confined to unambiguous events,

is stated.

P6-UA. Unambiguous Non-Atomicity.:

If C �′ B for events B,C ∈ Σ, then there exists a finite partition of S, {A1, . . . , Am}
with Ai ∈ A for all i, such that C �′ B ∪ Ai for all i.
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Last, two linking assumptions are added. The first assumption, Consistency, states

that %′ is a completion of %, so %′ is consistent with the preferences exhibited by %.

The second, Ambiguity Aversion, subscribes a completion rule that favors events with

known probabilities. This assumption imitates Epstein’s (1999) definition of uncertainty

aversion for alternatives, mapping events to an abstract set of consequences. It uses

as a benchmark for uncertainty neutrality the relation %, and suggests to complete

it by preferring unambiguous events. The completion in fact identifies an ‘unambiguous

equivalent’ for every event, much in the same manner as is done with certainty equivalents.

As noted above, similar development may be found in Gilboa et al. (2010; the relevant

axiom is termed there Default to Certainty, or Caution in its weaker version).

P7. Consistency:

For any two events A and B, A %′ B whenever A % B.

P8. Ambiguity Aversion:

Let E ∈ Σ and A ∈ A be events. If ¬(E % A) then A �′ E.

Proposition 2. Let % and %′ be binary relations over Σ, and let A be a

σ-algebra contained in Σ. Then statements (i) and (ii) below are equivalent.

(i) The following conditions are satisfied:

(a) % satisfies axioms P1 through P5. On A, % is complete.

(b) %′ satisfies P6-UA.

(c) % and %′ satisfy Consistency (P7) and Ambiguity Aversion (P8).

(ii) There exists a nonempty, uniformly absolutely continuous set of probabilities P,

such that for any pair of events A and B,

A % B ⇔ µ(A) ≥ µ(B) for every µ ∈ P (5)

A %′ B ⇔ min
µ∈P

µ(A) ≥ min
µ∈P

µ(B) (6)

Furthermore, the probabilities in P agree on A, and their common part on A is

unique and convex-ranged there.
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The proposition suggests how to complete a subjective multi-prior probability, in a

manner that expresses ambiguity aversion. An ambiguity seeking rule can analogously be

described through the use of maximum instead of minimum in (6). As in Theorem 2, the

set of probability measures P is not necessarily unique, yet a maximal (w.r.t. inclusion)

set may be identified, which represents the relation (see Observation 1 above).

Note that the set of unambiguous events was taken as a primitive of the model, and

not derived from the relation. Epstein and Zhang (2001) derived a set of unambiguous

events endogenously from preference. They then formulated conditions that obtain

probabilistic sophistication over acts that are measurable with respect to the derived

set of unambiguous events. The method of endogenously identifying a set that can play

the part of unambiguous events was not applied here, as no adequate manner to define

unambiguous events was yet found. In the setup considered here, with completeness

not assumed, the definition of Epstein and Zhang yields that all the events in Σ are

unambiguous.

4.3 Minimal set of priors

Nehring (2009) presents an example with two sets of priors P1 $ P2 that represent the

same likelihood order. The priors in P2 that are not in P1 do not restrict the order induced

by P1 in the sense that when all p ∈ P1 agree that p(A) ≥ p(B), every q ∈ P2\P1 concurs.

In this example the intersection of the two representing sets is also a representing set: it is

P1. The question arises whether the intersection of every two representing sets is always

a representing one.

The following example answers this question in the negative.

Example 4. Suppose that S = {0, 1}N, the set of all sequences consisting of 0’s and 1’s.

The algebra Σ is the one generated by events of the type C(i, a) = (x1, x2, ...) ∈ S; x1 = a,

where a = 0, 1. The probability measure, denoted (p1, p2, ...) , is the one induced by an

infinite sequence of independent tosses of coins, where the probability of getting 1 in the

i-th toss is pi (pi ∈ (0, 1)) and the probability of getting 0 is 1− pi. For simplicity a coin

that assigns probability p to the outcome 1 and probability 1 − p to the outcome 0 is

referred to as p-coin.

We define two disjoint sets of priors. Let P1 be the convex hull of the probability

measures of the type (p1, ..., pn,
1
2
, 1
2
, ...), where p1, ..., pn ∈ {13 ,

1
2
}. In other words, any

distribution in P1 is such that the coins from time n + 1 and onwards are 1
2
-coins, while

up to time n the coins could be any combination of 1
2
-coins and 1

3
-coins.
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The set P2 is defined in a way similar to that of P1 with the difference that coins from

time n+1 and onwards are 1
3
-coins. Note that the distributions in P1 are generated by only

finitely many 1
3
-coins and infinitely many 1

2
-coins. On the other hand, the distribution in

P2 are generated by only finitely many 1
2
-coins and infinitely many 1

3
-coins. Thus, P1 and

P2 are disjoint.

We argue that P1 and P2 induce the same likelihood relation over Σ. Let A,B be two

events in Σ. There is time, say n, such that A and B are defined by conditions imposed

only on the first n coordinates. Thus, the probability of A and B assigned by a particular

distribution depends only on its behavior on the n first coordinates. However, for every

distribution µ ∈ P1 there is ν ∈ P2 that behaves on the first n coordinates like µ. In

particular, if µ(A) ≥ µ(B) (or µ(A) > µ(B)), then ν(A) ≥ ν(B) (or ν(A) > ν(B)). This

implies that if ν(A) ≥ ν(B) for every ν ∈ P2, then µ(A) ≥ µ(B) for every µ ∈ P1. For

a similar reason the inverse of the previous statement is also true. We conclude that P1

and P2 induce the same likelihood relation over Σ.

This example shows that two representing sets can be disjoint. In particular, the

intersection of two representing sets is not representing the same relation.

A careful look at this example reveals that the sets P1 and P2 are not closed (w.r.t. the

weak* topology). For instance, the probability (1
3
, 1
3
, ...) is in the closure of P1. The reason

is that (1
3
, 1
3
, ...) is a cumulative point of the following sequence of probability measures

in P1: (1
3
, 1
2
, 1
2
, 1
2
...), (1

3
, 1
3
, 1
2
, 1
2
, 1
2
...), (1

3
, 1
3
, 1
3
, 1
2
, 1
2
, 1
2
...),... .

It turns out that the closure of one set contains the other and therefore, the closures of

P1 and of P2 coincide. This conclusion leaves us with two unanswered questions: whether

the intersection of two closed (w.r.t. the weak* topology) representing sets of priors can

be disjoint, and whether the intersection itself is a representing set for the same relation.

5 Proofs

LetB0(S,Σ) denote the vector space generated by linear combinations of indicator functions

1A for A ∈ Σ, endowed with the supremum norm. Define a subset D% of B0(S,Σ),

D% = closure{
n∑
i=1

αi [ 1Ai
− 1Bi

] | Ai % Bi, αi ≥ 0, n ∈ N } .

That is, D% is the closed convex cone generated by indicator differences 1A − 1B , for

A % B. By Reflexivity, Positivity and Nontriviality, D% has vertex at zero, D% is not
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the entire space B0(S,Σ), and it contains every nonnegative vector ψ ∈ B0(S,Σ) .

The next claims show that under assumptions P1 through P4, preference is preserved

under convex combinations (the proof is joint for the finite and infinite cases). In some of

the claims, conclusions are more easily understood considering the following alternative

formulation of Generalized Finite Cancellation:

Let A and B be two events, and (Ai)
n
i=1 and (Bi)

n
i=1 two sequences of events from Σ,

that satisfy,

Ai % Bi for all i, and for some k ∈ N,
n∑
i=1

[1Ai
(s)− 1Bi

(s)] = k[1A(s)− 1B(s)] for all s ∈ S.

Then A % B.

Claim 1. Suppose that9 ri ∈ Q++, and Ai % Bi for i = 1, . . . , n. If

1A − 1B =
∑n

i=1 ri(1Ai
− 1Bi

) , then A % B.

Proof. Let k denote the common denominator of r1, . . . , rn, and write ri = mi

k
for mi ∈ N

and i = 1, . . . , n. It follows that k(1A− 1B) =
∑n

i=1mi(1Ai
− 1Bi

) for all s ∈ S. By GFC

applied to sequences (Ai)
N
i=1 and (Bi)

N
i=1, where each Ai and each Bi repeats mi times

(N = m1 + . . .+mn), it follows that A % B. �

Claim 2. Suppose there are αi > 0, i = 1, . . . , n, such that 1A−1B =
∑n

i=1 αi(1Ai
−1Bi

).

Then there are ri ∈ Q++, i = 1, . . . , n, such that 1A − 1B =
∑n

i=1 ri(1Ai
− 1Bi

).

Proof. Consider the partition induced by A1, . . . , An, B1, . . . , Bn, A,B, and denote it by

A, with atoms denoted by a. The assumed indicators identity for all s ∈ S translates to

the following finite system of linear equations, with the variables α1, . . . , αn.

n∑
i=1

δi(a)αi = δ(a), a ∈ A,

δi(a) = 1Ai
(s)− 1Bi

(s), s ∈ a, δ(a) = 1A(s)− 1B(s), s ∈ a.

Since all coefficients in the above equations, δ(a) and δi(a), are integers, by denseness

of the rational numbers in the reals it follows that if a nonnegative solution to this

9Q++ is the set of strictly positive rational numbers.

22



system exists, then there also exists a nonnegative rational solution. Thus, if indeed

1A − 1B =
∑n

i=1 αi(1Ai
− 1Bi

) for some αi > 0, then there is a solution ri ∈ Q++. �

Conclusion 1. Suppose that Ai % Bi for i = 1, . . . , n. If there are αi > 0, i = 1, . . . , n,

such that 1A − 1B =
∑n

i=1 αi(1Ai
− 1Bi

), then A % B.

In order to show that D% contains exactly those indicator differences which correspond

to preference, it should further be proved that preference is preserved under the closure

operation. This is done separately for the finite and infinite cases.

5.1 Proof of Theorem 1

First it is proved that under assumptions P1-P4, the multiple-priors representation

follows (direction (i)⇒(ii)).

When S is finite, there are finitely many pairs of events. Therefore D% is generated

by a finite number of vectors. In fact,

D% =
∑

(A,B):A%B

α(A,B)(1A − 1B), α(A,B) ≥ 0 ,

hence D% is closed, and by Conclusion 1, 1A−1B ∈ D% if and only if A % B. Define10

V = {v ∈ RS | v ·ϕ ≥ 0 for all ϕ ∈ D%} . The set V is a closed convex cone, and contains

the zero function.

Claim 3.

ϕ ∈ D% ⇔ v · ϕ ≥ 0 for every v ∈ V .

Proof. By definition of V , if ϕ ∈ D% then v · ϕ ≥ 0 for every v ∈ V . Now suppose that

ψ /∈ D%. Since D% is a closed convex cone then by a standard separation theorem (see

Dunford and Schwartz, Corollay V.2.12) there exists a nonzero vector separating D%

and ψ. Since 0 ∈ D% and aψ /∈ D% for all a > 0, there exists w ∈ RS such that

w ·ϕ ≥ 0 > w ·ψ, for every ϕ ∈ D%. It follows that w ∈ V , and the proof is completed. �

10For x = (x1, ..., x|S|), y = (y1, ..., y|S|) ∈ RS , x · y denotes the inner product of x and y. That is,

x · y =
∑|S|

i=1 xiyi.
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Conclusion 2.

A % B ⇔ v · (1A − 1B) ≥ 0 for every v ∈ V .

For every event A ∈ Σ and vector v ∈ V , denote v(A) = v · 1A =
∑

s∈A v(s).

According to the Non-Triviality assumption, V 6= {0}. By Positivity, 1A ∈ D% for

all A ∈ Σ, therefore v(A) ≥ 0 for every v ∈ V . It follows that the set P = {π =

v/v(S) | v ∈ V \ {0}} is a nonempty set of additive probability measures over Σ, such

that:

A % B ⇔ π(A) ≥ π(B) for every π ∈ P .

By its definition, P is the maximal set w.r.t. inclusion that represents the relation.

The other direction, from the representation to the axioms, is trivially implied from

properties of probability measures (GFC directly follows by taking expectation on both

sides).

5.2 Proof of Theorem 2

5.2.1 Proof of the direction (i)⇒(ii)

Claim 4. If A �� B , then 1A − 1B is an interior point of D%.

Proof. By definition, A �� B implies that there exists a partition {A1, . . . , Ak} of A

and a partition {B′1, . . . , B′l} of Bc, such that for all i, j, A\Ai % B∪Bj . First observe

that it cannot be that A = ∅, for it would imply, on the one hand, that A = ∅ % B, by

definition of strong preference, and on the other hand, by Generalized Finite Cancellation,

∅ % Bc ⇔ B % S, contradicting Non-Triviality. Similarly B = S is impossible. Hence,

k, l ≥ 1. Using the definition of strong preference, monotonicity of % w.r.t set inclusion

and the structure of D% obtains:

1A − 1B − 1Ai
∈ D% , i = 1, . . . , k, and

1A − 1B − 1Bj
∈ D% , j = 1, . . . , l, therefore

(k + l)(1A − 1B)− 1A − 1Bc = (k + l − 1)(1A − 1B)− 1S ∈ D% ⇒

(1A − 1B)− 1

k + l − 1
1S ∈ D%.
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It is next shown that there exists a neighborhood of 1A − 1B in D%. Let ε <
1

2(k+l−1) and let ϕ ∈ B0(S,Σ) be such that ‖1A − 1B − ϕ‖ < ε. For all s ∈ S ,

ϕ(s) > 1A(s)− 1B(s)− 1
2(k+l−1) , therefore ϕ dominates 1A − 1B − 1

k+l−11S. It follows

that ϕ = 1A− 1B − 1
k+l−11S +ψ for ψ ∈ D% (since ψ is nonnegative), hence ϕ ∈ D%

and 1A − 1B is an internal point of D%. �

Claim 5. If 1A − 1B is on the boundary of D%, then A % B.

Proof. Suppose on the contrary that for some events A and B, 1A − 1B is on the

boundary of D%, yet ¬(A % B). As 1A − 1B is on the boundary of D%, there exists

ε′ > 0 and ϕ ∈ D% such that 1A − 1B + δϕ ∈ D% for every 0 < δ < ε′.

On the other hand, employing Non-Atomicity, there exists an event F ⊆ Ac such

that F �� ∅ and 1A−1B+1F /∈ D%. The previous claim entails that 1F is an internal

point of D%, hence there exists εϕ > 0 such that 1F + δϕ ∈ D% for all |δ| < εϕ. Let

0 < δ < min(εϕ, ε
′) , then 1A − 1B + δϕ+ 1F − δϕ = 1A − 1B + 1F is in D%, since it is

a sum of two vectors in D%. Contradiction. �

Conclusion 3.

A % B ⇔ 1A − 1B ∈ D%.

Proof. The set D% contains, by its definition, all indicator differences 1A′ − 1B′ for

A′ % B′ (thus also the zero vector), and their positive linear combinations. However, by

the previous claims, if 1A − 1B may be represented as a positive linear combination of

indicator differences 1A′ − 1B′ for which A′ % B′, or if 1A − 1B is on the boundary of

D%, then A % B. That is, every indicator difference 1A − 1B in the closed convex cone

generated by indicator differences indicating preference also satisfies A % B. �

Denote by B(S,Σ) the space of all Σ-measurable, bounded real functions over S,

endowed with the supremum norm. Denote by ba(Σ) the space of all bounded, additive

functions from Σ to R, endowed with the total variation norm. The space ba(Σ) is

isometrically isomorphic to the conjugate space of B(S,Σ). Since B0(S,Σ) is dense in

B(S,Σ) , ba(Σ) is also isometrically isomorphic to the conjugate space of B0(S,Σ).

Consider an additional topology on ba(Σ). For ϕ ∈ B0(S,Σ) and m ∈ ba(S,Σ), let

ϕ(m) =
∫
S
ϕdm. Every ϕ defines a linear functional over ba(S,Σ), and B0(S,Σ) is a total
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space of functionals on ba(S,Σ).11 The B0(S,Σ) topology of ba(S,Σ), by its definition,

makes a locally convex linear topological space, and the linear functionals on ba(S,Σ)

which are continuous in this topology are exactly the functionals defined by ϕ ∈ B0(S,Σ).

Event-wise convergence of a bounded generalized sequence µα in ba(S,Σ) to µ is identical

to its convergence to µ in the following topologies: the B0(S,Σ) topology, the B(S,Σ)

topology, and the weak* topology (see Maccheroni and Marinacci, 2001). Hence, the

notion closedness of bounded subsets of ba(S,Σ) is identical in all three topologies.

Let

M = {m ∈ ba(Σ) |
∫
S

ϕdm ≥ 0 for all ϕ ∈ D% }. (7)

The set M is a convex cone, and contains the zero function. For a generalized sequence

{mτ} in M, which converges to m in the B0(S,Σ) topology, mτ (ξ) → m(ξ) for every

ξ ∈ B0(S,Σ). Therefore, having mτ (ϕ) ≥ 0 for every ϕ ∈ D% and every τ , yields that

m ∈M. The set M is thus closed in the B0(S,Σ) topology.12

Claim 6.

ϕ ∈ D% ⇔
∫
S

ϕdm ≥ 0 for every m ∈M.

Proof. According to the definition of M, it follows that if ϕ ∈ D% then
∫
S
ϕdm ≥ 0

for every m ∈ M. Now suppose that ψ /∈ D%. Since D% is a closed convex cone, and

B0(S,Σ), endowed with the supnorm, is locally convex, then by a Separation Theorem

(see Dunford and Schwartz (1957), Corollary V.2.12) there exists a non-zero, continuous

linear functional separating D% and ψ. Hence, since 0 ∈ D% and aψ /∈ D% for all a > 0,

there exists m′ ∈ ba(Σ) such that
∫
S
ϕdm′ ≥ 0 >

∫
S
ψdm′, for every ϕ ∈ D%. It follows

that m′ ∈M, and the proof is completed. �

Conclusion 4.

A % B ⇔
∫
S

(1A − 1B)dm ≥ 0 for every m ∈M.

Proof. Follows from Conclusion 3 and the previous claim. �

11That is, ϕ(m) = 0 for every ϕ ∈ B0(S,Σ) implies that m = 0.
12This part of the proof is very similar to a proof found in ‘Ambiguity from the differential viewpoint’,

a previous version of Ghirardato, Maccheroni and Marinacci (2004).
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According to the Non-Triviality assumption, M 6= {0}. By Positivity, 1A ∈ D%

for all A ∈ Σ, therefore
∫
S

1Adm ≥ 0 for every m ∈ M. It follows that the set

P = {π = m/m(S) | m ∈ M \ {0}} is a nonempty, B0(S,Σ)-closed and convex set of

additive probability measures over Σ, such that:

A % B ⇔ π(A) ≥ π(B) for every π ∈ P .

Observation 2. The set P is bounded (in the total variation norm), hence it is compact

in the B(S,Σ) topology, thus in the B0(S,Σ) topology (see Corollary V.4.3 in Dunford

and Schwartz). Boundedness of P also implies that it is weak* closed.

The set P , by its definition, is maximal w.r.t. inclusion (any π′ /∈ P yields
∫
S
ϕdπ′ <

0 for some ϕ ∈ D%, hence π′(A) < π′(B) for some pair of events that satisfy A % B),

B0(S,Σ)-closed and convex.

Claim 7.

A �� B ⇒ π(A)− π(B) > δ > 0 for every π ∈ P .

Proof. By definition of strong preference, A �� B if and only if there exists a partition

{G1, . . . , Gr} of S, such that A \ Gi % B ∪ Gj for all i, j. This means that there

are partitions {A1, . . . , Ak} of A, and {B′1, . . . , B′l} of Bc, such that π(A) − π(Ai) ≥
π(B) + π(B′j) for all π ∈ P and all i, j. It cannot be that π(A) − π(Ai) = 0 or

π(B) + π(B′j) = 1, since π(B ∪ B′j) > 0 for some j and π(A \ Ai) < 1 for some i.

Hence, k ≥ 2 and l ≥ 2, and, for all π ∈ P ,

π(A)− π(B) ≥ π(Ai) + π(B′j), for all i, j ⇒

(k + l − 1)(π(A)− π(B)) ≥ 1

and the proof is completed with δ = 1/(k + l), for instance. �

In particular, it follows that π(A) > π(B) for every π ∈ P , whenever A �� B.

Lemma 1. The probability measures in P are uniformly absolutely continuous.

Proof. Let B be an event, and suppose that µ′(B) > 0 for some µ′ ∈ P . The inequality

implies that ¬(Bc % S), therefore by Non-Atomicity and claim 7 there exists an event
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E ⊆ B that satisfies µ(E) > 0 for every µ ∈ P . It follows that µ(B) > 0 for every

µ ∈ P , hence µ(B) > 0 ⇔ µ′(B) > 0, for every event B and any µ, µ′ ∈ P .

Non-Atomicity further implies that ¬(Bc ∪E % S), which implies that µ(B \E) > 0

for some, hence for all, µ ∈ P . Therefore, if µ(B) > 0 there exists E ⊂ B with

µ(B) > µ(E) > 0. All probability measures in P are thus non-atomic.

According to the above arguments, there exists an event F1 such that 0 < µ(F1) < 1

for all µ ∈ P . As this implies ¬(F c
1 % S), it follows from Non-Atomicity that there exists

a partition of F1, {E1, . . . , Em}, such that:

Ei �� ∅ and ¬(∅ % F1 \ Ei) for i = 1, . . . ,m.

For a fixed i, the preference Ei �� ∅ entails that there exists a partition of S,

{G1, . . . , Gri}, that satisfies Ei % Gj, j = 1, . . . , ri. Taking the refinement of the partitions

for each i, there exists a partition {G1, . . . , Gr} such that Ei % Gj for all i = 1, . . . ,m

and j = 1, . . . , r. It follows that for each i, j, µ(Gj) ≤ µ(Ei) for every µ ∈ P . As ∅ % ∅,
the partition {E1, . . . , Em} must consist of at least two atoms. Hence, for each j,

µ(Gj) ≤
1

m

m∑
i=1

µ(Ei) ≤
1

2
µ(F1) <

1

2
, for all µ ∈ P .

Let F2 = Gj for Gj such that µ(Gj) > 0 (there must exist such j since the Gj’s

partition S). Again ¬(∅ % F2), and by Non-Atomicity there exists a partition of F2,

{E ′1, . . . , E ′l}, such that:

E ′i �� ∅ and ¬(∅ % F2 \ E ′i) for i = 1, . . . , l.

As in the previous step, it follows that l ≥ 2 and there exists a partition {G′1, . . . , G′k}
with µ(G′j) ≤ µ(E ′i) for all indices i, j and all probabilities µ ∈ P . Thus, for all j,

µ(G′j) ≤
1

l

l∑
i=1

µ(E ′i) ≤
1

2
µ(F2) <

1

4
, for all µ ∈ P .

In the same manner, for all n ∈ N there exists a partition {G1, . . . , Gr} such that

for all j, µ(Gj) <
1
2n

for all µ ∈ P . It follows that the probabilities in P are uniformly

absolutely continuous. �
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The proof of the direction (i) ⇒ (ii) is in fact completed. One more corollary is added,

that will prove useful in the sequel. This is the opposite direction to Claim 7.

Corollary 2. For any events A and B, if there exists δ > 0 such that µ(A)− µ(B) > δ

for every µ ∈ P, then A �� B.

Proof. Let A and B be events such that µ(A) − µ(B) > δ > 0. By uniform absolute

continuity, there exists a partition {G1, . . . , Gr} of S such that for all j, µ(Gj) < δ/2

for every µ ∈ P . It is so obtained that

µ(A \Gi) > µ(A)− δ/2 > µ(B) + δ/2 > µ(B ∪Gj), for all i, j.

�

Conclusion 5.

A �� B ⇔ µ(A)− µ(B) > δ > 0 , for every µ ∈ P .

5.2.2 Proof of the direction (ii)⇒(i)

Suppose that for every A,B ∈ Σ, A % B if and only if π(A) % π(B) for every probability

measure π in a %-maximal set P , and that P is uniformly absolutely continuous, and

all probabilities in the set are non-atomic. Assumptions P1 through P5 are shown to hold.

P1 Reflexivity and P2 Positivity.

For every A ∈ Σ and every π ∈ P , π(A) ≥ π(A) and π(A) ≥ 0, hence A % A and A % ∅.

P3 Non-Triviality. The %-maximal set P is nonempty, thus π(B) > π(A) for some

A,B ∈ Σ and π ∈ P , implying ¬(A % B).

P4 Generalized Finite Cancellation.

Let (Ai)
n
i=1 and (Bi)

n
i=1 be two collections of events in Σ, such that Ai % Bi for all i,

and
∑n

i=1(1Ai
(s) − 1Bi

(s)) ≤ k (1A(s)− 1B(s)) for all s ∈ S, for some k ∈ N and events

A,B ∈ Σ. Then for every π in P , kEπ (1A − 1B) ≥
∑n

i=1 Eπ(1Ai
− 1Bi

) ≥ 0. It follows

that π(A) ≥ π(B) for every π ∈ P , hence A % B.
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Claim 8. If µ(F ) > 0 for an event F and probability measure µ ∈ P, then F �� ∅.

Proof. Suppose that F is an event with µ(F ) > 0. By uniform absolute continuity of P ,

there exists a partition {E1, . . . , Em} of S, such that µ(F ) > µ(Ei) for all i and all

µ ∈ P . In the same manner, for any F \ Ei there exists a partition {Gi
1, . . . , G

i
ki
} such

that µ(F \Ei) > µ(Gi
j) for all j and all µ ∈ P . Let {G1, . . . , Gr} be the refinement of

{E1, . . . , Em} and the partitions for each i, then µ(F \Gi) > µ(Gj) for all i, j and all

µ ∈ P . By definition, F �� ∅. �

P5 Non-Atomicity.

Suppose that ¬(A % B). By the representation assumption, µ′(B) > µ′(A) for some

µ′ ∈ P . Note that necessarily µ′(Ac) > 0. It is required to show that there exists a

partition {A′1, . . . , A′k} of Ac such that for all i, A′i �� ∅ and ¬(A ∪ A′i % B).

Uniform absolute continuity of the set P implies that there exists a partition {G1, . . . , Gr}
of S, such that for all j, µ(Gj) < µ′(B) − µ′(A) for all µ, thus specifically for µ′.

The partition {G1, . . . , Gr} induces a partition {A′1, . . . , A′k} of Ac such that µ′(A′i) > 0

and µ′(A ∪ A′i) < µ′(B). By the representation and the previous claim, A′i �� ∅ and

¬(A ∪ A′i % B) for all i.

5.3 Proof of Proposition 1

If P2 ⊆ P1 then obviously π(A) ≥ π(B) for every π ∈ P2, whenever π(A) ≥ π(B)

for every π ∈ P1. In the other direction, let %1 and %2 be two binary relations over Σ

with a subjective multi-prior probability representation. Denote by P1 the %1-maximal

set and by P2 the %2-maximal set. Assume that for every pair of events A and B,

A %1 B implies A %2 B. By the representation, it follows that π(A) ≥ π(B) for every

π ∈ P1 implies π(A) ≥ π(B) for every π ∈ P2. The proof that P2 ⊆ P1 is given

separately for the finite and the infinite cases.

5.3.1 Proof of (i)⇒(ii) when S is finite

Recall the construction of V and the derived %-maximal set of probabilities from the

proof of Theorem 1. Let V1 = {aπ | a ≥ 0, π ∈ P1}, V2 = {aπ | a ≥ 0, π ∈ P2} be the

closed convex cones associated with P1 and P2, respectively. Suppose on the contrary

that there exists π′ ∈ P2 \ P1. As π′ /∈ P1, then also aπ′ /∈ V1 for every a ≥ 0, and since
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V1 is a cone, a separation theorem yields that there exists a non-zero ϕ ∈ RS for which

ϕ · v ≥ 0 > ϕ·, for every v ∈ V1.
Let D%1 , D%2 denote the closed convex cones generated by indicator differences

1A − 1B for A % B (see the definition of D% in the proof of Theorem 1). Employing

Claim 3, the separating ϕ satisfies ϕ ∈ D%1 \D%2 . That is, ϕ =
∑n

i=1 αi(1Ai
− 1Bi

) for

Ai %1 Bi, but
∑n

i=1 αi(1Ai
− 1Bi

) /∈ D%2 . It follows that there exist events A,B such

that A %1 B while not A %2 B. Contradiction.

5.3.2 Proof of (i)⇒(ii) when S is infinite

For ϕ ∈ B0(S,Σ) and m ∈ ba(S,Σ), let ϕ(m) =
∫
S
ϕdm. Every ϕ defines a linear

functional over ba(S,Σ), andB0(S,Σ) is a total space of functionals on ba(S,Σ).13 Consider

the B0(S,Σ) topology of ba(S,Σ). By its definition, in this topology ba(S,Σ) is a

locally convex linear topological space, and the linear functionals on ba(S,Σ) which are

continuous in the B0(S,Σ) topology are exactly the functionals defined by ϕ ∈ B0(S,Σ).

Recall the construction of M and the derived %-maximal set of probabilities from

the proof of Theorem 2. Let M1 = {aπ | a ≥ 0, π ∈ P1}, M2 = {aπ | a ≥ 0, π ∈ P2} be

the closed convex cones associated with P1 and P2, respectively. Suppose on the contrary

that there exists π′ ∈ P2 \ P1. As π′ /∈ P1, then also aπ′ /∈ M1 for every a ≥ 0, and

a Separation Theorem, employed for the B0(S,Σ) topology of ba(S,Σ), yields that there

exists a non-zero ϕ ∈ B0(S,Σ), separating M1 and π′. Since M1 is a cone, there exists

ϕ for which
∫
S
ϕdm ≥ 0 >

∫
S
ϕdπ′, for every m ∈M1.

Let D%1 , D%2 denote the closed convex cones generated by indicator differences

1A − 1B for A % B (see Claim 5, the definition of D% in the proof of Theorem 2 and

Observation 1). Employing Claim 6, the separating ϕ satisfies ϕ ∈ D%1 \D%2 . That is,

ϕ =
∑n

i=1 αi(1Ai
− 1Bi

) for Ai %1 Bi, but
∑n

i=1 αi(1Ai
− 1Bi

) /∈ D%2 . It follows that

there exist events A,B such that A %1 B while not A %2 B. Contradiction.

5.4 Proof of Proposition 2

Assume that (i) of the proposition holds. By Theorem 2, for any two events A and B,

A % B if and only if µ(A) ≥ µ(B) for every probability measure µ in a uniformly

absolutely continuous set P . According to Savage (1954), % on A is represented by

a unique probability, hence all probabilities in P coincide on A. Savage’s theorem also

13That is, ϕ(m) = 0 for every ϕ ∈ B0(S,Σ) implies that m = 0.
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implies that the common part on A is convex-ranged. Denote the restriction of P to A
by π. Note that since % on A is complete, % and %′ coincide there. Note that, according

to Observation 2, P is compact, thus it attains its infimum (see Lemma I.5.10 in Dunford

and Schwartz (1957)).

Let E ∈ Σ and A ∈ A be events, and suppose that π(A) > minµ∈P µ(E). Then

π(A) > µ′(E) for some µ′ ∈ P , and as π(A) = µ′(A), then by the representation of % it

follows that ¬(E % A). Employing Ambiguity Aversion yields the preference A �′ E. In

the other direction, if minµ∈P µ(E) ≥ π(A), then µ(E) ≥ µ(A) for all µ ∈ P , therefore

E % A and by Consistency also E %′ A. Thus, summing the two implications,

E %′ A ⇔ min
µ∈P

µ(E) ≥ π(A). (8)

Recall that π over A is convex-ranged. Hence, for any E ∈ Σ there exists A ∈ A
with π(A) = minµ∈P µ(E). Next it is shown that E ∼′ A must hold. First, by (8),

E %′ A. Suppose on the contrary that E �′ A. By Unambiguous Non-Atomicity, there

exists an unambiguous partition of S, {A1, . . . , Am} with Ai ∈ A for all i, such that

E �′ A ∪ Ai. According to the above arguments, minµ∈P µ(E) ≥ π(A ∪ Ai) for all i,

hence minµ∈P µ(E) > π(A). Contradiction. Therefore E ∼′ A.

Let E and F be events, and A and B events in A, such that π(A) = minµ∈P µ(E)

and π(B) = minµ∈P µ(F ). Then, employing Transitivity (P1’),

E %′ F ⇔ A %′ B ⇔ A % B ⇔ min
µ∈P

µ(E) ≥ min
µ∈P

µ(F ) (9)
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